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Abstract: Agricultural land abandonment is an increasing problem in Europe. The Comunitat
Valenciana Region (Spain) is one of the most important citrus producers in Europe suffering this
problem. This region characterizes by small sized citrus plots and high spatial fragmentation which
makes necessary to use Very High-Resolution images to detect abandoned plots. In this paper
spectral and Gray Level Co-Occurrence Matrix (GLCM)-based textural information derived from
the Normalized Difference Vegetation Index (NDVI) are used to map abandoned citrus plots in
Oliva municipality (eastern Spain). The proposed methodology is based on three general steps: (a)
extraction of spectral and textural features from the image, (b) pixel-based classification of the image
using the Random Forest algorithm, and (c) assignment of a single value per plot by majority voting.
The best results were obtained when extracting the texture features with a 9 × 9 window size and
the Random Forest model showed convergence around 100 decision trees. Cross-validation of the
model showed an overall accuracy of the pixel-based classification of 87% and an overall accuracy
of the plot-based classification of 95%. All the variables used are statistically significant for the
classification, however the most important were contrast, dissimilarity, NIR band (720 nm), and blue
band (620 nm). According to our results, 31% of the plots classified as citrus in Oliva by current
methodology are abandoned. This is very important to avoid overestimating crop yield calculations
by public administrations. The model was applied successfully outside the main study area (Oliva
municipality); with a slightly lower accuracy (92%). This research provides a new approach to map
small agricultural plots, especially to detect land abandonment in woody evergreen crops that have
been little studied until now.

Keywords: land abandonment; land use; agriculture; citrus; gray level co-occurrence matrix; random
forests; VHR; image classification; semantic segmentation; remote sensing

1. Introduction

The Comunitat Valenciana (CV) region is located in eastern Spain. Its weather condi-
tions, soil characteristics and water availability have made this region one of the richest
agricultural areas in the Mediterranean basin [1,2]. The CV region is the most important
citrus producer in Spain with an area of 160,912 ha, about 60% of the national area of
this crop according to the Survey on Crop Areas and Yields of 2019 [3]. Spain is the most
important citrus producer in the European Union (EU) and the fifth highest producer in
the world [4]. However, in recent years, there has been a massive abandonment of these
agricultural holdings. In the CV region there has been a decrease of 15% in citrus areas
from 2008 to 2018 (from 188,650 ha to 161,944 ha) [5,6] and an increase in abandoned areas
is expected due to the socio-economic changes that are taking place in the EU [7].

Monitoring this issue is an important point for land and landscape management,
but also for creating a citrus inventory and making annual yield estimations. Currently

Remote Sens. 2021, 13, 681. https://doi.org/10.3390/rs13040681 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8042-5628
https://orcid.org/0000-0003-0854-5358
https://doi.org/10.3390/rs13040681
https://doi.org/10.3390/rs13040681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040681
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/681?type=check_update&version=1


Remote Sens. 2021, 13, 681 2 of 18

there are no public cartographic sources of land use to map land abandonment at plot
resolution with appropriate thematic detail. The Spanish Land Occupation Information
System (SIOSE) is an object-based and hierarchical database of land use/land cover in Spain.
SIOSE allows the identification of abandoned areas, but its minimum area of representation
is 2 ha. On the other hand, the Geographic Information System for Agricultural Plots
(SIGPAC) is available in the member states of the EU. This database has cadastral plot
resolution and identifies as abandoned plots next land uses: unproductive land, grassland
and arable land. However, there are other plots classified as crops (e.g., citrus) that are
actually abandoned. Therefore, it is possible to estimate the abandoned area through
SIGPAC, but its insufficient thematic detail inevitably causes an underestimation of the
abandoned area. In addition, this system is periodically updated manually, which can
cause errors and unregistered changes during the update period.

