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Abstract

Characterisations of finite groups in which normality is a transitive relation are presented in the paper.
We also characterise the finite groups in which every subgroup is either permutable or coincides with its
permutiser as the groups in which every subgroup is permutable.

2000 Mathematics subject classification: primary 20D10, 20D20, 20D35.

1. Introduction

All the groups considered in the sequel are finite.
Our aim in this paper is to present characterisations of groups in which normality is

transitive and to characterise the groups, all of whose subgroups are either permutable
or self-permutising.

A group G is said to be a S? -group if every subnormal subgroup of G is normal
in G. This class was investigated by several authors. The results of their investigations
allow us to have a detailed picture of their structure. The account of their structure
can be found in [11].

Bryce and Cossey [3] give a different account by establishing local versions of
some of the results on ^"-groups. For a prime p, they define classes of soluble groups
Sp^p^&p and3!p as follows:

• ^, is the class of all groups G for which every p '-perfect subnormal subgroup
of G is normal.

• @p is the class of all groups G satisfying
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(1) Sylow p -subgroups of G are Dedekind groups and
(2) p -chief factors of G are cyclic and, as modules for G, form a single

isomorphism class.

• &p is the class of all groups G such that if 5 is a Sylow p -subgroup of G, then
NG(S) normalises every subgroup of S.

• !%p is the class of all groups G for which every p -subgroup of G is pronormal
in G.

They prove that the above four classes coincide and they recover the known structure
results for soluble ^"-groups.

On the other hand, Bianchi, Gillio Berta Mauri, Herzeg and Verardi [2] present a
new characterisation of soluble ^-groups using the following embedding property:

A subgroup H of G is said to be an Jf-subgroup of G if for all j e G , NG(H) D
//* < H.

They prove:

THEOREM 1 ([2, Theorem 10]). A group G is a soluble !?-group if and only if every
subgroup of G is an Jf-subgroup.

The above embedding property is closely related to the weak normality introduced
by Miiller in [6]:

A subgroup H of G is called weakly normal in G if Hg < NG(H) implies that
g e NG(H).

It is clear that each Jif-subgroup of G is weakly normal in G, but the converse is
not true in general as the following example shows:

EXAMPLE 1. Consider G = E4 and H = ((1, 2, 3,4)). We have that NG(H) =
((1, 2, 3, 4), (1, 3)), and if g = (1, 2, 3), Hg = ((1, 4, 2, 3)>, whence HgnNG(H) =
((1, 2)(3, 4)) £ H. Therefore, H is not an ^-subgroup of G. But NG(H) has a
unique cyclic subgroup of order 4. Consequently if Hg < NC(H), then Hs = H, and
H is a weakly normal subgroup of G.

Weak normality is an interesting embedding property. Every pronormal subgroup
is weakly normal (see Section 2, Proposition 1) and, by a result of Sementovskii [13],
the join of two pronormal subgroups is weakly normal. We include a proof of this
result in Section 2 for the sake of completeness. However, not every weakly normal
subgroup is pronormal as we show in the same section.

If H is weakly normal in G and H is normal in a subgroup K of G, then NG(K)
is contained in NG(H). This fact is crucial in the proof of [2, Theorem 10] and is a
subgroup embedding property introduced by Mysovskikh in [7]:

A subgroup H of G is said to satisfy the subnormaliser condition in G if for every
subgroup K of G such that H < K, it follows that NG(K) < NG(H).
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There exist subgroups satisfying the subnormaliser condition which are not weakly
normal, as the following example, due to V. I. Mysovskikh [8], shows:

