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Worst-Case Energy Consumption: A New
Challenge for Battery-Powered Critical Devices

David Trilla,Carles Hernandez,Jaume Abella,Francisco J. Cazorla

Abstract—The number of (edge) devices connected to the IoT is on the rise, reaching hundreds of billions in the next years. Many
devices will implement some type of critical functionality, for instance in the medical market this includes infusion pumps and
implantable defibrillators. Energy awareness is mandatory in the design of IoT devices given their huge impact on worldwide energy
consumption and the fact that many of them are battery powered. Critical IoT devices further require addressing new energy-related
challenges. On the one hand, factoring in the impact of energy-solutions on device’s performance, providing evidence of adherence to
domain-specific safety standards. On the other hand, deriving safe worst-case energy consumption (WCEC) estimates is fundamental
to ensure the system can continuously operate under a pre-established set of power/energy caps, safely delivering its critical
functionality. In this line, we analyze for the first time the impact that different hardware physical parameters have on both model-based
and measurement-based WCEC modeling, for which we also show the main challenges they face compared to chip manufacturers’
current practice for energy modeling and validation. Under the set of constraints that emanate from how certain physical parameters
can be actually modeled, we show that measurement-based WCEC is a promising way forward for WCEC estimation.

Index Terms—Real Time, Worst-Case Energy Consumption,Energy
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1 INTRODUCTION

The proliferation of battery-powered IoT and power-
constrained devices controlling increasingly critical aspects of
human life is relentless in domains such as health, smart cities,
and intelligent transportation systems. The complexity of software
running on those devices increases every generation to cover the
demands for more autonomous operation, implementing decision
making and data analysis techniques (among others). Handheld
devices, which will govern part of the critical-applications func-
tionality, will also inherit part of application criticality.

In battery-powered devices, energy is one of the most im-
portant resources as battery life is a key element for products’
competitive edge. Analogously, power-constrained devices cannot
exceed specific energy thresholds in short timeframes due to lim-
ited power sources (e.g. solar cells in Space). This has resulted in a
vast set of academic and industrial works on low-power techniques
at different levels: from hardware design to system/application
software. When the device implements some type of critical
functionality, a new set of energy-related requirements arise. This
emanates from the fact that critical functionality – and in particular
the hardware and software implementing it – has to undergo a
stringent validation and verification (V&V) process to show ad-
herence to the prospects in domain-specific standards [33]. V&V
provide evidence of correct functional behavior, while also cover
non-functional aspects like ensuring that the timing (duration) of
software fits its allocated budget. Software timing verification is
achieved by deriving worst-case execution time (WCET) estimates
for tasks and deriving a feasible schedule for all tasks.

The rise of battery-powered and power-constrained critical
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devices makes energy a first-class citizen, as relevant as functional
and timing requirements. At the V&V level, evidence must be
provided that power-control techniques do not jeopardize the safe
operation of the device [23]. This relates to assessing the effect
of those techniques on the timing of the software to prevent any
overruns and providing evidence that they are triggered/deacti-
vated in a controlled manner [10]. Evidence is required that with
a given energy budget the device can effectively run all critical
activities (tasks) due to battery or power source related constraints.
This calls for methods and tools for worst-case energy consump-
tion (WCEC) estimation. In battery-powered devices evidence is
needed to show that task runs (jobs) can execute adhering to their
WCEC bound, so that the total energy consumed during operation
is proven not to exceed battery capacity. Meanwhile, in power-
constrained devices similar evidence is needed within smaller
timeframes to prove that energy consumed does not exceed power
supply capabilities.

Intuitively, the properties required on WCEC estimates are
comparable to those for WCET estimates, namely providing tight
upper bounds to actual energy consumptions and evidence for
certification. However, as we show in this paper, despite the
similarities in the concept, WCET and WCEC estimation are
different processes subject to fundamentally different sets of
requirements coming from the hardware. The latter shapes the
set of assumptions that can be made on the hardware information
required for tight energy measuring and modeling.

In this paper, we make a taxonomy of the factors affecting
dynamic and static energy consumption and hence, WCEC es-
timation. We describe the difficulties in deriving tight WCEC
estimates using model- and measurement-based approaches. The
contributions of this paper can be summarized as follows: À We
analyze how physical effects cause power/energy variations (Sec-
tion III). Á We describe chip manufacturers’ current practice for
average and maximum energy estimation (Section IV). Â We
show that (static) model-based WCEC estimation builds on pa-
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rameters usually not made public by chip manufacturers, which
makes it resorting to worst-case predictions potentially delivering
pessimistic WCEC estimates (Section V). Ã We describe the
challenges for measurement-based WCEC estimation that relate
to dealing with PAVT variations and software effects (Section VI).
Ä We conclude (Section VII) that model-based WCEC estimation
will find difficulties to effectively derive WCEC estimates for
software running on real complex processors being useful in early-
design stages to derive tasks’ early WCEC estimates. Instead,
measurement-based approaches are promising to obtain tighter
task-level WCEC estimates on complex processors on late-design
phases and further provide evidence for certification.

