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Abstract: Remote sensing has become more and more a reliable tool for mapping land cover and monitoring 
cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing 
data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover 
and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the 
production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed 
agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-
vertical (VV) and vertical-horizontal (VH) polarizations. The images were acquired in ascending orbits between 
April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other 
land cover classes in the study area. The results showed that the backscatter increased with the phenological 
development of the monitored crops (rice, watermelon, peanuts, and winter crops), strongly for the VH and VV 
bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, 
greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering 
analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) 
algorithm. Results showed that radiometric characteristics and 6 days’ time resolution covered by Sentinel-1 
constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation 
Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data 
provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land 
cover mapping which could be a practical source of information for various purposes in order to undertake food 
security issues.
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Cartografía de alta resolución de la cubierta del suelo y clasificación de los cultivos en la cuenca 
del Loukkos (norte de Marruecos): Un enfoque que utiliza las series temporales de SAR Sentinel-1
Resumen: La teledetección se ha convertido en una herramienta cada vez más fiable para cartografiar la cubierta 
vegetal y controlar las tierras de cultivo. Gran parte de los trabajos realizados en este campo utilizan datos ópticos 
de teledetección. Además, en Marruecos, los datos de teledetección activa siguen estando infrautilizados, a pesar 
de su importancia para el seguimiento de la dinámica espacial y temporal de la cubierta vegetal y de los cultivos, 

To cite this article: El Mortaji, N., Wahbi, M., Ait Kazzi, M., Yazidi Alaoui, O., Boulaassal, H., Maatouk, M., Zaghloul, M.N., El Kharki, O. 
2022. High resolution land cover mapping and crop classification in the Loukkos watershed (Northern Morocco): An approach using SAR 
Sentinel-1 time series. Revista de Teledetección, 60, 47-69. https://doi.org/10.4995/raet.2021.17426

CASO PRÁCTICO

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:elmortajinizar@gmail.com


REVISTA DE TELEDETECCIÓN  (2022) 60, 47-69

El Mortaji et al.

48

1. Introduction

Various earth sciences and geography domains 
have benefitted from the revolution of remote 
sensing technology and satellite imaging. For 
instance, land cover mapping remains one of 
the first products provided from satellite images 
analysis. These maps might provide valuable data 
for several research fields, such as the environment 
(Ullman et al., 2014), urban domain (Geymen 
and Baz, 2007), risk assessment (Van der Sande 
et al., 2003), biodiversity (Falcucci et al., 2007), 
and agriculture (Bargiel and Herrmann, 2011). 
The latter plays a crucial role in food security of a 
growing world population (Whelen and Siqueira, 
2018), with a high impact on economic progress, 
by its contribution to the Gross Domestic Product 
(GDP) and job opportunities in agricultural 
activities and agricultural industry, for example in 
Morocco.

Several agricultural land and land cover monitoring 
studies are based on the optical and infrared 
wavelengths data ranges (Griffiths et al., 2013; 
Hansen et al., 2011; Yan and Roy, 2014). These 
images are used to calculate vegetation indexes, 
such as the Normalized Difference Vegetation 
Index (NDVI) (Jeevalakshmi et al., 2016). 
However, the use of these categories of satellite 
data is very restricted by lower availability due to 

haze or clouds (Bargiel and Herrmann, 2011). With 
the launch of Sentinel-1 constellation providing 
C-band synthetic aperture radar (SAR) imagery, 
many scientific works revealed the importance 
of microwave remote sensing data for land 
monitoring (Balzter et al., 2015; Harfenmeister 
et al., 2019; Planque et al., 2021; Pulvirenti et al., 
2018; Song and Wang, 2019; Suresh et al., 2016; 
Valcarce-Diñeiro et al., 2019).

The combination of either Sentinel-1 images data 
and Sentinel-2 optical data for land cover and crop 
mapping was applied in several countries or areas, 
such as Belgium (Van Tricht et al., 2018), the 
Chennai basin in India (Steinhausen et al., 2018), 
northern Malawi (Kpienbaareh et al., 2021) and 
the plain of Haouz which is a semi-arid area in 
Morocco (Moumni and Lahrouni, 2021). S1-data 
was also combined with other optical data such as 
Landsat-8 OLI (Chen et al., 2020; Kussul et al., 
2016).

Other studies have proved the effectiveness of 
Sentinel-1 SAR data exclusively in mapping land 
cover and crop types, especially with the multi-
temporal, multi-polarization availability, which 
provides accurate classes discrimination and thus 
improves the classification precision (Abdikan 
et al., 2016; Denize et al., 2019; Khalil and Saad-
ul-Haque, 2018; Planque et al., 2021; Selvaraj 

incluso con tiempo nublado. Este estudio tiene como objetivo explorar el potencial de los datos de la banda C de 
Sentinel-1 en la producción de una cartografía de alta resolución de la cubierta del suelo y la clasificación de los 
cultivos dentro del paisaje agrícola de la cuenca del Loukkos de regadío en el norte de Marruecos. Este trabajo 
se ha realizado utilizando 33 imágenes de doble polarización vertical-vertical (VV) y vertical-horizontal (VH). Las 
imágenes fueron adquiridas en órbitas ascendentes entre el 16 de abril y el 25 de octubre de 2020, con el propósito 
de rastrear el comportamiento de retrodispersión de los principales cultivos y otras clases de cobertura del suelo 
en el área de estudio. Los gráficos obtenidos muestran que la retrodispersión aumenta con el desarrollo fenológico 
de los tres cultivos monitorizados (arroz, sandía, cacahuetes, cultivos de invierno), fuertemente para las bandas 
VH y VV, y ligeramente para el ratio VH/VV. Las otras clases (agua, edificado, bosque, árboles frutales, vegetación 
permanente, invernaderos y tierras desnudas) no muestran una variación significativa durante este periodo. A partir 
del análisis de retrodispersión y de los datos de campo, se llevó a cabo una clasificación supervisada, utilizando 
el algoritmo Random Forest Classifier (RF). Los resultados muestran que las características radiométricas y la 
resolución temporal para los 6 días cubiertos por la constelación Sentinel-1 dan una alta precisión de clasificación 
por polarización dual con Ratio de Radar (VH/VV) o Índice de Vegetación de Radar y características de la textura 
(entre 74,07% y 75,17%). En consecuencia, este estudio demuestra que los datos de Sentinel-1 proporcionan 
información útil y un alto potencial para los análisis multitemporales de seguimiento de los cultivos, así como 
una cartografía fiable de la cubierta terrestre que debería ser una fuente de información práctica para para varios 
propósitos a fin de acometer cuestiones de seguridad alimentaria.

