Inference and Learning
with Planning Models

by

Diego Aineto Garcia

Departamento de Sistemas Informaticos y Computacion

Universitat Politecnica de Valéncia

A thesis submitted for the degree of

Titulo de Doctor por la Universitat Politecnica de Valencia

Under the supervision of:

Eva Onaindia de la Rivaherrera

Sergio Jiménez Celorrio

June 2022



ABSTRACT

Inference and learning are the acts of reasoning about some collected evidence in
order to reach a logical conclusion regarding the process that originated it. In the context
of a state-space model, inference and learning are usually concerned with explaining an
agent’s past behaviour, predicting its future actions or identifying its model. In this thesis,
we present a framework for inference and learning in the state-space model underlying
the classical planning model, and formulate a palette of inference and learning problems
under this unifying umbrella. We also develop effective planning-based approaches to
solve these problems using off-the-shelf, state-of-the-art planning algorithms. We will
show that several core inference and learning problems that previous research has treated
as disconnected can be formulated in a cohesive way and solved following homogeneous
procedures using the proposed framework. Further, our work opens the way for new
applications of planning technology as it highlights the features that make the state-space
model of classical planning different from other models.



RESUMEN

Inferencia y aprendizaje son los actos de razonar sobre evidencia recogida con el fin
de alcanzar conclusiones légicas sobre el proceso que la origind. En el contexto de un
modelo de espacio de estados, inferencia y aprendizaje se refieren normalmente a ex-
plicar el comportamiento pasado de un agente, predecir sus acciones futuras, o identi-
ficar su modelo. En esta tesis, presentamos un marco para inferencia y aprendizaje en
el modelo de espacio de estados subyacente al modelo de planificacion clasica, y formu-
lamos una paleta de problemas de inferencia y aprendizaje bajo este paraguas unificador.
También desarrollamos métodos efectivos basados en planificacién que nos permiten re-
solver estos problemas utilizando algoritmos de planificacion genéricos del estado del
arte. Mostraremos que un gran nimero de problemas de inferencia y aprendizaje claves
que han sido tratados como desconectados se pueden formular de forma cohesiva y re-
solver siguiendo procedimientos homogéneos usando nuestro marco. Ademads, nuestro
trabajo abre las puertas a nuevas aplicaciones para tecnologia de planificacion ya que re-
salta las caracteristicas que hacen que el modelo de espacio de estados de planificacion
clasica sea diferente a los demds modelos.



RESUM

Inferéncia i aprenentatge son els actes de raonar sobre evideéncia arreplegada a fi
d’aconseguir conclusions logiques sobre el procés que la va originar. En el context d’un
model d’espai d’estats, inferencia i aprenentatge es referixen normalment a explicar el
comportament passat d’un agent, predir les seues accions futures, o identificar el seu
model. En esta tesi, presentem un marc per a inferéncia i aprenentatge en el model d’espai
d’estats subjacent al model de planificacié classica, i formulem una paleta de problemes
d’inferencia 1 aprenentatge davall este paraigua unificador. També desenrotllem metodes
efectius basats en planificacié que ens permeten resoldre estos problemes utilitzant al-
goritmes de planificacié generics de 1’estat de 1’art. Mostrarem que un gran nombre de
problemes d’inferéncia i aprenentatge claus que han sigut tractats com desconnectats es
poden formular de forma cohesiva i resoldre seguint procediments homogenis usant el
nostre marc. A més, el nostre treball obri les portes a noves aplicacions per a tecnologia
de planificaci6 ja que ressalta les caracteristiques que fan que el model d’espai d’estats de
planificaci6 classica siga diferent dels altres models.



ACKNOWLEDGEMENTS

I have thoroughly enjoyed myself throughout my PhD studies and I consider myself
extremely lucky for it. Nonetheless, it was the support of the people around me that made
this such a joyous journey so I would like to use this opportunity to thank them.

Let me start by expressing my gratitude to my PhD advisors Eva and Sergio. To Eva,
for her impeccable guidance during my five years under her care, and for providing me
with innumerable opportunities to pave my career as a researcher. And to Sergio, the
liveliest mind I have had the pleasure to meet, always coming up with new problems and
challenges to stimulate my own. I will dearly remember our time together.