Overall, we settle the ground on the challenges for practical
and reliable WCEC estimation and aim at becoming a reference
for future works on WCEC estimation.

2 BACKGROUND

2.1 Validation and Verification

Criticality derives from functional safety and safety standards,
e.g. IEC 62304 for medical devices and IEC61508 for indus-
try). Interestingly, safety standards do not aim at removing the
appearance of failures, which is arguably impossible in a real
system. Instead, they aim at making their likelihood of occurrence
to be quantified and assessed against reference values, asserting
with sufficiently high confidence that the residual risk of violation
falls below tolerable rates. In this line, despite common wisdom,
systems are designed such that a task overrun never lead to an
unsafe state of the system, which would mean a bad-designed
safety solution. A safety process is defined (according to the
corresponding standard) covering the definition of safety goals and
requirements, and a safety strategy in general, to mitigate the risk
that hardware or software misbehavior causes a system failure. As
the criticality of the software component under analysis increases,
more mechanisms are put in place (replication, online monitoring,
watchdog) to detect and react to undesired situations.

2.2 Power estimation

Following common practice, in this section we build on power
formulation (rather than energy), although power and energy can
be used interchangeably given a fixed execution time t. The
relation between power (P ) and energy (E) is given by E = P · t.
Dissipated power can be classified into two complementary terms:
Ptotal = Pstat + Pdyn.

Static power (Pstat) dissipates when maintaining a circuit
powered up. It covers the power dissipated through leakages, free
carriers (electrons and holes) that are able to scape the isolation
layers of the silicon. There are several models for deriving
static energy consumption but a widely accepted formulation is
Pstatic = Vcc·N · kdesign· Ileakage. Vcc is the nominal voltage
for the circuit; N the number of transistors; kdesign an implemen-
tation dependent constant; and Ileakage the leakage current that
depends on the technology used for the chip implementation [9].

Interestingly, N and kdesign are truly constant parameters,
while Vcc and Ileakage are theoretically assumed constant, but
they can actually suffer some fluctuation. Vcc may vary due
to techniques for power saving such as Dynamic Voltage and
Frequency Scaling (DVFS) and drowsy operation modes [20].
Vcc also depends on the quality of the voltage supply source and
the chip package. It further suffers from significant fluctuations

at operation time, especially in multicore setups [4], since the
likelihood of abrupt power dissipation variations increases due
to, for instance, several cores having high energy consumption
requirements at the same time. This creates current glitches and
thus, voltage droops. Ileakage highly depends on the thermal
status, so that high temperatures increase the leakage current, thus
increasing the dissipated static power.

While kdesign is constant, it is an approximation to abstract
the internal complexities of processor designs and also depends
on the individual chip fabricated since process variations lead to
variations across chip units.

Despite those sources of variation, Pstat is often assumed
constant due to it being highly stable over time, which makes
nominal Pstat estimates be very precise w.r.t. average behavior.
However, this does not necessarily hold for maximum Pstat

estimates, which are the ones of interest in this paper.
Dynamic power (Pdyn) dissipates due to the charging and

discharging of transistor’s gate capacitance and can be expressed
as Pdyn = A·V 2

cc·Ceq· f , where A is the switching activ-
ity or activity factor, representing the percentage of transistors’
capacitance flipping value, Vcc is the nominal voltage, Ceq is
the equivalent capacitance of the transistor inputs and f is the
operating frequency of the device.

In general, all those parameters are subject to variations, and
so it is Pdyn. A strongly depends on the input changes of the
components. Those inputs include data and control signals of the
circuit. As an example, A for an adder depends on the input data
variation as well as on the control signals to add/subtract, etc.
Deriving approximations to A has been the subject of intense
research [29]. It has been observed that A decreases exponentially
across gate levels when moving from inputs to outputs [29].
However, this cannot be proven in general and the exponential
factor can only be approximated for specific circuit types. Thus,
to the best of our knowledge, reliable and tight upper-bounds to
the activity factor usable for any type of circuit do not exist.

