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Resum

L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment
ergòdiques) d’operadors de composició i de composició ponderats actuant en espais
de funcions holomorfes en un espai de Banach de dimensió infinita.

Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació ϕ : U →
U , l’acció f 7→ Cϕ( f ) = f ◦ ϕ defineix un operador, anomenat operador de compo-
sició (i ϕ s’anomena símbol de l’operador). Considerem aquest operador actuant en
diferents espais de funcions. La filosofia general és intentar caracteritzar en cada
cas les propietats del nostre interés en funció de condicions en ϕ. També, donada
ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) =ψ · f i (amb ϕ com
abans), l’operador de composició ponderat com a Cψ,ϕ( f ) = ψ · ( f ◦ϕ) (en aquest cas
ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure
propietats d’aquests operadors en termes de condicions sobre ϕ i/o ψ. Clarament
Cψ,ϕ = Mψ ◦ Cϕ, i prenent ϕ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1)
recuperem Mψ i Cϕ.

Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B→ C
es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat
i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope-
radors de composició i de composició ponderats definits en cadascun d’aquests espais
(prenent llavors U = B en la definició). També considerem operadors de composició
definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (mX )).
En aquest cas prenem U = X .

La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats
bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope-
radors de composició ergòdics en mitjana i fitats en potències definits enP (mX ). En el
Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències
definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola
d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi-
ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel
i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre
la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats
actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en
mitjana de l’operador de multiplicació.
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Resumen

El objetivo principal de esta tesis es el estudio de diferentes propiedades (principal-
mente ergódicas) de operadores de composición y de composición ponderados ac-
tuando en espacios de funciones holomorfas definidas en un espacio de Banach de
dimensión infinita.

Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación
ϕ : U → U , la acción f 7→ Cϕ( f ) = f ◦ ϕ define un operador, llamado operador de
composición (y a ϕ se le llama símbolo del operador). Consideramos este operador
actuando en diferentes espacios de funciones. La filosofía general es intentar caracte-
rizar en cada caso las propiedades de nuestro interés en función de condiciones en ϕ.
También, dadaψ: U → C, el operador de multiplicación se define como Mψ( f ) =ψ · f
y (conϕ como antes), el operador de composición ponderado como Cψ,ϕ( f ) =ψ·( f ◦ϕ)
(en este casoψ se conoce como el peso o multiplicador del operador). Nuevamente, la
idea es describir propiedades de estos operadores en términos de condiciones sobre ϕ
y/o ψ. Claramente Cψ,ϕ = Mψ ◦ Cϕ, y tomando ϕ = idU (la identidad en U) o ψ ≡ 1
(la función constante 1) recuperamos Mψ y Cϕ.

Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas
f : B→ C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas
en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas
en B. Vamos a considerar operadores de composición y de composición ponderados
definidos en cada uno de estos espacios (tomando entonces U = B en la definición).
También consideramos operadores de composición definidos en el espacio vectorial
de polinomios continuos y m-homogéneos (denotado P (mX )). En este caso tomamos
U = X .

La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resulta-
dos básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos
con operadores de composición ergódicos en media y acotados en potencias defini-
dos en P (mX ). En el Capítulo 3 estudiamos operadores de composición ergódicos
en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando tam-
bién el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4
estudiamos la compacidad de operadores de composición ponderados definidos en
H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (dé-
bil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación
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en potencias y ergodicidad en media de operadores de composición ponderados ac-
tuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media
del operador de multiplicación.



Summary

The main aim in this thesis is to study different properties (mostly ergodic) of compo-
sition and weighted composition operators acting on spaces of holomorphic functions
defined on an infinite dimensional complex Banach space.

Let X be a Banach space and U some open subset. Given a mapping ϕ : U → U
the action f 7→ Cϕ( f ) = f ◦ ϕ defines an operator, called composition operator (and
ϕ is called the symbol of the operator). We consider this operator acting on different
spaces of functions. The general philosophy is to try to characterise in each case the
properties of our interest in terms of conditions on ϕ. Also, given ψ: U → C the
multiplication operator is defined as Mψ( f ) =ψ· f and (withϕ as above), the weighted
composition operator as Cψ,ϕ( f ) =ψ · ( f ◦ϕ) (here ψ is called the weight or multiplier
of the operator). Again, the idea is to describe properties of these operators in terms
of conditions onψ and/or ϕ. Clearly Cψ,ϕ = Mψ◦Cϕ, and taking ϕ = idU (the identity
on U) or ψ≡ 1 (the constant function 1) we recover Mψ and Cϕ.

We denote the open unit ball of X by B. The space of all holomorphic functions
f : B→ C is denoted by H(B). We write Hb(B) for the space holomorphic functions of
bounded type on B, and H∞(B) for the space of bounded holomorphic functions on
B. We are going to consider composition and weighted composition operators defined
on each one of these spaces (taking then U = B in the definition). We also consider
composition operators defined on the vector space of all continuous m-homogeneous
polynomials on X (which is denoted by P (mX )). In this case we take U = X .

The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba-
sic results, needed to make the text self-contained. In Chapter 2 we deal with mean
ergodic and power bounded composition operators defined on P (mX ). In Chapter 3
we study mean ergodic and power bounded composition operators defined on H(B),
Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert
space. In Chapter 4 we study compactness of weighted composition operators defined
on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness
on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded-
ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B)
and H∞(B), as well as about compactness and mean ergodicity of the multiplication
operator.
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Introduction

The aim of this thesis is to study different properties (mainly of ergodic nature) of
composition and weighted composition operators acting on spaces of holomorphic
functions defined on an infinite dimensional complex Banach space.

The beginning of the study of holomorphic functions with infinitely many variables
(or, to be more precise, defined on infinite dimensional topological vector spaces) goes
back to the end of the 19th century, in works of Volterra and von Koch. It was devel-
oped in the first half of the 20th century with the contribution (among others) of Dun-
ford, Fréchet, Hilbert, Hille or Taylor. In the decade of the 1960s a more ‘structural’
research was started by Nachbin and his school: different spaces of holomorphic func-
tions were considered, endowed with different topologies, and their properties were
carefully studied. The interested reader is referred to the monograph [24] and its
notes and remarks. Not only the structure of the spaces, but also the behaviour of the
operators acting between them has been a central problem of operator theory from
the last century. When dealing with spaces of functions (in particular of holomorphic
functions), composition operators play a central role. When acting on spaces of holo-
morphic functions defined on finite dimensional spaces, these have been extensively
studied, and there is a wide literature on the subject. The study of composition opera-
tors between spaces of holomorphic functions defined on infinite dimensional spaces,
however, is much more scarce and, to our best knowledge, the dynamical or ergodic
properties of such operators have not been object of study so far.

Let X be a complex Banach space and U some open subset. Given a function
ϕ : U → U the action f 7→ Cϕ( f ) = f ◦ ϕ defines an operator (called composition
operator with symbol ϕ) on a suitable space of functions f : U → C. We take X to be
infinite dimensional, and denote its open unit ball by B. We are going to consider such
operators acting on five different spaces of holomorphic functions (see Section 1.3 be-
low for the precise definitions, both for the spaces and the topologies): on the space
of holomorphic functions f : B→ C (denoted H(B) and endowed with the the topol-
ogy τ0 of uniform convergence on compact subsets of B), the space of holomorphic
functions of bounded type on B (denoted Hb(B), endowed with the topology τb of uni-
form convergence on B-bounded sets), the space of bounded holomorphic functions
on B (denoted H∞(B) and endowed with the topology induced by the sup-norm),
and the space of continuous m-homogeneous polynomials (denoted P (mX )) which
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we endow with two possible topologies: the one of convergence on compact sets (in
which case we write P (mX )τ0

), or the one defined by the norm ‖p‖= sup‖x‖X≤1 |p(x)|
(in which case we write P (mX )‖·‖). Note that in the first three cases we take U = B in
the definition of the composition operator, and ϕ has to be respectively holomorphic,
holomorphic of bounded type and holomorphic. For the space of polynomials, we take
U = X , and conditions on ϕ for the composition operator to be well defined will be
given. Several authors have studied different properties of composition operators on
spaces of holomorphic functions on the unit ball of a Banach space. See, for instance,
[3, 28, 29, 32] and the references therein. However, there seems to be no previous
literature about the dynamics of such operators.

Also, if ψ: B → C is holomorphic (and ϕ is as above), we consider the weighted
composition operator (with symbol ϕ and weight or multiplier ψ), defined by f 7→
Cψ,ϕ( f ) = ψ · ( f ◦ ϕ) acting on the spaces H(B), Hb(B) and H∞(B). Also, the mul-
tiplication operator is defined as Mψ( f ) = ψ · f . Clearly Cψ,ϕ = Mψ ◦ Cϕ, and taking
ϕ = idB (the identity on B) or ψ ≡ 1 (the constant function 1) we recover Mψ and
Cϕ. While weighted composition and multiplication operators are already quite well
understood in the finite dimensional setting, we were not able to find any previous
work on this operators when X is infinite dimensional. So, apart from ergodic prop-
erties, we have also studied other properties of the operators, such as compactness,
reflexivity or being Montel.

In all cases the general philosophy is the same. We try to describe as precisely
as possible the properties that we are interested in terms of conditions involving the
symbol ϕ and/or (whenever is the case) the weight ψ.

The ergodic operator theory has its origin in the 1930s, when von Neumann proved
that the Cesàro means of every unitary operator on L2(0, 1) converge at every point or,
to put in modern terms, that every such operator is mean ergodic (see Section 1.4 for
precise definitions). This was immediately extended in various ways by the work of
(among others) Kakutani, Riesz and Yosida. The latter showed that if an operator on a
Banach space is power bounded (i.e. the set of the compositions with itself is bounded
in norm) and the Cesàro means at each point are weakly compact, then it is mean
ergodic. This is the starting point of a rich and vast theory that has been developed in
various ways. These and other concepts, originally for Banach spaces were extended
to more general situations, and other interesting ones have been defined. Here we
are mainly (but not only) interested in mean ergodicity and power boundedness, and
their interplay, for composition and weighted composition operators.

The motivation and inspiration of our investigation comes from several previous
works, as [9], where mean ergodicity of Cϕ : H(U) → H(U) (here U is a connected
domain of holomorphy in Cd) was characterised. More precisely, it was proved that
Cϕ is power bounded if and only if it is (uniformly) mean ergodic, and this happens
if and only if the symbol ϕ has stable orbits. On the other hand, if the domain is the
unit disc, it was characterised in [5] when Cϕ is mean ergodic or uniformly mean er-
godic on the disc algebra or on the space of bounded holomorphic functions in terms
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of the asymptotic behaviour of the symbol. Power boundedness and (uniform) mean
ergodicity of weighted composition operators on the space of holomorphic functions
on the unit disc was analysed in [6] in terms of the symbol and the multiplier (see
Section 1.5 below for more details). In [39] power boundedness and mean ergodicity
for (weighted) composition operators on function spaces defined by local properties
was studied in a very general framework which extends previous work. In particular,
it permits to characterise (uniform) mean ergodicity for composition operators on a
large class of function spaces which are Fréchet-Montel spaces when equipped with the
compact-open topology. The results of [39] do not apply to our setting (and cannot be
adapted) because H(B) andP (mX )τ0

are Montel but not Fréchet, Hb(B) is Fréchet but
not Montel, and H∞(B) and P (mX )‖·‖ are Banach (hence not Montel). Other recent
contributions to this topic can be found in [40], where mean ergodicity of composition
operators on the space of bounded holomorphic functions on the n-dimensional Eu-
clidean ball is studied, and in [36], where the authors consider composition operators
on weighted spaces of holomorphic functions on the disc.

Compactness of weighted composition operators defined on spaces of functions in
C have been extensively studied, and there is a huge related literature (see, for ex-
ample, [10, 17, 18, 19, 30, 52] and the references therein). However, for spaces of
holomorphic functions on infinite dimensional spaces there are only a few references;
for instance, the compactness of the composition operator Cϕ defined on H∞(B) was
studied in [3] and on Hb(B) in [31]. See Section 1.5 below for more detailed infor-
mation about previous results.

The Thesis consists of 5 chapters. Chapter 1 collects the necessary definitions and
prerequisites to follow the text in a self-contained way. Moreover, we give a detailed
introduction of the results we are going to study in the last section of this chapter.
Chapter 2 is based on the already published paper [37] and treats mean ergodic com-
position operators when acting on spaces of m-homogeneous polynomials. The situa-
tion is quite different for the two topologies considered in this space: while in the case
of uniform convergence on compact sets every power bounded composition operator
is uniformly mean ergodic, for the topology of the norm there is no relation between
the latter properties. Chapter 3 is based on the already published paper [38] and here
we study mean ergodic composition operators on the different spaces of holomorphic
functions considered above (H(B), Hb(B) and H∞(B)) when defined on the unit ball
of a Banach or a Hilbert space. Chapter 4 is based on the preprint [11]which has been
recently accepted for publication in the Journal of Operator Theory. In this chapter,
we study when the weighted composition operator Cψ,ϕ is compact in the space of
all bounded analytic functions H∞(B), and when it is bounded, reflexive, Montel and
(weakly) compact in the space of analytic functions of bounded type Hb(B). The study
is given in terms of properties of the weightψ and the symbol ϕ. Finally, in Chapter 5
we obtain different results about the ergodicity of weighted composition operators
when acting in each of the spaces introduced above, as well as about the compactness
and the ergodicity of the multiplication operator in terms of the weight.





Chapter 1

Preliminaries

This chapter will serve as a toolbox for the entire work. We give some definitions re-
lated with locally convex spaces, operator theory and holomorphic functions. We also
recall some useful results for the study of mean ergodic and power bounded opera-
tors. In the last part of this chapter we revise the literature of (weighted) composition
operators on spaces of holomorphic functions.

1.1 Basics of functional analysis

We collect here the basic definitions and results that will be used all along the text.
We follow [41, 42, 45, 49].

Let E be a vector space over R or C. We say that a map p : E → R is a seminorm
when it satisfies the following

• p(x)≥ 0,

• p(λx) = |λ|p(x) and,

• p(x + y)≤ p(x) + p(y)

for every x , y ∈ E and λ ∈ K. The map p is a norm if additionally p(x) = 0 implies
that x = 0. Let ΓE denote a collection of seminorms on E determining its topology.
Then, we say that (E, ΓE) is a locally convex Hausdorff space (briefly lcHs) if the family
ΓE satisfies the following

• For each p, q ∈ ΓE there is r ∈ ΓE such that max (p(x), q(x)) ≤ r(x) for every
x ∈ E.

• For each x ∈ E with x 6= 0 there is p ∈ ΓE such that p(x)> 0.

A lcHs (E, ΓE) is a Fréchet space if it is complete and metrizable. In such a case ΓE may
be chosen countable. If (E, ΓE) is a Banach space then ΓE is even a singleton.
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18 Chapter 1. Preliminaries

Let (E, ΓE) be a lcHs. We denote by E′ the dual space of E that is, the collection of
all functions u: E→ C that are linear and continuous. The dual space of E′ is denoted
by E′′, this vector space is also known as the bidual of E. Given two nonempty sets
M ⊂ E and N ⊂ E′, following [45, p. 255], we denote the polar sets of M and N as

M ◦ := {u ∈ E′ : sup
x∈M
|u(x)| ≤ 1}

N ◦ := {x ∈ E : sup
u∈N
|u(x)| ≤ 1}

(see also [35, p. 190-192]). Now we recall [45, Theorem 22.13].

Theorem 1.1 (Bipolar Theorem). Let E be a lcHs and A be an absolutely convex subset
of E. Then, A= (A◦)◦ =: A◦◦.

We denote by σ(E, E′) the topology of weak convergence on E, where each u ∈ E′

defines a seminorm p{u} : E → R given by p{u}(x) = |u(x)| for every x ∈ E. On the
other hand, the topology σ(E′, E) of pointwise convergence on E′ is usually known as
the weak∗ topology. That is, each x ∈ E defines a seminorm p{x} : E′ → R given by
p{x}(u) = |u(x)| for every u ∈ E′. We write this dual space as (E′,σ(E′, E)) or shortly,
E′
σ
. We denote by β(E′, E) the topology of uniform convergence on the bounded sets

of E in E′, and we write this space as (E′,β(E′, E)) or shortly, E′
β

and also E′. In
this case, each bounded set V ⊂ E defines a seminorm pV : E′ → R given by pV (u) =
supx∈V |u(x)| for every u ∈ E′.

Let X be a Banach space. We denote by B the open unit ball of X (or BX if we need
to stress the space X ). For x0 ∈ X and ε > 0, the open ball centred at x0 and radius
ε is denoted by B(x0,ε). For the special case of X = C we denote by D the open unit
disc and by D(z0,ε) the open disc centred at z0 ∈ C and radius ε > 0. The dual space
X ′ is a Banach space when it is endowed with the dual norm ‖u‖X ′ = sup‖x‖≤1 |u(x)|.
We also have that (X ′,‖ · ‖X ′) coincides with (X ′,β(X ′, X )).

We recall that `p, with 1≤ p <∞, is the following space

`p :=

(

x ∈ CN : ‖x‖p :=

�∞
∑

j=1

|x j|p
�1/p

<∞

)

.

The spaces `∞ and c0 are given, respectively, by

`∞ :=

�

x ∈ CN : ‖x‖∞ := sup
j∈N
|x j|<∞

�

,

c0 :=
§

x ∈ `∞ : lim
j→∞

x j = 0
ª

.

We denote by en the n-th element of the canonical basis of these spaces.



1.2. Linear operators in lcHs 19

A lcHs E is said to be quasinormable if given a 0-neighbourhood V in E there is a
0-neighbourhood U in E such that for any ε > 0 there is a bounded set B in E satisfying
U ⊂ B + εV .

A subset M of a vector space E is said to be absorbing if E =
⋃

n∈N nM . A barrel in
a lcHs E is a subset which is closed, absolutely convex and absorbing in E. The space
E is barrelled if each barrel in E is a 0-neighbourhood. Banach spaces and Fréchet
spaces are examples of barrelled spaces [45, Proposition 23.23].

A lcHs (E, ΓE) is semi-reflexive if E = E′′ as vector spaces. Moreover, if (E, ΓE) =
(E′′,β(E′′, E′)) as lcHs we say that E is reflexive. A lcHs E is reflexive if and only if
E is semi-reflexive and barrelled (see [45, Proposition 23.22]). The following gives a
characterization for semi-reflexive spaces

Proposition 1.2. [45, Proposition 23.18]. A lcHs E is semi-reflexive if and only if every
bounded set in E is relatively weakly compact.

Now, we say that a lcHs E is semi-Montel if every bounded set in E is relatively
compact. If additionally E is barrelled we say that E is Montel.

1.2 Linear operators in lcHs

Here we recall the basic definitions for linear operators in lcHs and a characterization
for barreled spaces.

Given two lcHs E, F , we denote byL (E, F) the space of continuous linear operators
T : E → F . For the space L (E, E) we simply write L (E). The identity operator on
L (E) is denoted by id (or idE if we need to stress the space). The transposed operator
of T ∈ L (E, F) is denoted by T t ∈ L (F ′, E′).

We say that an operator T : E→ F is

• bounded if there is a 0-neighbourhood U in E such that T (U) is bounded in F ;

• compact if there is a 0-neighborhood U in E such that T (U) is relatively compact
in F ;

• weakly compact it there is a 0-neighbourhood U in E such that T (U) is weakly
relatively compact in F ;

• Montel if it maps every bounded set in E into a relatively compact set in F ;

• reflexive if it maps every bounded set in E into a weakly relatively compact set
in F .

In the space L (E, F) we consider different topologies:
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• τs is the topology of pointwise convergence. That is, each seminorm p ∈ ΓF and
each x ∈ E define a seminorm qp,{x} in L (E, F) as

qp,{x}(T ) = p(T x) for every T ∈ L (E, F).

• τ0 is the topology of uniform convergence on the compact sets of E. That is,
each seminorm p ∈ ΓF and each compact set K ⊂ E define a seminorm qp,K in
L (E, F) as

qp,K(T ) = sup
x∈K

p(T x) for every T ∈ L (E, F).

• τb is the topology of uniform convergence on the bounded sets of E. That is,
each seminorm p ∈ ΓF and each bounded set V ⊂ E define a seminorm qp,V in
L (E, F) as

qp,V (T ) = sup
x∈V

p(T x) for every T ∈ L (E, F).

Let E and F be two lcHs. A subset H of L (E, F) is said to be pointwise bounded
if for each x ∈ E the set {T x : T ∈ H} is bounded in F . A subset H of L (E, F) is
equicontinuous if for each p ∈ ΓF there is c > 0 and q ∈ ΓE so that

sup
T∈H

p(T x)≤ cq(x) for every x ∈ E.

The Uniform Boundedness Principle gives a characterization for barrelled spaces.
Here we include the version of [49, Proposition 4.1.3]

Proposition 1.3 (Uniform Boundedness Principle). Let E be a lcHs. Then E is barrelled
if and only if for every lcHs F we have that every pointwise bounded set U ⊂ L (E, F) is
equicontinuous.

Let X be a Banach space. Then for any operator T ∈ L (X ) we denote by

‖T‖ := sup
‖x‖≤1

‖T x‖

the operator norm. With this norm we have that (L (X ),‖ · ‖) = (L (X ),τb). We
clearly have that every operator T ∈ L (X ) is bounded. We also have that an operator
T ∈ L (X ) is (weakly) compact if and only if it is (reflexive) Montel.

1.3 Spaces of holomorphic functions

In this section we present the spaces of holomorphic functions and homogeneous poly-
nomials on which we study the dynamics of (weighted) composition operators. We
follow [24, 47].
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Given two Banach spaces X and Y over C, a mapping p : X → Y is a continuous m-
homogeneous polynomial if there exists a continuous m-linear form L : X × m. . .×X → Y
such that p(x) = L(x , . . . , x) for every x ∈ X . For the rest of the work we will refer
to continuous m-homogeneous polynomials briefly as m-homogeneous polynomials.
The vector space of all such m-homogeneous polynomials is denoted by P (mX , Y ),
and by P (mX ) whenever Y = C. Note that P (1X ) is the dual of X .

Let U ⊂ X be an open subset. A function f : U → Y is holomorphic if for each a ∈ U
there exists a ball B(a, r) ⊂ U and a sequence (pm)m≥0, where each pm : X → Y is an
m-homogeneous polynomial for m > 0 and p0 : X → Y is a constant function, such
that

f (x) =
∞
∑

m=0

pm(x − a) (1.1)

converges uniformly on B(a, r). Moreover, we can see in [47, Remark 5.2] that the
sequence is unique. We denote by d fa the differential of f at a, that is d fa(x) =
p1(x − a) for all x ∈ U . Also, we have that a mapping p : X → Y is a continuous
m-homogeneous polynomial if and only if p is holomorphic and

p(λx) = λmp(x) (1.2)

for every x ∈ X and λ ∈ C (see [20, Corollary 15.34]).
We say that f : U → Y is G-holomorphic if for each x ∈ U and y ∈ X the mapping

λ 7→ f (x +λy) is holomorphic (as a vector-valued function of one complex variable)
on the open set {λ ∈ C: x+λy ∈ U}. We say that f : U → Y is weakly (G-)holomorphic
if u ◦ f is (G-)holomorphic for every u ∈ Y ′.

All these notions of holomorphy are closely related. We collect this in the fol-
lowing result. It is classical within the theory of holomorphic functions on infinitely
dimensional spaces and its proof can be found in [47, Theorems 8.7 and 8.12].

Theorem 1.4. Let X , Y be Banach spaces and U ⊂ X open. For a function f : U → Y the
following are equivalent.

a) f is holomorphic.

b) f is weakly holomorphic.

c) f is continuous and G-holomorphic.

d) f is continuous and weakly G-holomorphic.

The space of all holomorphic functions f : U → Y is denoted by H(U , Y ). We
mostly focus on the case of U = B. We write H(B) for H(B,C). Let τ0 denote the
topology of uniform convergence on compact sets of B, then (H(B),τ0) is denoted
H(B)τ0

or simply H(B). With this topology H(B) becomes a locally convex Hausdorff
space. We also denote this topology by τ0 since there is no possibility of confusion with
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the topology of uniform convergence on compact subsets for L (E, F) defined above.
We have that each compact subset K ⊂ B defines a seminorm on H(B) as follows

‖ f ‖K := sup
x∈K
| f (x)|.

For the open unit ball B ⊂ X we say that a set A ⊆ B is B-bounded if there is
0 < r < 1 so that A ⊂ rB. Then, we say that a mapping F : B → B is of bounded type
if it maps B-bounded sets into B-bounded sets. We also say that a mapping f : B→ C
is of bounded type if it maps B-bounded sets into bounded sets. Equivalently, the
following are satisfied:

(BTa) A map F : B → B is of bounded type if and only if for each 0 < r < 1 there is
0< s < 1 such that F(rB) ⊆ sB.

(BTb) A map f : B→ C is of bounded type if and only if for each 0 < r < 1 we have
sup‖x‖<r | f (x)|<∞.

We denote by Hb(B) the space of all functions in H(B)which are of bounded type. The
space Hb(B) is Fréchet when endowed with the topology τb induced by the seminorms

‖ f ‖r := sup
‖x‖<r

| f (x)|, where 0< r < 1,

i.e. of uniform convergence on B-bounded sets (as before there is no confusion with
the analogous topology defined on L (E, F)).

We denote by H∞(B) the subspace of H(B) which consists of all bounded holo-
morphic functions on B. Given f ∈ H∞(B) we define the natural norm

‖ f ‖∞ := sup
‖x‖<1

| f (x)|,

which turns H∞(B) into a Banach space (which in fact is a Banach algebra).
For these spaces we have the following continuous inclusions:

H∞(B) ,→ Hb(B) ,→ H(B).

The spaceP (mX ) can be endowed with several different topologies. We focus only
on two of them. On one hand we consider τ0, the topology of uniform convergence
on the compact sets of X . We denote (P (mX ),τ0) by P (mX )τ0

. On the other hand,
see [47, Corollary 2.3], the norm

‖p‖ := sup
‖x‖X≤1

|p(x)| (1.3)

turns P (mX ) into a Banach space. We denote it by P (mX )‖·‖.
Let us review the basic properties of these spaces:
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• H(B) is a semi-Montel lcHs (see [47, Proposition 9.16]) and it is barrelled if and
only if X is finite-dimensional (in this case H(B) = Hb(B), see Proposition 1.5
below).

• Hb(B) is Fréchet (hence barrelled) and quasinormable [2]. It is (semi-)Montel
if and only if X is finite-dimensional (see Proposition 1.6 below).

• H∞(B) is a Banach space (hence barrelled).

• P (mX )τ0
is semi-Montel (see [46, Theorem 2.5] and [49, Definition 8.3.49]).