Palabras clave: cubierta del suelo, Sentinel-1, clasificación de cultivos, series temporales, cuenca del Loukkos. 
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et al., 2019; Suresh et al., 2016; Whelen and 
Siqueira, 2018). This potential for crop mapping 
is available even on small farms (Useya and Chen, 
2019), given that with the use of time series and 
with the RF classifier, the mapping accuracy can 
reach up to 96%, however using a SAR image at 
a single date gives unsatisfactory results. The use 
of radar imaging for multi-temporal classification 
approaches includes information on crop types 
and phenology to capture dynamics of the 
agricultural lands (Hütt and Waldhoff, 2018), and 
for high-resolution crop-type mapping are both 
widely documented in the literature (Bargiel and 
Herrmann, 2011; McNairn et al., 2009a). Bargiel 
(2017), has shown that combination of detailed 
information on crop phenology and multitemporal 
stacked Sentinel-1 images provided a suitable 
classification of different classes for two different 
growing seasons in northern Germany. Based on 
the temporal signatures extracted from Sentinel-1 
time series, a supervised crop classification has 
carried out in 7 regions in the Navarre Spanish 
province characterized by persistent cloud cover 
(Arias et al., 2020). Crops like winter cereals or 
rice whose time signature exhibited singularities 
throughout the growing season achieved precise 
classification results. The combination of VH, VV 
and VH/VV time series as input features provided 
accurate results (Overall Accuracy OA > 70%).

The comparison of land cover classification 
obtained by time series Sentinel-1, RADARSAT-2, 
and/or ALOS-2 (Denize et al., 2019) to determine 
the finest SAR configuration and accurate classes 
identification using the RF Classifier algorithm, 
showed that the best SAR configuration was the 
S-1 time series with C-band dual polarity, although 
the RST-2 and ALS-2 time series also provided 
valuable information on the crop cover.

Sentinel-1 (S1) provides free data access which 
enables new possibilities to detect subtle changes 
in crops and fields. It can therefore be useful 
for agricultural crop-type mapping using multi-
temporal classification approaches (Useya and 
Chen, 2019). Performing a successful classification 
requires the understanding of which growth stages 
are most appropriate for crop separation and 
identifying the SAR patterns best suited for crop 
classification. SAR response is very sensitive to 
changes in canopy structure during seed and fruit 
development stages that occur later in the growing 

season (Mc Nairn et al., 2009b). The classification 
algorithm applied in our study is the RF Classifier, 
widely used in remote sensing for its excellent 
results, ability to process large datasets, and 
speed of execution (Pelletier et al., 2016). The 
use of polarization ratios, vegetation indices or 
textural features could improve the quality of the 
classification (Arias et al., 2020; Mandal et al., 
2020; Zakeri et al., 2017).

The Loukkos watershed study area is one of 
northern Morocco’s most fertile agricultural fields. 
However, it has not benefited from any study 
regarding monitoring and land cover mapping by 
remote sensing technology and satellite imaging. 
The main scientific objective of this study is to 
carry out a multi-temporal analysis to provide new 
high-resolution land cover maps and to realize an 
accurate classification of monitored land cover and 
crops belonging to the irrigated area in Laouamra 
village, by means of Sentinel-1 SAR data with 
dual-polarization (VV) and (VH) in C band, as 
well as to demonstrate the power of this kind of 
satellite data for crop discrimination. Therefore, 
this research focuses on the accurate monitoring 
of agricultural activities and the collection of 
agricultural database information (Brisco et al., 
2017). It is the first study that analyzes and 
classifies the watermelon and peanut fields that 
are characteristic of the study area.

2. Materials and Methods

2.1. Study area and Field data

The study area is located in the rural commune 
of Laouamra between Ksar El Kebir and 
Larache cities in northwest Morocco. It belongs 
to the Loukkos watershed (Figure 1). The 
hydrogeological network of this area includes the 
Loukkous River, and some tributaries, and the 
R’mel groundwater table.

Generally, the region of Laouamra and namely the 
Loukkos watershed is one of the country’s most 
productive areas for several crops, such as sugar 
crops, strawberries, potatoes, peanuts, vegetables, 
wheat, watermelon, in addition to rice that is 
cultivated once a year.

The studied area comprises an irrigated agricultural 
sandy and muddy soil nearby the Loukkos River 
edge. It is characterized by almost flat topography 
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with various crop types. It is known for alternating 
winter crops like wheat and potatoes, and spring 
crops like peanuts and watermelons. Figure 2 
shows the agricultural calendar of the cycles of 
peanuts, watermelon, rice, wheat, and potatoes 
to understand the backscattering behavior on the 
studied images.

Field visits were organized during August 2020. 
GPS acquisitions and photos were taken on the 
area characterizing the different types of land 
cover and crop types (Figure 3). Several areas 
were identified using these observations combined 
with photointerpretation in Google Earth Pro 
application and were used to calibrate and validate 
the supervised classification of the time series 
SAR Images. Figure 4 shows the distribution 
of calibration and validation areas represented 
on VH band of Sentinel-1 image sensed on 
April 16th, 2020. Each class received 20 areas for 

calibration and 20 areas for validation, except 
for the uncultivated sandy soil, avocado and 
bare land classes which received only 10 areas 
as these classes have small fields. All the pixels 
of the training polygons are used to calibrate the 
classification, whereas the validation is based on 
the result obtained for one pixel taken randomly 
within each validation polygon. However, before 
performing the classification, the same training 
areas of calibration had been used to evaluate the 
separability between pairs of land cover classes 
using the means and standard deviations averages 
of the different polygons representing each class 
for all dates. In addition, the mean backscatter 
values of pixels were computed in the same way 
(Nasirzadehdizaji et al., 2021). These values 
would allow us to target the behavior evolution 
of classes using the multi-temporal backscatter 
analysis on the studied images.

Figure 1. Geographical location of the study areas, based on Google Earth Pro images (left) and Sentinel-2 images (right) 

taken in August 8, 2020.

Figure 2. Peanuts, watermelon; rice, wheat, and potatoes crops calendar in the study area.
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Figure 3. Land cover types photographed during field visits; (1) rice, (2) peanuts, (3) watermelon, (4) winter crops, (5) 
uncultivated sandy soil, (6) uncultivated muddy soil, (7) water, (8) permanent vegetation, (9) greenhouses, (10) forest, (11) 
citrus, (12) avocado trees, (13) bare land, (14) built-up, (15) railway.
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2.2. Sentinel-1 Dataset

We used in this work Sentinel-1 satellite images 
with exceptional high temporal resolution. The 
Sentinel-1 mission comprises a constellation of 
two twin C-band SAR satellites (Sentinel-1A 
and Sentinel-1B) launched in 2014 and 2016, 
respectively, acquiring dual polarization imagery 
(HH+HV or VV+VH) for earth observation 
regardless of the weather. The two satellite orbits 
are 180° apart, which allows mapping images of 
the entire Earth in six days (Panetti et al., 2014).