Vcc suffers from the same variation effects explained before. In
the case of DVFS, both Vcc and f vary coordinately. In that case,
we regard f as constant w.r.t. Vcc, so that given a nominal Vcc
value, a given nominal f is set. In practice, f may change when
the clock source is subject to some form of variation, such as, for
instance, temperature variations, which may slow down or speed
up the clock slightly given a fixed Vcc value. Ceq is a nominal
value that depends on the size of the transistors and it is also
subject to process variations introduced during manufacturing.

3 SOURCES OF POWER VARIABILITY

Two are the main physical factors that particularly complicate
power estimation at the hardware component level.

1) The power dissipation of any hardware component (e.g.
the whole processors or a floating point unit) varies
across units1. Further, power dissipation figures differ
from their (theoretical) nominal value. This relates to
physical limitations for hardware manufacturing.

2) The power dissipation of a given component varies over
time in each unit due to several sources of variation.

Operation-time (fabrication) process, aging, temperature, and
voltage (PAVT) variations cause that, even if hardware designers

1. A unit is a physical implementation of a given component, e.g., a
processor may have two floating-point units
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Fig. 1. Average power dissipation of a program through execution time
for different temperatures. The binary alternates execution of memory
and FPU instructions on an in-order 4 stage processor with separate
instruction and data level 1 caches, and a unified level 2 cache.

could model circuits at the lowest (most-accurate) level, designers
would still miss the actual variations experienced by each indi-
vidual processor unit. This seriously complicates – in fact makes
it de facto impossible – predicting exactly power consumption a
priori. Furthermore, specific processor unit(s) under study are used
to derive power estimates for all of them.

Process Variations. Limitations in the manufacturing process
cause device (e.g. wires, vias and transistor components) param-
eters (e.g. geometry, thickness and number of dopants) to differ
from their nominal values. Taking as an example the lithographic
process, variations have a systematic and a random component.
The former manifests in spatial correlation so that variations
affect in a similar manner neighboring devices; while the random
component refers to individual devices suffering independent
variations. Variations make delay and power dissipation of each
individual device differ from nominal values and at a coarser
granularity, variations lead to delay and power variability of pro-
cessor components. For instance, 3X power variations with 90nm
technology [11] and 20X leakage (static) power variations [5] with
180nm technology across different processor units (between the
most power efficient and the most power hungry units).

Aging Variations like electromigration [3], bias temperature
instability [35], and hot carrier injection [12], affect the resistance
of wires and threshold voltage (Vt) of transistors. They also change
processor energy consumption over time and affect physical char-
acteristics of the devices by displacing molecules and dopants
from their original locations. Hence, power dissipation for a unit
slowly changes over time.

Temperature and Voltage Variations. Processors operate
within a given temperature and supply voltage range. Both of
them vary due to the activity of the whole processor, ambient
temperature and physical characteristics of the supply source,
package, processor pins, etc. For instance, if some cores in a
multicore move from idle to active, they will increase switching
activity, thus consuming more power. This will produce higher
temperature, that will propagate to the neighbor cores, and will
reduce the amount of current available for other cores, which will
perceive a Vcc decrease. This, ultimately, affects power dissipation
dynamically at very fine grain (e.g. voltage variations may occur at
the scale of few nanoseconds). As an illustrative example, Figure 1
shows average power measurements of 500-cycle intervals for
a program execution in a relevant temperature range for many
embedded microcontrollers [24]. A temperature increase of 100

degrees leads to a power increase of up to 3.5x.

4 CURRENT PRACTICE ON PROCESSOR-LEVEL
TYPICAL AND MAXIMUM POWER ESTIMATION

As an initial step to define a method to derive reliable WCEC
bounds, we describe current practice for low-level processor
energy modeling. Arguably, chip vendors have the most advanced
techniques and tools for that end. Hence, understanding the
limitations of those models is fundamental to understand the
limits of WCEC estimation. Note that chip vendors are interested
in determining suitable cooling solutions, so their focus is on
sustained power estimation under highly stressful scenarios.

Power models and measurements are used to estimate power
during processor design [1], [2]. They help iteratively modifying
the design until there is enough evidence that target peak power
values are not exceeded, see Figure 2. During the process, chip
vendors also use techniques such as adaptive body bias2 [39]
to trade off between maximum operating frequency and power
dissipation of the processor. Due to the known inaccuracy of
the models at the different abstraction levels, safety margins are
applied to account for the unknown, such as deviations in the
actual switching activity estimated, the impact of PAVT variations
or the effectiveness of the cooling solutions [6].