EXAMPLE 2. Consider the natural wreath product of C3 by A4. Let B be the
base group, B = {w\, w2, u>i, u>4), where A4 acts naturally on the indices. Let
W = (uutuj"1,10410^', W4W3'), then A4 acts faithfully on W. Let G = [W]A4 be
the corresponding semidirect product. The subgroup W, as a module over V4, can be
decomposed as a direct sum of the K-submodules W\ — (d), withe? = wj- 'u^'u^uu,
W2 — (e), with e = lUitoj 'u^'uu and W3 = ( / ) , w i t h / = ujf 'u^ioj 'uu. Denote
a = (1, 2, 3), fc = (1, 2)(3, 4), c = (1, 3)(2, 4). We have that db = rf, e* = e2,
/ * = / 2 , d c = < f 2 , e c = e 2 , f c = f , d " = e , e a = f , f = d , b a = b e a n d

c° = b. Consider D = [Wj](fc), then D = S3 , and since ferf = b, b' = be2

and V = bf\ it follows that N = NG(D) = (d,f, b, c) = [W, W3](b, c), a self-
normalising subgroup. Since D" = {be, d) < N and D" ^ £), we have that D
is not weakly normal in G. But D satisfies the subnormaliser condition, because
the intermediate subgroups between D and N are {b, c, / ) , (fe, cd,f), (b, cd2,f),
self-normalising subgroups of order 12, and (b,d,f),a subgroup of order 18 whose
normaliser is N. Consequently, D satisfies the subnormaliser condition, but is not a
weakly normal subgroup.

One of our aims here is to show interesting connections between the above subgroup
embedding properties and to use them for characterising soluble ^-groups. We prove:

THEOREM A. Let G be a group. The following statements are pairwise equiva-
lent:

(1) G is a soluble &-group.
(2) Every subgroup of G is weakly normal in G.
(3) Every subgroup of G satisfies the subnormaliser condition.

We develop local versions of the above theorem in the line of [3]. They turn out to
be of interest and can be used^ for proving the theorem. As an application, we give an
alternative proof of [2, Theorem 10].

In Section 3 we study the groups in which every subgroup H is either permutable
in G or H is permutable with no cyclic subgroups not contained in H, which we call
i ^^ i^ -g roups . We prove that, in fact, those groups are exactly the groups in which
every subgroup is permutable.

2. Finite ^-groups

We begin by showing that pronormal subgroups are weakly normal subgroups.
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PROPOSITION 1. If H is a pronormal subgroup of a group G, then H is a weakly
normal subgroup of G.

PROOF. Suppose that Hg < NG(H). Since H < NG(H), we have that (H, Hg) <
NG(H) and there exists x e (H, Hg) such that Hg = Hx. But x e NG(H), therefore
Hx - H and Hg = H. U

REMARK 1. The converse of Proposition 1 is not true. Consider an irreducible and
faithful E3-module V7 over the field of 7 elements such that the restriction of Vj to
A3, the alternating group of degree 3, is a direct sum of two irreducible and faithful
A3-submodules W\ and W2 of dimension 1. Let H = [Wi]A3 be the corresponding
semidirect product. Since no elements of order 2 normalise H, it follows that H <
NG(H) < [ V7]A3. Moreover, W2 does not centralise H. Consequently, H = NG(H)
and so H is weakly normal in G.

Assume that H is pronormal in G. Let a be an element of order 2 of E3. Since
[V?]A3 is normal in G, we have that (H, H") < [V7]A3. There exists an element* e
{H, H") such that Ha = Hx. Therefore a e [ V7]A3 because ax'1 e NG(H) = H, a
contradiction.

Consequently, H is a weakly normal subgroup of G which is not pronormal in G.

The join of two pronormal subgroups is not pronormal in general (see, for ex-
ample, [4, Section 1.6, Exercise 2]). However we have, by the following result of
Sementovskii, that the join of two pronormal subgroups is weakly normal.

THEOREM 2. If A and B are pronormal subgroups of G, then J = (A, B) is a
weakly normal subgroup of G.