The Sentinel-1 images are taken in the 
Interferometric Wide (IW) swath mode and 
acquired in ascending orbit pass directions, in 
Level-1 C-band Ground Range Detected (GRD), 
with a 5 m×20 m spatial resolution. Incidence 
angles for the IW acquisition mode range from 
29° to 46° and consist of focused SAR data 
detected and projected to the ground range using 
WGS84 ellipsoid model. Besides, the data used 
in this study (time series of 33 remotely sensed 
Sentinel-1 SAR, starting from April 16 to October 
25, 2020) were acquired by the European Space 
Agency and downloaded from the data hub 
(https://scihub.copernicus.eu/dhus/#/home).

2.3. Methodology

To achieve the objectives of this work, we 
started by preparing and processing data (scenes 
acquisition, pre-processing, and processing 
stages). Later, we performed a coverage multi-
temporal analysis by building backscatter profiles 
in VV and VH polarization for each class of crops 

and land cover types. Then we did a supervised 
land cover classification validated using confusion 
matrices. The main work steps are compiled and 
summarized in a flowchart (Figure 5).

2.3.1. Preparation steps

In order to deduce the actual intensity of the 
sensor’s microwave signal, it is imperative to pre-
process SAR images (Dimov et al., 2016). Several 
operations were performed using ESA’s Sentinel 
Application Platform (SNAP). The Shuttle 
Radar Topography Mission (SRTM) 3sec Digital 
Elevation Model (DEM) was used (Figure 5).

Radar images are affected by speckle due to the 
coherent summation of signals scattered from 
ground scatterers randomly distributed in the 
pixels (Moumni and Lahrouni, 2021). A speckle 
filtering becomes necessary to reduce the granular 
noise (Lee et al., 1994). We applied the IDAN 
filter with an adaptive neighbor size of 33. After 
the preparation, the obtained images had a final 
spatial resolution of 10 m×10 m pixel spacing.

With the aim to improve the dual-pol images 
classification results by providing a better 
discrimination between classes, we used the Radar 
Vegetation Index (RVI) through calculation from 
the processed images. The same was done with 
the textural features analysis (Szantoi et al., 2013). 
Also the VH/VV polarization ratio was found to 
be useful in crops monitoring (Arias et al., 2020).

RVI is a parameter sensitive to the biomass level; it 
increases with crop growth and decreases with the 
reduction of vegetation water content (Yunjin and 
van Zyl, 2009). RVI was designed to monitor the 

Figure 4. Supervised classification areas: (a) calibration areas with red polygons, (b) validation areas with blue polygons.

https://scihub.copernicus.eu/dhus/#/home
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vegetation growth in time series data analysis as an 
alternative to Normalized Difference Vegetation 
Index (NDVI) used in optical image processing 
studies (Kumar et al., 2013). Both RVI and NDVI 
are obtained from the combination of different 
satellite bands. The original RVI was developed 
for quad polarization radar imagery (Yunjin 
and van Zyl, 2009). To adapt the use of RVI for 
dual Pol SAR images such as Sentinel-1 images, 
Nasirzadehdizaji et al. (2019) suggested the 
Equation 1.

RVI= 4σ0 VH (1)
σ0 VV+ σ0 VH'

Texture analysis is an inherent spatial feature of an 
image, as SAR backscatter is sensitive to the type, 
orientation, homogeneity and spatial relationship 
of ground objects (Zeng et al., 2010). Among four 
groups of texture analysis methods, the statistical 
methods based on the gray-level co-occurrence 
matrix (GLCM) seem to be the most used. They 
use the characteristic of spatial correlation of gray 
values to describe the texture (Zeng et al., 2010). 

The GLCM indicates the probability that values 
of each pair of pixels co-occur in each direction 
and at a certain lag distance in the image (Haralick 
et al., 1973). In this study, 3 texture features 
were calculated, the mean, the variance, and the 
correlation.

2.3.2. Processing steps:

We analyzed images with different polarizations 
and polarimetric (RGB) composites for a giving 
date, or different dates to discriminate various 
land cover classes. A separability analysis was 
also identified as a good indicator of class 
discrimination (Vanniel et al., 2005). Features 
are well separated if the distance between the 
class mean values is large compared to the 
standard deviations (Jiancheng et al., 1994). The 
separability (S) between classes i and j is defined 
by Equation 2.

Si,j=
|µi–µj| (2)
si+sj

Figure 5. Flowchart of the methodology.
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Where µ and s are mean values and standard 
deviations of the features. Separation values Si,j 
below 0.8 are not large enough to be useful in 
distinguishing class i from class j. For values of Si,j 
between 0.8 and 1.5, the quality of the separation 
between classes i and j is average. Values of Si,j 
above 2.0 provide almost complete separation of 
class pairs (Baghdadi et al., 2001). The separability 
has been calculated for all dates. Furthermore, 
three distant dates were analyzed in detail (April 
16, 2020, July 15, 2020, October 13, 2020).

The coefficient of variability (CV) was also 
used (Equation 3). It is a unitless statistical 
measurement of variation with values from 0 to 1, 
defined in probability theory and statistics by the 
ratio of the standard deviation of the signal (s) by 
the mean value (µ) (Whelen and Siqueira, 2018).

CV=
si(σ) (3)
µ(σ)

CV was computed from time series with VH or 
VV bands in SNAP software for pixels occupying 
the same location on the multi dates images. It 
allowed us to distinguish the classes’ changes 
throughout the different phases.

One of the main processing steps focuses on ge-
nerating temporal models from multi-temporal 
intensities using SNAP software to characterize 
the changes in classe structure during the study 
period and, therefore, separate the different clas-
ses. The mean backscatter values were calculated 
in the VV and VH polarizations, and the VH/VV 
polarization ratio.

The supervised classification approach we used is 
a "pixel-based" approach using the RF algorithm 
which consists of a combination of tree classifiers 
where each classifier is generated using a random 

vector sampled independently from the input 
vector, and each tree casts a unit vote for the 
most popular class to classify an input vector 
(See additional details in Breiman, 1999). For 
each case, we selected 5000 training samples, and 
200 trees. For the SAR time series, the temporal 
signatures allow the determination of each class, 
and this permits identifying whether an unknown 
field belongs to one class or another. 15 classes 
were chosen:1) Rice, 2) Peanuts, 3) Watermelon, 
4) Winter crops, 5) Uncultivated sandy land, 6) 
Uncultivated muddy land, 7) Water, 8) Permanent 
vegetation, 9) Green houses, 10) Forest, 11) Citrus, 
12) Avocado trees, 13) Bare land, 14) Built-up, 
and 15) Railway.

According to seven scenarios, we have chosen 
to map the land cover from Dual Pol SAR 
Sentinel-1 image (Table 1). To determine the best 
performing scenario quantitatively, we grouped 
the obtained results into confusion matrices tables. 
Finally, we used these tables to calculate several 
accuracy parameters such as, User’s Accuracy 
(UA), Producer’s Accuracy (PA), Overall accuracy 
(OA), and Kappa coefficient (K).