• P (mX )‖·‖ is a Banach space (hence barrelled).

Proposition 1.5. The space H(B) is barrelled if and only if X is finite dimensional. In
this case H(B) = Hb(B).

Proof. Suppose H(B) is barrelled, then every complemented subspace must be bar-
relled (see [49, Corollary 4.2.2 (i)]). We denote by X ′

τ0
the dual space X ′ endowed

with the topology of uniform convergence on the compact sets of X . We claim that
H(B) has a complemented copy of X ′

τ0
⊂ H(B). That is, there exist J : X ′

τ0
→ H(B) and

P : H(B)→ X ′
τ0

continuous linear maps such that P ◦ J : X ′
τ0
→ X ′

τ0
is the identity. We

consider J as the restriction map given by u 7→ u|B , for each u ∈ X ′, and P as the map
f 7→ d f0, for each f ∈ H(B). The maps J and P are clearly continuous. Since u ∈ X ′

we have du0 = u. Then

(P ◦ J)(u) = P(J(u)) = P(u|B) = d(u|B)0 = du0 = u,

and we obtain the claim.
By Mackey-Arens theorem (see [45, Theorem 23.8]) we have that (X ′

τ0
)′ = X .

Since B is a pointwise bounded set in (X ′
τ0
)′, B is an equicontinuous set because X ′

τ0
is

barrelled. By [48, Theorem 8.6.4] there exists an absolutely convex compact set K ⊂ X
such that B ⊂ K . Then, B is open and relatively compact. X is finite dimensional.

Conversely, if X is finite-dimensional every bounded set of X is relatively compact
in X . In particular, every B-bounded set is relatively compact. Thus the topology τ0 is
finer than the topology of uniform convergence on B-bounded sets, so this two topolo-
gies coincide. Therefore H(B) = Hb(B), which is a Fréchet space, and so barrelled.

Proposition 1.6. The space Hb(B) is semi-Montel if and only if X is finite dimensional.

Proof. Assume Hb(B) is semi-Montel. Then every bounded subset is relatively com-
pact. In particular, the set BX ′ is relatively compact in X ′ = X ′

β
. So, necessarily, X ′ is

finite dimensional, and so is X .
Conversely, as we have seen previously, when X is finite dimensional we have

H(B) = Hb(B) and then the space is semi-Montel.
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Remark 1.7. Let f : B→ C be a holomorphic function. Consider the Taylor series ex-
pansion of f at 0 given by the sequence (pm)m≥0 (see (1.1)). By [20, Proposition 15.33]
we have that this series converges for every x ∈ B and the following is satisfied:

sup
‖x‖<r

|pm(x)| ≤ sup
‖x‖<r

| f (x)| for every 0< r < 1 and m ∈ N0. (1.4)

Now, take f ∈ Hb(B) and fix 0 < r < 1. Choosing any r < s < 1, for each ‖x‖ < r we
have using (1.4)

∞
∑

m=0

|pm(x)|=
∞
∑

m=0

�

�

�pm

� r
s

s
r

x
�
�

�

�=
∞
∑

m=0

� r
s

�m �
�

�pm

� s
r

x
�
�

�

�

≤
∞
∑

m=0

� r
s

�m
sup
‖y‖<s

|pm(y)| ≤
∞
∑

m=0

� r
s

�m
sup
‖y‖<s

| f (y)| .

Observe that sup‖y‖<s | f (y)| is bounded and, by the Weierstrass M-test, the series
∑∞

m=0 pm converges uniformly in rB to f . Since 0 < r < 1 was arbitrary we have
that the Taylor series converges uniformly to f in the B-bounded sets i.e., in the topol-
ogy of Hb(B).

1.4 Mean ergodic operators on locally convex Haus-
dorff spaces

We begin this section by fixing some notation.
Let (E, ΓE) be a lcHs and take T ∈ L (E). The iterates of T are constructed as

follows:

• T 0 = id,

• T 1 = T and

• T n = T n−1 ◦ T for n ∈ N.

We denote by T[n] : E→ E, with n ∈ N, the n-th Cesàro mean of the operator T ∈ L (E).
This continuous linear operator is defined as

T[n] :=
1
n

n−1
∑

k=0

T k.

Our aim is to study properties of T n and T[n] as n→∞. For this purpose we need
the following definitions:
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• An operator T : E→ E is said to be topologizable if for every p ∈ ΓE there is q ∈ ΓE
such that for every n ∈ N there is an > 0 with

p(T n x)≤ anq(x) for every x ∈ E. (1.5)

• An operator T : E → E is said to be power bounded if the sequence (T n)n is
equicontinuous in L (E). That is, for every p ∈ ΓE there are q ∈ ΓE and c > 0
such that

p(T n x)≤ cq(x) for every x ∈ E and n ∈ N. (1.6)

• An operator T : E → E is said to be Cesàro bounded if the set (T[n])n is equicon-
tinuous in L (E). That is, for every p ∈ ΓE there are q ∈ ΓE and c > 0 such that

p(T[n]x)≤ cq(x) for every x ∈ E and n ∈ N. (1.7)

• An operator T : E → E is said to be mean ergodic if there is P ∈ L (E) such that
T[n]→ P in τs. That is, the limit

P x := lim
n→∞

T[n]x exists for every x ∈ E. (1.8)

• An operator T : E→ E is said to be uniformly mean ergodic if there is P ∈ L (E)
such that T[n]→ P in τb.

Observe that if T is power bounded then, T is topologizable. Conversely, if T is
topologizable and an = c > 0 for every n ∈ N we have that T is power bounded.

Assume E is a barrelled lcHs and (T[n])n converges in τs to some linear map P : E→
E. Then, the map P is also continuous and T is mean ergodic. Indeed, we have (T[n])n
is a pointwise bounded set in L (E). By the Uniform Boundedness Principle the set
(T[n])n is equicontinuous and P ∈ L (E).

Proposition 1.8. Let E be a barrelled lcHs. If T ∈ L (E) is mean ergodic, it is Cesàro
bounded.

Proof. Assume T[n]x is convergent in E for every x ∈ E. Then, the set (T[n]x)n is
bounded in E for every x ∈ E. That is, (T[n])n is pointwise bounded in L (E). By the
Uniform Boundedness Principle the family of operators (T[n])n ⊂ L (E) is equiconti-
nuous.

Remark 1.9. If T ∈ L (E) is power bounded, it is also Cesàro bounded. In fact, since
for every p ∈ ΓE we can find a seminorm q ∈ ΓE and c > 0 as in (1.6), we obtain

p(T[n](x))≤
1
n

n−1
∑

k=0

p(T k x)≤ cq(x),

for every x ∈ E and n ∈ N. Thus, the set (T[n])n∈N is equicontinuous.
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It is easy to check that, for T ∈ L (E) and n ∈ N, the following identities hold

(T − id)T[n] = T[n](T − id) =
1
n
(T n − id), (1.9)

1
n

T n =
n+ 1

n
T[n+1] − T[n]. (1.10)

Using (1.10) we have that if T is mean ergodic then

lim
n→∞

T n x
n
= 0 (1.11)

holds for all x ∈ E.
The following result is a special case of Eberlein’s mean ergodic theorem. It can

be found in [43, Chapter 2, § 2.1, Theorem 1.1] and we include a proof for the sake
of completeness. Before we state it, let us recall that:

• If (E,τ) is a Hausdorff topological space and (xn)n is a sequence in E, then a point
y ∈ E is called a cluster point of the sequence whenever any neighbourhood of
y contains infinitely many points of (xn)n. Evidently, every cluster point of the
sequence belongs to the closure of the set {xn : n ∈ N}.

• If E is compact, then every sequence (xn)n in E has a cluster point. To see it,
suppose that for every x ∈ E there exists an open neighbourhood Ux of x which
contains xn only for finite many values of n. Since the open cover {Ux : x ∈ E}
has a finite subcover, this yields a contradiction because a finite subcover of
{Ux : x ∈ E} cannot contain the whole sequence (xn)n.

• If E is any topological space and Y ⊆ E is relatively compact, then every sequence
in Y has a cluster point in E. Indeed, it is enough to apply the arguments above
to the compact set Y .

Theorem 1.10. Let T ∈ L (E) be Cesàro bounded. Let x ∈ E be such that limn→∞
T n x

n =
0. The following conditions are equivalent for y ∈ E:

a) T y = y and y belongs to the closed convex hull of the set {T m x : m ∈ N0},

b) y = lim
n→∞

T[n]x,

c) y = σ(E, E′)− lim
n→∞

T[n]x,

d) y is a σ(E, E′)-cluster point of (T[n]x)n, that is, for each 0-neighbourhood U in
(E,σ(E, E′)) and each m ∈ N there is n> m such that y − T[n]x ∈ U.
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Proof. The implications b)⇒c)⇒d) are trivial.
a)⇒b) Fix a seminorm p ∈ ΓE and ε > 0. By the assumption there is q ∈ ΓE and

c > 0 such that
p(T[n]z)≤ cq(z),

for all z ∈ E and all n ∈ N. We can find m ∈ N0 and α0, . . . ,αm ≥ 0, with
∑m

i=0αi = 1,
such that the expression Sx :=

∑m
i=0αi T

i x satisfies q(y − Sx)< ε/(2c). Observe that
for each k ≤ m and n ∈ N we have

T[n]T
k x − T[n]x =

1
n

n−1
∑

i=0

T k+i x −
1
n

n−1
∑

i=0

T i x =
1
n

k−1
∑

i=0

T n+i x −
1
n

k−1
∑

i=0

T i x .

On the one hand, since k ≤ m is fixed we can find n1(k) ∈ N with

p

�

1
n

k−1
∑

i=0

T i x

�

<
ε

4
for every n≥ n1(k). (1.12)

On the other hand, since T is Cesàro bounded we get

p

�

1
n

k−1
∑

i=0

T n+i x

�

= p
�

k
n

T[k]T
n x
�

≤ kc · q
�

1
n

T n x
�

.

Now, since limn→∞
T n x

n = 0 we can find n2(k) ∈ N such that

p

�

1
n

k−1
∑

i=0

T n+i x

�

<
ε

4
for every n≥ n2(k). (1.13)

We choose N = max{n1(k), n2(k) : 0 ≤ k ≤ m}. Now, applying (1.12) and (1.13) we
obtain

p(T[n]T
k x − T[n]x)≤ p

�

1
n

k−1
∑

i=0

T n+i x

�

+ p

�

1
n

k−1
∑

i=0

T i x

�

<
ε

2
,

for every k ≤ m and n≥ N . Observe that T[n] y = y for every n ∈ N. Using again that
T is Cesàro bounded we have, for every n≥ N ,

p(y − T[n]x) = p(T[n] y − T[n]Sx + T[n]Sx − T[n]x)

≤ p
�

T[n] y − T[n]Sx
�

+ p
�

T[n]Sx − T[n]x
�

= p
�

T[n](y − Sx)
�

+ p

�

m
∑

i=0

αi T[n]T
i x − T[n]x

�

≤ cq(y − Sx) +
m
∑

i=0

αi p(T[n]T
i x − T[n]x)< ε.
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Therefore lim
n→∞

T[n]x = y .

d)⇒a) Denote by C the convex hull of the set {T m x : m ∈ N0}. Observe that
{T[m]x : m ∈ N} ⊆ C . By the Hahn-Banach Theorem the closure of a convex set is the
same for the topology of E and for σ(E, E′). We conclude that y ∈ C . It remains to
show that y = T y .

Since limn→∞
T n x

n = 0, (1.9) implies that T T[n]x−T[n]x → 0 as n→∞. Therefore,
for each v ∈ E′,

lim
n→∞

v(T T[n]x − T[n]x) = 0.

Given ε > 0 and v ∈ E′, there is n0 ∈ N such that for all n≥ n0 we have

�

�v(T T[n]x − T[n]x)
�

�<
ε

3
.

The set U :=
�

z ∈ E : |v(z − y)|< ε/3,
�

�T t(v)(z − y)
�

�< ε/3
	

is a σ(E, E′)-neighbour-
hood of y in E. Since y is a σ(E, E′)-cluster point of (T[n]x)n, given n0 there is n> n0

such that
�

�v(y − T[n]x)
�

�< ε/3 and
�

�T t(v)(y − T[n]x)
�

�< ε/3. Now, we have

|v(y − T y)| ≤
�

�v(y − T[n]x)
�

�+
�

�v(T[n]x − T T[n]x)
�

�+
�

�v(T T[n]x − T y)
�

�< ε.

Since v ∈ E′ and ε > 0 were arbitrary, the Hahn-Banach Theorem yields y = T y .

As a consequence of the previous result we are able to characterise mean ergodicity
for Cesàro bounded operators (cf. [1]).

Proposition 1.11. Let T ∈ L (E) be Cesàro bounded. Then T is mean ergodic if and
only if limn→∞

T n x
n = 0 for all x ∈ E and (T[n]x)n is σ(E, E′)-relatively compact for each

x ∈ E.

Proof. It T is mean ergodic, limn→∞
T n x

n = 0 holds for all x ∈ E by (1.11). The se-
quence (T[n]x)n is convergent in E for every x ∈ E. In particular, it is a σ(E, E′)-
relatively compact set for each x ∈ E.

Conversely, we have that given x ∈ E the set (T[n]x)n isσ(E, E′)-relatively compact,
and therefore this sequence has a σ(E, E′)-cluster point y ∈ E. By Theorem 1.10
necessarily y = lim

n→∞
T[n]x . We can define

P x := lim
n→∞

T[n]x

for each x ∈ E. Since (T[n])n is equicontinuous we have that P ∈ L (E). T is mean
ergodic.

The following results form a collection of interesting consequences derived from
Proposition 1.11. In [1, Theorem 2.4 and Corollary 2.7] the same results are given,
assuming that (T[n]x)n is σ(E, E′)-sequentially relatively compact for every x ∈ E.
Here we replace this condition by simply σ(E, E′)-relatively compact.
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Proposition 1.12. Let E be a barrelled locally convex Hausdorff space. Then T ∈ L (E)
is mean ergodic if and only if limn→∞

T n x
n = 0 for every x ∈ E and (T[n]x)n is σ(E, E′)-

relatively compact for each x ∈ E.

Proof. Assume T is mean ergodic. By Remark 1.8 the operator T is Cesàro bounded.
Now Proposition 1.11 yields the conclusion.

Conversely, if the set (T[n]x)n isσ(E, E′)-relatively compact, it isσ(E, E′)-bounded.
Therefore (T[n]x)n is a bounded set for all x ∈ E (see [35, Chapter 3 §5 Theorem 3]).
Again, the Uniform Boundedness Principle gives that T is Cesàro bounded and Propo-
sition 1.11 completes the proof.

Proposition 1.13. Assume T ∈ L (E) is a power bounded operator. Then T is mean
ergodic if and only if (T[n]x)n is σ(E, E′)-relatively compact for each x ∈ E.

Proof. By Remark 1.9 we have that T is Cesàro bounded.
Now, if T is mean ergodic, Proposition 1.11 gives the conclusion.
Conversely, assume that (T[n]x)n is σ(E, E′)-relatively compact for each x ∈ E.

Observe that since T is power bounded, for each p ∈ ΓE there is q ∈ ΓE and c > 0 such
that

p
�

T n x
n

�

=
1
n

p(T n x)≤
cq(x)

n
n
→ 0

for each x ∈ E. Thus, we have limn→∞
T n x

n = 0 for all x ∈ E. By Proposition 1.11 we
obtain that T is mean ergodic.

Proposition 1.14. [8, Proposition 3.3]. Let E be a semi-reflexive locally convex Haus-
dorff space. Then every power bounded operator in E is mean ergodic.

Proof. By Remark 1.9 we have that T is Cesàro bounded. Now, since (T[n]x)n is a
bounded set in E for each x ∈ E, it is σ(E, E′)-relatively compact for each x ∈ E.
Applying Proposition 1.13 we finish the proof.

Every precompact set in a lcHs is bounded, but the converse does not hold in
general. We also have that every relatively compact set is precompact but the converse
does not hold in general.

Proposition 1.15. [8, p. 917]. Let E be a semi-Montel locally convex Hausdorff space.
Then every power bounded operator in E is uniformly mean ergodic.

Proof. If the space E is semi-Montel, in particular, it is semi-reflexive and by Proposi-
tion 1.14, T is mean ergodic. This means that the sequence (T[n])n converges point-
wise. On the other hand, by Remark 1.9, (T[n])n is equicontinuous. Hence, P x :=
limn T[n]x , for x ∈ E, defines an operator P ∈ L (E). Now, by [42, (2), p. 139], the
topology of pointwise convergence and of uniform convergence on precompact sets
coincide in (T[n])n. Since E is semi-Montel bounded sets and relatively compact sets
coincide. So (T[n])n converges to P uniformly on every bounded set of E i.e., T is
uniformly mean ergodic.
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Corollary 1.16. Assume E is a reflexive locally convex Hausdorff space. Then T ∈ L (E)
is mean ergodic if and only if limn→∞

T n x
n = 0 for all x ∈ E and T is Cesàro bounded.

Proof. Assume T is mean ergodic. Since E is barrelled, by Remark 1.8 we have that T
is Cesàro bounded. By (1.11) we obtain that limn→∞

T n x
n = 0 for all x ∈ E.

Conversely, if T is Cesàro bounded, the set (T[n]x)n is bounded for all x ∈ E. Since
E is reflexive (T[n]x)n is σ(E, E′)-relatively compact for all x ∈ E. We finish applying
Proposition 1.12.

Corollary 1.17. Assume E is a Montel locally convex Hausdorff space. Then T ∈ L (E)
is uniformly mean ergodic if and only if limn→∞

T n x
n = 0 is satisfied for all x ∈ E and T

is Cesàro bounded.

Proof. Assume T is uniformly mean ergodic. In particular, it is mean ergodic. Since E
is barrelled, by Remark 1.8 we have that T is Cesàro bounded. By (1.11) we obtain
that limn→∞

T n x
n = 0 for all x ∈ E.

Conversely, since E is Montel it is also reflexive. Corollary 1.16 gives that there
is P ∈ L (E) such that T[n] → P in τs. Again by [42, (2), p. 139], the topology of
pointwise convergence and of uniform convergence on precompact sets coincide in
(T[n])n, which is an equicontinuous set. In E bounded sets and relatively compact sets
coincide. So T[n]→ P in τb and T is uniformly mean ergodic.

Remark 1.18. It is worth noting that if X is a Banach space, then for an operator
T : X → X the following hold:

• T is always topologizable.

• T is power bounded if and only if supn∈N ‖T n‖<∞.

• T is Cesàro bounded if and only if supn∈N ‖T[n]‖<∞.

• If T is mean ergodic, it is also Cesàro bounded.

• T is mean ergodic if and only if T[n]x converges for every x ∈ X .

• T is uniformly mean ergodic if and only if there is P ∈ L (X ) such that T[n]→ P
in the operator norm.

Indeed, for an operator T ∈ L (X ) we have that T n is continuous for every n ∈ N. We
can take an = ‖T n‖+ 1> 0 to obtain

‖T n x‖ ≤ an‖x‖,

for every x ∈ X and every n ∈ N. This clearly gives that T is topologizable.
Now, as we have seen earlier, if T is mean ergodic (since X is barrelled) by the Uniform
Boundedness Principle (T[n])n is equicontinuous and converges in τs to some P ∈
L (X ).
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1.5 General aim and framework of the thesis

Our main aim in this work is to study some of the properties that we have introduced
(mostly ergodic properties, but also continuity or compactness) for some concrete (by
now classical) operators acting on the spaces of holomorphic functions defined in Sec-
tion 1.3. Our main interest are composition operators, but we will also pay attention
to other operators, such as multiplication and weighted composition operators.

Let X be a Banach space and B its open unit ball and letϕ : B→ B be a holomorphic
mapping. Then, we denote by Cϕ : H(B)→ H(B) the composition operator given by

Cϕ( f ) = f ◦ϕ,

for every f ∈ H(B), which is clearly well defined. The function ϕ is called the symbol
of the composition operator. We take X an infinite dimensional Banach space, and
the composition operator defined on the spaces of holomorphic functions considered
above:

• Cϕ : Hb(B)→ Hb(B)

• Cϕ : H∞(B)→ H∞(B)

• Cϕ : P (mX )→P (mX ) (note that in this case we take ϕ : X → X )

Then, our aim is to find conditions that on ϕ ensure that Cϕ satisfies the ergodic prop-
erties mentioned before. These conditions will be different, depending on the space
where Cϕ is defined (in the case of P (mX ), also on the topology, since in this case we
will consider both the compact-open and the norm topologies). Composition opera-
tors on spaces of holomorphic functions have been extensively studied by a number
of authors, especially for the finite-dimensional case. Some classical references are
[19, 52].

As we said, we are mainly interested in composition operators, but we are inter-
ested also in other operators. If ψ: B→ C is a holomorphic mapping. Then,

Mψ( f ) =ψ · f ,

for f ∈ H(B) defines an operator (on H(B)), called multiplication operator. The map-
ping ψ is called the weight of the multiplication operator.

Finally, if ψ: B→ C and ϕ : B→ B are holomorphic mappings then, by doing

Cψ,ϕ( f ) =ψ · ( f ◦ϕ),

we define an operator on H(B) called weighted composition operator. Note that we
have Cψ,ϕ = Mψ ◦Cϕ. As before, we consider these operators acting on Hb(B), H∞(B)
andP (mX ) (in the this case, takingψ: X → C and ϕ : X → X ), and our aim is to study
in each case the properties of these operators in terms of ϕ and ψ. In this case we
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look not only at ergodic properties (such as power boundedness or mean ergodicity),
but also at continuity and compactness.

Let us briefly collect some of the known results that motivate our research. We
start with the finite dimensional case (that is, when the space X is finite dimensional).
Let us note that in this case the three spaces of holomorphic functions that we are
interested in reduce to just two, since H(B) = Hb(B) (recall Proposition 1.5). In this
case the space P (mX ) is finite dimensional and, then it is not interesting.

Our starting point is the following result due to Bonet and Domański, in which
power boundedness and mean ergodicity of Cϕ on H(B) is completely described in
the finite dimensional setting. The definition of ϕ having stable orbits can be found
in Section 3.3.

Theorem 1.19. [9, Proposition 1]. Let B ⊂ Cd be the open unit ball for some norm and
let ϕ : B→ B be a holomorphic function. The following are equivalent:

a) Cϕ : H(B)→ H(B) is power bounded.

b) Cϕ : H(B)→ H(B) is uniformly mean ergodic.

c) Cϕ : H(B)→ H(B) is mean ergodic.

d) The map ϕ has stable orbits on B.

Ergodic properties of composition operators defined on H∞(D) were studied by
Beltrán-Meneu, Gómez-Collado, Jordá and Jornet in [5]. Note that in this case ‖Cϕ‖ ≤
1 and every composition operator is power bounded. As for mean ergodicity, there the
authors show the following

Theorem 1.20. [5, Theorem A]. Let ϕ : D→ D be holomorphic. Then the following are
equivalent

a) Cϕ : H∞(D)→ H∞(D) is mean ergodic.

b) Cϕ : H∞(D)→ H∞(D) is uniformly mean ergodic.

c) (ϕn)n converges uniformly to an interior Denjoy–Wolff point z0 ∈ D, or ϕ is a
periodic elliptic automorphism.

We will not get into details about the precise meaning of the third statement, since
it plays no role in our forthcoming research. We just mention that the Möbius trans-
formations on D are a basic tool within the proof (sending the Denjoy-Wolff point z0 to
0). In an infinite dimensional Banach space does not exist, in general, such a family of
functions, so our approach is necessarily different, and our results somewhat less far-
reaching. In some cases (such as, for example, Hilbert spaces) we do have analogues
for the Möbius transformations, and we can get sharper results.
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So, Theorems 1.19 and 1.20 are our starting point and in some sense the guiding
line of our research. What we want to do is to find versions of these results when infi-
nite dimensional Banach spaces are considered. Composition operators in this setting
have been much less studied, and the literature is more scarce. In [3, 31] continu-
ity, compactness and other related properties of these operators were studied. Let us
collect the two results of those papers that are more related to our work.

Proposition 1.21. [3, Proposition 3]. Let X be a Banach space and let ϕ : B→ B be a
holomorphic function. The following are equivalent:

a) Cϕ : H∞(B)→ H∞(B) is compact.

b) Cϕ : H∞(B)→ H∞(B) is weakly compact and ϕ(B) is relatively compact in X .

c) There is 0< r < 1 so that ϕ(B) ⊆ rB and ϕ(B) is relatively compact in X .

Proposition 1.22. [31, Proposition 2.12]. Let X be a Banach space and let ϕ : B→ B be
a holomorphic function of bounded type. Then Cϕ : Hb(B)→ Hb(B) is a Montel operator
if and only if ϕ maps B-bounded sets into relatively compact sets in X .

To the best of our knowledge, there is no previous work on ergodic properties for
composition operators in the infinite dimensional case, and our research here seems
to be the first in this line. In Chapter 2 we study power boundedness and mean er-
godicity of Cϕ on P (mX ), endowed with the τ0 topology or the norm topology. In
Chapter 3 we move to the spaces of holomorphic functions on the ball, trying to ex-
tend Theorems 1.19 and 1.20. We will see how Theorem 1.19 splits into two results,
one for H(B) and one for Hb(B) that, for finite dimensional Banach spaces coincide.

The research on weighted composition operators is much more recent. Our starting
point here are the work of Contreras and Díaz-Madrigal [17] (for compactness of
Cψ,ϕ on H∞(D)) and Beltrán-Meneu, Gómez-Collado, Jordá and Jornet [6] (for the
interplay between power boundedness and mean ergodicity on H(D)). Once again,
we collect here some of the results that we aim at extending to infinite dimensional
spaces. To begin with, regarding when a weighted composition operator on H∞(D)
is compact, we have the following.

Theorem 1.23. [17, Proposition 2.3]. Given ψ,ϕ ∈ H∞(D) such that ϕ : D → D,
consider Cψ,ϕ : H∞(D)→ H∞(D). Then the following are equivalent:

a) Cψ,ϕ is compact.

b) Cψ,ϕ is weakly compact.

c) One of the following properties hold:

(i) There is 0< s < 1 such that ϕ(D) ⊆ sD,
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(ii) lim
r→1−

sup
|ϕ(z)|>r

|ψ(z)|= 0.

On the other hand, [6] focuses on ergodic properties of weighted composition
operators on H(D) (in fact, for H(U), where U is an arbitrary open, bounded and
connected subset of C; for the sake of clarity we state here the results for D). First of
all, the interaction between power boundedness and mean ergodicity is analysed.

Theorem 1.24. [6, Proposition 3.1]. Consider Cψ,ϕ : H(D)→ H(D).

a) If Cψ,ϕ is power bounded, then it is uniformly mean ergodic and
�∏n

m=0(ψ ◦ϕ
n)
�

n
is a bounded sequence in H(D).

b) If Cψ,ϕ is mean ergodic, then it is topologizable and limn
1
n

�∏n
m=0(ψ ◦ϕ

n)
�

= 0
on τ0.