Models. Model-based techniques are known for being slow,
limiting the window of analysis to few thousands of cycles at most.
For instance, in electrical-level SPICE models, characterizing a
memory macrocell with synthetic stimuli can take days of simula-
tion, with a single BSIM4 CMOS transistor model accounting for
more than 40 parameters [43]. On the one hand, the huge time re-
quirements of models are handled by abstracting physical behavior
keeping the model usable but reducing its accuracy. On the other
hand, despite the complexity of the models, their accuracy w.r.t.
reality may not be sufficiently high and, moreover, it is also hard
to be estimated. This emanates from the limitations of the model
to capture all physical effects and its inability to model exactly
PAVT variations, often accounted for statistically [7].

Power models are used in chip industry for pre-silicon valida-
tion and design refinement (Figure 2), for instance for determining
whether the power supply is enough, the appearance of power hot-
spots and the efficiency of cooling solutions. Models comprise
an analytical part and a wide set of parameters obtained from
measurements on ‘prototype implementations’ such as macrocells,
small prototype chips, etc. or technology projections derived
from previous implementations on similar technology (feature
size) [31]. The model is evaluated on small hand-made kernels
(power viruses) to derive extreme behavior. However, power
viruses do not guarantee that the worst power is captured. This
relates to the difficulties to produce those inputs leading to the
worst switching across the full chip, under the worst PAVT
variations conditions. Identifying the sequence of inputs needed
for each Functional Unit Block (FUB) of the processor is simply
unaffordable. Then, producing those inputs simultaneously in all
FUBs is more challenging requiring controllability to produce the
worst combined inputs and preventing to control PAVT variations.

Measurements. Measuring actual power consumption in real
processors is limited by the availability of power monitoring units.
The granularity at which power readings can be provided is coarse

2. Body bias techniques rely on modifying the voltage of the substrate
to either increase threshold voltage (Vt) so that leakage power and speed
decrease; or to decrease Vt causing an increase in speed and leakage power.
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Fig. 2. Usage of (measurement/analytical) models and measurements
during the hardware design process.

in time (e.g. 1 second [26]) and space, e.g. components in the
pipeline can neither be isolated nor accessed physically to measure
their power dissipation. As a result, engineers stick to external
means to take coarse-grain power measurements. Interestingly,
while some processors provide built-in power monitors for some
components, those are power-proxy approaches with which power
is derived as a linear model of performance monitoring counters
(activities), which are weighted by constants. Those constants are
derived empirically with a regression model from the execution
of several reference applications. This is the case of the IBM
POWER7 [21].

Measurements are used for post-silicon validation (Figure 2).
Due to the complexity of achieving accurate power estimates
analytically, chip vendors verify chip power using actual mea-
surements – despite their own limitations. This allows deriving
power and energy figures for the different processor components.
The main challenge for deriving worst-case energy and power
measurements resides on the definition of representative scenarios.
For example, maximum peak power numbers for processors are
obtained using benchmarks that generate the most (expected)
stressing situations a.k.a. power viruses [22].

Despite advanced models and measurement approaches, the
risk of inaccuracies is not removed. One of the most well-known
failures in the prediction of the peak/typical power, is the Intel
Tejas processor (a.k.a. Pentium V), which finally exceeded its
power/temperature budgets due to model inaccuracy at a level
that even body biasing could not correct, so its production was
abandoned [14]. Although these practices are costly and not
always effective, they are still affordable and used in practice by
experts due to being the most accurate methods available.

Summary. Overall, model-based approaches build on detailed
knowledge of the system. The applicability of this type of white-
box approaches is challenged by the lack of details of real proces-
sors. In contrast, measurement-based approaches, a form of black-
box approach, can still derive estimates through experimentation
although uncertainty may remain due to the difficulties to create
representative tests.

5 MODEL-BASED TASK-LEVEL WCEC
Intuitive solutions based on multiplying the average power con-
sumption and the WCET estimate for a task may not lead to
high-quality WCEC estimates since energy and time do not
necessarily correlate [25]. Few works address the problem of
WCEC estimation from an analytical point of view [25], [40].
Following the principles of static WCET analysis, model-based
(static) WCEC analysis builds on deriving a cost function for
each instruction, with the (obvious) observation that the latter

uses energy as cost function. Energy cost is derived at instruction
level and then combined to derive energy cost of basic blocks.
From that point on, standard Integer Linear Programming (ILP)
formulation – or any other sound formulation – is used to derive
WCEC estimates for the task.

WCEC techniques work at a high abstraction level compared
to what we discussed in the previous section. Those techniques
focus on pipeline effects (Fetch, Decode, etc.) and hardware com-
ponents used in each stage (e.g. caches, functional units and the
like). As reference figures to compare against, WCEC models use
estimates provided by open-source power models. Those models
are generic, i.e. not tailored to any particular processor, and can
indistinctly result in over- or under-estimates. Hence, obtaining
WCEC estimates above the estimates provided by the reference
model does not guarantee high-quality WCEC estimates as they
can be lower or far higher than the actual energy figures.