3. Results and Discussion

3.1. Separability between classes

According to the mean separability values 
(Figure 6), the VH and VV polarizations gave a 
higher separability between classes than VH/VV 
polarization ratio. Generally, separability values 
obtained by VH are better than those obtained by 
VV, except in a few cases where VV shows the 
best values, for instance, separability between 
water and greenhouses, or between water and 
watermelon or rice.

Table 1. The different scenarios proposed for the supervised classification.

Stacked Image Bands
Single image (August 08, 2020) VV, VH polarization

Time series VV polarization.

VH polarization.

VV + VH polarizations.

VV + VH polarizations + the ratio VH/VV;

VV + VH polarizations + Radar Vegetation Index (RVI);

VV + VH polarizations + Texture
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According to the separability values obtained by 
the VH polarization, the rice, peanuts, watermelon, 
and winter crops show low values when compared 
to each other and uncultivated muddy soil and 
greenhouses classes. In contrast, these values are 
well compared with other classes. Uncultivated 
muddy soil class has low separability with the 
greenhouses class, which gives a low separability 
with the citrus class. Uncultivated sandy soil 
class exhibits a medium to good separability with 
almost classes, except winter crops and bare lands, 
showing low separability values. Similarly for 
water class, which has good separability values 
with most of classes, except bare land class which 
is hardly separated from uncultivated sandy soil. 
The permanent vegetation has low separability 
with forest, avocado trees, and medium separability 
with citrus trees. Forest has low separability with 
citrus trees and built-up and medium to good 
separability with other classes. The built-up and 
railway classes are hardly separated from each 
other and other classes like permanent vegetation 
and avocado trees.

The separability at three distant dates is shown 
in Figure S1 in supplementary material section. 
Separability between rice and other crops becomes 
better in October compared to April and July for 
VH and VV. Separability between the fields of 

peanuts and watermelon was average in April 
and decreased in July and October. However, 
separability between peanuts and winter crops 
was average on the three dates. Separability 
between watermelon and other classes is better 
in July. Separability values are optimal in July 
between the three classes (uncultivated sandy soil, 
uncultivated muddy soil, and greenhouses), and 
the other classes. Water shows a better separability 
with other classes in April by the VV polarization. 
This polarization also provides a good separability 
to bare land in July. Permanent vegetation, forest, 
citrus, and avocado trees classes have almost the 
same separability values for the three dates. The 
separability between built up and the other classes 
improves in October, except with rice class. The 
same statement is true for the railway.

To sum up, separability is therefore good for va-
ried classes, such as, crops that change in structure 
and length during phenological development. In 
this case, VH bands give a better result compared 
to VV bands. Less important for relatively smooth 
surfaces, VV bands allow better discrimination 
between classes, and low for tree classes and 
rough surfaces. The results are almost the same for 
VH and VV. In all cases, VH/VV present the least 
satisfactory results.

Figure 6. Mean separability calculation between pairs of classes obtained for time series backscatter in VV, VH and VH/
VV polarizations, during the whole study period.

https://polipapers.upv.es/index.php/raet/libraryFiles/downloadPublic/98
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3.2. Coefficient of variation calculation
The results of CV (Figure 7) allow identifying 
areas with high CV (rice, peanuts, watermelon, 
winter crops), and areas with low CV (trees, water, 
bare land, uncultivated soil, built-up, railway). 
In general, the time series images with VH 
polarization give higher CV values compared to 
the time series with VV polarization for peanuts, 
watermelons, and winter crops, while the time 
series images with VV polarization show relatively 
high CV values compared to VH polarization for 
rice fields.

3.3. Temporal backscatter analysis

3.3.1. Data analysis

The mean and the standard deviation values of the 
backscatter are shown in Figure 8. Both VV and 
VH show a similar backscatter evolution trend, 
only intensity differs. Each field shows a unique 
pattern that depends on land cover, phenology, 
moisture content, and soil type.

The values of the backscatter signal for both 
polarizations in rice fields show a clear change. 
Before June, backscatter values were around 
-20 dB for VH, between -10 dB and -12 dB for 
VV and around -10 dB for VH/VV. During June, 
there was a remarkable decrease in the backscatter 
reaching ~ -28 dB in VH and ~ -20 dB in VV, 
while the VH/VV values remain high (around 
-10 dB). The backscatter increases again from the 
beginning of July until the beginning of August 
to reach maximum values. After this date, the 

backscatter values remain almost stable for VV 
(~ -10 dB), while it continues to increase slightly 
for VH and VH/VV (-19 dB to -17 dB, -10 dB to 
-7 dB respectively).

The evolution of backscatter in peanut fields 
is characterized by three distinct phases: the 
backscattered signal increases progressively from 
mid-May to mid-July, from -25 dB to -14 dB for 
VH polarization, and from -18 dB to -9 dB for VV 
polarization, and from -10 dB to -7 dB for VH/VV. 
After a stability period until the end of September, 
the backscatter signal of VH and VV polarizations 
decreases during the harvest period. The values of 
VH/VV polarization ratio show a slight variation 
during the increased and decreased backscattering 
phases.

The backscatter of the watermelon class starts 
with almost stable and low values for the three 
polarizations. From mid-June to mid-July the VH 
backscatter has increased rapidly and strongly 
(from -27 dB to -15 dB) relative to the VV 
polarization (from about -13 dB to -8 dB). The 
VH/VV backscatter changes slightly. Until the 
end of August, the backscattering values remain at 
their maximum and decrease to reach low values 
during September.

The signal of both polarizations for winter crops 
represented by wheat was strong till beginning 
of July (~ -19 dB for VH, ~ -12 dB for VV), and 
decreased after this date, to stable and lower values 
(~ -25 dB for VH, ~ -14 dB for VV). Whereas, the 
VH/VV polarization ratio remains almost stable 
with few fluctuations and a slight decreasing trend 
from July to August.

Figure 7. Coefficient of variation (CV) for VH polarization (a) and VV polarization (b).
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The uncultivated sandy soil backscattering 
behavior shows values irregularity. The 
backscatter progressively decreases slightly for 
all three polarizations (from ~ -21 dB to ~ -25 dB 

for VH, from ~ -14 dB to ~ -17 dB for VV, and 
from ~ -03 dB to ~ -08 dB for VH/VV) from the 
beginning of the study period until mid-July, after 
which the values stabilize. The uncultivated land 

Figure 8. Temporal behavior of the backscattering coefficients (σ0 dB) of the different land cover classes, in VH, VV polar-
izations, and VH/VV ratio calculated. standard deviations at each date are represented by error bars.
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on muddy soil, around rice crops, does not exhibit 
a large variation in backscatter signal for both 
polarizations (~ -20 dB for VH, ~ -11 dB for VV 
and ~ -9 dB for VH/VV), except during the period 
before the end of May, when the backscatter 
fluctuates between – 19 dB and -14 dB for VH, 
and between – 11 dB and – 7 dB for VV.