Also, power boundedness of Cψ,ϕ is characterised in terms of the two functions ψ
and ϕ.

Theorem 1.25. [6, Theorem 3.3]. Consider Cψ,ϕ : H(D) → H(D). The following are
equivalent:

a) Cψ,ϕ is power bounded.

b) ϕ has stable orbits and
�∏n

m=0(ψ ◦ϕ
n)
�

n
is a bounded sequence in H(D).

As before, our aim here is to perform an analogous study for weighted composition
operators (and, as a particular case, for multiplication operators) acting on spaces
of holomorphic functions defined on the open unit ball of an infinite dimensional
Banach space. In Chapter 4 we focus on the study of compactness. Note that, since
Cϕ = C1,ϕ, the results that we obtain should in one way or another be connected to
Proposition 1.21. Finally, the study of ergodic properties of weighted composition
operators is done in Chapter 5.



Chapter 2

Composition operators on spaces of
homogeneous polynomials

2.1 Introduction

If X is a complex Banach space and ϕ : X → X is holomorphic, then Cϕ : H(X ) →
H(X ), the composition operator of symbol ϕ, is defined as Cϕ( f ) = f ◦ ϕ. In this
chapter we deal with the restriction of such an operator to the space P (mX ) of m-
homogeneous polynomials, and we ask different questions. In the first place, for which
ϕ’s does this restriction take values again in P (mX )? (in other words, when do we
have Cϕ : P (mX )→P (mX ) is well defined?). Once we have settled this question (see
Proposition 2.3) we endowP (mX )with two different topologies (the τ0 and the norm
topology) and move on to the study of power boundedness and mean ergodicity for
composition operators on P (mX ).

If p ◦ϕ ∈ P (mX ) for every m-homogeneous polynomial p, the iterates of the cor-
responding composition operator are given by

Cn
ϕ
(p)(x) = p(ϕn(x)), (2.1)

for every p and all x ∈ X . This enables us to characterise the power boundedness of
the composition operator in terms of conditions on the symbol (see Propositions 2.7
and 2.9).

The main results of this chapter are based on [37].

2.2 Well-defined and continuous composition opera-
tors

If we want to iterate the composition of a composition operator with itself we obviously
need it to take values in P (mX ). This is the first thing that we have to settle, and we
start with a simple observation.

35
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Remark 2.1. Suppose X is a Banach space. If x , y ∈ X satisfy that there are γ0 ∈ X ′

and r > 0 such that γ(x) = γ(y) for every γ ∈ X ′ with ‖γ − γ0‖ < r, then x = y .
Indeed, take any φ ∈ X ′, fix c > ‖φ‖ and consider γ := r

cφ + γ0. Then ‖γ− γ0‖ < r
and

r
c
φ(x) + γ0(x) = γ(x) = γ(y) =

r
c
φ(y) + γ0(y) .

The fact that γ0(x) = γ0(y) immediately gives φ(x) = φ(y) and, since φ was arbi-
trary, x = y .

The following result was communicated by Prof. Manuel Maestre.

Lemma 2.2. Let ϕ : X → X be a continuous mapping. If there exists m ∈ N such that
γm ◦ϕ is holomorphic for every γ ∈ X ′, then ϕ is holomorphic.

Proof. Since ϕ is continuous it is enough to check that ϕ is weakly G-holomorphic
(see Theorem 1.4). That is, for any arbitrary z0, a0 ∈ X the function

λ 7→ γ(ϕ(λz0 + a0))

is holomorphic for every γ ∈ X ′.
By hypothesis the mapλ 7→ γ(ϕ(λz0+a0))m is holomorphic for every γ ∈ X ′. Define

h: C→ C by h(λ) = γ(ϕ(λz0+ a0))m and define f : C→ C by f (λ) = γ(ϕ(λz0+ a0)).
If f ≡ 0 we are done. Suppose this is not the case. Since h is holomorphic, the set

A= {0} ∪ h−1({0})

is discrete and, by the Identity Principle, has no accumulation point. Then C \ A is
an open non-empty set. Take now λ0 ∈ C \ A. Then there is r = r(λ0) > 0 such
that h(λ) 6= 0 for all λ ∈ D(λ0, r). Since h is holomorphic on D(λ0, r) there exists
L : D(λ0, r)→ C, a holomorphic logarithm such that

h(λ) = eL(λ), (2.2)

for all λ ∈ D(λ0, r) (see [51, Chapter 10, § X.5]).
On the other hand, by the continuity of f , there is 0< r1 ≤ r such that f (D(λ0, r1))

⊆ D( f (λ0), | f (λ0)|). Then there is a suitable branch of the logarithm, which we de-
note logα : D( f (λ0), | f (λ0)|) → C, and we can define L1 : D(λ0, r1) → C as L1(λ) :=
logα( f (λ)). Therefore L1 is continuous and f (λ) = eL1(λ) for all λ ∈ D(λ0, r1). Then

f (λ)m = em·L1(λ), (2.3)

for all λ ∈ D(λ0, r1). Now using (2.2) and (2.3) we obtain

em·L1(λ) = eL(λ),
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for all λ ∈ D(λ0, r1). This means that there exists k(λ) ∈ Z such that m·L1(λ) = L(λ)+
2πik(λ) on D(λ0, r1), which is connected and where both logarithms are continuous,
then k(λ) = k0 is constant. This implies that

L1(λ) =
L(λ) + 2πik0

m

is holomorphic on D(λ0, r1). Therefore f (λ) = eL1(λ) is holomorphic on D(λ0, r1) for
every λ0 ∈ C \ A. Since f is continuous on all C, it is entire. Moreover, since γ ∈ X ′

and z0, a0 ∈ X were arbitrary we obtain the result.

Proposition 2.3. Let ϕ : X → X be a continuous mapping. The composition operator
Cϕ : P (mX )→P (mX ) is well defined if and only if ϕ is linear.

Proof. First, we assume that ϕ : X → X is linear and continuous. If p ∈ P (mX ), we
have

Cϕ(p)(λx) = p(ϕ(λx)) = p(λϕ(x)) = λmp(ϕ(x)) = λmCϕ(p)(x),

for all x ∈ X and λ ∈ C. Since Cϕ(p) is holomorphic, (1.2) gives that it is an m-
homogeneous polynomial and, therefore Cϕ : P (mX )→P (mX ) is well defined.

Suppose now that Cϕ : P (mX ) → P (mX ) is well defined. In particular, we have
that for every γ ∈ X ′ the function γm ◦ϕ is holomorphic. By Lemma 2.2 the mapping
ϕ is holomorphic. On the other hand, we have

p(ϕ(λx)) = λmp(ϕ(x)) = p(λϕ(x)),

for all p ∈ P (mX ), λ ∈ C and x ∈ X . Given γ ∈ X ′ we have that γm, defined by
γm(x) = (γ(x))m, belongs to P (mX ). So

γ(ϕ(λx))m = λmγ(ϕ(x))m, (2.4)

for all λ ∈ C and x ∈ X . Then, for each γ,λ, x there is some µ = µ(γ,λ, x) ∈ C with
µm = 1 such that

γ(ϕ(λx)) = µλγ(ϕ(x)). (2.5)

Note that if γ(ϕ(x)) = 0, then by (2.4), γ(λϕ(x)) = 0, and we can take µ(γ,λ, x) = 1
for every λ (in fact, in this case the equality holds for any value of µ we choose). Our
aim is to show that we can also take µ(γ,λ, x) = 1 for every γ,λ, x . To begin with,
we show that µ does not depend on γ (i.e. µ= µ(λ, x)). Fix x0 ∈ X and γ0 ∈ X ′ such
that γ0(ϕ(x0)) 6= 0. Since T : X ′→ C defined as

T (γ) := γ(ϕ(x0))

is a well defined continuous linear operator, given any ε > 0 we find r > 0 such that

|T (γ)|= |γ(ϕ(x0))|> ε,
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for every γ ∈ B(γ0, r) ⊂ X ′. We now fix λ0 ∈ C \ {0} and consider the function
f : B(γ0, r)→ C given by

f (γ) =
γ(ϕ(λ0 x0))
λ0γ(ϕ(x0))

.

This is continuous and f (γ) = µ= µ(γ,λ0, x0) for every γ ∈ B(γ0, r). But µ is an m-th
root of 1, so f takes values in a finite set and therefore has to be constant. In other
words, there is some µ0 = µ0(λ0, x0) so that f (γ) = µ0 for all γ ∈ B(γ0, r), that is

γ(ϕ(λ0 x0)) = γ(λ0µ0ϕ(x0))

for every γ with ‖γ− γ0‖< r. Remark 2.1 yields

ϕ(λ0 x0) = µ0λ0ϕ(x0) .

This shows that for each λ and x there is some µ = µ(λ, x) such that (2.5) holds for
every γ.

Our next step is to see that µ can also be taken independently from λ. To do so,
first we observe that the mapping λ ∈ C 7→ λγ0(ϕ(x0)) ∈ C is continuous (recall that
γ0 and x0 are chosen so that γ0(ϕ(x0)) 6= 0). Then the function g : C \ {0} → C given
by

g(λ) =
γ0(ϕ(λx0))
λγ0(ϕ(x0))

is continuous and g(λ) = µ= µ(λ, x0). As before, g takes values on a finite set. Hence
it is constant and we can find µ0(x0) so that µ0(λ, x0) = µ0(x0) for every λ ∈ C (note
that taking λ = 0 in (2.4), the equality in (2.5) holds for any µ). Then for each fixed
x there is µ = µ(x) such that (2.5) holds for every γ,λ. In other words, given λ and
x we have that γ(ϕ(λx)) = γ(µ(x)λϕ(x)) for every γ ∈ X ′ and, then

ϕ(λx) = µ(x)λϕ(x),

for every λ ∈ C. Taking λ = 1 shows that in (2.5) we may take µ(x) = 1 for every x .
This gives our claim and shows that

γ(ϕ(λx)) = λγ(ϕ(x)),

for every γ,λ, x . Therefore λϕ(x) = ϕ(λx) for every λ, x , as we have γ(ϕ(λx)) =
γ(λϕ(x)) for all γ.

Since ϕ is holomorphic we can take the Taylor expansion at a = 0 (see (1.1)) to
have

λ

∞
∑

m=0

pm(x) = λϕ(x) = ϕ(λx) =
∞
∑

m=0

pm(λx) =
∞
∑

m=0

λmpm(x),

for every λ ∈ C and x ∈ X . The uniqueness of the sequence of polynomials yields
(λm − λ)pm(x) = 0 for every m ∈ N0, λ ∈ C and x ∈ X . Taking any λm−1 6= 1 shows
that pm ≡ 0 for every m 6= 1 and therefore ϕ = p1 is linear.
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In view of Proposition 2.3, without loss of generality we may assume for the rest
of the chapter that ϕ is a continuous linear mapping. We see that in both spaces,
P (mX )τ0

and P (mX )‖·‖, if the operator is well defined, then it is continuous.

Proposition 2.4. Let ϕ : X → X be a continuous linear operator. If τ = τ0 or ‖ · ‖, the
composition operator Cϕ : P (mX )τ→P (mX )τ is continuous.

Proof. If τ = τ0, given any arbitrary compact subset K ⊂ X , the set L := ϕ(K) is also
compact and

sup
x∈K
|Cϕ(p)(x)|= sup

x∈K
|p(ϕ(x))|= sup

x∈L
|p(x)|,

for all p ∈ P (mX ). If τ= ‖ · ‖, we observe

‖Cϕ(p)‖P (mX ) = sup
‖x‖X≤1

|p(ϕ(x))| ≤ ‖p‖P (mX ) sup
‖x‖X≤1

‖ϕ(x)‖m
X ≤ ‖ϕ‖

m
L (X ) ‖p‖P (mX ),

for all p ∈ P (mX ).

2.3 Dynamics with the compact-open topology

Our aim in this section is to show that if the composition operator Cϕ : P (mX )τ0
→

P (mX )τ0
is power bounded, then it is uniformly mean ergodic (see Proposition 2.5),

in particular mean ergodic, and that the converse implication does not hold in gen-
eral (see Example 2.8). Since P (mX )τ0

is semi-Montel (recall Section 1.3), the first
assertion is a straightforward consequence of Proposition 1.15.

Proposition 2.5. Let ϕ : X → X be a continuous linear mapping. If Cϕ : P (mX )τ0
→

P (mX )τ0
is power bounded, then it is uniformly mean ergodic.

Now, we characterise the power boundedness of the composition operator in terms
of properties of the symbol ϕ. We begin with the following

Lemma 2.6. Let K ⊆ X be a compact set and m≥ 1. Then the set

bKP (mX ) := {x ∈ X : |p(x)| ≤ sup
y∈K
|p(y)|, for all p ∈ P (mX )}

is compact.

Proof. Note first that, since each p ∈ P (mX ) is continuous, the set {x ∈ X : |p(x)| ≤
supy∈K |p(y)|} is closed. Then bKP (mX ) (being the intersection of all those sets) is also
closed. Now, for every γ ∈ X ′ and x ∈ bKP (mX ), we have |γm(x)| ≤ supy∈K |γm(y)|
(because γm ∈ P (mX )) and, consequently,

�

sup
x∈bKP (mX )

|γ(x)|
�m

= sup
x∈bKP (mX )

|γm(x)| ≤ sup
x∈K
|γm(x)|=

�

sup
x∈K
|γ(x)|

�m

.
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This implies

K◦ =
�

γ ∈ X ′ : sup
x∈K
|γ(x)| ≤ 1

	

⊆
�

γ ∈ X ′ : sup
x∈bKP (mX )

|γ(x)| ≤ 1
	

= (bKP (mX ))
◦.

An application of Krein’s theorem [41, (4), pg. 325] gives that the closure of the ab-
solutely convex hull co(K) of K is compact. Finally, the Bipolar Theorem gives

bKP (mX ) ⊆ (bKP (mX ))
◦◦ ⊆ K◦◦ ⊆

�

co(K)
�◦◦
= co(K),

and this yields our claim.

We say that a continuous mapping ϕ : X → X has stable orbits if for every compact
set K ⊆ X there is some compact set L ⊆ X such that ϕn(K) ⊆ L for every n ∈ N.

Proposition 2.7. Let ϕ : X → X be a continuous linear map. Then Cϕ : P (mX )τ0
→

P (mX )τ0
is power bounded if and only if ϕ has stable orbits.

Proof. Let us suppose first that ϕ has stable orbits and fix K ⊆ X compact. Then we
can find a compact set L ⊆ X such that ϕn(x) ∈ L for every x ∈ K and n ∈ N. This
gives

sup
x∈K
|Cn
ϕ
(p)(x)|= sup

x∈K
|p(ϕn(x))| ≤ sup

x∈L
|p(x)|,

for every p ∈ P (mX ) and n ∈ N. Hence, Cϕ is power bounded.
Assume conversely that Cϕ is power bounded and supose that ϕ does not have

stable orbits. Then there is a compact set K ⊂ X such that
⋃∞

n=0ϕ
n(K) is not relatively

compact. Since (Cn
ϕ
)n = (Cϕn)n is equicontinuous in L (P (mX )), given the compact

set K we can find another compact set W ⊆ X and c > 0 such that

sup
x∈K
|p(ϕn(x))| ≤ c sup

x∈W
|p(x)|= sup

x∈W
|p(c1/m x)|= sup

x∈c1/mW
|p(x)| , (2.6)

for all p ∈ P (mX ) and n ∈ N. The set V := c1/mW is compact and, by Lemma 2.6,
so also is L := bVP (mX ). If there are n0 ∈ N and x0 ∈ K such that ϕn0(x0) /∈ L, then
we can find p ∈ P (mX ) such that |p(ϕn0(x0))| > supy∈V |p(y)|, by the definition of
bVP (mX ). But this is not possible by (2.6), which shows that ϕn(K) ⊆ L for all n ∈ N,
contradicting the fact that

⋃∞
n=0ϕ

n(K) is not relatively compact. This completes the
proof.

We give an example of a composition operator showing that the converse implica-
tion in Proposition 2.5 does not hold in general. This example and others, that will be
given later for P (mX )‖·‖, are based on some type of weighted backward shifts defined
as follows. Fix 1≤ p <∞ and take 0< α < 1/p. We consider the following weighted
backward shift as the operator ϕα : `p→ `p defined by

ϕα(e1) = 0 and ϕα(ek) =
� k

k− 1

�α

ek−1 for k ≥ 2 , (2.7)

that is ϕα(x1, x2, . . .) = (w2 x2, w3 x3, . . .), where wk =
�

k
k−1

�α
.
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Example 2.8. For each 1 < p < ∞ and 0 < α < 1/p the composition operator
Cϕα : P (1`p)τ0

→P (1`p)τ0
is uniformly mean ergodic, but not power bounded.

Our argument relies on some known results on the behaviour of ϕα. First of all,
combining [7, Corollary 2.3], the fact that `p is separable and [4, Theorem 1.2]we can
find some x0 ∈ `p such that

�

ϕn
α
(x0)

�

n
is dense in `p. Hence ϕα does not have stable

orbits and, by Proposition 2.7, Cϕα : P (1`p)τ0
→P (1`p)τ0

cannot be power bounded.
Now we compute the n-th iterate of ϕα. Fixing n ∈ N and x ∈ `p we have

ϕn
α
(x) = ϕn−1

α
(ϕα(x)) = ϕ

n−1
α
(w2 x2, w3 x3, . . .)

= ϕn−2
α
(ϕα(w2 x2, w3 x3, . . .)) = ϕn−2

α
(w2w3 x3, w3w4 x4, . . .)

= · · ·=

�

xn+1

n
∏

i=1

w1+i, xn+2

n
∏

i=1

w2+i, xn+3

n
∏

i=1

w3+i, . . .

�

.

To see that Cϕα : P (1`p)τ0
→P (1`p)τ0

is mean ergodic we proceed in two steps. First
of all, we want to see (using Corollary 1.16) that ϕα itself is mean ergodic.

On one hand, the previous calculations give

ϕn
α
(x) =

�

(n+ 1)αxn+1,
�n+ 2

2

�α
xn+2,

�n+ 3
3

�α
xn+3, . . .

�

, (2.8)

for every x ∈ `p and n ∈ N. Thus, the norm of
ϕn
α(x)
n can be bounded as









ϕn
α
(x)

n









p

`p

=
1
np

∞
∑

i=1

�n+ i
i

�αp
|xn+i|p ≤

(n+ 1)αp

np

∞
∑

i=1

|xn+i|p ≤
(n+ 1)αp

np
‖x‖p

`p
.

Since αp < 1, we obtain lim
n→∞

ϕn
α(x)
n = 0 for every x ∈ `p. On the other hand, [7,

Theorem 2.1] shows that there is some c > 0 such that







1
n

n−1
∑

k=0

ϕk
α
(x)






`p

≤ c‖x‖`p
, (2.9)

for every n ∈ N, x ∈ `p. This gives that ϕα is Cesàro bounded and, since `p is reflexive,
using Corollary 1.16 we obtain ϕα is mean ergodic. Then we can find ϕ ∈ L (`p) such
that limn(ϕα)[n](x) = ϕ(x) ∈ `p for every x ∈ `p.

Now we deal with Cϕα . Note first that, for each fixed u ∈ `′p continuity gives

lim
n→∞

(Cϕα)[n](u)(x) = lim
n→∞

u(ϕα[n](x)) = u
�

lim
n→∞

ϕα[n](x)
�

= u(ϕ(x)),

for every x ∈ `p. In other words,
�

(Cϕα)[n](u)
�

n
converges pointwise to Cϕ(u) for

every u ∈ `′p. Now, by [42, (2), p. 139] the topologies of pointwise convergence and
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of uniform convergence on compact sets coincide on equicontinuous sets. But, for
u ∈ `′p and x ∈ `p, from (2.9), we immediately have

�

�

�

1
n

n−1
∑

k=0

C k
ϕα
(u)(x)

�

�

�=
�

�

�

1
n

n−1
∑

k=0

u(ϕk
α
x)
�

�

�≤ ‖u‖`′p







1
n

n−1
∑

k=0

ϕk
α
(x)






p
≤ c ‖u‖`′p‖x‖`p

.

This shows that, for each fixed u ∈ `′p, the set
�

(Cϕα)[n](u)
�

n
is equicontinuous and,

therefore τ0-converges to Cϕ(u). Hence, Cϕα is mean ergodic.
We can say more, that Cϕα is even uniformly mean ergodic. To check this first we

observe that
�

(ϕα)[n] − ϕ
�

n
is pointwise convergent to 0 and so, equicontinuous in

L (`p). Therefore
�

(ϕα)[n] −ϕ
�

n
converges to 0 uniformly on the compact subsets of

`p. Now, we take an arbitrary τ0-bounded set V ⊂ `′p, which is also norm-bounded in
`′p (see, for instance, [35, Chapter 3 §5 Theorem 3]). Given any compact set K ⊂ `p

and n ∈ N, we can find some constant c > 0 such that

sup
u∈V

sup
x∈K

�

�

�

(Cϕα)[n] − Cϕ
�

(u)(x)
�

�= sup
u∈V

sup
x∈K

�

�u
�

((ϕα)[n] −ϕ)(x)
��

�

≤ sup
u∈V

sup
x∈K
‖u‖p′





�

(ϕα)[n] −ϕ
�

(x)




p ≤ c · sup
x∈K





�

(ϕα)[n] −ϕ
�

(x)




p,

which gives the conclusion.

2.4 Dynamics with the norm topology

We consider now the space P (mX ) endowed with the norm defined in (1.3). In con-
trast with what happens with the compact-open topology, now the properties of power
boundedness and mean ergodicity are not related. We give examples of composition
operators that are

• power bounded and not mean ergodic (Example 2.13);

• mean ergodic and not power bounded (Example 2.14).

We also ask about how being Cesàro bounded interacts with the two previous ones:

• Every power bounded operator is Cesàro bounded (Remark 1.9).

• Every mean ergodic operator in a Banach space is Cesàro bounded (Remark 1.18).

• There are Cesàro bounded composition operators that are neither power bounded,
nor mean ergodic (Example 2.12).

As a first step we characterize, as we did in Proposition 2.7, the power boundedness
of a composition operator by means of its symbol.
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Proposition 2.9. Let ϕ : X → X be a continuous linear map. Then Cϕ : P (mX )‖·‖ →
P (mX )‖·‖ is power bounded if and only if ϕ is power bounded.

Proof. Suppose in first place that ϕ : X → X is power bounded. Then there is a con-
stant c > 0 such that

‖ϕn(x)‖X ≤ c‖x‖X ,

for all n ∈ N and for all x ∈ X . Using this we have, for p ∈ P (mX ) and n ∈ N,

‖Cϕn(p)‖P (mX ) ≤ ‖p‖P (mX ) sup
‖x‖≤1

‖ϕn(x)‖m
X ≤ cm‖p‖P (mX ),

and Cϕ : P (mX )‖·‖→P (mX )‖·‖ is power bounded.
Conversely, assume that Cϕ : P (mX )‖·‖→P (mX )‖·‖ is power bounded. We can find

c > 0 such that ‖p ◦ϕn‖P (mX ) ≤ c‖p‖P (mX ), for every p ∈ P (mX ). In particular

sup
‖x‖X≤1

|γ(ϕn x)|m ≤ c sup
‖z‖X≤1

|γ(z)|m,

for every n ∈ N and every γ ∈ X ′. Taking m-th roots yields |γ(ϕn x)| ≤ c1/m‖γ‖ for
every γ ∈ X ′, every x with ‖x‖X ≤ 1 and all n ∈ N. Since ‖ϕn x‖X = sup‖γ‖≤1 |γ(ϕn x)|
for every n ∈ N, we have

sup
‖x‖X≤1

‖ϕn x‖X ≤ c1/m,

for every n ∈ N and ϕ is power bounded.

Proposition 2.10. Let ϕ : X → X be a continuous linear map such that Cϕ : P (mX )τ0
→

P (mX )τ0
is power bounded. Then Cϕ : P (mX )‖·‖→P (mX )‖·‖ is power bounded.

Proof. By Proposition 2.7,ϕ has stable orbits and for each x ∈ X we can find a compact
set Kx ⊆ X such that (ϕn(x))n ⊂ Kx . This gives that supn∈N ‖ϕn(x)‖ <∞ for every
x ∈ X and, by the uniform boundedness principle, supn∈N ‖ϕn‖<∞. This shows that
ϕ is power bounded and, by Proposition 2.9, so also is Cϕ : P (mX )‖·‖→P (mX )‖·‖.

The converse implication is not true in general.

Example 2.11. Consider the composition operator CF : P (mc0)→P (mc0) defined by
the usual forward shift F : c0 → c0 given by F(x) = (0, x1, x2, . . . ). Let us see that
CF is power bounded in P (mX )‖·‖ but it is not in P (mX )τ0

. On the one hand, we
observe that ‖F n(x)‖ = ‖x‖ for every x ∈ c0 and all n ∈ N, but (F n(e1))n = (en+1)n is
not relatively compact in c0. This shows that F is power bounded but does not have
stable orbits. As a consequence of Propositions 2.9 and 2.7, CF is power bounded in
P (mc0)‖·‖ but not in P (mc0)τ0

.
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Example 2.12. Fix m ≥ 2 and 0 < α < 1/m. The operator ϕα : `m → `m defined in
(2.7) satisfies that Cϕα : P (m`m)‖·‖→P (m`m)‖·‖ is Cesàro bounded but neither power
bounded nor mean ergodic.

From the proof of [7, Theorem 2.1] we obtain

n
∑

k=1

‖ϕk
α
(x)‖m

`m
≤ 4n,

for every ‖x‖`m
≤ 1 and n ∈ N. Hence given p ∈ P (m`m) we have







n
∑

k=1

p(ϕk
α
(x))







`m

≤
n
∑

k=1

‖p(ϕk
α
(x))‖`m

≤
n
∑

k=1

‖p‖P (m`m)‖ϕ
k
α
(x)‖m

`m
≤ ‖p‖P (m`m)4n ,

for every ‖x‖`m
≤ 1 and n ∈ N. This gives







1
n

n
∑

k=1

C k
ϕα
(p)






P (m`m)
≤ 4‖p‖P (m`m),

which shows that Cϕα is Cesàro bounded.

We know that there exists x0 ∈ `m such that
�

ϕn
α
(x0)

�

n
is dense in `m (recall Ex-

ample 2.8). Hence, ϕα cannot be power bounded and so, by Proposition 2.9, neither
is Cϕα . To show that it is not mean ergodic we take the m-homogeneous polynomial
given by

p(x) =
∑

i∈N

xm
i , (2.10)

and prove that
�

(Cϕα)[n](p)
�

n∈N does not converge in P (mX )‖·‖. First, recall (2.8) and
observe that, for a fixed n ∈ N and k ≤ n, we have

ϕk
α
(en+1) =

�

0, . . . , 0,
�

n+ 1
n+ 1− k

�α

︸ ︷︷ ︸

(n+1−k)-th coordinate

, 0, . . .