Traditionally, land use maps such as SIOSE or SIGPAC have been generated through
either photo-interpretation or visiting agricultural plots directly, because of the high level
of accuracy required for further administrative actions [1]. Nowadays, remote sensing
is a powerful tool for obtaining maps that can replace the creation of manual land use
maps with a more efficient personal resources use. Land abandonment has been previously
approached by remote sensing by other authors [8–12]. These previous studies have been
conducted in areas that do not require high spatial resolution, with MODIS and Landsat
products. However, detecting abandoned citrus plots in the CV region by remote sensing
is challenging due to the high spatial fragmentation and small size of the agricultural plots
which makes necessary the use of high-resolution products. Furthermore, previous studies
have focused on land abandonment of crops with fast phenological dynamics. However,
land abandonment in woody evergreen crops (e.g., citrus) has been little studied. Previous
studies on citrus already showed serious discrepancies between agriculture census data
and satellite-derived cropland area using medium-resolution satellite imagery as Land-
sat [13]. Sentinel-2 images overcome some of these limitations and showed its potential in
agricultural applications [14,15], however in areas with high spatial fragmentation they
may be not enough [16,17]. The Sentinel-2 satellite images did not show enough accuracy
to identify abandoned plots in our study area due to resolution limitations and the small
size of the plots, for this reason, the use of higher resolution images is recommended [18].

Highly fragmented areas force the use of Very High-Resolution (VHR) images. How-
ever, the use of VHR image time series is costly from an economic and operational point
of view, which forces us to focus on procedures that use a single image (mono-temporal
approaches). In addition, VHR images usually have limitations derived from their low
spectral resolution, which makes mapping vegetation difficult especially for very similar
covers. The limitations of low spectral resolution can be reduced using robust machine
learning algorithms and textural image analysis [19].

There is a wide set of techniques for the extraction of texture features: statistical
methods such as the Gray Level Co-Occurrence Matrix (GLCM) [20], Local Binary Pat-
terns [21], filtering techniques such as energy filters [22] or Gabor filters [23], methods based
on wavelet decomposition [24] and methods derived from geostatistical functions [25].
Texture measures quantitatively describe relationships of Digital Numbers (DN) values
of neighbor pixels [26]. Texture features provide contextual information that allows us
to differentiate patterns in the spatial distribution of objects in the image and increases
classification accuracy.

As far as we know there are no previous studies on land abandonment which use
VHR images and texture features. However, the GLCM features have shown to improve
classification accuracy [27], especially in high resolution images [19,28–30]. There are
previous studies which use GLCM texture features and VHR images to map vegetation
and determine the health status of trees [19,28]. These studies share characteristics with
the detection of abandonment in citrus since an abandoned plot shows a growth of wild
vegetation and trees in poor health conditions. In these cases, GLCM features and the
Random Forests algorithm were used. There are also previous studies on the identification
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of citrus plots using VHR images but these studies did not focus on identifying abandoned
plots. These studies are generally based on two types of approaches. The first group is
based on the extraction of spectral and textural features of the plot [31,32], while the second
group is based on the detection of trees [1,33]. The second approach has several limitations,
the most important the fine spatial resolution images needed to detect a single citrus tree.
In addition, the development of wild vegetation during land abandonment can mask
citrus trees and makes more difficult their identification. Although single tree approach is
widely applied in precision agriculture to analyze intra-plot variations, information of land
abandonment at level tree is not so relevant. The objective of land abandonment studies
is to classify the whole plots into a unique category what can be done considering their
spectral and textural information. The use of textural information for a single tree approach
will require more advanced algorithms to extract and classify them as abandoned.

Since 2017 a VHR airborne image is available annually for the entire CV region
through the Valencian Cartographic Institute (ICV). These images are currently used to
update the SIGPAC of the CV region. In 2011, Amorós et. al. [1] created a methodology to
identify citrus plots automatically. The main goal of this methodology was to detect plots
containing citrus at the cadastral plot level using a multi-stage object detection approach
to identify the citrus trees [34]. These advances allowed automating the classification of
citrus plots to update the SIGPAC annually. However, this methodology does not allow to
differentiate between citrus plots in production or abandoned. In the current context of
land abandonment in the CV region, it is especially important to develop a procedure to
map abandoned citrus plots to avoid overestimating the productive area.