PROOF. Suppose that A and B are pronormal subgroups of G, J = (A, B) and
Jg < NG(J). Since A < J < NG(J) and Ag < Jg < NG(J), it follows that
(A,AS) < NG(J). A similar argument shows that (B, Bg) < NG(J). From the
pronormality of A, there exists x e (A, Ag) < NG(J) such that Ax = As, and so
Ag < Jx = J. From the pronormality of B, there exists y e (B, Bg) < NG(J) such
that Bg = By, and so Bg < P = J. Hence Jg = (A*, Bg) < (J, J) = J, whence
g € NG(J). Therefore J is weakly normal in G. •

The following lemma turns out to be crucial in the proof of Theorem A (see [2,
Theorem 6 (ii)]).

LEMMA 1. (1) / / G is a group and H a weakly normal subgroup of G, then H
satisfies the subnormaliser condition in G.
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(2) // H is a subnormal subgroup of K < G and H satisfies the subnormaliser
condition in G, then H is a normal subgroup ofK {see for example [4, Lemma 6.3 (d),
page 241]).

PROOF. (1) Suppose that H is a weakly normal subgroup of G and let K be a
subgroup of G containing H and contained in NG(K). Consider an element g G
NG(K). Then Kg = K. Hence Hg < K* = K < NG(H). Consequently g e NG(H)
because H is a weakly normal subgroup of G-
(2) Suppose that H satisfies the subnormaliser condition in G and that H is a
subnormal subgroup of K < G. By induction on a length of a series from H to K,
we can suppose that H < T < K. In this case, H < T < NG(H). Therefore
K < NG(T) < NG(H) by the subnormaliser condition. Hence H is a normal
subgroup of K. D

The following Lemma (see [4, Example 1.6.8, page 249]) shows that for p-
subgroups, pronormality, weak normality and the subnormaliser condition are equiv-
alent properties.

LEMMA 2. Let H be a p -subgroup of a group G. The following properties are
equivalent:

(1) H is a pronormal subgroup of G.
(2) H is a weakly normal subgroup of G.
(3) H satisfies the subnormaliser condition in G.
(4) H < NG(X)for every p-subgroup X such that H < X.
(5) H < NG(S)for every Sy low p-sub group S ofG such that H < S.

PROOF. By Proposition 1, it follows that (1) implies (2), and by Lemma 1, we have
that (2) implies (3).

Suppose now that H satisfies the subnormaliser condition in G and let X be a p-
subgroup of G containing H. Then H satisfies the subnormaliser condition in NG(X)
and H is subnormal in NG(X). By Lemma 2, H is a normal subgroup of NG(X).
Hence (3) implies (4).

It is clear that (4) implies (5).
Finally we see that (5) implies (1). Let g € G and J — {//, / /*). Since H is a

p -group, there exists a Sylow p -subgroup P of J such that H < P and there exists a
Sylow p -subgroup S of G such that H < P < S. It is clear that Pg is also a Sylow
p-subgroup of J. Thus there exists x e J such that Px = Pg. In particular, Hg is
contained in Px. This implies that Hgx~' < P < S. We write t = gx~x. It is clear
that r 1 e (NG(Sr'), NG(S)) because NG(S) is abnormal in G. Since H < 5'"', it
follows that (NG(S), NG(S'~')) < NG(H) by (5). Hence rl e NG(H) and Hx = H*.
Consequently, H is pronormal in G. •
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DEFINITION 1. Let p be a prime number.

(i) &p is the class of all soluble groups G for which every p '-perfect subnormal
subgroup of G is normal.

(ii) &p is the class of all groups G such that if 5 is a Sylow p -subgroup of G,
then NC(S) normalises every subgroup of 5.

(iii) Sf.p is the class of all groups G for which every p -subgroup of G is pronormal
in G.

We introduce the following classes of groups:

DEFINITION 2. (i) Xp is the class of all groups G such that every p -subgroup
of G is weakly normal in G.

(ii) Xp is the class of all groups G for which every p'-perfect subgroup of G is
weakly normal in G.