I would also like to extend my thanks to my coauthors Miquel Ramirez, Enrico Scala
and Ivan Serina, to whom I am indebted for their scientific support. Their work and
collaboration have positively impacted this thesis and me.

Of course, I owe everything to my parents, who have given their all for me. They have
shed every last drop of sweat for my sake, often at the cost of their own health. I do not
think I will ever be able to repay them for all the love they have poured into me, but I will
strive my utmost to make myself worth of such a gift.

Last, all the work developed in this doctoral thesis has been possible thanks to the
FPU16/03184 fellowship that I have enjoyed for the duration of my PhD studies. I have
also been supported by my advisors’ grants TIN2017-88476-C2-1-R, TIN2014-55637-
C2-2-R-AR, and RYC-2015-18009.



CONTENTS

I Introduction

1. INTRODUCTION. . . . . . e e
1.1. Inference and Learning with Planning Models . . . . .. ... ... ... ...
1.2. Overview of contributions. . . . . . . . ... ... ..
1.3. ANoteon Software . . . . . ... .. .. ...
1.4. Declaration of Previous Work. . . . . ... .. ... ... ... L.

1.5. Thesis Outline . . . . . . . . . . . . e e

II Background
2. CLASSICALPLANNING . . . . . . e
2.1. The Classical Planning Problem . . . . . ... ... ... ... ... ......
2.2. The Planning Domain Definition Language . . . . . ... ... ... ......
2.2.1. The Strips Fragmentof PDDL . . . . . . .. ... ... ... ........
2.2.2. Conditional Effects. . . . . ... ... ... ... ... .
2.3. Complexity of Strips Planning . . . . . ... ... ... .. ... . ... ...
2.4. Main Approaches to Classical Planning . . . . . ... ... ... ........
2.4.1. Classical Planning as Heuristic Search. . . . .. ... ... ... ......
2.4.2. Classical Planning as Propositional Satisfiability . . . . ... ... ... ..
2.5. Planning with Temporally Extended Goals . . . . . ... ... .. ... ....

2.6. Planning with Sensing . . . . . . . . . .. ... L

III The Learning and Inference Framework
3. FRAMEWORK . . . . .
3.1. The Observer . . . . . . . . . e
3.1.1. The Sensor Model . . . . . ... ... ... . ... . ... ...
3.1.2. Deterministic and Non-Deterministic Sensor Models. . . . . ... ... ..

3.1.3. Extending a Sensor Model with Costs . . . . . ... ... ... .......

10
10
12
12
15
16
17
17
18
19
20

22
23
23
23
27
28



3.2. A Theory for Actingand Sensing. . . . . . . ... ... ... ... ... ..., 30

3.2.1. Fundamental Assumptions . . . . . ... ... ... .. ... ... .. 30
3.2.2. The Scope of the Acting-Sensing Integration . . . . . ... ... ...... 32
IV Inference 35
4. OBSERVATION DECODING . . . . . . . .. et 36
4.1. Working Example: Blindspots . . . . .. ... ... .. ... . ... . ... . 36
4.2. The Observation Decoding Problem . . . . . .. ... ... . ... ....... 39
4.3. The Solution of the Observation Decoding Problem . . . . . .. ... ... .. 43
4.4. Observation Decoding as Planning . . . . . . ... ... ... .......... 44
4.4.1. LTL Preliminaries . . . . . . . . . ... ittt e e e 45
4.4.2. A Monitor Automaton for the Observation Sequence. . . . . ... ... .. 46
443. The Compilation . . . . . .. ... ... e 47
4.4.4. Properties of the compilation . . . . ... ... ... ... .. 53
4.4.5. Computing the most likely explanation . . . . . ... ... ... ...... 54
4.4.6. A walk-through of the compilation. . . . . .. ... ... .. ........ 55
4.5. Experimental evaluation. . . . . ... ... ... 58
4.5.1. Evaluation Benchmark. . . . .. ... ... ... ... ..o L. 59
452, Results . . . ... e 60
4.6. Discussion . . . . . ... 61
5. TEMPORAL INFERENCE . . .. .. ... ... ... ... . ... .. 63
5.1. Working Example: Driverlog . . . . . . ... ... ... ... . ... 63
5.2. Hypotheses . . . . . . . . . . e 67
5.3. The Temporal Inference problem. . . . . .. ... .. ... ... .. ...... 69
5.4. Special Classes of Temporal Inference Problems . . . . . ... ... ... ... 71
5.5. The Solution to the Temporal Inference Problem . . . . . ... ... ... ... 74
5.6. Temporal Inference as Planning. . . . . . ... ... ... ... ......... 75
5.7. Experimental evaluation. . . . . . .. ... ... ... .. ... 76
5.7.1. Empirical Results . . . . ... .. ... ... . ... 77
5.8. Discussion . . ... e e 78