�

.

From this we deduce that

ϕk
α
(en+1) =

¨
�

n+1
n+1−k

�α
en+1−k, if n≥ k,

0, if n< k.
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Then

|(Cϕα)[n](p)(en+1)− (Cϕα)[2n](p)(en+1)|

=

�

�

�

�

�

1
n

n
∑

k=1

p(ϕk
α
(en+1))−

1
2n

2n
∑

k=1

p(ϕk
α
(en+1))

�

�

�

�

�

=

�

�

�

�

�

1
n

n
∑

k=1

p(ϕk
α
(en+1))−

1
2n

n
∑

k=1

p(ϕk
α
(en+1))

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

p(ϕk
α
(en+1))

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

p
��

n+ 1
n+ 1− k

�α

en+1−k

�

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

�

n+ 1
n+ 1− k

�mα
�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

�

1+
k

n+ 1− k

�mα
�

�

�

�

�

≥
1

2n

�

�

�

�

�

n
∑

k=1

1

�

�

�

�

�

=
1
2

.

This implies

‖(Cϕα)[n](p)− (Cϕα)[2n](p)‖ ≥
1
2

,

for all n ∈ N. Hence
�

(Cϕα)[n](p)
�

n
is not Cauchy. So, Cϕα is not mean ergodic.

This settles the relationship between Cesàro boundedness and power boundedness
and mean ergodicity. We look now at the latter two. Unlike what we saw in Proposi-
tion 2.5 for the compact-open topology, when we consider the norm topology we may
find composition operators that are power bounded but not mean ergodic.

Example 2.13. For m ≥ 1 we consider the usual backward shift Σ: `m → `m defined
as

Σ(x1, x2, x3, . . .) = (x2, x3, . . .) .

Then the composition operator CΣ : P (m`m)‖·‖→P (m`m)‖·‖ is power bounded but not
mean ergodic.

Clearly ‖Σ‖ ≤ 1, and Σ is power bounded. Applying Proposition 2.9 we obtain
that CΣ is power bounded.

To see that it is not mean ergodic we take the polynomial p defined in (2.10) and
observe that

Σken+1 =

¨

en+1−k, if n≥ k,

0, if n< k.
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Then

|(CΣ)[n](p)(en+1)− (CΣ)[2n](p)(en+1)|

=

�

�

�

�

�

1
n

n
∑

k=1

p(Σk(en+1))−
1

2n

2n
∑

k=1

p(Σk(en+1))

�

�

�

�

�

=

�

�

�

�

�

1
n

n
∑

k=1

p(Σk(en+1))−
1

2n

n
∑

k=1

p(Σk(en+1))

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

p(Σk(en+1))

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

p (en+1−k)

�

�

�

�

�

=
1

2n

�

�

�

�

�

n
∑

k=1

1

�

�

�

�

�

=
1
2

.

This, as in Example 2.12, shows that
�

(CΣ)[n](p)
�

n
is not Cauchy and that CΣ is not

mean ergodic.

Example 2.14. For fixed 1 < p <∞ we take 0 < α < 1
p′ := 1 − 1

p and define the
weighted forward shift ψα : `p→ `p by

ψα(ek) =
�k+ 1

k

�α

ek+1 for k ≥ 1 ,

that is, ψα(x1, x2, . . .) = (0, w2 x1, w3 x2, . . .), where, as before, wk =
�

k
k−1

�α
for k ≥ 2.

We consider the composition operator Cψα : P (1`p)‖·‖→P (1`p)‖·‖. Since P (1`p)‖·‖ =
`′p = `p′ , for each u ∈ `p′ and x ∈ `p we have

Cψα(u)(x) = u
�

ψα(x)
�

= u(0, w2 x1, w3 x2, . . .) =
∞
∑

k=1

xkwk+1uk+1 = ϕα(u)(x) .

This shows that Cψα = ϕα : `p′ → `p′ . By [7, Corollary 2.7] (`p′ is reflexive), Cψα is
mean ergodic. On the other hand, we already saw in Example 2.8 that there is some
x0 ∈ `′p such that

�

ϕn
α
(x0)

�

n
is dense in `′p. Then Cψα is not power bounded.



Chapter 3

Composition operators on spaces of
holomorphic functions

3.1 Introduction

Our aim now is to perform an analogous study to the one in Chapter 2, replacing the
space of homogeneous polynomials with other spaces of holomorphic functions. More
precisely, we consider the composition operator Cϕ defined on

• H(BX ), endowed with the compact-open topology τ0;

• Hb(BX ), endowed with the topology τb of uniform convergence on BX -bounded
sets;

• H∞(BX ), endowed with the topology of the norm,

and we want to study some ergodic properties, focusing on the interplay between
power boundedness and mean ergodicity. We study also the case when X is a Hilbert
space for each of the settings considered above. The reason is that in [50] it was
introduced a group of automorphisms on the unit ball of a Hilbert space which allows
to use similar properties as in the one-dimensional case to study the dynamics of the
composition operator.

The main results of this chapter are collected in [38].

3.2 Automorphisms in the ball of a Hilbert space

As we will see later, when we consider spaces of holomorphic functions defined on
the open unit ball of a Hilbert spaces we can say much more about the composition
operator. One of the reasons is that in this case we have a group of automorphisms
that, in some sense, work as the Möbius transforms in the unit disc. This group of

47
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automorphisms was introduced in [50]. Let us recall the definition and prove the
main property that we use later.

Let H be a Hilbert space and BH its open unit ball. From [50, Proposition 1] we
know that, given a ∈ BH , the linear operator γa : H → H defined by

γa(x) :=
1

1+ v(a)
a〈x , a〉+ v(a)x ,

where v(a) =
p

1− ‖a‖2 < 1, satisfies ‖γa(x)‖ ≤ ‖x‖ for all x ∈ H and γa(a) = a.
Once we have this, for each a ∈ BH we can define an automorphism αa : BH → BH by

αa(x) = γa

�

a− x
1− 〈x , a〉

�

. (3.1)

This satisfies:

• αa(0) = γa(a) = a.

• αa(a) = γa(0) = 0.

• α−1
a = αa follows by [50, Proposition 1].

The following result is a consequence of [50, (9’)]; we include a proof for the sake of
completeness.

Lemma 3.1. For each 0< r < 1 there is 0< ρ < 1 such that

αa(rBH) ⊆ ρBH , (3.2)

for every a ∈ rBH .

Proof. For an arbitrary x ∈ BH with ‖x‖ < r, we put y := αa(x). We want to find
εr > 0 independent of x such that 1− ‖y‖2 ≥ εr .

First observe that

‖y‖2 =


γa(a− x)
1− 〈x , a〉

,
γa(a− x)
1− 〈x , a〉

·

=
〈a− γa(x), a− γa(x)〉

|1− 〈x , a〉|2

=
‖a‖2 + ‖γa(x)‖2 − 〈γa(x), a〉 − 〈a,γa(x)〉

|1− 〈x , a〉|2

=
‖a‖2 + ‖γa(x)‖2 − 2 Re〈γa(x), a〉

|1− 〈x , a〉|2
.

Now we check that

〈γa(x), a〉=
1

1+ v(a)
〈a, a〉〈x , a〉+ v(a)〈x , a〉

=
‖a‖2 + (1+ v(a))v(a)

1+ v(a)
〈x , a〉

=
‖a‖2 + v(a) + 1− ‖a‖2

1+ v(a)
〈x , a〉

= 〈x , a〉.

(3.3)
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Then

‖γa(x)‖2 =




1
1+ v(a)

a〈x , a〉




2
+ ‖v(a)x‖2

+

 1
1+ v(a)

a〈x , a〉, v(a)x
�

+



v(a)x ,
1

1+ v(a)
a〈x , a〉

�

=
|〈x , a〉|2‖a‖2

(1+ v(a))2
+ (1− ‖a‖2)‖x‖2 +

2v(a)|〈x , a〉|2

1+ v(a)

=(1− ‖a‖2)‖x‖2 +
|〈x , a〉|2‖a‖2 + (1+ v(a))v(a)2|〈x , a〉|2

2+ 2v(a)− ‖a‖2

=(1− ‖a‖2)‖x‖2 + |〈x , a〉|2
‖a‖2 + 2v(a) + 2− 2‖a‖2

2+ 2v(a)− ‖a‖2

=(1− ‖a‖2)‖x‖2 + |〈x , a〉|2.

Using (3.3) and the last equality we obtain that

‖y‖2 =
‖a‖2 + (1− ‖a‖2)‖x‖2 + |〈x , a〉|2 − 2 Re〈x , a〉

|1− 〈x , a〉|2
.

Since |1− 〈x , a〉|2 = 1+ |〈x , a〉|2 − 2Re〈x , a〉, we get

1− ‖y‖2 =
|1− 〈x , a〉|2 − ‖a‖2 − (1− ‖a‖2)‖x‖2 − |〈x , a〉|2 + 2 Re〈x , a〉

|1− 〈x , a〉|2

=
1− ‖a‖2 − (1− ‖a‖2)‖x‖2

|1− 〈x , a〉|2
=
(1− ‖a‖2)(1− ‖x‖2)
|1− 〈x , a〉|2

.

Since |1− 〈x , a〉|2 ≤ (1+ ‖x‖‖a‖)2 ≤ (1+ r)2, we deduce

1− ‖y‖2 ≥ (1− r2)2(1+ r)−2 = (1− r)2 =: εr ,

as we wanted. The conclusion follows taking ρ :=
p

1− εr .

3.3 Stable and BX -stable orbits

As we know (recall Theorem 1.19) the symbol having stable orbits plays a major role
in the study of composition operators on H(BX ) when X is finite dimensional. We will
see later (in Theorem 3.11) that this is also the case for infinite dimensional spaces.

A self map f : BX → BX is said to have stable orbits if for every compact subset K
of BX there is a compact subset L ⊂ BX such that f n(K) ⊆ L for every n ∈ N or, equiv-

alently, if
⋃∞

n=0 f n(K) is compact in BX for every compact set K ⊆ BX (cf. Section 2.3).
In order to deal with the space Hb(BX ) we need a similar notion, which we in-

troduce here. We say that f has BX -stable orbits if for every BX -bounded set A ⊂ BX
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there is a BX -bounded set L ⊂ BX such that f n(A) ⊆ L for every n ∈ N (equivalently,
⋃∞

n=0 f n(A) is BX -bounded for every BX -bounded set A ⊆ BX ). Observe that when X
is finite dimensional the notions of stable orbits and BX -stable orbits are equivalent.
Therefore the corresponding results coincide.

Remark 3.2. The orbit { f n(x): n ∈ N} of each point x ∈ BX is relatively compact if f
has stable orbits and BX -bounded if f has BX -stable orbits.

The notion of a function having BX -stable orbits is, to our best knowledge, new.
However, it is not hard to find functions with this property. In fact, the following well
known version of the Schwarz Lemma immediately gives examples.

Lemma 3.3. Let ϕ : BX → BX be holomorphic such that ϕ(0) = 0. Then ‖ϕ(x)‖ ≤ ‖x‖
for every x ∈ BX .

Proof. Consider the family of functions
¦

[λ ∈ D 7→ u
�

ϕ(λx/‖x‖)
�

]: u ∈ X ′, ‖u‖ ≤ 1, 0< ‖x‖< 1
©

.

Observe that these are holomorphic functions that map D into itself and fix 0. Fix
x ∈ BX and u ∈ X ′ with ‖u‖ ≤ 1. Applying the classical Schwarz Lemma to the
corresponding function we have

�

�u
�

ϕ(λx/‖x‖)
��

�≤ |λ|,

for every |λ| < 1. Since the inequalities hold for every u ∈ X ′ with ‖u‖ ≤ 1, this gives
‖ϕ(λx/‖x‖)‖ ≤ |λ| for every |λ|< 1. Taking λ= ‖x‖ completes the proof.

Proposition 3.4. Let ϕ : BX → BX be a holomorphic mapping such that ϕ(0) = 0. Then
ϕ has BX -stable orbits.

Proof. Lemma 3.3 clearly implies ‖ϕn(x)‖ ≤ ‖x‖ for all n ∈ N and all x ∈ BX and,
therefore, for each 0< r < 1 we have

ϕn(rBX ) ⊆ rBX ,

for all n ∈ N. This gives the claim.

As a consequence, every continuous homogeneous polynomial P : X → X (in par-
ticular every linear operator) with ‖P‖ ≤ 1 has BX -stable orbits.

Example 3.5. If X is either c0 or `p with 1 ≤ p ≤ ∞, we recall the forward and
backward shift operators

F(x1, x2, . . . ) = (0, x1, x2, . . . ) and Σ(x1, x2, . . . ) = (x2, x3, . . . ) . (3.4)
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Both are linear and clearly have norm less or equal 1, hence have BX -stable orbits. It
is not difficult to see that Σ has stable orbits. It all relays on the nice description of
compact sets in these spaces.

First of all, if X is either c0 or `∞, given a compact set K ⊂ BX , we can find a
sequence of positive numbers a = (an)n ∈ Bc0

such that supx∈K |xn| ≤ an, for every
n ∈ N. Now, consider the sequence b = (bn)n given by bn = supi≥n ai. Clearly, b ∈ Bc0

and satisfies

sup
x∈
⋃

mΣ
m(K)
|xn|= sup

m∈N
sup

x∈Σm(K)
|xn|= sup

m≥n
sup
x∈K
|xm| ≤ sup

m≥n
am = bn,

for every n ∈ N. Then
⋃

mΣ
m(K) is a relatively compact set in BX and Σ has stable

orbits.
Now, consider X = `p with 1 ≤ p <∞ and fix K ⊂ B`p

a compact set. By [23,

p. 6], K is a relatively compact set in `p if and only if limi→∞ supx∈K

∑∞
n=i |xn|p = 0.

Now, for every m ∈ N we have

sup
y∈Σm(K)

∞
∑

n=i

|yn|p = sup
x∈K

∞
∑

n=i+m

|xn|p ≤ sup
x∈K

∞
∑

n=i

|xn|p.

This gives that
⋃

mΣ
m(K) is a relatively compact set in B`p

and Σ has stable orbits.
Now, for the forward shift, we have that the set

§

F n
�

e1

2

�

: n ∈ N
ª

=
n en

2
: n> 1

o

is not relatively compact in X and, by Remark 3.2, F does not have stable orbits.

Example 3.6. Consider the mapping φ : Bc0
→ Bc0

defined as

φ(x1, x2, . . . ) =
� x1

2 +
1
2 , 0, 0, . . .

�

.

Note that φn(0) =
�∑n

i=1
1
2i , 0, 0, . . .

�

and, therefore,

lim
n→∞

‖φn(0)‖= lim
n→∞

n
∑

i=1

1
2i
= 1.

Hence φ has neither stable nor Bc0
-stable orbits.

3.3.1 The Hilbert-space case

If H is a Hilbert space, for each a ∈ BH the automorphism αa : BH → BH defined in
(3.1) satisfies α−1

a = αa. Hence

∞
⋃

n=0

αn
a(A) = A∪αa(A) ,
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for every A⊆ BH . If A is compact, αa(A) is again compact, and if A is BH -bounded, by
Lemma 3.1, so also is αa(A). This shows that αa has both stable and BH -stable orbits.

Using these automorphisms, in the case of Hilbert spaces we can extend Propo-
sition 3.4 showing that every holomorphic function with a fixed point has BH -stable
orbits.

Lemma 3.7. If ϕ : BH → BH has stable orbits (respectively BH -stable orbits), then the
mappingψ= αa◦ϕ◦αa has stable orbits (respectively BH -stable orbits) for every a ∈ BH .

Proof. If K ⊆ BH is compact, then αa(K) is compact and, having ϕ stable orbits, we
can find a compact set L ⊆ BH so that ϕn(αa(K)) ⊆ L for each n ∈ N. Then αa(L) ⊆ BH

is compact and αa

�

ϕn(αa(K))
�

⊆ αa(L). Since ψn = αa ◦ϕn ◦αa (because α2
a = id), ψ

has stable orbits.
The argument if ϕ has BH -stable orbits is exactly the same, using that αa(A) is

BH -bounded for every BH -bounded set A by Lemma 3.1.

Proposition 3.8. Let ϕ : BH → BH be a holomorphic mapping with a fixed point. Then
ϕ has BH -stable orbits.

Proof. Take a ∈ BH withϕ(a) = a. The holomorphic functionψ= αa◦ϕ◦αa : BH → BH

satisfies ψ(0) = αa(ϕ(αa(0))) = αa(ϕ(a)) = αa(a) = 0. Then, by Proposition 3.4 the
function ψ has BH -stable orbits, and Lemma 3.7 gives the conclusion.

3.4 The space of holomorphic functions

Proposition 3.9. Let ϕ : BX → BX be a continuous mapping. Then Cϕ : H(BX )→ H(BX )
is well defined if and only if ϕ is holomorphic.

Proof. If ϕ is holomorphic the composition operator is well defined (and continuous).
On the other hand, if Cϕ is well defined, u ◦ ϕ is holomorphic for every u ∈ X ′. By
Theorem 1.4 ϕ is holomorphic.

In view of this result there is no restriction to assume that ϕ is holomorphic.

Remark 3.10. Suppose that the composition operator Cϕ is topologizable. Then for
every compact set K ⊆ BX there is some compact L ⊆ BX and some sequence (an)n of
positive numbers such that

sup
x∈K
| f (ϕn(x))| ≤ an sup

x∈L
| f (x)| ,

for every f ∈ H(BX ) and every n ∈ N (see (1.5)). Now fix f ∈ H(BX ). Since f m ∈
H(BX ) for every m ∈ N the following holds

sup
x∈K
| f (ϕn(x))|= m

r

sup
x∈K
| f m(ϕn(x))| ≤ m

r

an sup
x∈L
| f m(x)|= m

p

an sup
x∈L
| f (x)| ,
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for every f ∈ H(BX ) and every m, n ∈ N. Letting m→∞ yields

sup
x∈K
| f (ϕn(x))| ≤ sup

x∈L
| f (x)| ,

and, in particular, Cϕ is power bounded. Our aim now is to show that in fact this
implication can be characterised in terms of the symbol.

Following [54] and [15] (cf. Lemma 2.6), given a family F of C-valued holomor-
phic functions defined on an open set U , the F -hull of A⊆ U is denoted by

bAF := {x ∈ U : | f (x)| ≤ sup
y∈A
| f (y)|, for all f ∈ F} . (3.5)

Stable orbits of the symbol is the property that characterises the power bound-
edness of the composition operator. The result in Proposition 2.7 is similar to the
following, however in H(BX ) we can say more.

Theorem 3.11. Let ϕ : BX → BX be holomorphic. The following assertions are equiva-
lent:

a) ϕ has stable orbits on BX .

b) Cϕ : H(BX )→ H(BX ) is power bounded.

c)
�

1
n Cn
ϕ

�

n
is equicontinuous in L (H(BX )).

d) Cϕ : H(BX )→ H(BX ) is topologizable.

Proof. a)⇒b). If ϕ has stable orbits, given a compact set K ⊆ BX there is a compact
set L ⊆ BX such that ϕn(K) ⊆ L for every n ∈ N. Hence

sup
x∈K
|Cn
ϕ
( f )(x)|= sup

x∈K
| f (ϕn(x))| ≤ sup

x∈L
| f (x)|,

for all f ∈ H(BX ) and n ∈ N. So the sequence (Cn
ϕ
)n is equicontinuous, i.e. Cϕ is power

bounded.
b)⇒c). Suppose now that Cϕ is power bounded, then for each compact set K ⊆ BX

we can find c > 0 and a compact set L ⊆ B such that

sup
x∈K
|Cn
ϕ
( f )(x)| ≤ c sup

x∈L
| f (x)|

for every f ∈ H(BX ) and n ∈ N. This obviously implies

sup
x∈K

�

�

1
n Cn
ϕ
( f )(x)

�

�≤ c sup
x∈L
| f (x)|

for every f and n, and
�

1
n Cn
ϕ

�

n
is equicontinuous.
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That c)⇒d) follows just taking an = cn in (1.5).
d)⇒a). Fix some compact set K ⊆ BX . Since Cϕ is topologizable, we can find some

compact set W ⊆ BX , and (an)n with an > 0 such that,

sup
x∈K
| f (ϕn(x))| ≤ an sup

x∈W
| f (x)| , (3.6)

for all f ∈ H(BX ) and n ∈ N. By [47, Corollary 10.7 and Theorem 11.4], the set
L =cWH(BX ) (recall (3.5)) is compact and contains W . We see that ϕn(K) ⊆ L for every
n. Suppose that this is not the case and take x0 ∈ K and n0 ∈ N such that ϕn0(x0) /∈ L.
Then there is f ∈ H(BX ) such that | f (ϕn0(x0))| > supy∈W | f (y)|, and there exists
m ∈ N such that

sup
y∈W

| f (y)|m

| f (ϕn0(x0))|m
<

1
an0

.

But the function g = f m satisfies (3.6) for n0, thus we obtain

| f (ϕn0(x0))|m ≤ sup
x∈K
| f (ϕn0(x))|m ≤ an0

sup
y∈W
| f (y)|m ,

which gives a contradiction.

Proposition 3.12. Let ϕ : BX → BX be holomorphic. If Cϕ : H(BX ) → H(BX ) is power
bounded, then it is uniformly mean ergodic.

Proof. Since H(BX ) is semi-Montel, by Proposition 1.15, we have that every power
bounded operator is uniformly mean ergodic in H(BX ).

3.5 The space of holomorphic functions of bounded
type

If ϕ : BX → BX is holomorphic of bounded type, then clearly Cϕ : Hb(BX )→ Hb(BX ) is
well defined. On the other hand, we observe that X ′ ⊆ Hb(BX ) because every func-
tional is trivially holomorphic and bounded in BX . So, if the composition operator is
well defined (as a self map on Hb(BX )), then the argument in Remark 3.9 shows that ϕ
has to be holomorphic. Furthermore, [33, Proposition 3] shows that ϕ is of bounded
type.

Our first goal in this section is to characterise the power boundedness of compo-
sition operators on Hb(BX ). In this case having BX -stable orbits is the key property.
As in Remark 3.10, if the composition operator Cϕ is topologizable, then for every
BX -bounded set U there is some BX -bounded set V such that

sup
x∈U
| f (ϕn(x))| ≤ sup

x∈V
| f (x)| ,

and Cϕ is power bounded. We go further.
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Lemma 3.13. Let A be a BX -bounded set then, bAHb(BX ) is BX -bounded.

Proof. By the definition of bAHb(BX ), for each u ∈ X ′, we have

sup
x∈bAHb(BX )

|u(x)| ≤ sup
x∈A
|u(x)|.

Now, proceeding as in Lemma 2.6 we obtain bAHb(BX ) ⊆ co(A). Since BX is absolutely
convex, [14, Remark, p. 527] gives that co(A) is BX -bounded, which completes the
proof.

This argument also works replacing BX by any absolutely convex open set in X .

With exactly the same proof as in Theorem 3.11, replacing ‘compact’ by ‘BX -bounded’
we have the following.

Theorem 3.14. Let ϕ : BX → BX be a holomorphic mapping of bounded type. The fol-
lowing assertions are equivalent

a) ϕ has BX -stable orbits.

b) Cϕ : Hb(BX )→ Hb(BX ) is power bounded.

c)
�

1
n Cn
ϕ

�

n
is equicontinuous in L (Hb(BX )).

d) Cϕ : Hb(BX )→ Hb(BX ) is topologizable.

We now show that in this case every mean ergodic composition operator is power
bounded, and there are power bounded operators that are not mean ergodic.

Proposition 3.15. Let ϕ : BX → BX a holomorphic mapping of bounded type. If Cϕ :
Hb(BX )→ Hb(BX ) is mean ergodic, then Cϕ is power bounded.

Proof. First, by (1.10) we have

1
n

Cn
ϕ
=

n+ 1
n
(Cϕ)[n+1] − (Cϕ)[n] ,

for every n ∈ N. The mean ergodicity of Cϕ gives that the sequence ( 1
n Cn
ϕ
) tends to zero

(pointwise), so it is pointwise bounded. Since Hb(BX ) is barrelled (see Section 1.3), it
is also equicontinuous on Hb(BX ). This, in view of Theorem 3.14, gives the conclusion.

We want to find now composition operators that are power bounded but not mean
ergodic. The shifts in (3.4) provide us with such examples.

Proposition 3.16. The composition operators CΣ : Hb(Bc0
)→ Hb(Bc0

) and CF : Hb(B`1
)→

Hb(B`1
) are power bounded but not mean ergodic.
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Proof. We already noted in Example 3.5 that Σ has Bc0
-stable orbits which, in view of

Theorem 3.14, shows that CΣ is power bounded.
We now see that CΣ is not mean ergodic. The rest of the proof is based in [8,

Theorem 1.2]. We begin by observing that Hb(BX ) contains a complemented copy
of X ′ for every Banach space X . As in the proof of Proposition 1.5, now we can see
that the mappings P : Hb(BX )→ X ′ and J : X ′ → Hb(BX ), defined by P( f ) = d f0 and
J(u) = u|BX

, are continuous and give our claim.
We consider now the restriction of CΣ to J(`1) (recall that c′0 = `1) and we have,

for each u ∈ `1 and x ∈ c0,

〈CΣu, x〉= u(Σ(x)) = 〈u,Σ(x)〉= 〈(u1, u2, u3, . . . ), (x2, x3, x4, . . . )〉
= u1 x2 + u2 x3 + u3 x4 + · · ·= 〈(0, u1, u2, u3, . . . ), (x1, x2, x3, x4, . . . )〉= 〈Fu, x〉 .

Thus F = P ◦ CΣ ◦ J , which is not mean ergodic in `1 (see, for instance, [8]). This
implies that CΣ is not mean ergodic in Hb(Bc0

).
For the forward shift, in Example 3.5 we showed that F has B`1

-stable orbits. Taking
the restriction of CF to `′1 = `∞, for each u ∈ `∞ and x ∈ `1, we have

〈CFu, x〉= 〈u, F(x)〉= 〈(u1, u2, u3, . . . ), (0, x1, x2, . . . )〉
= u2 x1 + u3 x2 + u4 x3 + · · ·= 〈(u2, u3, u4, . . . ), (x1, x2, x3, . . . )〉= 〈Σu, x〉 .

Thus Σ= P ◦ CF ◦ J , which is not mean ergodic in `∞ (see also [8]).

We look now for sufficient conditions for a given power bounded composition op-
erator to be mean ergodic.