In this work we present a multistage methodological approach to detect abandoned
plots in areas with a predominance of citrus. Our approach is based on three general
steps: First, a textural feature extraction based on the GLCM was performed from the
Normalized Difference Vegetation Index (NDVI) of the high-resolution airborne images.
Then, a supervised pixel-based classification was performed using the Random Forests
algorithm. Finally, a refinement of the classification based on majority voting within each
plot was carried out to classify each cadastral plot with a unique value.

2. Data and Methods

This section describes the proposed methodology to detect abandoned plots in areas
with a predominance of citrus. A classification based on three types of plots was proposed
(Figure 1): (a) Not in production—these are plots where bare soil occupies most of the plot
surface. These plots are in replacement periods. In this class, trees may be planted but are
not yet productive. (b) In production—these are plots with citrus productive cultivation.
In this class, the citrus crop occupies most of the plot surface. (c) Abandoned—these are
abandoned plots dominated by wild vegetation that show obvious signs of abandonment.

The detection of abandoned plots is based on the spectral and textural differences caused
by the growth of wild vegetation, the loss of vigor of the trees (decreased foliar density and
greenness) and the loss of regular spatial patterns of the crop. A more detailed description of
the ecological succession of an abandoned plot can be found in Morell et al., 2020 [18].
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Figure 1. Aerial view of the three types of plots classified: (a) abandoned, (b) in production and (c)
not in production.

2.1. Study Area and Data

The study area is divided into 4 locations of the CV region with a predominance of
citrus. The main study area is in the municipality of Oliva (Figure 2), a coastal city in the
CV region that covers an area of 59,600 ha, of which 50% is available for agriculture. Most
of this area is located on a coastal plain with high agrological capacity [35,36]. However,
urban expansion and tourism compete with agricultural land uses and are promoting land
abandonment. The main crop in this area is citrus, which represents more than 95% of the
crops in the area [37]. In this area, the citrus plots have an average extension of 0.32 ha
according to SIGPAC.
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Figure 2. Study area. On the left the Comunitat Valenciana (CV) region and the study areas: (a)
Oliva, (b) Bellreguard-Almoines, (c) Benicull-Polinyà del Xúquer and (d) Nules. On the right the
main study area in Oliva municipality and the plots classified during the field survey.
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Additionally, 3 complementary areas of 435 ha with a predominance of citrus were
chosen in the municipalities of: Bellreguard-Almoines, Benicull-Polinyà del Xúquer and
Nules (Figure 2).

The VHR images used were provided by the Valencian Cartographic Institute (ICV).
The ICV provides an annual image (VHR) of the entire Valencian Region with a spatial
resolution of 0.25 m and four spectral bands: R (430 nm), G (530 nm), B (620 nm) and NIR
(720 nm). These images were taken using an UltraCam Eagle UC-E-1-50016095-f80 camera
from the company Vexcel Imaging GmbH © with a Qioptic Vexcel HR Digaron sensor. The
images were taken on different dates in each study area (Table 1).

Table 1. Reference data and image acquisition date in each study area.

Study Area Plots Number Reference Data
Acquisition Image Acquisition Date

Oliva (a) 240 Field survey 1 14 and 15 May 2019

Bellreguard-Almoines (b) 90 Photointerpretation 14 May 2019

Benicull-Polinyà del
Xúquer(c) 90 Photointerpretation 15 June 2019

Nules (c) 90 Photointerpretation 17 June 2019
1 The field survey was conducted between 11 and 14 July 2019.

The ground truth dataset was collected during a field survey conducted between
11 and 14 July 2019 in the main study area (Oliva). Stratified random sampling with
proportional distribution was performed. A set of 240 plots in an area of 98 ha was selected
(80 not in production, 80 in production and 80 abandoned). These plots were used to
train and validate the model. In addition, 270 plots were digitalized and classified in
the complementary study areas (Table 1). To avoid errors during the photointerpretation
process of the plots, the 2018 and 2020 images of the ICV were also used. These plots were
used to test the model outside the study area.