Water shows a very low backscatter signal in VH 
and VV polarizations (~ -20 dB for VV and ~ -25 dB 
for VH) due to the calm surface appearance of 
scattering. VH/VV polarization ratio takes values 
between -8 dB and -5 dB. Bare land also has low 
backscatter values which remain almost stable 
throughout the year, given the lack of sufficiently 
developed vegetation and the unchanging soil 
texture. The highest values have been recorded 
before the dry season when the vegetation linked 
to rainfall persists.

Fruit trees (citrus and avocado), forest trees and 
permanent vegetation show strong and almost 
stable backscattering with slight variation over 
the period of the study. Generally, the backscatter 
values are around -14 dB to -18 dB for VH, 
-8 dB to –11 dB for VV, and ~ -6 dB for VH/
VV. Other classes have almost the same values 
as the tree classes, these classes are built-up and 
railway: They show strong and stable backscatter 
signals. Greenhouse crop fields exhibit strong 
backscattering in VV and VH/VV polarizations 
(~ -10 dB) and medium values on backscatter in 
VH polarization (~ -20 dB) with slight variation.

We also observe that the standard deviation values 
of each date are generally low and almost stable 
in VV, VH, and VH/VV polarizations (between 
~ 1 dB and ~ 2 dB), for classes with stable 
mean backscatter profiles (water, permanent 
vegetation, greenhouses, uncultivated muddy 
soil, forest, citrus, avocado trees, bare land, built 
up, and railway). However, the variability in 
backscatter is relatively large, especially at the 
beginning and the end of the crops’ life cycle 
(peanuts, watermelon, and rice), which show 
high values of standard deviation (between 
~ 2 dB and ~ 4 dB), for all three polarizations, 
unlike the backscatter stability phase where the 
standard deviation is ~ 1 dB. For the uncultivated 
sandy soil and winter crops classes, the standard 
deviation values are between ~ 2 dB and ~ 3 dB 
during almost all dates.

3.3.2. Data interpretation

The backscatter variation during the vegetation 
period can be explained by the varying 
contribution of soil and vegetation as well as by 
structural changes of the plants and their water 
content (Harfenmeister et al., 2019). As growth 
stages vary according to the crop type, biomass 
accumulation changes the structure of the crop 
canopy which helps to differentiate various crop 
types (McNairn and Shang, 2016). The main 
obtained results for type-crops during the April-
October period are congruent with those reported 
by Arias et al. (2020), where backscattering 
was linked to different phases (sowing, growth, 
and harvest phases). The growth phase can 
be divided into several phenological stages of 
plant development according to the Biologische 
Bundesanstalt, Bundessortenamt, and CHemische 
(BBCH) scale (Munger et al., 1998).

During May, rice fields were ploughed and 
then submerged and sown at the beginning of 
June (Clauss et al., 2018; Mandal et al., 2018). 
This explains the variations of the backscatter, 
because the backscattering values in May are 
linked to the surface roughness of the plowed 
muddy soil which scatters the waves in the VV 
and VH polarizations significantly. These values 
decrease considerably when the fields are flooded 
in early June because of specular reflection from 
standing water, while the VH/VV values remain 
high (Arias et al., 2020; Ndikumana et al., 2018; 
Torbick et al., 2017). With water infiltration and 
plant growth, the backscatter for both VH and 
VV polarizations increases steadily from early 
July until mid-August, as the volume of the plant 
increased and reaches the maximum vegetative 
stage. This is also related to the dielectric constant 
of the target, and it increases when the water 
content of the vegetation increases (Nelson et al., 
2014). After mid-August, the backscatter depends 
on the rice canopy which becomes denser during 
the tillering phase. Normally, the rice of the 
Loukkos watershed is harvested from the end of 
November until December. For this reason, the 
rice backscattering profiles show the absence of 
the harvest phase.

In addition, all three phases are very well recorded 
for peanuts. Around mid-May, a large part of 
sandy soil fields is plowed and sown with peanut 
seeds, which explains the low backscatter values 
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for the three polarizations during this period 
compared to backscatter values in plowed muddy 
soil, as these are more rigorous than sandy soils. 
The backscatter is thus linked during this phase 
to the soil structure essentially. But, with the 
gradual growth of seedlings in the early vegetative 
stage, biomass increases and so does plant size 
with regular irrigation, which influences the 
interaction with the radar waves, and thus the time 
series profiles show a progressive increase of the 
backscatter for VH, VV and VH/VV, with a high 
intensity of VH and VV compared to VH/VV. The 
backscatter reflects the influence of seedlings size, 
increasing biomass, water content of the seedlings, 
and soil moisture. Backscatter values recorded in 
mid-August show that peanut plants have reached 
maturity with the maximum size and leaf area. 
Directly after this date, there is a slight decrease 
in the intensity of backscatter related to a decrease 
in biomass and water content of the plants. After 
harvest, the backscatter values decline for VH and 
VV and return to the values of the sowing phase, 
because of direct interaction with the soil.

Watermelon fields also show all three phases, 
with remarkable differences in the duration 
of each phase. During the growth phase, we 
can differentiate two stages (vegetative and 
reproductive). Tilling of watermelon fields on 
sandy soil does not begin until late May. With 
intense irrigation, watermelon seedlings grow 
rapidly by early June, and leaf mass becomes 
significant. This explains the significant increase 
in backscatter intensity for VH relative to the 
slight increase of VV and VH/VV. With the 
appearance and growth of watermelon, the 
interaction between waves and objects becomes 
important, and a peak in backscatter is recorded 
for the VV polarization around mid-August. When 
mature fruits are collected, the plants remain on 
site for a few days before being pulled out, which 
explains the rapid decrease in backscatter of all 
three polarizations around early September. A few 
days later, as the irrigated region is known for 
alternating the two crops each year for the same 
plot, the land is reworked again to prepare for a 
new winter crop. It is recorded on the backscatter 
profiles by a further increase of the backscatter 
values.

For winter crops -represented by wheat- the 
last two phases have been recorded on the 

profiles: i) the growth phase which corresponds to 
high backscatter signal values, and ii) the harvest 
and post-harvest phase marked by a decrease in 
the backscatter signal.

The monitoring of the backscattering behavior in 
the cultivated fields shows that the VH backscatter 
is generally more sensitive to volume scattering 
from the vegetation, and to the soil in the early 
phenological stages. Thus, the VH backscatter 
is mainly affected by the double stem-ground 
scattering (Brown et al., 2003). In addition, the 
water content and soil moisture have an influence. 
On the other side, the VH/VV polarization ratio 
shows slight variations, especially in the early 
phenological stages, but has greater stability 
compared to the simple VH and VV polarizations, 
since factors influencing the backscatter 
characteristics, such as humidity or radiometric 
instability of the sensor, are compensated by the 
ratio (Veloso et al., 2017).