(iii) yp is the class of all groups G such that every p-subgroup of G satisfies the
subnormaliser condition in G.

(iv) y is the class of all G for which every p'-perfect subgroup of G satisfies the
subnormaliser condition in G.

REMARK 2. Note that the results of Bryce and Cossey cover only soluble groups.
However, we do not assume that S'p and £%p are composed of soluble groups in
Definition 2.

Our purpose is to prove that, in the soluble universe, Xp = Xp = yp = yp =
<7 — ca ap

*-* p tS p *s*'p •

In the general finite universe, Lemma 2 gives a proof of the equality &p = 8f,p (Rose
[12]). Moreover, applying the same Lemma, we have that Xp = 5^p = £?p = 8%p

(see for example Peng [9] and Robinson [10]). One can wonder whether the class 3S!P

is equal to the class of all groups G such that every p'-perfect subnormal subgroup is
normal in G. The answer is 'no' as the alternating group of degree 5 and the prime
p = 2 show. However &p coincides with the class of all soluble ^-groups by [3,
Theorem 2.3].

THEOREM 3. Xp = &!p.

PROOF. Since p-subgroups are p'-perfect subgroups, it is clear that Xp c J(fp =
3f.p. Assume that JTP ^ Sf.p and let G e 8?,p\ X

p be a group of minimal order. Then
there exists a p'-perfect subgroup H of G such that Hg < NG(H) for some g e G
but g i NG(H). Since 8?.p and Jtp are subgroup-closed, we have that G = (//, g).
Let Hp be a Sylow p -subgroup of H. Then Hp is pronormal in G and so there exists
x € (Hp, //?) such that H' = / / / . Since {//„, ///> is contained in NG(H), it follows
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that x e NG(H). Hence //* is contained in // . This means that H* is a Sylow
p-subgroup of //for every Sylow p-subgroup Hp of H. Since H is p'-perfect, we
have that H = (Hp

H) = {Hp
[H-*)) = (// /) . Consequently // is a normal subgroup

of G, a contradiction. •

COROLLARY 1. y = Jfp.

PROOF. If G e X"', then G e y by Lemma 1. Now if G € y , then every
p-subgroup of G is pronormal by Lemma 2. Consequently G e 3f.p, which is equal
to Xp by Theorem 3. D

COROLLARY 2. Xp = X" = &p = y = &p = ^ .

By the result of Bryce and Cossey [3, Theorem 2.3], we have that in the soluble
universe the above classes are all equal to £?p.

COROLLARY 3. f|peP ̂  = f U ^ " = D ^ p ^ " = r \ 6 P •*£ = ^ n 6 ,
© denotes the class of all soluble groups.

PROOF. Notice that Xp = 3f,p = y from Theorem 3 and Corollary 1. Now
D

Our proof of Theorem A requires the following lemma.

LEMMA 3. If N is a normal subgroup of G, N < H < G and H/N is a weakly
normal subgroup ofG/N, then H is a weakly normal subgroup of G.

PROOF. Suppose that H' < NG(H) with g G G. Then

{H/NYN < NG/N(H/N) = NG(H)/N,

and from the weak normality of H/N, it follows that gN 6 NG(H)/N, that is,
g 6 NG(H). Consequently, H is a weakly normal subgroup of G. •

PROOF OF THEOREM A. (1) implies (2). Suppose that there exists a soluble &-
group with a non weakly normal subgroup H. We choose for G a counterexample
of least order. Then there exists an element g e G such that Hg < NG(H) but
g i NG(H). Let 5 = (//, g). Then 5 is a ^-group by [11, 13.4.7]. If G ^ 5,
then, by the minimal choice of G, it follows that H is a weakly normal subgroup of S.
Hence g e NS(H) < NG(H), a contradiction. Therefore G = (//, g).