2.2. Image Processing and Classification

Image processing is described as follows (Figure 3). The images were geometrically
corrected and radiometrically calibrated by Vexcel Imaging GmbH©. Then, the images
were resampled at 1 m resolution to reduce computing time and a mosaic was computed
with the tiles that cover each study area. Then, the images were pre-processed to extract
the GLCM-based texture features using the GLCMTextures package [38] using an R 4.0.3
environment [39]. The standard procedure for the automatic extraction of GLCM texture
features is based on a grey level image considering the panchromatic band or calculating
the first principal component of multispectral images [40]. However, our imagery does not
have a panchromatic band and performing a Principal Component Analysis would mean
a loss of interpretability of our information. For that reason, the NDVI transformation
was used to extract the GLCM textural features. This approach was used by other authors
successfully [41,42].
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The NDVI band was discretized in 32 gray levels to compute the GLCM measures.
Then, 4 kernels with different window sizes were created (3× 3, 5× 5, 7× 7, and 9 × 9) and
7 texture measures were computed. The texture measures were calculated in an invariant
spatial direction that is the average of the four directions: 0◦, 45◦, 90◦, and 135◦. This
omnidirectional approach was chosen as the crops do not present a specific direction.

Only 7 texture measures were computed out of the 14 originally proposed by [20].
These texture measures are the most widely used in remote sensing and image analysis [43]:
mean, variance, contrast, dissimilarity, homogeneity, angular second moment (ASM),
and entropy.

GLCM Mean(µ) =
N−1

∑
i,j=0

i
(

Pi,j
)

(1)

GLCM Variance
(

σ2
)
=

N−1

∑
i,j=0

Pi,j(i− µ)2 (2)

Contrast =
N−1

∑
i,j=0

Pi,j(i− j)2 (3)

Dissimilarity =
N−1

∑
i,j=0

Pi,j|i− j| (4)

Homogeneity =
N−1

∑
i,j=0

Pi,j

1 + (i− j)2 (5)

Angular Second Moment (ASM) =
N−1

∑
i,j=0

P2
i,j (6)

Entropy =
N−1

∑
i,j=0

Pi,j[−ln
(

Pi,j
)
] where 0 ∗ ln(0) = 0 (7)

where N is the number of rows or columns in the GLCM (equal to the number of gray
levels), i are the row indices of the GLCM matrix (equal to gray level of reference cell), j are
the column indices of the GLCM matrix (equal to gray level of neighboring cell) and Pi,j is
the Probability (relative frequency) of neighboring cells having gray levels i and j.

Pixel-based classification was done using the RandomForests (RF) algorithm [44],
which is a non-parametric algorithm commonly used in remote sensing for supervised
classifications [45,46]. The RF classifier consists of a set of classification trees such that
each one is trained with an independent random vector and with the same distribution
for each tree. Therefore classifier consists of an ensemble of classifiers {h(x,Θk), k = 1, . . . ,}
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where the {Θk} are independent, identically distributed random vectors, and X is an input
pattern [47].

In training, the algorithm creates multiple classification trees, each one trained on a
bootstrapped sample of the original training data, and searches only across a randomly
selected subset of the input variables to determinate a split for each node. Therefore, trees
require a measure of variable selection and a measure of the division purity to construct the
nodes. The Gini Diversity Index was used as a measure of impurity. For a given training
set T, selecting one case at random and saying that it belongs to some class Ci, the Gini
Index can be written as [46]:

∑ ∑
j 6=i

(
∫
(Ci, T)/|T|)

(∫ (
Cj, T

)
/|T|

)
(8)

where
∫

(Ci,T)/|T|is the probability that the selected case belongs to class Ci.
In RF different classification trees are combined in the form of weak predictors, this

means that the prediction of the model is determined by the majority vote of the trees.
For this reason, RF is actually an assembly model that uses the bagging technique to
combine the predictions of various decision trees. Bagging (or bootstrap aggregating)
consists of training each decision tree with a bootstrapped sample (random selection with
replacement) from the original training data set. At each bagging, 2⁄3 of the training data
set is randomly selected to train each individual tree. Trees grow to their full extent without
pruning. Even so, overfitting does not occur due to the use of bootstrapped samples to
train individual trees and the fact that the model consists of a multitude of independently
trained trees with random samples.