We denote by P (X ) the algebra of all continuous polynomials on X (these are
finite sums of homogeneous polynomials), and by σ(X ,P (X )) the coarsest topology
making all P ∈ P (X ) continuous. This is a Hausdorff topology satisfying ‖ · ‖ �
σ(X ,P (X )) � σ(X , X ′), and the concepts of (relatively) countably compact, (rela-
tively) sequentially compact and (relatively) compact for a subset of X all agree with
respect to this topology [29].

Proposition 3.17. Let ϕ : BX → BX be holomorphic, having BX -stable orbits and such
that ϕ(A) is relatively σ(X ,P (X ))-compact for every BX -bounded set A. Then Cϕ :
Hb(BX )→ Hb(BX ) is mean ergodic.

Proof. By Theorem 3.14 we have that the composition operator Cϕ is power bounded.
By Remark 1.9 we have

�

(Cϕ)[n]
�

n
is equicontinuous. This gives that the set

�

(Cϕ)[n]( f )
�

n
is bounded for every f ∈ Hb(BX ). Now, by [31, Theorem 2.9], Cϕ maps bounded sets
of Hb(BX ) into relatively σ(Hb(BX ), Hb(BX )′)-compact sets. So, for every f ∈ Hb(BX )
the set

Cϕ
��

(Cϕ)[n]( f )
�

n

�

=

¨

1
n

n
∑

k=1

C k
ϕ
( f ) : n ∈ N

«
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is relatively σ(Hb(BX ), Hb(BX )′)-compact. Our aim now is to see that
�

(Cϕ)[n]( f )
�

n
is a relatively σ(Hb(BX ), Hb(BX )′)-compact set for all f ∈ Hb(B), which in view of
Proposition 1.13, gives that Cϕ is mean ergodic.

Note that

(Cϕ)[n]( f ) =
1
n
( f − Cn

ϕ
( f )) +

1
n

n
∑

k=1

C k
ϕ
( f ),

for every n ∈ N. The fact that Cϕ is power bounded implies that
�

1
n(id( f )− Cn

ϕ
( f ))

�

n

tends to 0 as n→∞. Thus,
�

1
n(id( f )− Cn

ϕ
( f ))

�

n
is a relatively compact set. In par-

ticular, it is relatively σ(Hb(BX ), Hb(BX )′)-compact. Since
�

(Cϕ)[n]( f )
�

n
is contained

in the sum of two relatively σ(Hb(BX ), Hb(BX )′)-compact sets we have finished the
proof.

Corollary 3.18. Let X be a Banach space such that every BX -bounded set is relatively
σ(X ,P (X ))-compact. Then Cϕ : Hb(BX )→ Hb(BX ) is power bounded if and only if Cϕ
is mean ergodic.

An example of a Banach space which satisfies such a property is the Tsirelson space
T ∗ (see [44, Example 2.e.1]): it is known that T ∗ is reflexive and the polynomials
on T ∗ are weakly sequentially continuous [24, p. 121]. Hence, any sequence in the
unit ball of T ∗ has a weakly convergent subsequence, which converges in the topology
σ(T ∗,P (T ∗)). Sinceσ(T ∗,P (T ∗)) is angelic [29, p. 150] (for the definition of angelic,
see also [26, Definition 3.53]), the unit ball is also relatively σ(T ∗,P (T ∗))-compact.

So far we have analysed the relationship between power boundedness and mean
ergodicity. We move one step further, looking at uniform mean ergodicity. To be
more precise, we look now for conditions that ensure that a composition operator
Cϕ : Hb(BX ) → Hb(BX ) is uniformly mean ergodic. Here C0 denotes the composition
operator defined by the constant function 0 (i.e. C0( f ) = f (0) for every f ).

Theorem 3.19. Let ϕ : BX → BX be holomorphic so that for every 0< t < 1 there exists
0< ρ < t such that

ϕ(tBX ) ⊆ ρBX . (3.7)

Then Cϕn → C0 in τb. In particular, (Cϕ)[n] → C0 in τb, i.e. Cϕ : Hb(BX )→ Hb(BX ) is
uniformly mean ergodic.

Proof. Fix some 0< t < 1. First of all, (3.7) implies, on the one hand, that ϕn(tBX ) ⊂
ρBX for every n ∈ N and, on the other hand, that ϕ(0) = 0. We can then apply
Lemma 3.3 to the function [x 7→ 1

ρϕ(t x)] and get

‖ϕn(x)‖ ≤
�ρ

t

�n
‖x‖, (3.8)

for every x ∈ tBX and n ∈ N. Now, given f ∈ Hb(BX ), we obviously have ‖ f ◦ϕn‖tBX
≤

‖ f ‖tBX
for every n ∈ N. We define g : BX → D by g(x) = 1

2‖ f ‖tBX

�

f (ϕ(t x)) − f (0)
�

.
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This is clearly holomorphic and satisfies g(0) = 0. Then we can apply Lemma 3.3 to
g and (3.8) to obtain

‖Cn
ϕ
( f )− C0( f )‖tBX

= sup
x∈tBX

| f (ϕn(x))− f (0)|

≤ 2‖ f ‖tBX
sup

x∈tBX

‖ϕn−1(x)‖ ≤ 2‖ f ‖tBX

�ρ

t

�n−1
.

This implies, for every 0< t < 1 and every bounded set A⊆ Hb(BX ),

lim
n→∞

sup
f ∈A

sup
x∈tBX

|Cϕn( f )(x)− f (0)|= 0.

Hence, Cϕn → C0 in τb. Once we have this, a standard argument for numerical se-
quences gives (Cϕ)[n]→ C0 in τb.

Remark 3.20. If ϕ : BX → BX is holomorphic and satisfies

ϕ(BX ) ⊆ rBX for some 0< r < 1 and ϕ(0) = 0 , (3.9)

then, applying Lemma 3.3 to the function [x 7→ 1
rϕ(x)], we get ‖ϕ(x)‖ ≤ r‖x‖ for

every x ∈ BX , and this implies that ϕ satisfies (3.7) with ρ = t r.
There are, however, functions satisfying (3.7) but not (3.9). To see this just con-

sider the restriction to BX of any m-homogeneous polynomial (for m > 1) P : X → X
with ‖P‖ ≤ 1. For a fixed 0< t < 1 take any 0< ε < t − tm and notice that

‖P(t x)‖ ≤ tm‖x‖m ≤ (t − ε)‖x‖,

for every x ∈ BX . That is, every homogeneous polynomial with norm ≤ 1 satisfies
(3.7). If ‖P‖ = 1 and attains its norm, that is, there is x0 with ‖x0‖ = 1 such that
‖P(x0)‖= ‖P‖, then



P
�

(1− 1
n)x0

�

=
�

1−
1
n

�m
,

and there is no 0 < r < 1 such that P(BX ) ⊆ rBX . For a concrete example of such
a polynomial just consider the 2-homogeneous one P : `2 → `2 given by P

�

(xn)n
�

=
(x2

n)n (in this case one can take x0 = e1).
In particular, we have that, if m> 1 and P is an m-homogeneous polynomial with

‖P‖ ≤ 1, then CP : Hb(BX ) → Hb(BX ) is uniformly mean ergodic. For m = 1, that is,
for linear operators, this property does not hold, as Proposition 3.24 shows.

One may also ask if in (3.9) we can drop the condition on the fixed point and still
get (3.7) just assuming that ϕ(BX ) ⊆ rBX for some 0< r < 1 . But this is not the case:
fix some x0 ∈ BX and consider the constant function ϕ(x) = x0 for every x ∈ BX .

Now, we provide an example of composition operator on Hb(Bc0
) that is mean

ergodic but not uniformly mean ergodic. We use two well known results. The first
one can be found in [42, §39,4(1), p. 138].
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Lemma 3.21. Let (Tn)n be an equicontinuous sequence of operators on a locally convex
space E. If (Tn) is pointwise convergent to a continuous operator T on some dense subset,
then (Tn)n is pointwise convergent to T in E.

For the second one we need the notion of monomial on c0. Each multi-index α =
(α1, . . . ,αN) ∈ NN

0 (with N ∈ N) defines a function hα : c0→ C, called monomial, by

hα(x) = xα := xα1
1 · · · · · x

αN
N , for every x ∈ c0. (3.10)

Theorem 3.22. [20, Theorem 15.60]. For each m ∈ N, the set

Am := {hα : α ∈ NN
0 ,α1 + · · ·+αN = m; N ∈ N}

of monomials generates a dense subspace of P (mc0)‖·‖.

Remark 3.23. As a consequence of Remark 1.7, we have that the polynomials are
dense in Hb(BX ), for every Banach space X . In the space c0, we additionally have
Theorem 3.22. Since P (mc0)‖·‖ = (P (mX ),τb), a combination of both results yields
that

span{hα : α ∈ NN
0 ; N ∈ N}

is dense in Hb(Bc0
).

Proposition 3.24. Let F : Bc0
→ Bc0

be the forward shift. The composition operator
CF : Hb(Bc0

)→ Hb(Bc0
) is mean ergodic but not uniformly mean ergodic.

Proof. First, we see that CF is mean ergodic. We follow a similar scheme to that in
[5, Theorem 2.2], using that span{hα : α ∈ NN

0 ; N ∈ N} is a dense subspace of Hb(Bc0
)

(Remark 3.23) together with Lemma 3.21. Since CF is power bounded on Hb(Bc0
)

(because it has Bc0
-stable orbits), (Cn

F )n is equicontinuous. Therefore,
�

(CF)[n]
�

n
is

also equicontinuous on Hb(Bc0
) (see Remark 1.9). Since CF(1) = 1 = C0(1) for any

constant mapping (this is in fact true for any composition operator), it remains to see
that

�

(CF)[n](h)
�

n
τb-converges to C0(h) for every h ∈ Am and m > 0 (in these cases

C0(h) = 0). It is enough to check this for the monomials hα defined in (3.10). Given
any α ∈ NN

0 , for each n ≥ N we clearly have Cn
F (hα)(x) = (F

n(x))α = 0 for every
x ∈ Bc0

, and the claim follows.
As in the proof of Proposition 3.16, one can see that P◦CF◦J = Σ, whereΣ: `1→ `1

is the backward shift (recall (3.4)). If CF were uniformly mean ergodic on Hb(Bc0
),

then Σ: `1 → `1 would be uniformly mean ergodic, but this is not the case. Indeed,
since Σ j x tends to 0 in `1 for all x ∈ `1, the only possible value for the limit projection
of 1

n

∑n−1
j=0 Σ

j is 0. But, for each n ∈ N, we have

sup
‖x‖≤1







1
n

n−1
∑

j=0

Σ j(x)






`1

≥
1
n







n−1
∑

j=0

Σ j(en)






`1

=
1
n



(1, (n). . ., 1, 0, . . .)




`1
= 1.

Hence, we have Σ[n] 6→ 0 in τb.
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3.5.1 The Hilbert-space case

Now, we recall the Earle-Hamilton fixed point theorem (see [25]) which allows us to
find conditions to obtain that some composition operators are uniformly mean ergodic.

Theorem 3.25 (Earle-Hamilton). Let U ⊆ X be a connected open subset and let f : U →
U be a holomorphic mapping such that:

• f (U) is bounded in X .

• the distance between f (U) and X \ U is strictly positive.

Then there is a unique x ∈ U such that f (x) = x. Additionally, for each y ∈ U we have
that f n(y)→ x in X .

Let us go back to (3.9) for a moment. If we only assume ϕ(BX ) ⊆ rBX , the Earle-
Hamilton Fixed Point Theorem implies that there exists a unique a ∈ BX such that
ϕ(a) = a. It is then natural to ask if this is enough to ensure that the composition
operator is uniformly mean ergodic. If we restrict ourselves to Hilbert spaces H we
can say something in this respect. We need the following lemma.

Lemma 3.26. Let ϕ : BH → BH be holomorphic such that Cϕn → C0 in the topology τb of
L (Hb(BH)). Then for every a ∈ BH the mapping ψ= αa ◦ϕ ◦αa satisfies that Cψn → Ca

in the topology τb.

Proof. Since both ϕ and αa are of bounded type (see Lemma 3.1), the composition
αa ◦ ϕ ◦ αa is of bounded type and Cψ : Hb(BH) → Hb(BH) is well defined. Observe
now that ψn = αa ◦ϕn ◦αa for all n ∈ N since α−1

a = αa. Then

Cψn = Cαa◦ϕn◦αa
= Cαa

◦ Cϕn ◦ Cαa
→ Cαa

◦ C0 ◦ Cαa
= Cαa

◦ Cαa(0) = Cαa
◦ Ca = Ca.

Proposition 3.27. Let ϕ : BH → BH be holomorphic such that

ϕ(BH) ⊆ rBH for some 0< r < 1 . (3.11)

Then, for the unique a ∈ BH such that ϕ(a) = a we have Cϕn → Ca in the topology τb.
In particular, Cϕ : Hb(BH)→ Hb(BH) is uniformly mean ergodic.

Proof. Define φ = αa ◦ϕ ◦αa : BH → BH , which clearly satisfies φ(0) = 0. Also,

φ(BH) = (αa ◦ϕ ◦αa)(BH) = (αa ◦ϕ)(BH) ⊆ αa(rBH) ,

and using Lemma 3.1 we can find some 0< ε < 1 such that

φ(BH) ⊆ (1− ε)BH .

Thenφ satisfies (3.9) and, by Theorem 3.19, Cφn → C0. Since ϕ = αa◦φ◦αa (because
α−1

a = αa), Lemma 3.26 yields the claim.
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Let us consider any holomorphic self-map ϕ : BX → BX (being X any Banach space)
such that ϕ ◦ϕ = id. Then

Cn
ϕ
=

¨

Cϕ if n is odd,

CidBX
= idHb(BX ) if n is even ,

and for each k ∈ N we have

(Cϕ)[2k−1] =
1

2k− 1

2k−1
∑

n=0

Cn
ϕ
=

k
2k− 1

�

Cϕ + idHb(BX )

�

,

and

(Cϕ)[2k] =
1

2k

2k
∑

n=0

Cn
ϕ
=

1
2

�

Cϕ + idHb(BX )

�

+
1

2k
idHb(BX ) .

This implies that limn→∞(Cϕ)[n] =
1
2

�

Cϕ + idHb(BX )

�

in the topology τb, i.e. Cϕ :
Hb(BX ) → Hb(BX ) is uniformly mean ergodic. Note that αa : BH → BH (now H be-
ing a Hilbert space) satisfies this condition, so Cαa

: Hb(BH) → Hb(BH) is uniformly
mean ergodic. However, αa does not satisfy neither (3.7) nor (3.11).

3.6 The space of bounded holomorphic functions

We consider now the space H∞(BX ) of all holomorphic functions f : BX → C that are
bounded. With the norm ‖ f ‖∞ = supx∈BX

| f (x)|, it becomes a Banach space (recall
Section 1.3). We look at composition operators Cϕ : H∞(BX )→ H∞(BX ). If ϕ : BX →
BX , then

‖Cn
ϕ
( f )‖∞ = sup

x∈BX

|Cn
ϕ
( f )(x)|= sup

x∈BX

| f (ϕn(x))| ≤ sup
x∈BX

| f (x)|= ‖ f ‖∞ ,

and ‖Cn
ϕ
‖ ≤ 1 for all n ∈ N. Hence every Cϕ that is well defined on H∞(BX ) is

power bounded. Since (X ′,‖ ·‖) = (X ′,τb), the dual space X ′ is also complemented in
H∞(BX ), and the same arguments as in Proposition 3.16 give examples of composition
operators Cϕ : H∞(BX ) → H∞(BX ) which are not mean ergodic. Let us emphasize
that X ′ is in general not complemented in H(BX ) since (X ′,‖ · ‖) 6= (X ′,τ0) and these
arguments do not work for H(BX ) (cf. Proposition 1.5).

We give now conditions on the symbol to get a uniformly mean ergodic composition
operator on H∞(BX ).

Proposition 3.28. Let ϕ : BX → BX be holomorphic and such that ϕ(BX ) ⊆ rBX for some
0< r < 1 with ϕ(0) = 0. Then Cϕn → C0 in the norm operator topology ofL (H∞(BX )).
In particular, Cϕ : H∞(BX )→ H∞(BX ) is uniformly mean ergodic.
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Proof. Take some f ∈ H∞(BX ) with ‖ f ‖∞ ≤ 1. Defining g : BX → D by g(x) =
1
2( f (x)− f (0)) and using Lemma 3.3 we get

| f (x)− f (0)| ≤ 2‖x‖,

for every x ∈ BX . Proceeding as in (3.8), we get that ‖ϕn(x)‖ ≤ rn‖x‖ for every
x ∈ BX and n ∈ N. This yields

�

� f
�

ϕn(x)
�

− f (0)
�

�≤ 2‖ϕn(x)‖ ≤ 2rn‖x‖ .

Therefore

‖Cn
ϕ
− C0‖L (H∞(B)) = sup

‖ f ‖∞≤1
sup
x∈BX

�

� f
�

ϕn(x)
�

− f (0)
�

�≤ 2 sup
x∈BX

‖ϕn(x)‖ ≤ 2rn ,

which gives the claim.

We observe that the hypothesis in Proposition 3.28 is exactly the same one as (3.9)
in Remark 3.20. One can ask if the result also holds assuming (3.7) instead . This is
not the case. We already saw in Remark 3.20 that the mapping P : B`2

→ B`2
given

by P
�

(xn)n
�

= (x2
n)n satisfies (3.7). Then, by Theorem 3.19 the Cesàro means of CP

converge to C0. And, CP : Hb(B`2
)→ Hb(B`2

) is uniformly mean ergodic.
However, the operator CP : H∞(B`2

)→ H∞(B`2
) is not even mean ergodic. If CP

were mean ergodic, then
�

(CP)[n]( f )
�

n
should converge (in H∞(B`2

)) for every f .
But by what we have just seen, this limit should be C0( f ) = f (0). In other words,
(CP)[n] → C0 in the topology τs. Take f ∈ H∞(B`2

) given by f
�

(xn)n
�

= x1 and
consider zm = (1−

1
m)e1 ∈ B`2

for each m ∈ N. Then Pk(zm) = (1−
1
m)

2k
e1 for every k

and

(CP)[n]( f )(zm)− C0( f )(zm) =
1
n

n−1
∑

k=0

f
�

(1−
1
m
)2

k
e1

�

− f (0) =
1
n

n−1
∑

k=0

�

1−
1
m

�2k

.

Thus

sup
x∈B`2

|(CP)[n]( f )(x)− C0( f )(x)| ≥ sup
m∈N

1
n

n−1
∑

k=0

�

1−
1
m

�2k

= 1 ,

and
�

(CP)[n]( f )
�

n
does not converge in norm to C0( f ). This finally shows that CP :

H∞(B`2
)→ H∞(B`2

) is not mean ergodic.
The same argument as in Lemma 3.26 and Proposition 3.27 shows the following

result. It can be seen as a partial extension of Theorem 1.20 to H∞(BH).

Proposition 3.29. Let ϕ : BH → BH be holomorphic such that ϕ(BH) ⊆ rBH for some
0 < r < 1. Then, for the unique a ∈ B such that ϕ(a) = a, we have Cϕn → Ca in the
norm of L (H∞(BH)). In particular, (Cϕ)[n] → Ca in this topology, i.e. Cϕ is uniformly
mean ergodic.



3.6. The space H∞(B) 63

Open problems. The following questions have arisen in this chapter and remain open.

• We do not know so far whether having stable orbits implies having BX -stable
orbits.

• We do not know whether the symbol ϕ satisfies (3.11), taking BX instead of BH ,
then the composition operator Cϕ is uniformly mean ergodic (that is, Proposi-
tion 3.27 extends to arbitrary Banach spaces).

• It would also be interesting to find examples of the following situations:

– A composition operator on H(BX ) which is mean ergodic but not uniformly
mean ergodic.

– A composition operator on H(BX ) which is mean ergodic but not power
bounded.

– A composition operator on H∞(BX ) which is mean ergodic but not uni-
formly mean ergodic.





Chapter 4

Compact weighted composition
operators

4.1 Introduction

Compactness of weighted composition operators defined on spaces of functions of one
variable has been extensively studied, and there is a huge related literature (see, for
example, [10, 17, 18, 19, 30, 52] and the references therein). However, for spaces
of holomorphic functions on infinite dimensional spaces the literature is much more
scarce. Compactness of the composition operator Cϕ defined on H∞(B) was studied
in [3] and on Hb(B) in [31].

In this chapter, we are interested in the study of continuity and (weak) compact-
ness of Cψ,ϕ : H∞(B) → H∞(B), in terms of the properties of the weight ψ and the
symbolϕ. On the other hand, we also study when Cψ,ϕ : Hb(B)→ Hb(B) is continuous,
bounded, reflexive, Montel and (weakly) compact, also in terms of different properties
of ψ and ϕ.

4.2 Continuity

Our first aim is to know when the weighted composition operator Cψ,ϕ is well defined
and continuous in different spaces of holomorphic functions. We begin by paying
attention to the case of the space H(B). In the rest of the chapter, we always assume
that ψ is non-zero to avoid the trivial case.

Let ϕ : B → B be a holomorphic mapping and ψ: B → C any function. If the
operator Cψ,ϕ : H(B)→ H(B) is well defined, then Cψ,ϕ( f ) ∈ H(B) for all f ∈ H(B).
In particular, for the constant function 1 ∈ H(B) we have

Cψ,ϕ(1) =ψ · (1 ◦ϕ) =ψ ∈ H(B). (4.1)

Conversely, if we assume ψ ∈ H(B) and take an arbitrary f ∈ H(B) we obtain that

65
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ψ · ( f ◦ϕ) ∈ H(B). Then, the operator Cψ,ϕ : H(B)→ H(B) is well defined. Moreover,
the operator is also continuous. Indeed, for any compact subset K ⊂ B there is a
constant c > 0 such that supx∈K |ψ(x)| ≤ c. Since ϕ is continuous the set L = ϕ(K) is
compact in B. We obtain

sup
x∈K
|Cψ,ϕ( f )(x)|= sup

x∈K
|ψ(x) f (ϕ(x))| ≤ sup

x∈K
|ψ(x)| sup

x∈K
| f (ϕ(x))| ≤ c sup

x∈L
| f (x)|,

for every f ∈ H(B). Cψ,ϕ : H(B)→ H(B) is continuous. Thus, without loss of general-
ity we can always assume that ψ and ϕ are holomorphic.

Proposition 4.1. Assume ψ is non-zero. Then Cψ,ϕ : Hb(B) → Hb(B) is continuous if
and only if ψ and ϕ are of bounded type.

Proof. Assume first that both ψ and ϕ are of bounded type. Given an arbitrary 0 <
r < 1 we can find 0 < s < 1 as in (BTa) and M > 0 such that sup

‖x‖<r
|ψ(x)| ≤ M (see

(BTb)). Then, for an arbitrary f ∈ Hb(B) we have

sup
‖x‖<r

|Cψ,ϕ( f )(x)|= sup
‖x‖<r

|ψ(x)| · | f (ϕ(x))| ≤ M sup
x∈ϕ(rB)

| f (x)| ≤ M sup
‖x‖<s

| f (x)|,

so Cψ,ϕ is continuous.
Conversely, assume Cψ,ϕ is continuous. Then, for each 0 < r < 1, we can find

0< s < 1 and c > 0 such that

sup
‖x‖<r

|Cψ,ϕ( f )(x)|= sup
‖x‖<r

|ψ(x)| · | f (ϕ(x))| ≤ c sup
‖x‖<s

| f (x)|. (4.2)

for every f ∈ Hb(B). In particular, for f = 1 ∈ Hb(B), we have sup‖x‖<r |ψ(x)| ≤ c.
Hence, ψ is of bounded type. In order to see that ϕ is of bounded type, pick u ∈ X ′

with ‖u‖X ′ = 1 and, for each n ∈ N consider un ∈ Hb(B). For ‖x‖ < r with ψ(x) 6= 0
we have, using (4.2),

|ψ(x)| · |u(ϕ(x))|n ≤ c sup
‖y‖<s

|u(y)|n ≤ csn,

for every n ∈ N. This clearly implies that |u(ϕ(x))| ≤ s, for ‖x‖ < r with ψ(x) 6= 0.
Since u is arbitrary, this implies ‖ϕ(x)‖ ≤ s for every ‖x‖ < r with ϕ(x) 6= 0. By the
Identity Principle (see [47, Proposition 5.7]), the set {x ∈ rB : ψ(x) 6= 0} is dense in
rB, so ‖ϕ(x)‖ ≤ s for every ‖x‖< r.

The case of H∞(B) is much simpler to handle. Since it is an algebra which con-
tains the constant function 1 and the composition of bounded functions is a bounded
function, the following result is immediate.

Proposition 4.2. Given ϕ : B→ B a holomorphic mapping and ψ ∈ H(B), the operator
Cψ,ϕ : H∞(B)→ H∞(B) is continuous if and only if ψ ∈ H∞(B).



4.3. Compactness on H∞(B) 67

From what we have just seen we can easily deduce when a multiplication operator
defined on any of these spaces is continuous. Note that the identity idB : B → B is
a holomorphic mapping of bounded type. As we already pointed out, we can write
Mψ = Cψ,idB

. This allows us to obtain the following result.

Proposition 4.3. Let H be either H∞(B), Hb(B) or H(B). Then Mψ :H →H is well
defined and continuous if and only if ψ ∈H .

4.3 Compactness on H∞(B)

Since Cψ,ϕ = Mψ ◦ Cϕ, if either Mψ or Cϕ is compact, then Cψ,ϕ is compact. We recall
that Cϕ : H∞(B) → H∞(B) is compact if and only if there is 0 < s < 1 such that
ϕ(B) ⊆ sB and the set ϕ(B) is relatively compact in X (Theorem 1.21).

We consider the point evaluation functional δx : H∞(B)→ C on H∞(B), defined
as δx( f ) = f (x) for x ∈ B. It belongs to the dual space H∞(B)′ and, moreover,
‖δx‖H∞(B)′ = 1 for every x ∈ B since |δx( f )| ≤ ‖ f ‖∞ for every f ∈ H∞(B) and the
constant mapping 1 is in H∞(B).

Given a Banach space Y and M ⊆ Y a bounded and absolutely convex subset, we
write ‖ · ‖M for the Minkowski gauge defined by M as

‖x‖M := inf{λ > 0 : x ∈ λM}.

We denote YM for the normed space (Y,‖ · ‖M). More details can be found in, e.g.
[49, Chapter 3.2]. As an immediate consequence of Grothendieck’s Precompactness
Lemma [41, §21, 7(1)] we have:

Lemma 4.4. Let Y be a Banach space and M ⊂ Y , N ⊂ Y ′ be bounded closed absolutely
convex sets. Then M ◦ is precompact in (Y ′)N if and only if N ◦ is precompact in YM .