vi



6. MODEL RECOGNITION . . . ... ... ... . . e 80

6.1. Working Example: Navigation Strategies . . . . . . .. ... ... ....... 80
6.2. The Model Recognition Problem . . . . . ... ... ... ... ......... 82
6.3. The solution to the Model Recognition Problem . . . ... ... ........ 86
6.4. Recognition of STRiPs Action Models . . . . . ... .. ... ... ... .... 87
6.4.1. Edit costs for STrips schematic actionmodels. . . . .. .. ... ... ... 90
6.5. Model Recognition as planning. . . . . ... ... .. ... ... . ... .. 91
6.5.1. The Alphabet of a STrips Schematic Action Model. . . . . ... ... ... 93
6.5.2. The Compilation . . . . . ... ... ... ... 97
6.6. Experimental Evaluation . . . ... ... ... .......... ... ..... 103
6.6.1. Use Case 1: Recognition of regular automata. . . . . . . ... ... .... 103
6.6.2. Use Case 2: Recognizing Failures in a Non-deterministic Blocksworld. . . 104
6.6.3. Use Case 3: Recognition of Navigation Strategies . . . . . ... ... ... 106
6.7. DISCUSSION . . . . . . .. e e e e e 106
V Learning 108
7. ACTION MODEL LEARNING . . . . . ... ... . 109
7.1. On the Use of Planning for Action Model Learning . . . .. ... ....... 109
7.2. The Action Model Learning Problem . . .. ... ... ... .......... 113
7.3. The Solution to the Action Model Learning Problem. . . . .. ... ... ... 114
7.4. Action Model Learning as Planning . . . . ... ... .. ... ......... 115
7.5. Evaluation of actionmodels. . . . . .. ... ... o Lo 118
7.5.1. Syntactic-based precision and recall for action models. . . . . .. ... .. 119
7.5.2. Semantic-based precision and recall for action models. . . . . .. ... .. 120
7.6. Experimental Evaluation . . .. ... ... ... ... ... . ... . ..., 123
T.6.1. Setup . . . . e 123
7.6.2. Impact of the size of the set of learning examples. . . . . . ... ... ... 124
7.6.3. Comparison with ARMS . . . . . ... ... ... ... ... ... . ..... 128
7.6.4. Learning with minimal input knowledge. . . . . ... ... ... ... ... 129
7.6.5. Syntactic versus semantic evaluation. . . . . . . ... ... 132
T DISCUSSION . . . vttt s e e e e e e e e e 134

vii



VI Conclusions and Future Work 137

8. CONCLUSIONS . . . . e 138
8.1. Summary of Contributions . . . . ... ... ... .. ... ... .. ... ... 138
82. Future work. . . . . . . . 139

BIBLIOGRAPHY. . . . . . 142

viii



3.1

3.2

4.1

4.2
4.3

4.4
4.5
4.6

5.1
52
53
54
5.5

6.1

6.2

6.3

LIST OF FIGURES

Example of a 4 X 4 grid featuring tiles with white and black color, and
smooth and rough texture. . . . . . . . . . . ... ... ... .. ... 24

Bayesian network illustrating the synthesis and sensing assumptions. . . . 31

5% 5 grid used in the Blindspots working example. Open tiles are colored
in white and covered tiles in grey. The arrow depicts a trajectory that
shows the actor agent moving from tile (3, 1) to tiles (3,5). . . . . . . .. 36