5.1 Granularity and Accuracy
There are several levels at which power can be modeled, such as
(in increasing order of abstraction) electrical (e.g. SPICE models),
gate level and register transfer level (RTL). At the highest levels,
small programs are used to derive power estimates for a given
hardware component. These programs are usually restricted to
small power viruses [22] that aim at generating high power
consumption by, for instance, increasing the activity factor.

Modeling full-program energy consumption poses many chal-
lenges. One of them relates to keeping the execution time re-
quirements affordable, which inevitably results in simplifying the
underlying power model. In particular, the number of physical
details factored in is reduced, which basically plays against the
accuracy of the power estimates. Model simplifications may cause
inaccuracies either under- or over-estimating power. For instance,
gate-level or RTL models lose some accuracy and can only be af-
forded to simulate small programs (e.g. simulating a full processor
during several thousands of execution cycles may require several
days of simulation). As the complexity of the models decreases
to make the problem tractable, information such as the switching
activity of the transistors is lost. A feasible approach to increase
the granularity minimizing the impact on accuracy would be using
measurements coupled with statistical bounding analysis at the
desired granularity level as inputs for the models. Following this
approach, any implementation-dependent factor is captured by the
measurements and upper-bounded by statistical formulation.

5.2 Upper-Bounding the Activity Factor
The activity factor (aka switching activity) of a given FUB is
a figure in the range 0-1 that describes the fraction of the total
capacity of the FUB that switches (and hence consumes dynamic
power) in a particular processor cycle. The activity factor plays a
key role when estimating dynamic power, see Section 2. Deriving
the activity factor for a FUB requires extensive knowledge about
the particular transistors (and their geometries) whose inputs
change on a FUB input change. First, many processor details are
not visible at the software level. For instance, it is inconceivable
devising how control signals switch (e.g. to manage queues
between pipeline stages) from the abstract analysis of program
instructions. Second, this information can only be obtained with
transistor-level simulations, which incur huge overheads to enable
modeling full programs. Note that chip vendors may not make
those details public for competitive reasons. Additionally, it is
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TABLE 1
Toggle coverage for different Workloads on a RTL model of the LEON3

EEMBC AutoBench Mälardalen WCET
IU components rspeed canrdr ttsprk matmult firFn
Fetch 72.58% 72.58% 74.19% 57.26% 58.06%
Decode 70.27% 68.92% 72.30% 63.51% 60.13%
Register access 80.00% 77.88% 79.70% 73.33% 71.82%
Execute 77.78% 76.19% 77.38% 73.54% 72.22%
Memory access 62.43% 60.22% 62.15% 65.19% 74.86%
Exception 66.51% 64.22% 65.82% 76.15% 76.26%
Write back 29.19% 28.57% 28.57% 26.09% 45.96%
Data cache 57.52% 57.21% 57.52% 56.44% 57.06%
Instruction cache 41.32% 41.32% 42.36% 35.33% 41.32%
Register file 92.48% 92.48% 92.48% 87.97% 97.97%
Others 12.38% 10.6% 10.78% 15.32% 16.09%

Total 39.2% 37.8% 38.5% 39.8% 41.6%

simply unaffordable precomputing the energy consumption of all
potential input transitions due to computational and storage cost.
As an illustrative example, let us assume a particular FUB such as
an adder. A 32-bit adder has, at least, 264 different inputs if we
ignore control signals, and so there are at least 2128 different input
transitions possible, each one producing a specific capacity to
switch. Identifying the worst possible transition analytically (out
of the thousands of transistors) or empirically is beyond the reach
of any circuit designer which, at most, can guess what the worst
transition is. Hence, the complexity of obtaining and managing
such detailed information is beyond the reach of static models.

An intuitive way to handle this, as done in WCET analysis, is
making pessimistic assumptions. For instance, switching activity
is assumed to be 1 since providing evidence that a lower value
is an actual upper bound would resort to unaffordable low-level
information/models. However, typical switching activity is largely
below 1 due to idle blocks whose inputs do not change in specific
cycles, or due to the usual bias of input values operated and stored
towards specific values, which lead to very limited switching
activity. To provide concrete empirical evidence on this general
intuition, we show an example that builds on the so called toggle
factor in Table 1. It represents the fraction of nodes3 that have
switched at least once in the processor and hence, can be regarded
as an upper-bound of the switching activity of a circuit since only
a subset of the transistors in the toggled nodes have effectively
switched. In particular, we have computed with the QuestaSim
RTL simulator the toggle activity factor for several benchmarks
executed in an RTL LEON3 processor description. As shown, only
around 40% of the nodes toggled, i.e. the activity factor is at most
40% (but typically much lower).