Our RF model was created using the randomForest package [48] from the caret
API [49] using an R 4.0.3 environment [39]. Five classification models were trained using
100 decision trees. These models were trained with pixels extracted from 210 training plots
out of the total 240 plots from the main study area. The first model took as independent
variables (input variables) the pixel values of the R (430 nm), G (530 nm), B (620 nm) and
NIR (720 nm) bands of the image. The remaining 4 models were trained with the pixel value
of the spectral bands and the 7 texture features, each one at a different window size (3 × 3,
5 × 5, 7 × 7, and 9 × 9). The models took as the dependent variable (output variable)
the type of coverage according to our classification: not in production, in production
and abandoned.

The image resulting from the pixel-based classification was segmented using the
cadastral database. Then, these segments were used to enhance the classification results
of the pixel based Random Forests algorithm using the majority voting within each seg-
ment [18]. This procedure creates an object-based map where each object is a cadastral
plot [50] and improves the accuracy of pixel-based classification by removing misclassified
pixels, within homogeneous segments, known as salt-and-pepper noise [51]. Finally, urban
and forest plots were masked using the cadastral database and the Forestry Territorial
Action Plan of the CV region.

2.3. Validation and Accuracy Assessment

An important issue in classifying remote sensing images is evaluating the results in
terms of accuracy. Our approach was validated from two different points of view. First
the pixel-based accuracy was evaluated (that is, the accuracy before the majority voting
refinement). Second, the plot-based accuracy was evaluated (that is, the accuracy after the
majority voting refinement). This double information allows us to know the performance
improvements generated by the GLCM measures and the improvements generated by the
majority voting.

The accuracy assessment was carried out through an 8-fold cross validation. In each
step a balanced set of 30 plots was used for validation. The average accuracy and standard
deviation of the pixel-based classification were obtained using a balanced set of pixels
extracted from the 30 validation plots at each step. Then, average accuracy, standard
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deviation and average confusion matrix of the plot-based classification was obtained using
the same 30 validation plots through the 8-folds cross-validation. Additionally, the most
accurate model was tested in the complementary areas and the plot-based accuracy was
obtained. The model was applied in the complementary areas without any additional
training data to test if the model can generalize outside of the training area. To this end a
set of validation plots were identified by photointerpretation for each complementary area
(Table 1).

2.4. Feature Importance and Model Pruning

The Boruta feature selection algorithm [52] was used to select the relevant features for
classification. Boruta is a wrapping method around Random Forest classification algorithm.
This algorithm is based on a backward removal of features that are not relevant, but it
implements some improvements over the traditional Recursive Feature Elimination [53,54].

The measure of importance used by Boruta is the Z score. The importance measure
of an attribute is obtained as the loss of accuracy of classification caused by the random
permutation of attribute values between objects. It is computed separately for all trees
which use a given attribute for classification. Then the mean decrease in accuracy is divided
by its standard deviation is obtained for computing the Z score:

Z score = (MDA)/(σ), (9)

Since we cannot use Z score directly to decide if importance of any given attribute is
significant (that is, whether it is discernible from importance which may arise from random
fluctuations), Boruta compares the importance of real variables with the importance of
random variables by design, called shadow features. Then it removes the features that are
less important than the best shadow variable and repeats the process iteratively for a few
steps [55].

This approach was used to decide which variables are significantly important for our
classification. Further, a ranking of importance of variables was carried out using the Z
score, and then a pruning of the model was carried out, removing the less relevant variables
recursively.