Fragment of the HMM representation of the Blindspots working example. 38

Example of an Observation Decoding problem in the Blindspots work-
ing example. The example considers a four-observation sequence w =
(01,02, 03,04) With 0, and 03 being unknown emissions, and two explana-
tions (solid and dotted arrows) that might generate the given observation
SEQUENCE. .+ . v v v v v e e e e e e e e e e e e e e e e e e e 40

Monitor automaton for an observation sequence w = (01, 02,03, 04) Where yy; = @,,,. 47
PDDL implementation of a sensing action following the basic encoding. . 51

PDDL implementation of a sensing action following the encoding with

dead-ends. . . . . . . .. 52
Working example based on the Driverlog domain. . . . . . . . ... ... .. 64
State representation of the situation shown in Figure 5.1 . . . . . . . . .. 65
Representation of the observation of the state shown in Figure 5.1 . . .. 66
A hypothesis interleaving observations (blue) and conjectures (red). . . . 68
Special classes of Temporal inference problems . . . . . ... ... ... 72

Example of navigation strategy. (Left) Automata to control that the actor
is allowed to increments its x-coordinate in mode m, and decrease it in
mode m;. (Right) Actor navigatinga 6 x6grid. . . . ... ... ..... 80

Another example of navigation strategy. (Left) Automata to control that
the actor is allowed to decrease its x-coordinate in mode m, and increment
it in mode m;. (Right) Actor navigatinga 6 X6 grid. . .. ... ..... 81

(Left) Example of initial situation and 5-observations sequence in the nav-
igation strategies working example. (Right) Best explanation computed

X



6.4

6.5

6.6

6.7
6.8

6.9

6.10
6.11
6.12

6.13
6.14

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

(Left) Another example of initial situation and 5-observations sequence
in the navigation strategies working example. (Right) Best explanation
computed with actionmodel ML, . . . . . . ... ... 85

Representation in the Strips fragment of PDDL of the operators of Mf

(left) and Mﬁ (right) from the navigation strategy working example. . . . 89
move(vy, v,) operator represented in the Strips fragment of PDDL (Left)

and its alphabet (Right). . . ... ... ... .. .. .. .. ... ..., 92
Structure of a solution plan for the compiled problem Py (w). . . . . . . 92

Alphabet of STriPs operator m®-inc-x(vy, v,) from schematic action model
Mf of the navigation strategies working example. . . . . . . .. ... .. 95

Valuation of the alphabet variables that induces the operators m@-inc-

x(vy, vy) from ]\V/If and MaL ......................... 96
Excerpt of a solution plan for the compiled problem )y, (w). . . . . . .. 101
PDDL implementation of an actor action with redefined semantics. . . . . 102
A 4-symbol and 5-state regular automata for recognizing the (abcd)* lan-

guage (g4 is the accepting state). . . . . ... ... ... 103
Accuracy for the recognition of failures in a non-deterministic blocksworld. 105
Classification accuracy for the recognition of navigation strategies. . . . . 107
Example of a solution plan for the compiled problem Py, (£) . . . . . . . 118
Precision and recall when learning from [1-10] learning examples with

FO action sequences and PO state trajectories with 10% observability. . . 126

Computation time when learning from [1-10] learning examples with FO
action sequences and PO state trajectories with 10% observability. . . . . 126

Precision and recall when learning from [1-10] learning examples with
NO action sequences and NO state trajectories. . . . . . . . . . . .. ... 127

Computation time when learning from [1-10] learning examples with NO
action sequences and NO state trajectories. . . . . . . . . . . . . ... .. 127

Precision comparison between FAMA and ARMS for different degrees of

observability. . . . . . . . . .. e 128
Recall comparison between FAMA and ARMS for different degrees of ob-

servability. . . . . . . 129
PDDL encoding of the learned stack operator from the four-operator blocksworld

domain. . . . . . . .. 132



4.1

5.1
5.2

53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3

6.4

7.1
7.2
7.3
7.4

7.5

7.6

LIST OF TABLES

Comparison between ODs and ODy . . . . . . . . ... ... ... ... 60
Hypothesis illustrated in Figure 5.4 . . . . . . . ... ... ... .. ... 69
Example of a 2-observation sequence in the driverlog working example

that assumes a single observable variable city_trk. . . ... .. .. .. 69
Hypothesis of Example 1. . . . . . . . .. ... ... ... ... .... 70
Hypothesis of Example 2. . . . . . . .. ... ... ... ... ... ... 70