Worst-case assumptions on the activity factor result in re-
markably pessimistic estimates. On the previous example, and
assuming that half of the transistors switch in a toggled node,
the processor could consume 20W, while we would account for
40W assuming the toggle factor, and 100W assuming switching
activity 1. Hence, the estimated WCEC may implicitly lead to a
power dissipation above the actual capabilities of the processor,
reducing its practical use. As explained before, switching activity
decreases exponentially (often quadratically) across gate levels, so
activity factors of up to 5% are expected for simple circuits [36].
Lower factors are expected for more complex circuits.

3. A node in RTL represents a high number of transistors in the actual
circuit.

5.3 PAVT Variations

As detailed in Section 3, PAVT variations can produce large power
variations across units. Any static WCEC estimation model aiming
at providing arguably sound energy upper-bounds – that cannot be
exceeded under any circumstance – cannot afford using typical
values or values obtained from statistical distributions (e.g. mean
plus six sigma). The latter can be probabilistically exceeded and,
even if that could occur with a negligible probability, it cannot be
proven to be zero. Such a WCEC estimation approach confronts
with chip vendors’ current practice: simply deriving the worst
possible value is out of the reach of chip manufacturers that,
instead of relying on a theoretical value, build upon measurements
to determine the parameters of a Gaussian distribution matching
best the observed values. Then, an upper-bound value is chosen
based on N -sigma approaches. In other words, industry resorts to
measurements to determine bounds to different parameters and use
as upper-bound the mean (µ) plus N times the standard deviation
(σ), where N is typically in the range 3-6, depending on the
exceedance rate that can be afforded for that particular component
and metric [30].

Interestingly, even if we assume that the highest observed
value is a true upper-bound, in practice not due to the uncertainty
brought by test campaigns on specific processor units, the degree
of pessimism for power estimation can be huge. For instance,
process variations may produce power discrepancies of 3x across
processor units [11], voltage variations can produce ≈25% power
variations [5], and temperature variations around 3.5x power varia-
tions as shown before. Therefore, even neglecting aging variations,
PAVT variations in power (and so in energy) can be as significant
as 13x if the absolute worst case needs to be accounted for.

6 MEASUREMENT-BASED WCEC ESTIMATION

To our knowledge, no measurement-based WCEC estimation tech-
nique exists. Next, we detail the main aspects of WCEC estimation
for tasks with measurement-based approaches.

6.1 Quality of the Measurements

Using the target platform for collecting power measurements
offers the advantage of speed and removes discrepancies with
reality due to modeling. Furthermore, measurement-based analy-
sis can also handle complex scenarios by mimicking real-world
workloads (i.e. multiple tasks running simultaneously) through
the use of stressing tests and operation conditions (e.g. high
temperature), thus accounting for interactions between tasks by
merely executing them together without the need for any detailed
model (i.e. a form of black-box approach). Whenever some effects
cannot be properly accounted for through measurements, then
disabling or enabling some features (e.g. cache partitioning) can
limit the complexity of multi-task workload interference. The
other side of the coin are the challenges to observe and account for
PAVT variations as well as software-dependent (internal) effects.

Regarding observability, while power meters can be used,
they may create some effects on the power consumption of the
processor due to the coupling of the power supply lines and may
have some degree of inaccuracy. Moreover, power meters measure
the power of the full processor rather than the power of the task
only, so deducing task energy consumption can only be done
with separate experiments running and not running the task, but
some non-controlled PAVT variations may interfere measurements
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Fig. 3. Average energy consumption of a two-path program

differently across runs. Finally, synchronizing the start of the
run of the task with measurement collection is a tough task, so
measurements need to be collected at a coarse granularity (e.g. for
1,000 runs of the task with identical inputs) to mitigate this effect.

Regarding PAVT variations, process variations correspond to
those of the actual processor being used, so how they represent
other processor units can only be studied statistically using other
processor units, extrapolating the effect from small-scale experi-
ments on simulated platforms or with data provided by the man-
ufacturer. Analogously, aging, voltage and temperature conditions
observed may be representative of neither the typical case nor
the worst case. Thus, it may be required to use simulations for
extrapolating their typical effect for statistically relevant scenarios.

6.2 Input Space Coverage and Representativeness

As for timing analysis, measurement-based WCEC analysis has
to deal with all challenges related to input-space coverage such
as program path coverage and memory placement of objects
(and its influence on cache behavior), both in single-core and
multicore execution environments. However, differently to timing
analysis, some of these factors have non-obvious effects on power
and, moreover, a number of parameters may be innocuous for
performance, but not for power.