3. Results
3.1. Model Tunning

The five models were trained with an increasing number of trees up to 500 and the
out-of-bag error (OOB error) was used as a measure of precision. All models showed
convergence before 100 decision trees. After the 100 trees, the models did not generate an
out-of-bag error reduction (Figure 4), therefore the models were trained with 100 trees. The
training history also showed a better performance of the models that include spectral and
GLCM textural features regarding the spectral model (Figure 4).
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Figure 4. Random Forest models training history. The plot shows the evolution of the out-of-bag
error as the number of trees increases. All models converge before training 100 decision trees.

3.2. Classification and Accuracy Assesment

A summary of the average accuracy and its standard deviation for each model ob-
tained through cross-validation can be observed in Table 2. The average accuracy of the
pixel-based and plot-based classification is shown separately. The least accurate model was
the one that only included spectral variables. This model showed a pixel-based classifica-
tion accuracy of 71% and a plot-based classification accuracy of 91%. The most accurate
model was the one that included spectral and GLCM textural features at a 9×9 window
size with a pixel-based classification accuracy of 87% and a plot-based accuracy of 95%.
However, models that included spectral and GLCM textural features with 5×5 and 7×7
window sizes also showed a similar accuracy. Table 3 shows the performance of the model
in terms of precision, recall, and F1-score for the plot-based classification.

Adding GLCM textural features resulted in an accuracy improvement of up to 16% for
pixel-based classification. As the window size was increased, there was a decrease in noise
in the pixel-based classification (Figure 5). The noise reduction in the 3×3 window size
model regarding the spectral model led to an improvement in object-based classification.
However, in the models with larger window sizes the noise reduction did not lead to
an improvement in the object-based classification compared with the 3×3 window size
model. This is because as the noise from the pixel-based classification is reduced, the
improvement capacity of the majority voting refinement is smaller. On the other hand, the
use of majority voting refinement led to an improvement in accuracy in all cases. The most
notable accuracy improvement was in the model that only includes spectral features where
the accuracy improved by 20%.

For the most accurate model (9× 9 GLCM model classification), the highest producer’s
accuracy (98%) was obtained for the category not in production (Table 4). This category is
more easily detectable due to the spectral differences compared to the two other categories.
The in production and abandoned categories obtained a producer’s accuracy of 91% and
96%, respectively. User’s accuracy for categories not in production, in production and
abandoned was 95%, 96%, and 94%, respectively.
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Table 2. Average accuracy of each model in pixel-based classification and plot-based classification through an 8-folds cross validation.

Model AveragePixelAccuracy Standard DeviationPixel Accuracy AveragePlotAccuracy Standard Deviation Plot Accuracy

Spectral features 0.71 0.04 0.91 0.07

Spectral + 3 × 3 GLCM features 0.84 0.03 0.95 0.05

Spectral + 5 × 5 GLCM features 0.86 0.03 0.95 0.05

Spectral + 7 × 7 GLCM features 0.86 0.03 0.95 0.06

Spectral + 9 × 9 GLCM features 0.87 0.03 0.95 0.04

Table 3. Precision, recall, and F1-score averages of each model through 8-folds cross-validation.

Model
Precision Recall F1-Score

Not in
Production in Production Abandoned Not in

Production in Production Abandoned Not in
Production in Production Abandoned

Spectral features 0.94 0.90 0.92 0.99 0.86 0.88 0.96 0.87 0.89

Spectral + 3 × 3
GLCM features 0.97 0.93 0.95 0.96 0.94 0.94 0.96 0.93 0.94

Spectral + 5 × 5
GLCM features 0.97 0.93 0.95 0.96 0.94 0.94 0.96 0.93 0.94

Spectral + 7 × 7
GLCM features 0.97 0.95 0.93 0.98 0.91 0.95 0.97 0.93 0.94

Spectral + 9 × 9
GLCM features 0.96 0.96 0.94 0.98 0.91 0.96 0.96 0.92 0.95
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Figure 5. Example of reducing salt and pepper noise by adding Gray Level Co-Occurrence Matrix
(GLCM) textural features. The noise decreases as the window size increases and this causes an
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classification, (c) 3 × 3 GLCM model classification, (d) 5 × 5 GLCM model classification, (e) 9 × 9
GLCM model classification, (f) plot-based classification.