On the other hand, H is supersoluble because it is a ^-group ([5]). Let p be the
largest prime number dividing \H\. Then, if Hp is a Sylow p-subgroup of H, we have
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that Hp < H. Now G € Jfp. This means that Hp is weakly normal in G. Since
H* < Hg < NG(H) < NG(HP), it follows that g e NG(HP) and so Hp is a normal
subgroup of G. The minimal choice of G implies that H /Hp is weakly normal in
G/ Hp. From Lemma 3, it follows that H is weakly normal in G, a contradiction.

By Lemma 1, we have that (2) implies (3).
(3) implies (1). Assume that every subgroup of G satisfies the subnormaliser

condition. Then G 6 Hoeo* ^v anc* so G is a soluble .^"-group by Corollary 3. •

As a corollary, we can give an alternative proof of [2, Theorem 10] which does
not use Gaschutz's theorem about the structure of soluble ^"-groups. We need the
following theorem.

THEOREM 4. If G is a supersoluble group and H is a weakly normal p -subgroup
of G, then H is an Jtf-subgroup of G.

PROOF. Suppose that the theorem is false. We can consider a group G of least order
with a weakly normal subgroup H which is not an ^-subgroup of G.

Suppose that OP(G) ^ 1. Let N be a minimal normal subgroup of G contained
in OP'{G). Denote Po = Hg n NG(H). From the minimality of G it follows that
P0N/N < HN/N, whence Po < HN. Since H is a p-subgroup and A? is a p'-
subgroup, we have that Po < H" n NG(H) for some n e N. Let 5 = HN. If
S < G, from the minimality of G it follows that H" n NG(H) = Hn D NS(H) < H,
a contradiction.. If S = G, then H is a maximal subgroup of G, and in this case H is
an ^"-subgroup of G, another contradiction.

Therefore we can suppose that OP\G) = 1. If q is the largest prime dividing \G\,
then G has a normal Sylow ̂ -subgroup Q. Assume thatp ^ q, then Q < OP'(G) = 1,
a contradiction. Therefore q = p. Since H < Q < G, it follows that H is subnormal
in G. Hence H is normal in G by Lemma 1, a contradiction. •

Example 1 shows that we cannot extend Lemma 2 to JF-subgroups. However we
have the following result.

THEOREM 5. If G is a supersoluble group and H is a weakly normal subgroup of
G such that every subgroup of H is weakly normal in G, then H is an Jtf'-subgroup
ofG.

PROOF. Suppose that the theorem is false. We can consider a group G of least
order with a weakly normal p -subgroup H whose subgroups are weakly normal in G
but which is not an J^-subgroup of G.

Let p be the largest prime dividing \G\. Suppose that p does not divide \H\.
Since OP(G) ^ 1, we can consider a minimal normal p-subgroup N of G. Denote



[9] On finite ^"-groups 189

Qo = Hg D NC(H). From the minimality of \G\, we have that Q0N/N < HN/N.
Hence Qo < HN. Since Qo and H are p'-subgroups, N is a p-group and G is soluble,
there exists n e N such that Qo < H" D NC(H). Denote S = HN. If S < G, from
the minimality of Git follows that//" DNG(H) = Hnr\Ns(H) < / / , a contradiction.
If S = G, then H is a maximal subgroup of G, and hence an .^-subgroup, another
contradiction.

Suppose that p divides \H\. Consider a Sylow p-subgroup Hp of H and P a Sylow
/? -subgroup of G. Since Hp is a weakly normal subgroup of G and //p is a subnormal
subgroup of P and P is a normal subgroup of G, we have that Hp < G by Lemma 1.
From the minimality of G, it follows that H/Hp is an J^-subgroup of G/Hp, and
from [2, Lemma 2] we have that H is an J^-subgroup of G. •

Now Theorem 1 follows as a corollary of Theorems A and 5: If G is a supersoluble
^•-group, given a subgroup H of G, then // and all its subgroups are weakly normal
in G by Theorem A. Hence H is an ^-subgroup of G, by Theorem 5. Suppose that
every subgroup of G is an ^"-subgroup. Then all the subgroups of G are weakly
normal. Therefore G is a ^"-group by Theorem A.