The strong backscattering signal of fruit trees 
and forest can be explained by the unchanging 
structure of almost all trees beside the roughly 
dense foliation related to the tree type. Besides, 
the dense vegetation near water points and rivers 
throughout the year allows strong and stable 
backscattering values.

By comparing the backscatter values of the 
uncultivated sandy soil class prior to June, with 
the other classes values, these values correspond 
to other winter crops, most probably potatoes 
because the pattern of the backscatter profiles 
towards the end of the wheat cycle is different. 
This may explain why those plots have been 
reworked during summer (period of field visits), 
to get rest and prepare for a new crop after August.

The uncultivated muddy soil displays little 
variation in backscatter during the month of May, 
due to the plowed yet unsown and unirrigated 
lands with rough surface characterized by a strong 
backscatter signal. With time the soil becomes 
less rugose, allowing for almost stable backscatter 
during the rest of the study period.

The high variability in backscatter from rice fields 
at the beginning of the season can be explained 
by the fact that fields at this stage have a variety 
of states, from bare fields, flooded or not, to rice 
plants at different stages of growth (Phan et al., 
2021). While this variability for the peanuts and 
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watermelon classes is mainly explained by the 
fact that planting and harvesting calendar may 
be different, as the fields are not cultivated and 
harvested at the same time. In addition, winter 
crops fields may have different crop types and 
management.

The analysis of the backscatter profiles and standard 
deviation values showed that our knowledge of 
the phenological phases of the studied crops can 
be useful in interpreting the backscatter variations 
extracted from Sentinel-1 time series. Conversely, 
from these time series we can understand the 
temporal dynamics of crops. Thus, crops with 
distinct backscatter profiles would be discriminable 
in supervised classification. However, classes with 
similar backscatter profiles with no variation over 
time would cause difficulties in discriminating 
from each other.

3.4. Land cover and crop mapping

3.4.1. Accuracy assessment

Land cover and crop mapping were obtained 
by supervised classification of different images 
according to the aforementioned scenarios 
(Figure S2 in supplementary materials section). 
The approach used in this work made it possible to 

obtain maps of land cover and crops, with varying 
accuracy parameters, particularly for (OA) and 
(K) parameters (Figure 9).

The single-date image pattern provided the lowest 
values of OA (31.48%) and K (0.26) compared to 
other scenarios. With the use of time series, OA 
improves significantly. The comparison between 
the time series with the VH bands and those 
composed VV bands shows that VH presents a 
more satisfactory OA (70%) and K (0.68) than VV 
(OA=66.67 and K= 0.64). With a multi-temporal 
image with two polarizations VH and VV, the 
values of OA reaches the value 71.11% and K 
the value 0.69. The inclusion of other bands (VH/
VV polarization ratio, RVI, Texture) to the time 
series with two polarizations allowed us to obtain 
an improvement of 3% to 4% for OA and 0.3 to 
0.4 for K. The best scenario with a time series 
image is composed of the bands VV, VH and 
Texture, according to the values of OA (75.19%) 
and K (0.73).

With reference to the values of F1-score, UA, and 
PA for each class according to the proposed seven 
scenarios (Table 1), we find that the single date 
image presents the least satisfactory results with 
low F1 values, and which do not exceed 0.5 for all 
classes. Thus, the values of PA and UA are below 
50% for all classes, except the water class which 

Figure 9. Evolution of Overall Accuracy (OA) and Kappa Coefficient (K), according to the different proposed scenarios.

https://polipapers.upv.es/index.php/raet/libraryFiles/downloadPublic/98
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gives PA=55% and UA=64.11%. For scenarios 
with multi-temporal images, the different classes 
can be organized under four groups (Table 2):

i) A first group contains classes with an F1-score 
greater than 0.75 for all scenarios (rice, peanuts, 
watermelon, winter crops, uncultivated muddy 
soil, and water).

The rice class presents the most satisfactory 
F1-score PA and UA values (0.92≤F1-score≤1), 
with UA = 100 for all scenarios and PA = 100% 
for VH and VH+VV+Texture, PA = 95% for VV 
and VH+VV+RVI, whereas for VH+VV and 
VH+VV+VH/VV the PA value is 85%.

The peanuts class presents F1-score between 
0.89 obtained for VH+VV+VH/VV with 
UA = 94.44% and PA=85%, and 0.97 obtained 
for VV with UA = 100% and PA = 95%. The VH, 
VH+VV, and VH+VV+RVI scenarios provided an 
F1-Score = 0.92 and relatively balanced AU and 
PA, while F1-score = 0.90 with the same UA and 
PA for VH+VV+Texture.

The watermelon class shows F1-score values 
ranging from 0.86 for VH+VV+Texture 
(UA=81.82% and PA=90%) to 0.98 for the VV 
scenario. The VH, VH+VV, and VH+VV+RVI 
scenarios have an F1-score = 0.93, while F1-score 
for VH+VV+VH/VV is equal to 0.9.

The winter crops results are the least satisfactory 
compared to the three previous crop classes, 
since the F1-score values are between 
~ 0.75 for VV (UA = 69.57% and PA = 80%) and 
VH+VV+Texture (UA = 60.61% and PA = 100%), 
and 0.85 for VH+VV+RVI (AU = 74.07% and 
PA = 100%). VH and VH+VV+VH/VV have a 
value of F1-score 0.83 with PA greater than UA, 
and the time series VH+VV presents UA = 70.37% 
and PA = 95%, which gives a value F1-score = 0.81.

Uncultivated muddy soil class presents a value of 
F1-score = 0.95 (UA = 100% and PA = 90%) except 
for the last scenario VH+VV+Texture, where the 
F1-score decreases to 0.92 with the decrease of PA 
to 85%. The water class values are in the range F1-
score = 0.80 (UA = 93.33% - PA = 70%) for the VH 
scenario, and F1-score = 1 for VH+VV+VH/VV 
and VH+VV +RVI. The VV and VH+VV scenarios 
have a value of F1-score 0.97 (UA = 100% and 
PA = 95%). VH+VV+Texture gave an F1-score 
value of 0.91, with UA = 83.33% and PA = 100%.

ii) A Second group contains the classes with 
an average F1-score (0.5≤F1-score≤0.75). It 
comprises the forest and citrus classes.