Example of a two-observation sequence in the driverlog working example. 72

Example of hypotheses in a monitoring TIP. . . . . . .. ... ... ... 73
Example of hypotheses in a hindsight TIP. . . . . .. ... ... ... .. 73
Example of hypotheses in a prediction TIP. . . . . . ... ... .. ... 74

Results for Temporal inference problems of monitoring, hindsight, and
prediction in five different domains and for three different levels of ob-
servability. . . . . . . L 77

Applicability (App) and effects (Eff) constraints of the M® action model. . 82
Applicability (App) and effects (Eff) constraints of the M~ action model. . 82

Interpretation of the truth values of Boolean variables (name, pre, X) and

(name,eff,X) . . . .. 94
Confusion matrix for regular automata recognition. . . . . ... ... .. 104
Characteristics of action-model learning approaches . . . . . . . . .. .. 111
Evaluation of action models (GTM: ground-truth model) . . . . . .. .. 119
Feature description of the domains used in the experiments. . . . . . . . . .. 124

Precision and recall scores for learning tasks with FO action sequences and PO

state trajectories with 10% observability. . . . . . . . . . . .. ... ... .. 130

Precision and recall when learning with PO action sequences and PO state tra-

jectories, 30% observability inbothcases. . . . . . . . .. ... .. .. ... 131

Precision and recall scores for learning tasks with NO action sequences and NO

state trajeCtories. . . . . v . . . a e e e e e e e e e e e e e e e e e 132

xi



7.7

7.8

Syntactic and semantic scores when learning with FO action sequences and PO

state trajectories with 10% observability. . . . . . . . . . . . . .. ... ...

Syntactic and semantic metric scores for learning tasks with NO action sequences

and NO state trajectories. . . . . . . . . . . ..o e e e

xii



Part 1

Introduction



1. INTRODUCTION

1.1. Inference and Learning with Planning Models

Inference is the process of reaching a conclusion on the basis of evidence and reasoning.
In general, inference problems are concerned with the explanation of past happenings or
the prediction of future events. We can find examples of both in the research developed
by the planning community, which has shown increasing interest in inference problems
in recent years. For instance, planning has been used to address the problems of finding
explanations for observed behavior (Davis-Mendelow et al., ), Diagnosis (Sohrabi et
al., ), and Goal Recognition (Ramirez & Geftner, ; Sukthankar et al., ). The
above works lead to a natural distinction between inference tasks devoted to explicability
and predictability (Chakraborti et al., ).

An issue that grabs our attention when we explore the literature is that, despite all shar-
ing a common underlying computational core with planning, these inference problems are
formulated in very different ways and using different formalism. Finding preferred expla-
nations for observed behavior has been formulated with Linear Temporal Logic (LTL)
(Sohrabi et al., ). Situation calculus (Sohrabi et al., ) and event-based languages
(Grastien et al., ; Haslum & Grastien, ) are commonly used to capture the evo-
lution of the system. Recognition problems have also been addressed from different per-
spectives: with planning-based formulations (E-Martin et al., ; Ramirez & Geftner,

; Sohrabi et al., ), with heuristics (Pereira et al., ) or adopting changes in
the agent model to enhance the recognition problem (Keren et al., ). This lack of ho-
mogeneity is in stark contrast with the formulation of inference problems that we can find
in sequential models such as Markov Decision Processes (MDPs) and Hidden Markov
Models (HMMs), as well as other graphical models such as Bayesian Networks (BN).

Another issue that plagues these approaches is a very constrained understanding of
the observation model that defines the partial information received by the observer. In
general, little attention has been paid to formalizing the observation model of the ob-
server, and most works adopt a simplistic view that disregards how the observations are
produced. The approach by Ramirez and Geflner, assumes a deterministic sensor
and partial observations solely over the executed actions of the actor. The work by Keren
et al., deals with noisy (non-deterministic) sensor models that emit one among sev-
eral observable tokens but these are likewise only over actions. Exceptionally, extending
observations to handle noise over state variables and actions is proposed in Sohrabi et al.,

but this formulation is also constrained to a single element per observation. Addi-
tionally, all the cited approaches ignore the distribution of the observations, thus assuming
all observations are uniformly distributed.