3. Groups in which every subgroup is permutable or
coincides with its permutiser

Let H be a subgroup of a group G. The permutiser Pc(H) is defined to be the
subgroup generated by all cyclic subgroups of G that permute with H. According to
[1], a group G is said to be a &-group if H ^ PG(H) for every proper subgroup H
of G. The main result on the structure of ^-groups [1, Theorem A] shows that
they are soluble, their chief factors have order 4 or a prime and G induces the full
automorphism group on their chief factors of order 4.

This section is devoted to study the groups in which every subgroup is either per-
mutable or coincides with its permutiser and it was motivated by the results contained
in Section IV of [2], where a characterisation of groups in which every subgroup is
either normal or self-normalising is presented.

DEFINITION 3. (1) A group G is said to be a &>y'£?p -group (p a prime) if every
p-subgroup H of G is either permutable or PG(H) = H.
(2) A group G is a ^ ^ , ^ - g r o u p if the above condition holds for every subgroup

of G.
It is clear that groups in which every subgroup is permutable are ^ ^

and if G is a ^ ^ ^ - g r o u p , then G is a &y&p-group for all primes p .

THEOREM 6. Let G be a &y&p -group. Then every chief factor of G whose order
is divisible by p is cyclic, that is, G is p-supersoluble.
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PROOF. Suppose that G is a SPy £?p-group of order pkm, where m is coprime
to p. If H < G and \H\ = pl, where / < it, then H is properly contained in NG(H),

and hence properly contained in PG(H). Since G is a ^y ^p-group, it follows that
H is permutable. Now let L be the product of all subgroups of G of order p*""1. Then
L is a normal p -subgroup of G, and is either a Sylow subgroup or the unique subgroup
of order p*"1. Suppose first that G has a normal Sylow p-subgroup P, so that all
p-subgroups of G are permutable. Let H be a normal subgroup of P. If X is any
p'-subgroup of G, then XH is a group, and H = XH fl P is normal in XH. Hence
all p '-elements of G normalise H, and since also P normalises H, it follows that H
is normal in G. Consequently the chief factors of P are chief factors of G. These
factors are all cyclic. Since P is a Sylow subgroup, G has no other chief factors of
order divisible by p. Suppose, on the other hand, that G has a unique subgroup L of
order pk~x and that each Sylow p-subgroup P of G is its own permutiser. Note that
P must by cyclic, because otherwise there would be more than one subgroup of order
pk~l. Now P, NC(P) and the centre of NG(P) all coincide, and so G has a normal
p-complement (by Burnside's Theorem). The result follows. •

Nevertheless, we cannot ensure that if G is a 2?y & p -group, then all the p-
subgroups of G are permutable. The alternating group of degree 4, A4, is a f?y£?}-
group, but its Sylow 3-subgroups are not permutable. However, the following property
holds:

THEOREM 7. The following statements are pairwise equivalent:

(1) Gisa&y&>-group.
(2) G is a &y &> p -group for every prime p.
(3) Every subgroup of G is permutable.

PROOF. Suppose that G is a ^ . ^ ^ - g r o u p , then given H < G, H is a permutable
subgroup of G or PG(H) = H. In particular, given a p-subgroup H of G, H is a
permutable subgroup of G or PG(H) = H, and G is a &&&,,-group. Thus (1)
implies (2).

Suppose that G is a &J?&p-group for every prime number p. From Theorem 6,
we have that G is p -supersoluble for every prime number p. Hence G is supersoluble.
From [1], we have that G is a ,^-group. Since G is a &y&p-group, every p-
subgroup of G is permutable for all primes p. Therefore every subgroup of G is
permutable. Hence (2) implies (3).

To conclude, we observe that if every subgroup of G is permutable, then G is a
, and hence (3) implies (1). •
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