Lemma 4.5. The operator Cψ,ϕ : H∞(B)→ H∞(B) is compact if and only if the set

{ψ(x)δϕ(x) : x ∈ B}

is relatively compact in H∞(B)′.

Proof. Suppose first that Cψ,ϕ is compact. Then its adjoint C t
ψ,ϕ : H∞(B)′ → H∞(B)′

is compact, and therefore the set C t
ψ,ϕ({δx : x ∈ B}) is relatively compact in H∞(B)′.

For f ∈ H∞(B) we have

〈C t
ψ,ϕ(δx), f 〉= 〈δx , Cψ,ϕ( f )〉=ψ(x) f (ϕ(x)) =ψ(x)〈δϕ(x), f 〉= 〈ψ(x)δϕ(x), f 〉.

Hence C t
ψ,ϕ({δx : x ∈ B}) = {ψ(x)δϕ(x) : x ∈ B} is relatively compact in H∞(B)′.

Let us assume now that A= {ψ(x)δϕ(x) : x ∈ B} is relatively compact in H∞(B)′.
Then N = co(A) = A◦◦ is compact in H∞(B)′ by the Bipolar Theorem. Note that
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taking M = BH∞(B)′ (the closed unit ball of H∞(B)′) we obviously have H∞(B)′ =
(H∞(B)′)M . Observe that

N ◦ = A◦ = { f ∈ H∞(B) : |ψ(x) f (ϕ(x))| ≤ 1 for every x ∈ B}.

In other words, we have that (N ◦)◦ is compact in (H∞(B)′)M . By Lemma 4.4 the set
M ◦ is precompact in (H∞(B))N◦ = (H∞(B))A◦ . Note that M ◦ = BH∞(B). Then, for
each sequence ( fn)n ⊂ BH∞(B), there is a subsequence ( fnk

)k and f0 ∈ BH∞(B) such that
fnk
→ f0 in (H∞(B))A◦ . That is, for each ε > 0 there is k0 such that for every k ≥ k0

we have
fnk
− f0 ∈ εN ◦.

Then for each ε > 0 there is k0 such that for every k ≥ k0 we have

sup
x∈B
|〈 fnk

− f0,ψ(x)δϕ(x)〉|< ε,

or equivalently,
‖Cψ,ϕ( fnk

)− Cψ,ϕ( f0)‖∞ < ε.

Therefore Cψ,ϕ : H∞(B)→ H∞(B) is compact.

From this formal result we can deduce an important necessary condition. This will
be used later to characterise the compactness of Cψ,ϕ in terms of relatively compact
sets in X (see Theorem 4.8).

Proposition 4.6. Let Cψ,ϕ : H∞(B)→ H∞(B) be compact. Then (ψ ·ϕ)(B) is relatively
compact in X .

Proof. Assume (ψ · ϕ)(B) is not relatively compact in X . Then there is ε > 0 and
(xn)n ⊆ B such that

‖ψ(xn)ϕ(xn)−ψ(xm)ϕ(xm)‖> ε,

for every n 6= m. By the Hahn-Banach Theorem there is un,m ∈ X ′ with ‖un,m‖X ′ ≤ 1
such that

�

�un,m (ψ(xn)ϕ(xn)−ψ(xm)ϕ(xm))
�

�> ε, (4.3)

for every n 6= m. On the other hand, by Lemma 4.5 {ψ(x)δϕ(x) : x ∈ B} is relatively
compact in H∞(B)′. Hence we can find a subsequence (nk)k such that

ε

2
> sup
‖ f ‖∞≤1

�

�

�〈 f ,ψ(xnk
)δϕ(xnk

) −ψ(xn j
)δϕ(xn j

)〉
�

�

�

≥ sup
u∈(un,m)n6=m

�

�

�ψ(xnk
)u(ϕ(xnk

))−ψ(xn j
)u(ϕ(xn j

))
�

�

�

= sup
u∈(un,m)n6=m

�

�

�u
�

ψ(xnk
)ϕ(xnk

)−ψ(xn j
)ϕ(xn j

)
�

�

�

� ,

for every k, j ∈ N. Since we can choose k, j such that nk 6= n j, we obtain a contradiction
with (4.3) and this completes the proof.
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Our last step in our way to a characterisation of compactness is the following
lemma.

Lemma 4.7. Letψ ∈ H∞(B),ψ 6= 0, and ϕ : B→ B be holomorphic. Assume (ψ·ϕ)(B)
is relatively compact in X and that one of the following conditions holds:

a) There is 0< s < 1 such that ϕ(B) ⊆ sB,

b) lim
r→1−

sup
‖ϕ(x)‖>r

|ψ(x)|= 0.

Then, for each sequence (xn)n such that (ϕ(xn))n is not relatively compact in B, there is
a subsequence (xnk

)k such that

lim
k→∞

|ψ(xnk
)|= 0.

Proof. We begin by fixing some (xn)n such that (ϕ(xn))n is not relatively compact in B.
We find two different situations. Assume there is (xnk

)k such that limk→∞ ‖ϕ(xnk
)‖=

1. Then, by condition b), we obtain limk |ψ(xnk
)| = 0. Otherwise, we can find 0 <

r0 < 1 such that (ϕ(xn))n ⊆ r0B. Thus the set (ϕ(xn))n is neither relatively compact
in X . We claim that the set

Am := ϕ
�

�

x ∈ B : |ψ(x)|>
1
m

	

�

is relatively compact in X for each m ∈ N. Indeed, for a fixed m ∈ N, if ϕ(x) ∈ Am we
have that 1

‖ψ‖∞
≤ 1
|ψ(x)| < m. For (ϕ(yn))n ⊆ Am, we can find a subsequence, z ∈ C

and y ∈ X such that limk
1

ψ(ynk
) = z and limkψ(ynk

)ϕ(ynk
) = y . Therefore, we obtain

ϕ(ynk
) =

1
ψ(ynk

)
·ψ(ynk

)ϕ(ynk
)→ z y ∈ X ,

and the claim holds.
Now, since the set (ϕ(xn))n is not relatively compact in X we can find n1 ∈ N such

that ϕ(xn1
) /∈ A1. Therefore |ψ(xn1

)| ≤ 1. Now, the set (ϕ(xn))n>n1
is not relatively

compact in X and we can find n2 > n1 such thatϕ(xn2
) /∈ A2. This element satisfies that

|ψ(xn2
)| ≤ 1

2 . Repeating this procedure we obtain a subsequence such that |ψ(xnk
)| ≤

1/k, for every k ∈ N, which finishes the proof.

We can finally give the characterisation of the compactness of the weighted com-
position operator on H∞(B) in terms of properties of the symbol and the weight we
were aiming at. This extends, at the same time, Theorem 1.21 to weighted composi-
tion operators and Theorem 1.23 to H∞(B).

Theorem 4.8. Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then the following
conditions are equivalent:
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a) Cψ,ϕ : H∞(B)→ H∞(B) is compact,

b) Cψ,ϕ : H∞(B)→ H∞(B) is weakly compact and (ψ ·ϕ)(B) is relatively compact
in X ,

c) (ψ ·ϕ)(B) is relatively compact in X and one of the following properties hold:

(i) There is 0< s < 1 such that ϕ(B) ⊆ sB,

(ii) lim
r→1−

sup
‖ϕ(x)‖>r

|ψ(x)|= 0.

Proof. a)⇒b) follows immediately from Proposition 4.6 and the fact that every com-
pact operator is weakly compact.

To see that b)⇒c), assume that neither (i) nor (ii) hold. Then there is a sequence
(x j) j ⊂ B such that ‖ϕ(x j)‖ ≥ 1 − 1/ j for all j and (ψ(x j)) j converges to some z ∈
C \ {0}. Without loss of generality we may assume z = 1 and, since (ψ · ϕ)(B) is
relatively compact in X , that (ψ(x j)ϕ(x j)) j converges to some y0 ∈ X with ‖y0‖ = 1.
Note that, in fact, (ϕ(x j)) j converges to y0. Choose u ∈ X ′ such that u(y0) = 1= ‖u‖.
The set {un|B : n ∈ N} is bounded in H∞(B) and Cψ,ϕ is weakly compact, so we may
assume, passing to a subsequence if necessary, that ψ(un ◦ ϕ) converges weakly to
some f ∈ H∞(B). Since for every j, the point evaluation map δx j

∈ H∞(B)′ has
norm equal to 1, by Alaoglu’s theorem, the sequence (δx j

) j has a σ(H∞(B)′, H∞(B))-
cluster point γ ∈ H∞(B)′. Passing to a subsequence if necessary, for every n, we have
1 = u(y0)n = lim jψ(x j)u(ϕ(x j))n = lim j δx j

(ψ(un ◦ϕ)) = γ(ψ(un ◦ϕ)). Now, since
‖ϕ(x j)‖< 1 for every j, 0= limnψ(x j)un(ϕ(x j)) = f (x j) = δx j

( f ). Hence

0= lim
j
δx j
( f ) = γ( f ) = lim

n
γ(ψ(un ◦ϕ)) = 1,

and we have a contradiction. This proves our claim.
To show that c)⇒a), assume that Cψ,ϕ is not a compact operator. Then there is a

sequence ( fn)n ⊂ H∞(B) with ‖ fn‖∞ ≤ 1 and there is ε > 0 so that

‖ψ · ( fn ◦ϕ)−ψ · ( fm ◦ϕ)‖∞ > 2ε,

for every n< m. We can select a set {xn,m : n< m} ⊆ B satisfying
�

�ψ(xn,m) fn(ϕ(xn,m))−ψ(xn,m) fm(ϕ(xn,m))
�

�> ε, for every n< m. (4.4)

We claim that the set (ϕ(xn,m))n<m is not relatively compact in B. Assume this is not
the case. Since ( fn)n is bounded in H∞(B) it is also τ0-bounded and, therefore τ0-
relatively compact. In particular, there is a subnet ( fα)α that is τ0-Cauchy. Then we
can find α0 such that

sup
y∈(ϕ(xn,m))n<m

| fα(y)− fβ(y)|<
ε

2‖ψ‖∞
for every α,β > α0.
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We can take α,β > α0 such that fα = fn0
and fβ = fm0

with n0 < m0. This implies

ε

2
> ‖ψ‖∞ sup

y∈(ϕ(xn,m))n<m

| fn0
(y)− fm0

(y)| ≥ |ψ(xn0,m0
)| ·| fn0

(ϕ(xn0,m0
))− fm0

(ϕ(xn0,m0
))|.

This contradicts (4.4), so the set (ϕ(xn,m))n<m is not relatively compact in B.
Now, we take any bijection Φ: {(n, m) ∈ N × N : n < m} → N and we denote

x i = xn,m, where n < m and i = Φ(n, m). Then the sequence (ϕ(x i))i is not relatively
compact in B. By Lemma 4.7 there is a subsequence (x ik)k such that

lim
k→∞

|ψ(x ik)|= 0.

In particular, there is ik0
∈ N so that |ψ(x ik0

)| < ε
4 . For the unique pair n1 < m1 such

that Φ(n1, m1) = ik0
, we obtain, from (4.4),

ε <
�

�ψ(xn1,m1
) fn1
(ϕ(xn1,m1

))−ψ(xn1,m1
) fm1
(ϕ(xn1,m1

))
�

�

≤|ψ(x ik0
)| · (‖ fn1

‖∞ + ‖ fm1
‖∞)≤ |ψ(x ik0

)| · 2<
ε

2
,

which is a contradiction.

4.4 Compactness on Hb(B)

We now look for conditions for a weighted composition operator on Hb(B) to be com-
pact. To this aim, we begin by characterising the boundedness of the operator (see
Proposition 4.11 bellow).

First, we observe that the sets

Ur := { f ∈ Hb(B) : sup
‖x‖<r

| f (x)| ≤ 1},

for 0 < r < 1, build a basis of 0-neighbourhoods of Hb(B) and then Cψ,ϕ : Hb(B) →
Hb(B) is bounded if and only if there is 0 < s < 1 such that for every 0 < r < 1 there
is Mr > 0 with

sup
‖x‖<r

|ψ(x) f (ϕ(x))| ≤ Mr , for every f ∈ Us. (4.5)

Theorem 4.9. Let ϕ : B→ B be holomorphic of bounded type. The following are equiv-
alent:

a) There is 0< s < 1 such that ϕ(B) ⊆ sB.

b) Cϕ : Hb(B)→ Hb(B) is bounded.

c) Cψ,ϕ : Hb(B)→ Hb(B) is bounded for some ψ ∈ Hb(B), ψ 6= 0.
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d) Cψ,ϕ : Hb(B)→ Hb(B) is bounded for every ψ ∈ Hb(B).

Proof. Clearly d)⇒b)⇒c).
Let us see that a)⇒d). Take an arbitrary ψ ∈ Hb(B), ψ 6= 0. By Proposition 4.1,

the operator Cψ,ϕ is continuous. For 0 < r < 1 we can take Mr = sup‖x‖<r |ψ(x)| to
have, for f ∈ Us,

sup
‖x‖<r

|ψ(x) f (ϕ(x))| ≤ sup
‖x‖<r

|ψ(x)| sup
x∈ϕ(rB)

| f (x)| ≤ Mr sup
‖x‖<s

| f (x)| ≤ Mr .

So Cψ,ϕ is bounded.
To see c)⇒a) we follow some of the ideas in [31, Theorem 2.1]. Suppose that

there is some ψ ∈ Hb(B) such that Cψ,ϕ is bounded. Choose 0 < s < 1 satisfying
(4.5) and let us see that | f (ϕ(x))| ≤ 1 for every f ∈ Us and ‖x‖ < 1. First of all
observe that for n ∈ N and f ∈ Us the function f n is again in Us. Then, if ‖x0‖ < 1
is such that ψ(x0) 6= 0 we can take ‖x0‖ < r < 1 and, using (4.5), find Mr > 0
such that |ψ(x0) f (ϕ(x0))n| ≤ Mr , for every n ∈ N. Therefore, since x0 is arbitrary,
| f (ϕ(x))| ≤ 1 for ‖x‖< 1 with ψ(x) 6= 0. Suppose now that | f (ϕ(x0))|> 1 for some
x0. By continuity | f ◦ϕ| > 1 on some open set, and this (by what we just have seen)
forces ψ = 0 on this open set. By the Identity Principle for holomorphic functions on
Banach spaces (see e.g. [47, Proposition 5.7]) this forces ψ to be identically zero, but
this is not the case. Hence sup‖x‖<1 | f (ϕ(x))| ≤ 1, for every f ∈ Us.
Let us see that this implies ϕ(B) ⊆ s+1

2 B, which will complete the proof. Suppose that
this is not the case and pick ‖x0‖< 1 with ‖ϕ(x0)‖>

s+1
2 . In particularϕ(x0) /∈ sB and,

by the Hahn-Banach Theorem, we can find u ∈ X ′ with |u(ϕ(x0))| > 1 and |u(x)| ≤ 1
for every x ∈ sB. Observe that u ∈ Us. This is a contradiction and completes the
proof.

Suppose now that BN is the open unit ball of CN with any norm. Note that in
this case trivially H(BN ) = Hb(BN ) and, by Montel’s theorem for several variables
Cψ,ϕ : H(BN )→ H(BN ) is compact if and only if it is bounded. This altogether yields
the following known consequence.

Corollary 4.10. Let BN be the open unit ball of CN with some norm. Let ϕ : BN → BN

be holomorphic. The following are equivalent:

a) There is 0< s < 1 such that ϕ(BN ) ⊆ sBN .

b) Cϕ : H(BN )→ H(BN ) is compact.

c) Cψ,ϕ : H(BN )→ H(BN ) is compact for some ψ ∈ H(BN ), ψ 6= 0.

d) Cψ,ϕ : H(BN )→ H(BN ) is compact for every ψ ∈ H(BN ).

We mention the following property (see [12, Remark (2)] and [31, Lemma 2.6]):
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Proposition 4.11. Let E be a quasinormable Fréchet space. If T : E → E is a bounded
linear operator which is also Montel (reflexive), then T is compact (weakly compact).

As an immediate consequence we obtain:

Corollary 4.12. Let 0 6= ψ ∈ Hb(B) and ϕ : B → B be holomorphic of bounded type.
Then Cψ,ϕ : Hb(B)→ Hb(B) is compact (weakly compact) if and only if the following two
conditions hold:

a) Cψ,ϕ is Montel (reflexive),

b) there is 0< s < 1 such that ϕ(B) ⊆ sB.

We find now conditions that ensure that Cψ,ϕ is Montel. Let (E,τ) be a Hausdorff
topological space and let (x i)i ⊂ E be a sequence. We recall that that x ∈ E is a cluster
point of (x i)i if for every V ⊂ E τ-neighbourhood of x and i ∈ N there is j > i such that
x j ∈ V . We denote the set of cluster points of (x i)i in the topology τ by clusterτ(x i)i.

Remark 4.13. Let (E,τ) and (F,σ) be two Hausdorff topological spaces and let T :
(E,τ)→ (F,σ) be a continuous linear operator. Take (x i)i ⊂ E a sequence such that
x ∈ clusterτ(x i)i. Now, fix i ∈ N and U ⊂ F σ-neighbourhood of T x . Since T is
continuous in x we can find a τ-neighbourhood V ⊂ E of x such that T (V ) ⊂ U . We
can find j > i such that x j ∈ V and we obtain that T x j ∈ T (V ) ⊂ U . Since i and U
were arbitrary, this gives T x ∈ clusterσ(T x i)i.

Lemma 4.14. Let T : Hb(B)→ Hb(B) be a continuous linear operator such that it is also
(τ0,τ0)-continuous. Consider the following statements:

a) T : Hb(B)→ Hb(B) is Montel,

b) Every bounded sequence ( fi)i ⊂ Hb(B) with 0 ∈ clusterτ0
( fi)i has a subsequence

such that T fik → 0 in Hb(B),

c) If ( fi)i ⊂ Hb(B) is bounded and fi
τ0→ 0, then T fi → 0 in Hb(B).

Then a)⇔b)⇒c). If moreover every compact set in H(B) is sequentially compact, then
c) is equivalent to both a) and b).

Proof. Let us see first that a)⇒b). Choose some bounded sequence ( fi)i ⊂ Hb(B) such
that 0 ∈ clusterτ0

( fi)i. Then 0= T0 ∈ clusterτ0
(T fi)i because T is (τ0,τ0)-continuous

(Remark 4.13). Now, being T Montel, the set A := (T fi)i is compact in Hb(B) and then,
since τ0 is a coarser Hausdorff topology, [41, 1. §3 (6), p. 8] gives that τb|A = τ0|A.
Therefore, A is also τ0-compact and metrizable. Then, since 0 ∈ A (because A is τ0-
closed), we can find a subsequence so that T fik → 0 in τ0. This gives the claim.

Suppose now that b) holds and let us see that T is Montel. Take C ⊆ Hb(B)
bounded and let us see that T (C) is relatively compact. To see this, we pick ( fi)i ⊆ C
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and we have to find a subsequence so that (T fik)k converges in Hb(B). Let us note
first that C is also τ0-bounded and, being H(B) a semi-Montel space, it is also rela-
tively τ0-compact, and clusterτ0

( fi)i is non-empty. Take f ∈ clusterτ0
( fi)i and let us

see that f ∈ Hb(B). Since C is bounded, for each fixed 0 < r < 1 we can find Mr > 0
such that sup‖x‖<r | fi(x)| ≤ Mr for every i ∈ N. For any f ∈ clusterτ0

( fi)i we have
sup‖x‖<r | f (x)| ≤ Mr (since τ0-convergence implies pointwise convergence), and f is
of bounded type. Finally, the sequence ( fi − f )i is bounded and 0 ∈ clusterτ0

( fi − f )i.
Then, by hypothesis there is a subsequence such that T ( fik − f )→ 0 in Hb(B). Then
(T fik)k converges to T f ∈ Hb(B), which completes the proof.

This shows the equivalence between a) and b). We see now that a)⇒c). Let us
assume first that T is Montel and take a bounded sequence ( fi)i ⊂ Hb(B) such that
fi
τ0→ 0. Since T is (τ0,τ0)-continuous we have

T fi → 0 in τ0. (4.6)

Let us see that it also converges to 0 in τb. Suppose that this is not the case. Then,
(since Hb(B) is metrizable) we can find a subsequence and a 0-neighbourhood U ⊆
Hb(B) such that

T fik /∈ U for every k ∈ N. (4.7)

Since ( fik)k is bounded, (T fik)k is relatively compact in Hb(B), and there is a further
subsequence (T fikl

)l that converges in Hb(B). By (4.6) it necessarily converges to 0.
But then we can find l0 ∈ N such that T fikl

∈ U for every l > l0. This contradicts (4.7)
and yields the claim.

Now we assume that c) holds and that every compact set in H(B) is sequentially
compact. Since Hb(B) is metrizable, in order to see that T is Montel it is enough
to show that for every bounded sequence ( fi)i ⊂ Hb(B) there is a subsequence sat-
isfying that (T fik)k converges in Hb(B). But ( fi)i is τb-bounded, so also τ0-bounded
and, by Montel’s theorem, it is also relatively τ0-compact. By our assumption on the
space, ( fi)i is relatively sequentially τ0-compact, and there is a subsequence ( fik)k and
f ∈ H(B) with fik → f in τ0. For each 0 < r < 1 we can find Mr > 0 such that
sup‖x‖<r | fik(x)| ≤ Mr for every k ∈ N, therefore f is of bounded type. Now, it is
enough to apply c) to the sequence ( fik − f )k.

The question of whether the assumption that every compact set in H(B) is sequen-
tially compact is needed remains open. It is easy to see that this condition is satisfied
whenever the Banach space X is separable. Indeed, take (x i)i dense in B and consider
the seminorms on H(B) defined by

pn( f ) := sup
1≤i≤n

| f (x i)|.

If τ denotes the topology induced by these seminorms, it is clear that τ is coarser than
τ0. If f ∈ H(B) is such that f (x i) = 0 for all i ∈ N, the continuity of f implies that
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f ≡ 0. This shows that (H(B),τ) is Hausdorff. Now given a τ0-compact set C ⊂ H(B)
we have that τ|C = τ0|C (see [41, 1. §3 (6), p. 8]). Thus τ0 is metrizable on C and
therefore C ⊂ H(B) is sequentially compact.

We mention that in [16, Corollary 1.1] the authors use more general conditions to
ensure that every compact set in H(B) is sequentially compact. This property is not
satisfied by every Banach space, as the following example shows.

Example 4.15. From [27, Exercise 3.110] we know that B`′∞ (the closed unit ball of
`′∞) is not sequentially σ(`′∞,`∞)-compact. From this we can deduce that there are
compact sets in H(B`∞) that are not sequentially compact.

To see this from a general point of view we take any Banach space X . By Banach-
Alaoglu BX ′ is a σ(X ′, X )-compact set. Denote by τk the topology in X ′ of uniform
convergence on compact sets of X . Since BX ′ is equicontinuous it is also τk-compact
(see [41, Section 21,6.(3)]). Consider now the mapping Φ: (X ′,τk) → (H(B),τ0)
given byΦ(u) = u|B which is linear and continuous. ThenΦ(BX ′) ⊂ H(B) is τ0-compact
and Φ: BX ′ → Φ(BX ′) is an homeomorphism. As a consequence, if every τ0-compact
set in H(B) is sequentially τ0-compact we immediately obtain that BX ′ is sequentially
σ(X ′, X )-compact.

Since, as we have just pointed out, this is not the case for B`′∞ , we deduce that in
H(B`∞) there are τ0-compact sets that are not sequentially τ0-compact.

The following result is a formal characterisation for Cψ,ϕ to be Montel in Hb(B),
and also gives a necessary condition for such an operator to be reflexive. It can be
seen as an analogue of Lemma 4.5.

Proposition 4.16. Assume that Cψ,ϕ : Hb(B)→ Hb(B) is continuous. If Cψ,ϕ is (reflex-
ive) Montel, then for each 0 < r < 1 the set Ar := {ψ(x)δϕ(x) : ‖x‖ ≤ r} is (weakly)
relatively compact in Hb(B)′. Conversely, if Ar is relatively compact in Hb(B)′ for each
0< r < 1, then Cψ,ϕ is Montel.

Proof. By [22, Corollary 2.4] and [21, Theorem 1.2], Cψ,ϕ is (reflexive) Montel if and
only if its transpose C t

ψ,ϕ : Hb(B)′β → Hb(B)′β is (reflexive) Montel. Then C t
ψ,ϕ maps

bounded sets into (weakly) relatively compact sets. For a fixed 0< r < 1 observe that
{δx : ‖x‖ ≤ r} ⊂ Hb(B)′ is an equicontinuous set. Indeed, since 〈δz, f 〉 = f (z) the
following is satisfied

{δx : ‖x‖ ≤ r} ⊆
�

f ∈ Hb(B) : sup
‖x‖≤r

| f (x)| ≤ 1
	◦

.

Hence it is bounded. Therefore the set

C t
ψ,ϕ ({δx : ‖x‖ ≤ r}) = {ψ(x)δϕ(x) : ‖x‖ ≤ r}

is (weakly) relatively compact.
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Conversely, assume that for each 0< r < 1 the set Ar is relatively β(Hb(B)′, Hb(B))-
compact. We start fixing a bounded sequence ( fi)i ⊂ Hb(B) such that 0 ∈ clusterτ0

( fi)i.
Since ( fi)i is bounded, if we consider each fi as an element in the dual of Hb(B)′, we
have that ( fi)i is equicontinuous on Hb(B)′. In particular, ( fi)i is equicontinuous on the
compact set Kr := Ar for each 0 < r < 1. We also have that ( fi)i ⊂ C (Kr), the space
of continuous functions on Kr , is a pointwise bounded set. Since the compact sets in
the dual of a Fréchet space are metrizable (see [16, Theorem 2 and Examples 1.2 C)])
we can use the Ascoli-Arzelà Theorem (see [53, Corollary 3.146]) to obtain that ( fi)i
is relatively compact in C (Kr) with the natural norm topology. Additionally, since
0 ∈ clusterτ0

( fi)i we have that 0 is a cluster point of ( fi)i for the topology of pointwise
convergence on C (Kr) and therefore, 0 is a cluster point for ( fi)i in the topology of
uniform convergence on C (Kr). Let (r(k)) ⊂ (0,1) be a strictly increasing sequence
such that limk r(k) = 1. For k = 1 we obtain a subsequence converging to 0 uniformly
in Kr(1). Then we can find i1 such that supu∈Kr(1)

| fi1(u)| < 1. Now for k = 2 we obtain
a subsequence of the subsequence above, that we denote the same, converging to 0
uniformly in Kr(2). Then we can find i2 > i1 such that supu∈Kr(2)

| fi2(u)| < 1/2. Hence
iteratively, for each k ∈ N, we can find ik ∈ N such that supu∈Kr(k)

| fik(u)| < 1/k and
satisfies ik > ik−1. Now, for a fixed 0< r < 1 there is k0 ∈ N such that r(k0)> r and

sup
‖x‖≤r

|ψ(x) fik(ϕ(x))| ≤ sup
u∈Kr

| fik(u)| ≤ sup
u∈Kr(k)

| fik(u)|<
1
k

,

for every k > k0. Hence Cψ,ϕ( fik) → 0 in Hb(B). An application of Lemma 4.14
completes the proof.