The forest class exhibits F1-score values between 
0.52 obtained for VH and 0.63 obtained from 
the time-based images VH+VV+VH/VV and 
VH+VV+Texture, thus the values of UA are 

Table 2. User’s Accuracy, Producer’s Accuracy and F1-Score of the different classes, Overall Accuracy and Kappa Coef-
ficient, obtained with a supervised classification using Random Forest Classifier; (PA) Producer’s Accuracy, (UA) User’s 
Accuracy, (OA) Overall Accuracy, (K) Coefficient of Kappa.
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higher than that of PA for all scenarios. The F1-
score values of the citrus class are in the range of 
0.51 for VV (UA = 41.94% – PA = 65%) and reach 
0.67 for VH+VV+VH/VV, with UA = 54.84% 
and PA = 85%. The avocado trees class has F1-
score values between 0.59 for the VH scenario 
(UA = 71.43% and PA = 50%) and 0.70 for 
the VH+VV+RVI scenario (UA = 61.54% – 
PA = 80%). We can add the greenhouses class to 
this group, which gives average values of F1-score 
for all scenarios (0.55≤F1-score≤0.65) except the 
VV scenario where a value of F1-score 0.40 is 
obtained.

iii) A third group includes classes with F1-score 
values below 0.50 for almost all scenarios. 
This group consists of two classes: Permanent 
vegetation and built-up. The first class has F1 score 
values between 0.17 for VV (UA=50% – PA=10%) 
and 0.40 for VH+VV+Texture (UA=100% - PA= 
25%). The second class has F1-score values lower 
than 0.5 except for VH+VV+Texture which gave 
F1-score = 0.58. The classification according to 
the time series scenario at VV gave the lowest F1-
score value with very low values of UA (11.11%) 
and PA (5%), the other values of F1-score vary 
from 0.32 to 0.46 according to each model.

iv) A fourth group contains three classes with widely 
variable F1-scores from one scenario to another. 
The bare land class results show that the VH and 
VH+VV+Texture scenarios provide average F1-
score values (0.62 and 0.67 respectively). The 
other scenarios yielded better values ranging 
from F1-score = 0.87 (UA= 76.92% – PA= 100%) 
for VH+VV to 1 for VH+VV+VH/VV and 
VH+VV+RVI, going through F1-score = 0.95 of 
the VV scenario (UA = 90.91% - PA = 100%).

The F1-score values of the uncultivated 
sandy soil class move between low values 
below 0.50 according to the VH, VV and 
VH+VV+Texture scenarios (0.33, 0.29 and 
0.33 respectively), and average values between 
0.50 and 0.75 for VH+VV, VH+VV+RVI and 
VH+VV+Texture (0.57, 0.59, 0.67 respectively), 
UA and PA values are unbalanced and vary from 
scenario to scenario.

The three F1-score intervals are covered by the 
railway classification. The VV polarization provi-
ded the lowest value among the different scenarios 
(0.49) with UA = 37.84% and PA = 70%, while the 

VH+VV+Texture scenario gave satisfactory va-
lues (F1-score=0.91, UA= 83.33% and PA=100%) 
allowing better discrimination of this class accor-
ding to this model. The other scenarios provided 
intermediate values.

Based on this analysis, it can therefore be 
considered that the most satisfactory scenarios 
to improve discrimination between the different 
classes of land cover in the study area are limited 
to images of the time series VH+VV+RVI and 
VH+VV+Texture due to their high values of 
OA and K parameters (Table 2), as well as their 
improvement of the UA and PA parameters for 
several classes. Both scenarios have the same 
value of K (0.73), with a slight improvement in OA 
for VH+VV+Texture, compared to VH+VV+RVI 
(75.19% and 74.81% respectively). Despite this 
comparison, the VH+VV+RVI scenario presents 
relatively better F1-score, UA, and PA values than 
VH+VV+texture for some classes, especially the 
crop classes. However, combining these statistical 
results with the maps obtained by supervised 
classification, allows us to conclude that the 
VH+VV+Texture scenario remains more relevant. 
To this end, it can be considered that this scenario 
is the most favorable to produce a high-resolution 
map of land cover and crop types. Table 3 exhibits 
the detailed confusion matrix of the supervised 
classification obtained from this model.

For the VH+VV+Texture time series image 
scenario, rice, winter crops, water, and railway 
classes have an excellent accuracy up to 100%. 
Other classes show high accuracy values such 
as peanuts, watermelon, avocado trees (90%), 
and uncultivated muddy soil (85%). The latter 
values result from low confusion between the 
classes, like the confusion between peanuts and 
watermelon, where the incorrectly classified 
peanut fields were assigned mainly to the 
watermelon class, and vice versa. Avocado trees 
with citrus, and uncultivated muddy soil with 
watermelon (Omission Error = 10%) and winter 
crops (Omission Error = 5%).

Otherwise, classes show medium accuracy value; 
the citrus class has a value of 70 % and presents 
confusion with built-up and greenhouses classes 
with values of omission error of 25% and 5% 
respectively. The same accuracy value was 
obtained by built-up class, which gives 15 % 
as confusion with railway, 10% with citrus, and 
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5% with forest. Greenhouses class on the other 
side has an accuracy value of 55% and presents 
confusion with winter crops (20%), citrus (15%), 
and built-up (10%).

On the other hand, four classes (permanent 
vegetation, uncultivated sandy soil, forest, and 
bare land) show low accuracy values between 
20% and 50%. The two classes’ forest and bare 
land have the value of 50% as accuracy, while 
the first one has confusion with built-up (20%), 
avocado trees, citrus, and greenhouses (10%) each 
one. The second has confusion with water (40%), 
and winter crops (10%).

The lowest accuracy values were recorded by 
permanent vegetation (25%) and uncultivated 
sandy soil (20%) due to large confusions with other 
classes. A significant number of pixels that should 
be assigned to permanent vegetation class were 
incorrectly classified as avocado trees (OE = 45%) 
or built-up (OE = 15%) or forest, citrus, and 
railway (5% as OE each one). Uncultivated sandy 

soil is the least correctly classified class, with 
confusion that reaches 80% spread over winter 
crops (70%) and greenhouses class (5%). These 
classes with lower accuracy values contributed to 
the decrease in the overall accuracy and the Kappa 
coefficient.

3.4.2. Data interpretation

The supervised classification carried out in this 
work is based on the temporal signature of the 
different classes studied using the RF as an 
algorithm. The results obtained vary significantly 
from one scenario to another and within the 
classes, where the crops presenting unique and 
specific features in their temporal signatures are 
the best classified. In general terms, the findings 
demonstrate that the multi-temporal classification 
based on time series of Sentinel-1 radar images 
allows obtaining satisfactory results given the 
number of classes (15 classes) and the large 
number of fields classified. Usually, most studies 
on crop and land cover classification based on 

Table 3. Confusion matrix of the supervised classification using RF Classifier of a stack time series image with bands in 
VV, VH polarizations and Textural features.
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SAR data consider a limited number of classes, 
six crop classes (McNairn et al., 2009b; Whelen 
and Siqueira, 2017), seven land use/land cover 
classes (Hütt et al., 2016), or less than eleven 
classes (Bazzi et al., 2019; Larrañaga and Álvarez-
Mozos, 2016). Other work has demonstrated the 
usefulness of Sentinel-1 radar images for mapping 
cropland and identifying crop phenotype (Arias 
et al., 2020; Denize et al., 2019; Dingle Robertson 
et al., 2020; Mestre-Quereda et al., 2020). The 
SAR multi-temporal polarimetric characteristics, 
therefore, seem to be a crucial factor to improve 
crop classification results (Bargiel, 2017), this has 
been proven by (Larrañaga and Álvarez-Mozos, 
2016; Mascolo et al., 2016).