Table 4. Average confusion matrix obtained through 8-folds cross-validation.

Reference

Not in Production In Production Abandoned Average User’s
Accuracy

Predicted

Not in production 0.98 0.04 0.01 0.95

In production 0.01 0.91 0.03 0.96

Abandoned 0.01 0.05 0.96 0.94

Average Producer’s
Accuracy 0.98 0.91 0.96

According to the cadastral database and our masking process, the main study area
contains 14,953 agricultural plots occupying an area of 2949 ha. Our most accurate model
detected 2373 plots not in production (345 ha), 6064 plots in production (1513 ha), and
6516 abandoned plots (1091 ha) (Figure 6). There is a high concentration of abandoned
plots in the coastal zone due to the lower agronomic capacity of the soils and the prospects
for urban growth. In the coastal area, many owners keep their plots without agricultural
interest, and they expect future urban development processes. There is also a high con-
centration of abandoned plots adjacent to urban areas where future urban expansion is
expected. The plots in production and not in production are located in the inner area,
where the soils are more productive, and the crops are less exposed to the cold winds from
the east [18]. According to our results, 31% of the plots classified as citrus by SIGPAC
are abandoned.
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The most accurate model in the main study area was tested in the three complementary
areas (Figure 7). According to the photo-interpreted plots, the model has a high overall
accuracy (93%) (Table 5). The high accuracy obtained indicates that the model can be
applied outside the study area, although the accuracy was lower than in the training
area. The most accurate class was not in production, while the most inaccurate class
was the abandoned class. This is due to the spectral similarity of the abandoned and in
production plots.

Table 5. Overall accuracy the in complementary areas.

Overall
accuracy

Producer’s Accuracy User’s Accuracy

Not in
Production In Production Abandoned Not in

Production In production Abandoned

Bellreguard-
Almoines (b) 0.98 1.0 1.0 0.93 1.0 0.94 0.91

Benicull-
Polinyà del
Xúquer (c)

0.88 1.0 0.93 0.70 0.86 0.85 0.95

Nules (d) 0.92 1.0 0.97 0.83 0.91 0.91 0.96

Average 0.93 1.0 0.97 0.82 0.92 0.91 0.97
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3.3. Variables Importance and Model Pruning

Figure 8 shows the variables importance ranking for each model. According to the
Boruta test, all variables showed significant importance for classification. Regarding the
spectral variables, all the models showed that the most important band is the NIR followed
by the blue, red, and green bands. Furthermore, the NIR was always among the three most
important features. Regarding the GLCM texture measures, the most important feature
was the contrast for all models. The second most important GLCM texture feature was
dissimilarity for the largest window sizes (5× 5, 7× 7 and 9× 9) and mean for the smallest
window model (3 × 3). The ASM texture feature was the least important, although it also
passed the Boruta significance test.
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Recursive pruning of the 9 × 9 window size model showed a gradual decrease in
accuracy (Figure 9). This behavior matches with the Boruta results which indicated that all
the variables are significant for the classification. The greatest loss of accuracy occurred
in the last three steps of pruning where the most important features, which are contrast
and dissimilarity, are removed. The elimination of the ASM did not cause a decrease in the
accuracy of the model and it could be proposed for elimination.
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Figure 9. Recursive pruning of the best model (Spectral + 9× 9 GLCM features). The complete model
contains 11 features. These features were recursively eliminated according to the Boruta ranking
without eliminating spectral characteristics. The last pruning contains only the 4 spectral bands.

4. Discussion

The proposed methodology was appropriate for mapping land abandonment in citrus
crops at cadastral plot resolution. The combination of spectral information and texture
features allowed high classification accuracies. The results confirmed that adding GLCM
texture features to spectral information improves classification accuracy for detecting land
abandonment. The overall accuracy of the pixel-based classification was 87% and the
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overall accuracy of the plot-based classification was 95%. These results represent important
improvements compared to the use of Sentinel 2 images [18]. Our accuracy levels are
similar to previous studies using GLCM features and the RF algorithm in VHR images
in comparable contexts, such as vegetation mapping and health status, which obtained
overall accuracies between 88–97% [19,28].