In what remains we are going to use the Eberlein-Šmulian theorem several times.
Let us recall the statement (see [23, Chapter 3 p. 18] for a proof).

Theorem 4.17 (Eberlein-Šmulian). A subset of a Banach space is weakly relatively com-
pact if and only if it is weakly relatively sequentially compact.

In particular, a subset of a Banach space is weakly compact if and only if it is weakly
sequentially compact.

Lemma 4.18. Let ψ ∈ Hb(B) and let ϕ : B → B be holomorphic of bounded type. If
there is a B-bounded set D such that AD := {ψ(x)δϕ(x) : x ∈ D} is (weakly) relatively
compact in Hb(B)′, then the set (ψ ·ϕ)(D) is (weakly) relatively compact in X .

Proof. a) First assume that AD is relatively compact in Hb(B)′ but (ψ · ϕ)(D) is not
relatively compact in X . Then there are ε > 0 and (xn) ⊂ D such that

‖ψ(xn)ϕ(xn)−ψ(xm)ϕ(xm)‖> ε,

for every n 6= m (as in the proof of Proposition 4.16 the compact subsets of the strong
dual of Hb(B) are metrizable; in fact, even all bounded set, because the Fréchet space



4.4. Compactness on Hb(B) 77

Hb(B) is quasinormable (see Section 1.3). Hence, we can use sequences instead of
nets in AD). By the Hahn-Banach Theorem there is un,m ∈ X ′ with ‖un,m‖X ′ ≤ 1 such
that

�

�un,m (ψ(xn)ϕ(xn)−ψ(xm)ϕ(xm))
�

�> ε, (4.8)

for every n 6= m. On the other hand, (ψ(xn)δϕ(xn))n is a relatively compact set in
Hb(B)′. So, given the bounded set (un,m)n6=m ⊂ Hb(B), we can find a subsequence
(nk)k such that

ε

2
> sup

u∈(un,m)n6=m

�

�

�〈u,ψ(xnk
)δϕ(xnk

) −ψ(xn j
)δϕ(xn j

)〉
�

�

�

= sup
u∈(un,m)n6=m

�

�

�ψ(xnk
)u(ϕ(xnk

))−ψ(xn j
)u(ϕ(xn j

))
�

�

�

= sup
u∈(un,m)n6=m

�

�

�u
�

ψ(xnk
)ϕ(xnk

)−ψ(xn j
)ϕ(xn j

)
�

�

�

� ,

for every k, j ∈ N. Since we can choose k, j such that nk 6= n j we obtain a contradiction
with (4.8).

b) Now we assume that AD is weakly relatively compact in Hb(B)′ but (ψ ·ϕ)(D) is
not weakly relatively compact in X . By the Eberlein-Šmulian theorem there are ε > 0,
(xn) ⊂ D and u ∈ X ′ such that

|u (ψ(xn)ϕ(xn)−ψ(xm)ϕ(xm))|> ε, (4.9)

for every n 6= m. Since the sequence (ψ(xn)δϕ(xn))n is weakly relatively compact in
Hb(B)′, there is a weakly convergent subnet (ψ(xα)δϕ(xα))α and we can choose α and
β such that ψ(xα)δϕ(xα) 6=ψ(xβ)δϕ(xβ ) and

�

�〈u,ψ(xα)δϕ(xα) −ψ(xβ)δϕ(xβ )〉
�

�=
�

�u
�

ψ(xα)ϕ(xα)−ψ(xβ)ϕ(xβ)
��

�<
ε

2
,

which contradicts (4.9).

If the set Ar in Proposition 4.16 is (weakly) relatively compact in Hb(B)′, we then
have that the set (ψ · ϕ)(rB) is (weakly) relatively compact in X . This allows us to
obtain a necessary condition for Cψ,ϕ to be (reflexive) Montel (cf. Proposition 4.6).

Corollary 4.19. If Cψ,ϕ : Hb(B)→ Hb(B) is (reflexive) Montel, then the set (ψ ·ϕ)(rB)
is (weakly) relatively compact in X for every 0< r < 1.

The following result has an analogous proof to that of Lemma 4.7, now also for
the case of weak compactness.

Lemma 4.20. Let ψ ∈ Hb(B) and ϕ : B → B be holomorphic of bounded type. If
(ψ · ϕ)(rB) is (weakly) relatively compact in X for some 0 < r < 1. Then, for each
sequence (xn)n ⊂ rB such that (ϕ(xn))n is not (weakly) relatively compact in B, there is
a subsequence (xnk

)k such that

lim
k→∞

|ψ(xnk
)|= 0.
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Proof. We begin by fixing some (xn)n ⊂ rB such that (ϕ(xn))n is not (weakly) relatively
compact in B. Since ϕ is of bounded type, we can find 0< s < 1 such that (ϕ(xn))n ⊆
sB. Thus the set (ϕ(xn))n is also not (weakly) relatively compact in X . We claim that
the set

Am := ϕ
�

�

x ∈ rB : |ψ(x)|>
1
m

	

�

is (weakly) relatively compact in X for each m ∈ N. Indeed, for a fixed m ∈ N if
ϕ(x) ∈ Am we have that 1

‖ψ‖r
≤ 1
|ψ(x)| < m. Now given (ϕ(yn))n ⊆ Am, we can find a

subsequence (nk)k, z ∈ C and y ∈ X such that limk
1

ψ(ynk
) = z and limkψ(ynk

)ϕ(ynk
) =

y (in the case of weak compactness, by Eberlein-Šmulian theorem, there is z0 ∈ X
such that for all u ∈ X ′, limk u

�

ψ(ynk
)ϕ(ynk

)
�

= u(z0)). Therefore we obtain

ϕ(ynk
) =

1
ψ(ynk

)
·ψ(ynk

)ϕ(ynk
)→ z y ∈ X ,

and in the case of weak compactness

u(ϕ(ynk
)) =

1
ψ(ynk

)
· u(ψ(ynk

)ϕ(ynk
))→ z u(z0) = u(z z0),

and the claim holds in both cases (again by Eberlein-Šmulian theorem in the case of
weak compactness). Since (ϕ(xn))n is not (weakly) relatively compact in X we can find
n1 ∈ N such that ϕ(xn1

) /∈ A1. Therefore |ψ(xn1
)| ≤ 1. Now, the set (ϕ(xn))n>n1

is not
(weakly) relatively compact in X and we can find n2 > n1 such that ϕ(xn2

) /∈ A2. This
element satisfies that |ψ(xn2

)| ≤ 1
2 . Repeating this procedure we obtain a subsequence

such that |ψ(xnk
)| ≤ 1/k, for every k ∈ N and the proof is complete.

This result allows to generalize Theorem 1.22 for reflexive and Montel weighted
composition operators using a similar procedure to that of Theorem 4.8. In the case
of weak compactness, we need an extra assumption on the Banach space X , namely
that it has the Schur property, that is, that every weakly convergent sequence is norm
convergent in X . The space `1 is a classical space having this property.

Theorem 4.21. Let ψ and ϕ be holomorphic of bounded type. We have:

a) Cψ,ϕ : Hb(B)→ Hb(B) is Montel if and only if (ψ ·ϕ)(rB) is relatively compact in
X for every 0< r < 1.

b) If Cψ,ϕ : Hb(B)→ Hb(B) is reflexive, then (ψ ·ϕ)(rB) is weakly relatively compact
in X for every 0< r < 1.

c) If X has the Schur property, then Cψ,ϕ : Hb(B)→ Hb(B) is reflexive if and only if
(ψ ·ϕ)(rB) is weakly relatively compact in X for every 0< r < 1.
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Proof. a) If Cψ,ϕ is Montel, by Corollary 4.19, (ψ ·ϕ)(rB) is relatively compact in X
for every 0< r < 1.

To show the converse we proceed by contradiction. Assume Cψ,ϕ is not a Montel
operator. Then there is a bounded sequence ( fn)n ⊂ Hb(B), some 0< r0 < 1 and ε > 0
such that

‖ψ · ( fn ◦ϕ)−ψ · ( fm ◦ϕ)‖r0
> 2ε,

for every n < m. Now, we can proceed as in the proof of Theorem 4.8 to obtain a
contradiction (here we use Lemma 4.20 instead of Lemma 4.7).

b) If Cψ,ϕ is reflexive, by Corollary 4.19, (ψ ·ϕ)(rB) is weakly relatively compact
in X for every 0< r < 1.

On the other hand, if (ψ·ϕ)(rB) is weakly relatively compact in X , by the Eberlein-
Šmulian theorem, every sequence in this set has a weakly convergent subsequence,
which is norm convergent because X has the Schur property. So (ψ ·ϕ)(rB) is in fact
relatively compact and hence Cψ,ϕ is even a Montel operator.

Now, as an immediate consequence of Proposition 4.11, Corollary 4.12 and Theo-
rem 4.21 we obtain

Theorem 4.22. Let ψ and ϕ be holomorphic of bounded type. Consider the following
statements:

a) Cψ,ϕ : Hb(B)→ Hb(B) is compact.

a′) Cψ,ϕ : Hb(B)→ Hb(B) is weakly compact.

b) The following two conditions hold:

(i) (ψ ·ϕ)(rB) is relatively compact in X for every 0< r < 1.

(ii) There is 0< s < 1 such that ϕ(B) ⊆ sB.

b′) The following two conditions hold:

(i) (ψ ·ϕ)(rB) is weakly relatively compact in X for every 0< r < 1.

(ii) There is 0< s < 1 such that ϕ(B) ⊆ sB.

Then a) is equivalent to b), a′) implies b′) and, if X has the Schur property, b′) implies
a).

Corollary 4.23. Let ϕ be holomorphic of bounded type. Then Cϕ : Hb(B) → Hb(B) is
compact if and only if there is 0< s < 1 such that ϕ(B) ⊆ sB and that for each 0< r < 1
the set ϕ(rB) is relatively compact in X .

Proposition 4.24. Let ψ ∈ Hb(B) and ϕ : B → B be holomorphic of bounded type and
open. If Cψ,ϕ : Hb(B) → Hb(B) is Montel then X is finite dimensional. Consequently,
Cϕ : Hb(B)→ Hb(B) is also Montel.



80 Chapter 4. Compact weighted composition operators

Proof. The assumptions imply that Cψ,ϕ is continuous. We can find x0 ∈ B such that
ψ(x0) 6= 0. Then there are 0 < r < 1 and ε, M , m > 0 such that m ≤ |ψ(x)| ≤ M ,
for all x ∈ D := B(x0,ε) ⊂ rB. By Proposition 4.16 the set A := {ψ(x)δϕ(x) : x ∈ D}
is relatively compact in Hb(B)′. We claim that C := {δϕ(x) : x ∈ D} is relatively
β(Hb(B)′, Hb(B))-compact in Hb(B)′. Indeed, since the compact subsets of Hb(B)′β are
metrizable, it is enough to see that this set is relatively sequentially compact. Given
a sequence (δϕ(xn))n in C , there is a subsequence denoted the same way such that
(ψ(xn)δϕ(xn))n converges to u ∈ Hb(B)′ in the topology β(Hb(B)′, Hb(B)). The se-
quence

�

1
ψ(xn)

�

n
is bounded in C (since each xn ∈ D). Then there is a subsequence

such that 1
ψ(xnk

) → z ∈ C as k→∞. This implies that

δϕ(xnk
) =

1
ψ(xnk

)
ψ(xnk

)δϕ(xnk
)→ zu ∈ Hb(B)

′,

as k →∞, and we obtain the claim. Taking the function 1 as the weight in Lemma
4.18 we obtain that ϕ(D) is relatively compact in X . Since ϕ is open we have found
an open relatively compact set in X . The topology of every locally convex space is
translation invariant, therefore X has an open 0-neighbourhood which is relatively
compact. Hence is finite dimensional.

Assuming X is finite dimensional, we have that the set ϕ(rB) is B-bounded and
therefore relatively compact on X , for every 0 < r < 1. By Theorem 4.21 we obtain
that Cϕ is Montel.

4.5 Examples

We finish this chapter giving some examples of weighted composition operators that
have or do not have some of the properties that we have been studying. Next example
follows directly from Theorem 1.23.

Example 4.25. Let ϕ : D→ D and ψ ∈ H∞(D) defined by

ϕ(z) =
1+ z

2
and ψ(z) = 1− z.

In view of Theorem 4.8, the set (ψ ·ϕ)(D) is relatively compact in C. However, ϕ(D)
is not contained in a ball of radius strictly smaller than 1. Observe that the weight ψ
satisfies

lim
r→1−

sup
|ϕ(z)|>r

|ψ(z)|= 0,

but the constant weight 1 does not.
Then Cψ,ϕ : H∞(D)→ H∞(D) is compact, but Cϕ = C1,ϕ : H∞(D)→ H∞(D) is not

compact.
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Examples 4.26. Assume that X is an infinite dimensional Banach space. Consider
ϕ : B→ B defined by ϕ(x) = 1

2 x .
Observe that ϕ(B) = 1

2 B is not a relatively compact set since X is infinite dimen-
sional. Thus, by Theorem 1.21, the operator Cϕ : H∞(B) → H∞(B) is not compact
(Montel). By Theorem 4.9 the operator Cϕ : Hb(B) → Hb(B) is bounded. However,
Theorem 4.21 implies that Cϕ is not Montel on Hb(B). Then, we have the following

a) The operator Cϕ : H∞(B)→ H∞(B) is continuous but it is not compact, there-
fore it is bounded but it is not Montel.

b) The operator Cϕ : Hb(B)→ Hb(B) is bounded but it is not Montel.

On [31, Example 2.13] the authors give an example of a composition operator on
Hb(B), when X is the Tsirelson space, which is weakly compact but not compact. The
following example is based on [31, Example 2.16].

Example 4.27. Let ϕ : Bc0
→ Bc0

be defined by

ϕ(x) =

�

x1

2
,

x2
2

2
,

x3
3

2
, . . .

�

.

Then the composition operator Cϕ is compact on Hb(Bc0
), but it is not compact on

H∞(Bc0
). First, observe that ϕ(rBc0

) is relatively compact in c0 for each 0 < r < 1.
Indeed, if we take an arbitrary x ∈ c0 with ‖x‖∞ < r < 1 we have that the n-th
coordinate of ϕ(x) satisfies

1
2
|xn|n <

1
2

rn n
→ 0,

and this implies that ϕ(rBc0
) ⊆ 1

2 Bc0
is a relatively compact set of Bc0

. Corollary 4.23
gives that Cϕ is compact on Hb(Bc0

). On the other hand, for the sequence

yn =
�

1−
1
n

�1/n

en ∈ Bc0
, n ∈ N,

we have (ϕ(yn))n =
�

1
2

�

1− 1
n

�

en

�

n
is not relatively compact in Bc0

. By Theorem 1.21
(or Theorem 4.8) the operator Cϕ is not compact in H∞(Bc0

).

Based on the previous example we can construct a composition operator on Hb(Bc0
)

which is Montel but not compact.

Example 4.28. Let ϕ : Bc0
→ Bc0

defined by ϕ(x) =
�

x1, x2
2 , x3

3 , . . .
�

. The composition
operator Cϕ : Hb(Bc0

)→ Hb(Bc0
) is Montel, but not bounded and hence, not compact

either.

Open problem. We do not know if there is Cψ,ϕ : Hb(B)→ Hb(B) Montel (compact)
such that Cϕ : Hb(B)→ Hb(B) is not Montel (compact). However, in Proposition 4.24
we already seen that this cannot be the case when ϕ is holomorphic of bounded type
and open.





Chapter 5

Ergodic properties of weighted
composition operators

5.1 Introduction

In this chapter we obtain different results about the ergodicity of weighted composition
operators when acting on the spaces H(B), Hb(B) and H∞(B), as well as about the
compactness and the ergodicity of the multiplication operator in terms of the weight.
Mean ergodicity and related properties of weighted composition operators acting on
spaces of holomorphic functions on domains of finite dimension (such as the unit disc
D) have been studied in [6, 9, 36].

Recall that the operator Cψ,ϕ : H(B)→ H(B) is continuous if and only if ψ ∈ H(B)
and ϕ : B→ B is holomorphic.

We begin with some simple observations. First, setting ϕ0 := idB, note that the
iterates of the operator Cψ,ϕ : H(B)→ H(B) can be written as follows

(Cψ,ϕ)
n f (x) =ψ(x) · · ·ψ(ϕn−1(x)) f (ϕn(x)) =

� n−1
∏

m=0

(ψ ◦ϕm)(x)
�

f (ϕn(x)),

for f ∈ H(B), n ∈ N and x ∈ B. We denote ψ[n] :=
∏n−1

m=0(ψ ◦ϕ
m). Then we have the

following identity
(Cψ,ϕ)

n( f ) =ψ[n] · ( f ◦ϕn) (5.1)

for all n ∈ N and f ∈ H(B). Then, it seems natural to assume that the elements ψ[n]

are not zero for infinitely many n ∈ N. If this is not the case, the iterates (Cψ,ϕ)n will
be the zero operator for n big enough.

Remark 5.1. Consider a weight ψ ∈ H(B) and a holomorphic symbol ϕ : B→ B such
that there is n0 ∈ Nwithψ◦ϕn0 ≡ 0, thenψ[n] ≡ 0 for all n> n0. This implies that the
operator Cψ,ϕ : H(B) → H(B) satisfies (Cψ,ϕ)n = 0 for all n > n0. Since the constant
function 1 is in H(B) the converse also holds.

83



84 Chapter 5. Ergodic properties of weighted composition operators

Remark 5.2. Take ψ and ϕ such that ψ ◦ϕn0 ≡ 0 for some n0 ∈ N. If we additionally
assume that ϕ is an open map then ψ ≡ 0. Indeed, since ψ ◦ ϕn0 ≡ 0, we have
that ψ ◦ϕn0−1(ϕ(B)) = {0}. But ϕ(B) is an open nonempty set, then by the Identity
Principle ψ ◦ϕn0−1 ≡ 0. Recursively we apply this argument to obtain ψ≡ 0.

Of course, we can have
ψ ◦ϕn 6≡ 0 (5.2)

for all n ∈ N0 but ϕ is not open. On the open unit ball of C2, consider the mappings
ψ((x1, x2)) = x1(x2 + 1) and ϕ((x1, x2)) = (x1, 0). Clearly (5.2) is satisfied for all
n ∈ N0.

The assumption of ϕ being not open is not interesting on H(D) since the constant
symbols are the only holomorphic mappings that are not open. However, on Banach
spaces of higher dimension the situation is very different (see Examples 5.26).

Now, we briefly focus on weighted composition operators acting on spaces of ho-
mogeneous polynomials, which are natural subspaces of H(B). In some cases we can
rewrite the weighted composition operator as a composition operator whose symbol
is a simple modification of the original one.

Proposition 5.3. Let ψ: X → C and ϕ : X → X be two continuous mappings. Assume
there is m ∈ N and a continuous function Òψ: X → C such that

ψ(x) =
�

Òψ(x)
�m

for every x ∈ X . (5.3)

Then Cψ,ϕ : P (mX )→ P (mX ) is well defined if and only if the map Òψ ·ϕ : X → X is a
continuous linear operator. In addition, the operator Cψ,ϕ coincides with the composition
operator C

Òψ·ϕ.

Proof. Fix p ∈ P (mX ) and x ∈ X , by (5.3) we have

p
�

Òψ(x) ·ϕ(x)
�

=
�

Òψ(x)
�m

p (ϕ(x)) =ψ(x)p (ϕ(x)) .

Since p and x were arbitrary we obtain that the operator Cψ,ϕ coincides with the
composition operator C

Òψ·ϕ. Observe that the symbol Òψ ·ϕ : X → X is continuous and
applying Proposition 2.3 we obtain the result.

The constant functions are examples of weights satisfying (5.3). In this case if there
is c ∈ C \ {0} such that ψ(x) = c for every x ∈ X , we can find z ∈ C \ {0} with c = zm.
Thus, the weighted composition operator is well defined if and only if z · ϕ : X → X
is a linear operator, and this forces ϕ to be a linear operator. We can construct more
elaborated examples. For each u ∈ X ′ \ {0} observe that the function ψ= um satisfies
(5.3) taking, for example, Òψ= u. Now if ϕ(x) = x0 ∈ X for every x ∈ X , we have that
Cum,x0

: P (mX )→P (mX ) coincides with the composition operator Cu·x0
.
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Properties of composition operators acting on spaces of m-homogeneous polyno-
mials have already been discussed in Chapter 2. Then, for weighted composition oper-
ators whose symbol and weight satisfy Proposition 5.3, the results of Chapter 2 clearly
apply.

However, there are combinations of weights and symbols that do not satisfy the
assumption on Proposition 5.3, but the associated weighted composition operator is
well defined on P (mX ). Indeed, consider ψ ∈ P (2C2) given by ψ(z1, z2) = z1z2.
Clearly, ψ does not satisfy (5.3) since Òψ(1, z) would be a determination of the square
root continuous on C. Now, taking the constant symbol ϕ(z1, z2) = (1, 1) for every
z1, z2 ∈ C, we have for any p ∈ P (2C2) that

ψ(z1, z2) · p(ϕ(1,1)) =ψ(z1, z2) · p(1,1),

for every (z1, z2) ∈ C2. This is again a 2-homogeneous polynomial and then Cψ,ϕ is
well defined.

5.2 Ergodic properties on H(B)

We begin by looking at weighted composition operators acting on H(B). Some results
obtained in this section will be given in the following sections for the spaces Hb(B)
and H∞(B).

The following is an extension of Theorem 1.24 to H(B).

Proposition 5.4. Let ψ ∈ H(B) and ϕ : B→ B be holomorphic.

a) If Cψ,ϕ : H(B)→ H(B) is power bounded then Cψ,ϕ is uniformly mean ergodic and
(ψ[n])n is bounded in H(B).

b) If Cψ,ϕ : H(B)→ H(B) is mean ergodic then lim
n→∞

1
nψ

[n] = 0 in H(B).

Proof. a) If Cψ,ϕ is power bounded then the set {Cn
ψ,ϕ( f ) : n ∈ N} is bounded in H(B)

for every f ∈ H(B). In particular, for f ≡ 1 we have that {ψ[n] : n ∈ N} is bounded
in H(B). Since H(B) is a semi-Montel space, Proposition 1.15 gives that the operator
Cψ,ϕ is uniformly mean ergodic.

b) If Cψ,ϕ is mean ergodic by identity (1.10) we have

lim
n→∞

1
n

Cn
ψ,ϕ( f ) = lim

n→∞

�

n+ 1
n

�

Cψ,ϕ

�

[n+1] ( f )−
�

Cψ,ϕ

�

[n] ( f )
�

= 0,

for every f ∈ H(B). Therefore lim
n→∞

1
n Cn
ψ,ϕ(1) = 0, which yields the assertion.

As in the case of composition operators (recall Theorem 3.11), ϕ having stable
orbit (recall the definition in Section 3.3) plays a fundamental role. Several authors
have used this property to characterize topologizable, power bounded and/or mean
ergodic weighted composition operators in different function spaces (see [6, 9, 39]).
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Proposition 5.5. Let ψ ∈ H(B) and ϕ : B → B be a holomorphic mapping with stable
orbits. Then Cψ,ϕ : H(B)→ H(B) is topologizable.

Proof. Fix a compact subset K ⊂ B and take a compact subset L ⊂ B such that ϕn(K) ⊆
L for all n ∈ N. Let an = sup

x∈K
|ψ[n](x)|<∞. Then, using (5.1) we have

sup
x∈K
|Cn
ψ,ϕ( f )(x)| ≤ sup

x∈K
|ψ[n](x)| sup

x∈K
| f (ϕn(x))| ≤ an sup

x∈L
| f (x)|

and Cψ,ϕ is topologizable.

In Proposition 5.9, in some sense, we show that the converse implication does hold
for Cψ,ϕ acting on Hb(B). However, the argument that we will use there do not work
on H(B), since compact subsets of B may have empty interior, as it happens on every
infinite dimensional Banach space.

For Cψ,ϕ being power bounded we obtain a similar result.

Proposition 5.6. Let ψ ∈ H(B) and ϕ : B → B holomorphic. Consider the following
conditions.

a) ϕ has stable orbits and (
∏n

m=0(ψ ◦ϕ
m))n is a bounded sequence in H(B).

b) Cψ,ϕ : H(B)→ H(B) is power bounded.

c) (
∏n

m=0(ψ ◦ϕ
m))n is a bounded sequence in H(B).

Then a) implies b) and b) implies c).

Proof. First assume a) holds. Fix a compact set K ⊂ B and consider

A= sup
n∈N

sup
x∈K

�

�

�

�

�

n
∏

m=0

(ψ ◦ϕm)(x)

�

�

�

�

�

<∞.

Since ϕ has stable orbits there exists a compact set L ⊂ B such that ϕn(K) ⊆ L for
every n ∈ N. Then

sup
x∈K
|Cn
ψ,ϕ( f )(x)| ≤ Asup

x∈K
| f (ϕn(x))| ≤ Asup

x∈L
| f (x)|,

for each n ∈ N and all f ∈ H(B). Thus Cψ,ϕ is power bounded.
Now, if b) holds, it follows from Proposition 5.4 that (

∏n
m=0(ψ◦ϕ

m))n is a bounded
sequence in H(B).

We discuss the mean ergodicity of Cψ,ϕ assuming the operator is Cesàro bounded.

Proposition 5.7. Letψ ∈ H(B) andϕ : B→ B holomorphic. Assume that Cψ,ϕ : H(B)→
H(B) is Cesàro bounded. Consider the following conditions.
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a)
�

(Cψ,ϕ)[n] f
�

n
is σ(H(B), H(B)′)-relatively compact for each f ∈ H(B).

b) lim
n→∞

ψ[n]

n = 0 in H(B).

c) ϕ has stable orbits.

Then if a), b) and c) hold Cψ,ϕ : H(B) → H(B) is mean ergodic. Conversely, if Cψ,ϕ is
mean ergodic then conditions a) and b) are satisfied.