Cache behavior correlates well with energy in general, with
hits served faster and with lower energy than misses. The latter
need to further access another cache level or memory and take
longer to be served. Still, it is possible finding specific examples
where hits lead to higher energy consumption than misses.

Execution Paths. While path coverage is equally important for
both, timing and energy analysis, the challenge for energy relates
to the fact that higher execution time does not imply necessarily
higher energy consumption. First, there is a direct relation between
execution time and energy consumption due to static energy, which
is roughly proportional to execution time. Thus, in general, paths
with longer execution time will likely produce higher energy
consumption, but only if the instruction mix and values operated
are similar enough. And second, an execution path that incurs
many cache misses may take longer than a computation intensive
path. However, the latter may produce much higher switching
activity due to computation than the former, where the pipeline
stays mostly idle with low switching activity. Figure 3 illustrates
this effect by showing dynamic and static energy consumption
for 50 execution cycles intervals for a multipath program with 2
paths, each executed twice. On the second iteration of the program,
the first cache-intensive path takes 48650 cycles to execute and
consumes 11 µJ while the second computation-intensive path

consumes more energy (i.e. 12.2 µJ ) and has a shorter duration
(i.e. 44750 cycles).

Overall, assessing the relationship between energy and execu-
tion time for a given task, or simply identifying the paths leading
to the highest energy consumption for a task, is an open challenge.
Initial solutions can build on those derived for WCET based on
using the input data used for functional testing or some type of
randomization to automatically cover the design space and derive
probabilistic coverage arguments [27] [4].

Activity Factor. The relationship between the activity factor
and input data is extremely hard to establish. As indicated before,
input values for FUBs may produce high or low switching activity.
This often relates to the number of changing bits across operated
values, since changing bits may induce some switching activity.
However, other effects such as memory placement (and so cache
placement), even if performance remains the same, may lead to
significantly different switching activities. For instance, different
addresses may produce different switching activity when operated
to add an offset. Analogously, if two addresses are mapped to the
same cache set, even if their accesses produce the same hit/miss
sequences, may cause different switching activity in the cache
decoders, in the replacement information of the cache sets, etc.
Hence, determining a realistic and tight upper-bound to the switch-
ing activity of the task under analysis is difficult. Since it depends
on highly distant layers (i.e. input data for the task and transistor-
level implementation of the processor), no practical means can
be realistically set up to get measurable confidence. Instead, only
argumentation based on exhaustiveness of test campaigns can be
used, whose reliability is difficult to assess.

6.3 PAVT Variations

Some variations, such as temperature and voltage, can be induced
during analysis by placing the chip in an oven and manipulating
the power source of the processor. Yet, relating those conditions
with worst-case operation conditions is a complex challenge.

Other variations, such as aging, can be accounted for applying
accelerated aging on a processor. This is typically done by apply-
ing overly high temperatures and voltages so that the accumulated
aging occurred in several years of operation is produced in a few
hours. However, whether accelerated aging produces exactly the
same effects as aging during operation due to physical implications
of using different stress conditions is unclear.

Finally, process variations change across processor units, thus
making energy estimates obtained for a given chip unit be invalid
for any other chip unit. Thus, the only reasonable way to account
reliably for the effect of process variations is performing the
analysis on the chip to be deployed. This, however, poses a serious
issue for many industries: power analysis needs to be repeated for
all processor units delivered. This is virtually unaffordable for
many industries where the number of units can be in the range
of millions and cost constraints are severe. Although industry
performs a number of verification tests in all units deployed to
detect obvious defects, the full validation and verification process
followed for certification/qualification purposes is not repeated
for each system unit, including all its components. Thus, process
variations also bring uncertainty to WCEC estimates. Similar to
the model-based approaches, and as stated in section 5, process
variation effects can be accounted by analyzing a representative
large enough number of processor units and obtaining its corre-
sponding statistical and probabilistic distributions.
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Fig. 4. Diagram of the main challenges, and potential paths to follow, addressed by model-based and measurement-based WCEC estimation

7 PUTTING IT ALL TOGETHER

Complex power models have been used for low-level hardware
energy modeling, e.g. hardware component, transistor, and capac-
itor level. Extending these models to derive WCEC estimates at
the task level faces the challenges of granularity and precision,
see the top part of Figure 4. The former covers the infeasibility of
using existing slow models to scale to the size of tasks. The latter
covers the fact that abstractions are needed to reduce performance
requirements, which naturally cause trading some precision of
the models. This translates into making worst-case assumptions
for many parameters, resulting in pessimistic estimates that limit
their usability and restrict them to early design stages when the
objective is to derive initial tasks’ energy/power budgets and task
schedules that fit a given energy/power budget.