The best results were obtained when generating the texture features from a 9 × 9
window size. The model accuracy increased as the window size increased due to the
reduction of salt and pepper noise. This is because as the window size increases, the texture
features better capture regular citrus planting patterns. However, increasing the window
size too much can decrease accuracy due to the inclusion of pixels from adjacent plots. This
is an important point to consider in areas with small sized plots such as our study area
where the average plot size is 0.32 ha.

All features are statistically significant for classification. However, the most important
features were contrast and dissimilarity together with the NIR and blue bands. NIR and
contrast were among the most important in all models. Dissimilarity increased while blue
band decreased in importance as window size increased. On the other hand, the ASM
feature was the least important in all the models.

The proposed methodology is an accurate and efficient alternative to generate land
abandonment maps since it allows obtaining maps with high accuracy from a reduced
set of training data. In addition, the limitations of Sentinel-2 for areas with high spatial
fragmentation was overcome thanks to the use of VHR images [16–18]. We created a
complete map of abandoned citrus plots in the Oliva municipality for the year 2019, that
detected a 31% of erroneously classified plots in the current methodology used by the public
administration. The trained model was also tested outside the training area. However,
its performance was about 3% lower than in the main study area. This difference can be
explained considering that photointerpretation can offer some limitations to define the
classes of the test plots, requiring additional field data for validating the complementary
study areas. In addition, we recommend adjusting the window size to the needs of each
area. The window size can be adjusted by evaluating the performance of the classifier in
each study area or by using automatic processes to define the window size [56]. These
results indicate that the proposed methodology is scalable to other citrus areas of the
CV region.

The availability of an annual VHR image of the entire CV region enables to generate
land abandonment maps in key areas from manageable field data sets. Furthermore, these
land abandonment maps are perfectly integrated with the information from SIGPAC and
other methodologies for citrus detection [1]. Combining these data sources could generate
valuable information for managing the land abandonment problem and improve the citrus
inventory in the CV region. This new information could correct the overestimation of
citrus crop yield through SIGPAC. However, this approach is not limited only to the CV
region. This approach could be implemented in other areas of the planet with citrus crops.
VHR images are becoming more common. In addition to airborne images, the increasing
availability of satellite images with fine spectral and spatial resolutions encourage to
develop further research on the land abandonment issue. This new information would
help us to improve the accuracy of the citrus inventory and annual yield, especially in areas
with small plots or that have land abandonment problems. Finally, this approach could
be adapted to other types of crops with regular planting pattern where abandonment is
associated with the growth of wild vegetation and the loss of vigor of evergreen crops.

5. Conclusions

In this paper, a methodology for mapping abandoned citrus plots in highly fragmented
areas from VHR images with four spectral bands (430 nm, 530 nm, 620 nm, and 720 nm) is
presented. The proposed methodology combines spectral information and GLCM-based
texture features from the NDVI to generate a pixel-based classification using Random
Forests. Then, a unique classification value is assigned to each plot by majority voting. The



Remote Sens. 2021, 13, 681 16 of 18

best results were obtained when generating the texture features from a 9x9 window size.
The proposed methodology allowed to obtain satisfactory results with an overall accuracy
of 95%. Model uses 7 texture features: mean, variance, contrast, dissimilarity, homogene-
ity, angular second moment, and entropy. All features showed statistically significant
importance for classification. However, the most important were contrast, dissimilarity,
and homogeneity together with the spectral bands. This methodology allowed creating a
complete map of abandoned plots in the municipality of Oliva (CV Region) and it could be
applied in other areas and other type of crops. This new methodological approach could
correct the citrus yield overestimation generated by the current data sources available by
public administrations. However, evaluating the performance of the model in areas far
from the training area requires further study. This research provides new information to
map small agricultural plots, especially to detect land abandonment in woody evergreen
crops that have been little studied until now.
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