Proof. Assume a), b) and c) hold. By Proposition 1.11 it is enough to show that b)
and c) give that

lim
n→∞

Cn
ψ,ϕ( f )

n
= 0 (5.4)

for every f ∈ H(B).
Fix a compact set K ⊂ B and take L ⊂ B compact such that ϕn(K) ⊆ L for every

n ∈ N. For an arbitrary f ∈ H(B) we obtain

lim
n→∞

sup
x∈K

�

�

�

�

�

Cn
ψ,ϕ( f )(x)

n

�

�

�

�

�

= lim
n→∞

sup
x∈K

�

�

�

�

ψ[n](x) · f (ϕn(x))
n

�

�

�

�

≤ lim
n→∞

sup
x∈K

�

�

�

�

ψ[n](x)
n

�

�

�

�

sup
y∈K
| f (ϕn(y))|

≤ sup
y∈L
| f (y)| lim

n→∞
sup
x∈K

�

�

�

�

ψ[n](x)
n

�

�

�

�

.

The last term tends to 0 and the result follows.
Now, assume that Cψ,ϕ is mean ergodic. Proposition 1.11 gives that a) and (5.4)

are satisfied for every f ∈ H(B). Taking the constant function 1 and an arbitrary
compact set K ⊂ B we have

lim
n→∞

sup
x∈K

�

�

�

�

ψ[n](x)
n

�

�

�

�

= lim
n→∞

sup
x∈K

�

�

�

�

�

Cn
ψ,ϕ(1)

n

�

�

�

�

�

= 0,

and b) holds.

5.3 Ergodic properties on Hb(B)

Our goal now is to give analogous results to Propositions 5.5, 5.6 and 5.7 for the
weighted composition operator acting on Hb(B). In this case we have more tools at
hand, since we have been able to give complete characterizations for topologizable,
power bounded and mean ergodic weighted composition operators (Proposition 5.9,
Theorem 5.10 and Theorem 5.11).

As it happened for composition operators, the crucial property now for ϕ is to have
B-stable orbits (see Section 3.3).
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Proposition 5.8. Let ψ ∈ Hb(B) and ϕ : B→ B be holomorphic of bounded type.

a) If Cψ,ϕ : Hb(B)→ Hb(B) is power bounded, then (ψ[n])n is bounded in Hb(B).

b) If Cψ,ϕ : Hb(B)→ Hb(B) is mean ergodic, then lim
n→∞

ψ[n]

n = 0 in Hb(B).

Proof. a) If Cψ,ϕ is power bounded then the set {Cn
ψ,ϕ( f ) : n ∈ N} is bounded in Hb(B)

for every f ∈ Hb(B). We are done, if we just take the constant function 1.
b) By Proposition 1.12 (see also [1, Theorem 2.4]) if Cψ,ϕ is mean ergodic then

lim
n→∞

1
n Cn
ψ,ϕ( f ) = 0 uniformly on the B-bounded sets, for every f ∈ Hb(B). Again,

taking the constant function 1 yields the assertion.

The following extends [6, Proposition 3.2].

Proposition 5.9. Let ψ ∈ Hb(B) and ϕ : B → B be holomorphic of bounded type such
that ψ ◦ϕn 6≡ 0 holds for all n ∈ N0. The following assertions are equivalent:

a) Cψ,ϕ : Hb(B)→ Hb(B) is topologizable.

b) ϕ has B-stable orbits.

Proof. Assume Cψ,ϕ is topologizable. Then, for every 0 < r < 1 there exists 0 < s < 1
such that for every n ∈ N there is an > 0 with

sup
‖x‖<r

|Cn
ψ,ϕ( f )(x)| ≤ an sup

‖x‖<s
| f (x)| (5.5)

for all f ∈ Hb(B). On the other hand, by Lemma 3.13 the Hb(B)-hull of sB given by

M =Ô(sB)Hb(B) := {x ∈ B : | f (x)| ≤ sup
y∈sB
| f (y)|, for every f ∈ Hb(B)}

is again a B-bounded set. Since M is the intersection of closed sets, it is closed. Now,
we see that ϕn(rB) ⊆ M for every n ∈ N. Suppose that this is not the case and take
n0 ∈ N and z0 ∈ rB such that ϕn0(z0) /∈ M . In other words, the set rB

⋂

ϕ−n0(B \M) is
nonempty. By the assumption, the function ψ[n0] is not 0 and, since rB

⋂

ϕ−n0(B \M)
is an open set, by the Identity Principle we can take x0 in this set such that |ψ[n0](x0)|>
0. The definition of M allows us to find f0 ∈ Hb(B) such that supy∈sB | f0(y)| <
| f0(ϕn0(x0))|. Then there is m ∈ N with

sup
y∈sB

| f0(y)|m

| f0(ϕn0(x0))|m
<
|ψ[n0](x0)|

an0

.

Observe that the function f = f m
0 ∈ Hb(B) does not satisfy (5.5) and this yields a

contradiction.
The converse implication follows with exactly the same proof as in Proposition 5.5,

replacing ‘compact’ by ‘B-bounded’ and ‘stable orbits’ by ‘B-stable orbits’.
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As a consequence of Proposition 5.9, we are able to characterize power bounded
weighted composition operators in Hb(B) and extend Theorem 1.25.

Theorem 5.10. Letψ ∈ Hb(B) and ϕ : B→ B be holomorphic of bounded type such that
ψ ◦ϕn 6≡ 0 holds for all n ∈ N0. The following assertions are equivalent:

a) Cψ,ϕ : Hb(B)→ Hb(B) is power bounded,

b) ϕ has B-stable orbits and (
∏n

m=0(ψ ◦ϕ
m))n is a bounded sequence in Hb(B).

Proof. If Cψ,ϕ is power bounded it is in particular topologizable. Applying Proposi-
tions 5.8 and 5.9 we obtain b).

Now, b) implies a) follows as in Theorem 5.6 replacing ‘compact’ by ‘B-bounded’
and ‘stable orbits’ by ‘B-stable orbits’.

In contrast to Proposition 5.7 in the following result we do not need to assume
that Cψ,ϕ is Cesàro bounded.

Theorem 5.11. Letψ ∈ Hb(B) and ϕ : B→ B be holomorphic of bounded type such that
ψ ◦ϕn 6≡ 0 holds for all n ∈ N0. Then Cψ,ϕ : Hb(B)→ Hb(B) is mean ergodic if and only
if we have

a)
�

(Cψ,ϕ)[n] f
�

n
is σ(Hb(B), Hb(B)′)-relatively compact for each f ∈ Hb(B),

b) ϕ has B-stable orbits, and

c) lim
n→∞

ψ[n]

n = 0 on Hb(B).

Proof. Since Hb(B) is barrelled, Proposition 1.12 is available and it suffices to show
that b) and c) are satisfied if and only if we have

lim
n→∞

Cn
ψ,ϕ( f )

n
= 0 for every f ∈ Hb(B). (5.6)

Observe that (5.6) gives that the sequence
�

Cn
ψ,ϕ

n

�

n
is pointwise bounded inL (Hb(B))

and so it is equicontinuous. Then, for every 0 < r < 1 there are c > 0 and 0 < s < 1
such that

sup
‖x‖<r

�

�

�

�

�

Cn
ψ,ϕ( f )(x)

n

�

�

�

�

�

≤ c sup
‖x‖<s

| f (x)|,

for every f ∈ Hb(B) and n ∈ N. We obtain that Cψ,ϕ is topologizable, since it satisfies
(1.5) for an = cn. Now, by Proposition 5.9, we obtain b) and taking the constant
function 1 in (5.6), we obtain c).

Assuming b) and c) hold, we obtain (5.6) as in the first part of Proposition 5.7
replacing ‘compact’ by ‘B-bounded’ and ‘stable orbits’ by ‘B-stable orbits’.
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5.4 Ergodic properties on H∞(B)

We ask again the same questions about the ergodic properties of the weighted compo-
sition operator, this time acting H∞(B). By Remark 1.18, the operator Cψ,ϕ is always
topologizable.

Proposition 5.12. Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then Cψ,ϕ :
H∞(B)→ H∞(B) is always topologizable.

Again, we can characterise power boundedness for weighted composition opera-
tors.

Proposition 5.13. Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then Cψ,ϕ :
H∞(B) → H∞(B) is power bounded if and only if (

∏n
m=0(ψ ◦ ϕ

m))n is a bounded se-
quence in H∞(B).

Proof. If we assume that Cψ,ϕ is power bounded, then the sequence
�

Cn
ψ,ϕ( f )

�

n
is

bounded in H∞(B) for every f ∈ H∞(B). Taking the constant function 1 we obtain
the claim.

Conversely, let

c = sup
n∈N

sup
x∈B

�

�

�

�

�

n
∏

m=0

(ψ ◦ϕm)(x)

�

�

�

�

�

<∞.

Then, we have

sup
x∈B
|Cn
ψ,ϕ( f )(x)| ≤ sup

x∈B
|ψ[n]| sup

x∈B
| f (ϕn(x))| ≤ c sup

x∈B
| f (x)|,

for all n ∈ N and f ∈ H∞(B), which gives that Cψ,ϕ is power bounded since H∞(B) is
a Banach space.

The following result is a consequence of Proposition 1.12.

Proposition 5.14. Let ψ ∈ H∞(B) and ϕ : B→ B be holomorphic such that ψ◦ϕn 6≡ 0
holds for all n ∈ N0. Then, Cψ,ϕ : H∞(B) → H∞(B) is mean ergodic if and only if the
following two conditions are satisfied

a)
�

(Cψ,ϕ)[n] f
�

n
is σ(H∞(B), H∞(B)′)-relatively compact for each f ∈ H∞(B), and

b) lim
n→∞

ψ[n]

n = 0 in H∞(B).

5.5 The multiplication operator

As we already noted, the multiplication operator can be seen as a particular case of
weighted composition operator. So, we may use the knowledge gained in the last two
chapters to obtain some information on compactness and mean ergodic properties of
multiplication operators, when acting on H(B), Hb(B) or H∞(B).
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5.5.1 Compact multiplication operators

We begin with an observation on the invertibility of the multiplication operator.

Lemma 5.15. LetH be either H∞(B), Hb(B) or H(B). Then, Mψ :H →H is invertible
if and only if 1

ψ ∈H .

Proof. Let us suppose that Mψ is invertible. Then

Mψ(Mψ)
−1( f )(x) =ψ(x) · (Mψ)

−1( f )(x) = f (x),

for every f ∈H and ‖x‖ < 1. Applying this equality to the constant function 1 gives
ψ(x) 6= 0 for every ‖x‖< 1. Then

(Mψ)
−1( f )(x) =

1
ψ(x)

f (x),

for every f ∈H and x ∈ B. This shows that M 1
ψ
= (Mψ)−1 which, by Proposition 4.3,

implies that 1
ψ ∈H .

The converse implication also follows from Proposition 4.3.

The spectrum of an operator T : E→ E, where E is a lcHs space, is denoted by

σ(T ; E) := {λ ∈ C : λ · id−T is not invertible}.

Proposition 5.16. LetH be either H∞(B), Hb(B) or H(B). If ψ ∈H then

ψ(B) ⊆ σ(Mψ;H ) ⊆ψ(B). (5.7)

Moreover, the following hold:

a) σ(Mψ; H∞(B)) =ψ(B),

b) σ(Mψ; H(B)) =ψ(B),

c) σ(Mψ; Hb(B)) = {λ ∈ C : inf‖x‖<r |λ−ψ(x)|= 0, for some 0< r < 1}.

Proof. Fix x ∈ B. Then, for each g ∈ Im
�

ψ(x) idH −Mψ

�

, we have g(x) = 0. Since
we can find f ∈H such that f (x) 6= 0 we obtain that ψ(x) idH −Mψ is not surjective
and, therefore ψ(x) ∈ σ(Mψ;H ). This shows that ψ(B) ⊆ σ(Mψ;H ). For the other

inclusion, take λ /∈ ψ(B) and let us show that λ · idH −Mψ is invertible. Take ε > 0
so that |λ−ψ(x)| ≥ ε for all x ∈ B. Then we have that 1

λ−ψ is a continuous bounded
function and it is clearly G-holomorphic, thus it is holomorphic (see Theorem 1.4).
Therefore it is in H∞(B) ⊆H . Observe that

λ · idH −Mψ = Mλ−ψ. (5.8)
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By Lemma 5.15 the operator Mλ−ψ is invertible, which completes the proof of (5.7).
Now we see a). Since H∞(B) is a Banach space the spectrum of any operator

acting on H∞(B) is closed and the conclusion follows from (5.7).
For Mψ : H(B)→ H(B), we consider two cases. Ifψ is constant, thenψ(B) =ψ(B)

and by (5.7), we have that b) trivially holds. Assume that ψ is not constant. In view
of Lemma 5.15 and (5.8), it is enough to show that for λ /∈ ψ(B) the function 1

λ−ψ is
in H(B). Indeed, let K be a compact subset of B. We have that λ ∈ C \ψ(K) which is
an open set. Then there exists εK > 0 such that |λ−ψ(x)| ≥ εK for every x ∈ K and
we obtain

sup
x∈K

�

�

�

�

1
λ−ψ(x)

�

�

�

�

<∞.

Then we have that 1
λ−ψ is a continuous function which is bounded on every compact

subset of B. We conclude that 1
λ−ψ is holomorphic (using Theorem 1.4) and this com-

pletes the proof of b).
The proof of c) is similar to the proof of b). Note that, in any case, λ /∈ σ(Mψ; Hb(B))

if and only if for each 0< r < 1 we have inf‖x‖<r |λ−ψ(x)|> 0.

If the space X is finite dimensional, we have Hb(B) = H(B) and then the spectrum
σ(Mψ; Hb(B)) =ψ(B) is fully characterised. However, we do not know what happens
in the infinite dimensional case.

Lemma 5.17. Let H be either H∞(B), Hb(B) or H(B). If Mψ : H → H is compact,
then ψ ∈H is constant.

Proof. Since Mψ is compact, by [34, Chapter 5 Part 2 Theorem 4], the spectrum of Mψ

is either finite or the closure of a null sequence.
Now assume that ψ is not constant in B. We can find y0 ∈ B such that ψ(0) 6=

ψ(y0). Taking ‖y0‖ < r < 1, by [47, Proposition 5.8] the set ψ(B(0, r)) is open
in C. Using (5.7) we have that ψ(B(0, r)) is contained in a discrete set, which is a
contradiction.

As a consequence of the previous results, we can see that there are no non-trivial
compact multiplication operators on Hb(B) and H∞(B).

Proposition 5.18. LetH H be either Hb(B) or H∞(B). Then Mψ :H →H is compact
if and only if ψ is 0.

Proof. Assume Mψ : H∞(B) → H∞(B) is compact. Lemma 5.17 gives ψ(x) = c ∈
C for every ‖x‖ < 1. Since we can write the multiplication operator as Cc,idB

, by
Theorem 4.8, we have

0= lim
r→1−

sup
‖x‖>r

|ψ(x)|= lim
r→1−

sup
‖x‖>r

|c|= |c|,

which gives the claim.
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If Mψ : Hb(B)→ Hb(B) is compact then, by Lemma 5.17, we have that ψ(x) = c ∈
C for every ‖x‖< 1. Assume c 6= 0. Then, the operator Cc,idB

is not compact in Hb(B)
since idB(B) = B is not contained in rB for some 0 < r < 1 (see Theorem 4.22). This
is a contradiction.

5.5.2 Mean ergodic multiplication operators

We move now to the study of ergodic properties. We follow [13]. First, since the mul-
tiplication operator is a weighted composition operator whose symbol is the identity,
looking at (5.1) we observe that the iterates of Mψ are given by

M n
ψ
( f ) =ψn · f = Mψn( f ),

whereψn now denotes the n-th power of the function instead of the n-th composition.

Remark 5.19. Let ψ ∈ H be different from the zero function, where H is either
H(B), Hb(B) or H∞(B). The map idB : B → B clearly has stable orbits and B-stable
orbits. Then, by Propositions 5.5, 5.9 and 5.12 the operator Mψ : H →H is always
topologizable.

In order to characterise power boundedness of Mψ it is enough to characterise
when the set (ψn)n is bounded in H(B), Hb(B) and H∞(B) (see Proposition 5.6, The-
orem 5.10 and Proposition 5.13). We obtain a similar result to [13, Proposition 2.3].

Proposition 5.20. Let ψ ∈ H where H is either H(B), Hb(B) or H∞(B). Then Mψ :
H →H is power bounded if and only if ‖ψ‖∞ ≤ 1.

Lemma 5.21. Let ψ ∈H whereH is either H(B), Hb(B) or H∞(B). If Mψ :H →H
is mean ergodic, then ‖ψ‖∞ ≤ 1.

Proof. Identity (1.10) holds for any operator, in particular we have

M n
ψ

n
=

n+ 1
n
(Mψ)[n+1] − (Mψ)[n]. (5.9)

Thus, if Mψ is mean ergodic we obtain limn→∞
M n
ψ

n = 0 pointwise in H . Take the
function 1 ∈ H and fix x ∈ B. Then lim

n→∞

ψ(x)n

n = 0. Clearly we have |ψ(x)| ≤ 1 and,

since x ∈ B was arbitrary, the proof is complete.

As a consequence we obtain the following:

Proposition 5.22. Letψ ∈H whereH is either H(B), Hb(B) or H∞(B). If Mψ :H →
H is mean ergodic, then it is also power bounded.

As a straightforward consequence of these results, together with Proposition 1.15
we have the following characterisation:
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Corollary 5.23. Let ψ ∈ H(B). Consider Mψ : H(B) → H(B). Then the following are
equivalent:

a) Mψ is power bounded.

b) Mψ is uniformly mean ergodic.

c) Mψ is mean ergodic.

d) ‖ψ‖∞ ≤ 1.

For Hb(B) and H∞(B) we make first a simple observation. Let x0 ∈ B be such that
|ψ(x0)| ≤ 1. For ψ(x0) 6= 1 we have

(Mψ)[n]( f )(x0) =
f (x0)

n

n−1
∑

m=0

ψ(x0)
m =

f (x0)
n

1−ψ(x0)n

1−ψ(x0)
. (5.10)

Hence

h f (x0) = lim
n→∞

(Mψ)[n]( f )(x0) =







f (x0), if ψ(x0) = 1,

0, if ψ(x0) 6= 1.

Now, for the case ψ(x0) = 1, since we have |ψ(x0)| ≤ 1, the Maximum Principle (see
[47, Proposition 5.9]) gives that ψ ≡ 1. We obtain the operator M1 = id, which is
clearly uniformly mean ergodic. Avoiding this case we obtain a similar result to [13,
Proposition 2.8].

Theorem 5.24. Let H be either Hb(B) or H∞(B). Let ψ ∈ H be different from the
constant function 1. Then the following are equivalent:

a) Mψ is uniformly mean ergodic inH .

b) Mψ is mean ergodic inH .

c) ‖ψ‖∞ ≤ 1 and 1
1−ψ ∈H .

Proof. That a) implies b) is trivial.
Assume now that b) holds. SinceH is barrelled we can apply [1, Theorem 2.4] to

obtain
H = ker(idH −Mψ)⊕ Im(idH −Mψ) = ker(M1−ψ)⊕ Im(M1−ψ).

On the other hand, by Lemma 5.21 we have ‖ψ‖∞ ≤ 1. An application of the Maxi-
mum Principle (see [47, Proposition 5.9]) yields ψ(x) 6= 1 for all x ∈ B. Necessarily
ker(M1−ψ) = {0}, then H = Im(M1−ψ). By Proposition 4.3 the operator M1−ψ is con-
tinuous. The Closed Graph Theorem implies

H = Im(M1−ψ).
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In other words, M1−ψ = idH −Mψ is an isomorphism of H onto itself. Hence, by
Lemma 5.15, we have 1

1−ψ ∈H and c) holds.
Assume c) is satisfied for H = Hb(B). Clearly, ψ(x) 6= 1 for all x ∈ B. Let V ⊂

Hb(B) be a bounded set and fix 0< r < 1. Then, by (5.10), we have

lim
n→∞

sup
f ∈V

sup
x∈rB

�

�(Mψ)[n]( f )(x)
�

�= lim
n→∞

sup
f ∈V

sup
x∈rB

�

�

�

�

f (x)
n

1−ψ(x)n

1−ψ(x)

�

�

�

�

≤ sup
f ∈V

sup
x∈rB
| f (x)| lim

n→∞

2
n

sup
x∈rB

�

�

�

�

1
1−ψ(x)

�

�

�

�

= 0.

Since 0< r < 1 and V were arbitrary we obtain that Mψ is uniformly mean ergodic on
Hb(B). For H = H∞(B), the proof of c) implies a) follows the same steps, replacing
the sets rB with the whole open unit ball B.

Observe that, by Lemma 5.15 and Proposition 5.16, condition c) in Theorem 5.24 is
equivalent to ‖ψ‖∞ ≤ 1 and 1 /∈ψ(B) whenH = H∞(B). If we consider c) forH =
H(B) we can see that it is equivalent to ‖ψ‖∞ ≤ 1 and 1 /∈ψ(B) or simply ‖ψ‖∞ ≤ 1
if we takeψ different from the constant 1. This explains why the notions of (uniform)
mean ergodicity and power boundedness coincide in Corollary 5.23. However, since
the spectrum of Mψ in Hb(B) is not completely described, the question of whether
every power bounded multiplication operator Mψ : Hb(B) → Hb(B) is mean ergodic
remains open.

5.6 Examples

Examples on ergodic properties of Cψ,ϕ can be found on Chapter 3 for the special
case of ψ ≡ 1. Here we present a composition operator that is power bounded in
Hb(Bc0

), H∞(Bc0
) and on H(Bc0

), but when taking a particular weight, the weighted
composition operator is not power bounded in any of these spaces.

Example 5.25. Let w ∈ H defined by w(x) = 1 + x1 (where H is either H∞(Bc0
),

Hb(Bc0
) or H(Bc0

)). Consider Σ: Bc0
→ Bc0

the backward shift (see (3.4)). Then
CΣ :H →H is power bounded but the operator Cw,Σ :H →H is not power bounded.

Since Σ has stable orbits and Bc0
-stable orbits, CΣ :H →H is power bounded (see

Theorem 3.11 and Theorem 3.14). To see that Cw,Σ :H →H is not power bounded
it is enough to show that the set (w[n])n is not bounded in H (see Proposition 5.6,
Theorem 5.10 and Proposition 5.13). Consider y = ( 1

i+1)i ∈ Bc0
, then for any n ∈ N
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we have

w[n](y) =
n−1
∏

m=0

w(Σm(y)) =
n−1
∏

m=0

w
��

1
i + 1+m

�

i

�

=
n−1
∏

m=0

�

1+
1

2+m

�

=
n−1
∏

m=0

�

3+m
2+m

�

=
n+ 2

2
.

And the set (w[n])n is unbounded inH .

Examples 5.26. The following composition operators are not power bounded but
when we take a particular ψ, the operators Cψ,ϕ become power bounded.

a) Consider ϕ : Bc0
→ Bc0

defined by

φ(x) =
� x1

2 +
1
2 , 0, . . .

�

and the weight ψ(x) = x2. Then Cψ,φ : Hb(Bc0
)→ Hb(Bc0

) is power bounded,
but Cφ : Hb(Bc0

)→ Hb(Bc0
) is not. In fact, ψ ◦φ ≡ 0 and Remark 5.1 gives that

the iterates of Cψ,φ are eventually 0. But, by Example 3.6, φ does not have
Bc0

-stable orbits and Theorem 3.14 gives that Cφ is power bounded.

b) Consider F : Bc0
→ Bc0

the forward shift (see (3.4)) and the weight ψ(x) = x2.
Then Cψ,F : H(Bc0

)→ H(Bc0
) is power bounded, but CF : H(Bc0

)→ H(Bc0
) is not.

In fact ψ ◦ F2 ≡ 0 but F does not have stable orbits on Bc0
(recall Remark 5.1,

Example 3.5 and Theorem 3.14).

Note that in both examples the symbol is not an open map (recall Remark 5.2).

It is not difficult to construct multiplication operators that are neither mean ergodic
nor power bounded, but when taking a particular symbol the associated weighted
composition operator satisfies both properties.

Example 5.27. Let ϕ : D→ D and ψ ∈ H∞(D) defined by

ϕ(z) =
z
2

and ψ(z) = 2z.

Then Mψ is not power bounded nor mean ergodic in H∞(D) or H(D) but Cψ,ϕ is power
bounded and mean ergodic in H∞(D) and H(D). We check this facts first.

Observe that ‖ψ‖∞ > 1. Then Mψ cannot be power bounded nor mean ergodic
(see Proposition 5.20 and Lemma 5.21).

Clearly ϕ has D-stable orbits. Now we check that the set (ψ[n])n is bounded in
H∞(D) and therefore bounded in H(D). Indeed, we have

|ψ[n](z)|=
�

�

�

n−1
∏

m=0

(ψ ◦ϕm)(z)
�

�

�=
�

�

�

n−1
∏

m=0

2
�

z · 2−m
�

�

�

�

=
�

�zn2
∑n−1

m=0 1−m
�

�≤ |zn|23−n ≤ 23−n,

(5.11)



5.6. Examples 97

for all z ∈ D. By Theorem 5.10 and Proposition 5.13 we obtain the power boundedness
of Cψ,ϕ. Additionally, (5.11) implies that limn→∞ ‖ψ[n]‖∞ = 0. For any 0 < r < 1
since ϕn(rD) ⊆ rD for every n ∈ N, for an arbitrary f ∈ H(D) we have

lim
n→∞

sup
|z|<r

�

�ψ[n](z) · f (ϕn(z))
�

�≤ sup
|z|<r
| f (z)| lim

n→∞
‖ψ[n]‖∞ = 0.

Then Cn
ψ,ϕ converges pointwise to 0 in H(D) and Cψ,ϕ is mean ergodic in H(D). The

mean ergodicity of Cψ,ϕ in H∞(D) can be checked with an analogous procedure.

There are weighted composition operators that are power bounded and not mean
ergodic in H∞(B). In fact, we give an example of multiplication operator on H∞(D)
with this property.

Example 5.28. Let Mψ : H∞(D)→ H∞(D) be given by ψ(z) = 1+z
2 .

Then Mψ is power bounded but not (uniformly) mean ergodic because the function
1

1−ψ is not bounded in D (see Theorem 5.24). In fact, 1 ∈ψ(D).

Open problems. The following questions have arisen in this chapter and remain open.

• If Cψ,ϕ : H(B)→ H(B) is topologizable we do not know whether this implies that
ϕ has stable orbits (cf. Proposition 5.5).

• In Proposition 3.16 we find composition operators in Hb(B) which are power
bounded and not mean ergodic, thus the same example is valid for weighted
composition operators in Hb(B). However, while every mean ergodic composi-
tion operators is power bounded in this space (see Proposition 3.15), we do not
know if the same holds for weighted composition operators in Hb(B).

• In contrast to Proposition 5.18, we do not know if the zero operator is the unique
multiplication operator that is compact in H(B).

• We do not know if every power bounded multiplication operators on Hb(B) is
also mean ergodic. This was the case in H(B) (see Corollary 5.23) but not in
H∞(B) (see Example 5.28).
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