Measurement-based approaches offer proxies close enough to
reality to be usable and to be understood by end users in their
certification arguments about tasks worst-case energy consump-
tion. Yet it is required to deal with several sources of uncertainty
with qualitative reasoning and statistical methods as the only
approaches available to ascertain the degree of uncertainty, see
the bottom part of Figure 4. In particular, mechanisms need to
be devised to mitigate uncertainty and increase confidence and
representativeness of measurements collected: i) for increasing the
observability of hardware and software interactions measurements
have to comprise a very high number of observations first with
identical inputs and later varying inputs to achieve sufficient cov-
erage. Tests have to be intended to enable out-of-normality cases
to surface to the observer; ii) for hardware-state and program-input
effects, we can build on existing solutions used for WCET either
based on randomization as a way to naturally explore complex
interactions of software and hardware [27] or techniques based
on the user’s ability to build test campaigns able to cover the
worst possible situations [4]; iii) the activity factor case builds
upon exhaustive tests and a necessary qualitative argumentation
to reliably trust those tests; iv) temperature and voltage variations
can be accounted by stressing the hardware under analysis by
subjecting it to extreme cases of voltage variations or applying
accelerated aging; v) finally, process variation uncertainty can
be reduced by the use of a large enough test pool of processor
units from which to derive statistical distributions that allow the
application of a correction factor on the WCEC measurements.

8 PAST AND RELATED WORK

Powerful tools exist to measure power at the electrical level, such
as SPICE [13], or higher granularities, such as CACTI [38], which
models resistances and capacitances of memory structures, and
McPAT [28] and WATTCH [8], which estimate the power of

full processors building upon CACTI. Literature on power and
energy estimation mostly focuses on empirical regression models,
dealing with the selection of the features that should be used to
most effectively model energy for different types of platforms
or processors (e.g. CPU, GPU, ARM Based, etc) building upon
their performance counters [15], [17], [37]. Hybrid models, which
combine analytical and empirical models, are also proposed to
trade accuracy for microarchitecture independence [18]. Other
works approach energy modeling from a probabilistic view by
using stochastic models and random distributions [42]. The use of
manufacturer-provided models (e.g. Intel’s RAPL) has also been
considered and enhanced by several works as an out-of-the-shelf
viable accurate alternative [19]. However, none of those tools or
models is intended for WCEC estimation of full tasks, as needed
in the context of critical real-time systems.

Other works [16] have also verified that variations across
identical instances of the same processor are not negligible,
which directly impacts empirical models and how to account
for the worst-case across a processor pool. Some authors have
assessed the strong dependence between WCEC and input values
of different components [34]. Others [32] assess the validity of
current WCEC methods, showing that WCEC cannot be estimated
with mathematical proofs, instead of requiring a shift towards a
more statistical framework.

For model-based WCEC techniques, [25] shows that multi-
plying average power by the WCET is not reliable, so they build
upon model-based WCEC estimates for basic blocks extrapolated
from micro-architectural level power models and use implicit path
enumeration techniques (IPET) to estimate the global WCEC.
This approach has been improved [40] [41] combining IPET with
genetic algorithms to trade off between reliability and tightness.

We attack the WCEC estimation problem from a different
angle. Starting from current industrial practice, we identify the key
elements challenging industrially-viable WCEC estimation and
provide the basis for a measurement-based probabilistic approach.

9 CONCLUSIONS

Energy is a key metric in critical battery-power and power-
constrainted edge devices, calling for effective means for WCEC
estimation. We describe key aspects of WCEC estimation (impact
of switching activity and PAVT variations) so far ignored by
previous methods. To our knowledge, no previous work covers
the increasing gap between WCEC estimation methods and how
energy varies in real systems. We make a first step in that direction
by bringing together knowledge from industrial practice on en-
ergy estimation and WCEC estimation in the embedded domain.
Overall, this paper settles the ground on the grand challenges
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(and directions to address them) for practical and reliable WCEC
estimation and aims at becoming a reference for future works.
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[23] K. Grüttner et al. CONTREX: design of embedded mixed-criticality con-
trol systems under consideration of extra-functional properties. MICPRO,
2017.

[24] Infineon. TC27XDC Family Aurix Microcontrollers Data Sheet, 2017.
[25] R. Jayaseelan et al. Estimating the worst-case energy consumption of

embedded software. In RTAS, 2006.
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