Despite the satisfactory values of PA, UA and 
F1-score obtained for rice, peanuts, watermelon, 
water, and uncultivated muddy soil, which 
can reach 100%, other classes such as forest, 
uncultivated sandy soil, built-up, and permanent 
vegetation present less satisfactory results for 
most scenarios, and the values of PA, UA and 
F1 score are relatively low, due to confusion 
with other classes for numerous reasons, such as 
the forest condition, the built-up area structure, 
the alternation between crops system, the almost 
similar backscatter between classes, but mainly 
time signature confusion.

Permanent vegetation is a class comprising 
grasses and shrubs located in the vicinity of 
permanent watercourses, which allows them 
stability and foliation that are well-developed and 
rich in water. Thus, these plants record a strong 
and stable backscatter similar to the time signature 
of other classes such as avocado trees and built-up 
classes, which explains the low precision of this 
class during classification.

The forest area is characterized by an advanced 
degradation caused by human activities. This 
permits the development of several herbaceous 
species with an annual life cycle linked to the 
presence of rainwater, where they are well 
developed during winter and spring, and disappear 
during summer. These companion plants, therefore, 
record a temporal signature comparable to winter 
crops, which allowed this class to occupy several 
parts of the forest area for most of the proposed 
scenarios. On the other hand, the Laouamra forest 
is heterogeneous since different species of trees 
exist with different densities in different parts. The 

areas where the density is relatively low allow a 
stable backscatter compared to citrus, whereas 
the densest areas give a strong backscatter which 
can be confused with the permanent vegetation, 
built-up, or even railway classes for more than one 
scenario. These confusions are the source of low 
values of PA, UA, and F1-score.

During the field visits in the summertime, several 
fields were considered as uncultivated sandy soil; 
however, the classification results for most of the 
scenarios give low precision values. This is owing 
to the assignment of several fields to the classes of 
winter crops.

The study area is rural and characterized by 
scattered built-ups in most cases, in addition 
to villages being restructured during the 
development of the Loukkos catchment area in the 
70’s of the last century. This gives a heterogeneity 
regarding the behavior of these built-ups with the 
radar waves. Scattered built-ups are most often 
related to trees and crops around houses, which 
causes confusion between the built-up and the 
tree classes. Whereas houses in the restructured 
villages make it possible to have a backscattering 
rebound like that of the built ups in the cities, this 
backscattering is relatively strong and can also 
lead to confusion with classes of dense trees.

The railway class presents a strong and stable 
temporal signature linked to the roughness of 
gravel, which allows the allocation of several 
strong backscatter classes, such as permanent 
vegetation and the forest’s dense areas to this 
class, at the time when the pixels attributed to this 
class are well classified, which explains the high 
values of PA and the low values of UA.

The bare lands show good results of PA, UA, and 
F1-score for all the scenarios using the time series, 
except for the last scenario VH+VV+Texture 
where the accuracy parameters fall following a 
strong confusion with the classes of water and 
winter crops. This could be due to the sensitivity 
of the textural features, which confused between 
the low backscatter values of bare land and water, 
and between the variable backscatter of the annual 
grasses occupying these lands, and the winter 
crops.

From these results, we can deduce that there is a 
link between the backscatter behavior of each class 
and the attribution of classes in the supervised 
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classification with the RF classifier algorithm. 
The classes with distinct temporal profiles and 
separability are rated the highest, while the classes 
with an evolution close to other classes and a weak 
separability give the least satisfactory results. 
With the phenological evolution, crops of the 
same type provide similar temporal information 
on the Sentinel-1 time series image. This allows 
the classification algorithm to assign the same 
values to the analyzed crops. Thus, we conclude 
that the Sentinel-1 time series classification is very 
effective for monitoring crop and high-resolution 
mapping, namely for large fields. However, the 
map resolution decreases when we deal with 
plants with minor height variation or foliation, 
which reveals comparable backscatter.

4. Conclusions

This paper aims to explore the potential of 
Sentinel-1 radar imagery, using time series images 
in different scenarios to monitor type-crops 
and land cover mapping in an agricultural area 
(Laouamra region in the Loukkos Watershed). It 
is a newly applied approach in Morocco. Obtained 
results indicate that the Sentinel-1 dual-polarized 
VV and VH images are suitable for land cover 
high-resolution mapping using SAR images.

To understand the distribution and to supervise 
the classification of different classes in the 
studied area, we undertook a careful analysis of 
the backscattering behavior evolution from the 
extracted profiles on the different images covering 
the study period. This analysis allowed the fine 
discrimination between crop-types showing 
consistent backscatter signal with the phenological 
crop evolution. However, unchanging classes over 
time display stable backscatter signal through the 
analyzed period. This analysis was completed 
by separability and coefficient of variability 
calculation, and the interpretation of different 
scenes and RGB color image compositions of the 
same or different dates. The latter’s have been 
combined with collected data during field visits 
to assign the pre-processing areas for each class 
to obtain a high-resolution land cover map of the 
investigated area.

The use of Sentinel-1 dual-polarized time 
series SAR imagery has demonstrated a strong 
potential for multi-temporal analyses required 

for agricultural fields. Using the RF Classifier 
algorithm to supervise land cover and crop-
types classification we obtain optimal results 
namely for the crops with height PA, UA, and 
F1 score parameters, and generally high values 
of accuracy and the Kappa coefficient (75.19% 
and 0.73) respectively. This results in a strong 
discrimination monitoring of fine supervised 
classification allowing a reliable land cover and 
crop-types high-resolution mapping for the best-
used scenario.

We can therefore confirm the suitability of the 
multi-temporal monitoring and long-term analysis 
of crop-types approach used in this work, and 
generally the use of new technologies such as 
spatial data for other agricultural fields in Morocco 
that aims to improve crop-types monitoring and 
high-resolution mapping techniques, facilitated 
by the availability of open access sentinel-1 radar 
images with an exceptional temporal resolution of 
6 days.

The new technologies of remote sensing that deals 
with the classification of confusing classes needs 
to be enhanced by testing the usefulness of other 
scenarios in future works through combining 
polarimetric data with multi-temporal optical data 
or by using Normalized Difference Vegetation 
Index (NDVI) optical data.
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