In this doctoral dissertation, we aim at addressing these two issues. Regarding the



lack of homogeneity, we argue that it is caused by the commonly accepted notion that a
planning model is simply a technique to solve a specific inference problem, rather than
a state-space model over which a palette of different inference (and learning) problems
can be formulated naturally. Briefly, a state-space model is a discrete-time, dynamic
model consisting of a transition model that describes the evolution of the actor state, and
an observation model that describes how the observer perceives the actor state at each
time step. Indeed, when we look at MDPs, HMMs and BNs, the inference problems are
formulated with respect to their underlying state-space models and solved with algorithms
that exploit their structures, resulting in a much more cohesive view. In that regard, we
believe that the model-based approach to Goal Recognition presented in (Ramirez &
Geffner, ) set the foundations for a unifying formulation of inference with planning
models, since this work showed that predicting the goals and plans of an actor agent can be
formulated with respect to the state-space model underlying the classical planning model
and solved using a planner.

The main contribution of this PhD thesis is a novel framework for inference and learn-
ing problems formulated over the state-space model underlying the classical planning
model, which allows us to formulate several inference problems in a cohesive way and
to apply straightforward the last advances developed by the latest off-the-shelf planners.
The state-space model of classical planning and the inference problems formulated on it
present a few particularities that make for an interesting case study when compared to
the other models such as HMMs and BNs. For starters, classical planning uses as a fac-
tored (and usually first-order) representation of the transition model that compactly
generalizes to a family of (possibly infinite) different state-space models depending on
the number of objects and their identity. The size of the state space described by such rep-
resentations is exponential in the number of state variables and, generally, cannot be enu-
merated. Another difference is that the classical planning model is cost-driven instead of
stochastic, so the best solution is commonly associated to a lower cost rather than a higher
probability. Last, but not least, is what we consider to be the most important difference,
intermittency of the observation model, meaning that not every state/action traversed is
observed. This gives rise to a scenario where the length of the true trajectory that gener-
ated the observations is unbounded as the number of lost observations is unknown. This is
something that we cannot find in other state-space models where the inference algorithms
require a known horizon for the trajectory. This last difference is not inherent to the state-
space model of classical planning but rather enabled by its native solvers (planners) that
are capable of finding paths of unbounded length. Our framework also incorporates a rich
observation model that supports deterministic and non-deterministic sensors as well as a
broader range of observations to fit the needs of the problem at hand. The observation
model allows us to follow a model-based approach to check whether a sensor reading is
possible with the given sensor model. In summary, our novel framework integrates plan-
ning (synthesis of unbounded sequences) with inference and learning where there may be
gaps of unbounded length between the collected observations.



Using this framework as an unifying umbrella, and over the state-space model defined
by the classical planning model and our observation model, we define three inference
problems concerned with different aspects of the actor. The first one is the Observation
Decoding problem which aims at finding the best explanation (understood as a hidden
state trajectory) to some observed behaviour of the actor. Next, we define the Tempo-
ral Inference problem which generalizes some of the inference problems discussed above
including Diagnosis and Goal Recognition. Temporal Inference is about finding the hy-
pothesis that best fits the observations but hypotheses can refer to any point in time (past,
present or future) and, consequently, this problem can be used to both explain the past and
predict the future. Our last inference problem is the Model Recognition problem which is
concerned with identifying the model of the actor among a set of candidate models.

The advantages of this framework also translate to the learning problem which in plan-
ning is commonly understood as learning the action model (the preconditions and effects
of the operators) that describe the transitions of the observed agent. The primary moti-
vation for learning action models is to solve model-based planning tasks afterwards, but
there exists as well a large variety of planning-related tasks that rely upon the existence of
an action model such as the inference problems discussed above. Action models are also
used in explainable Al planning to form a common basis for communicating with users
and facilitate the generation of transparent and explainable decisions (Fox et al., ) as
well as explanations in terms of the differences with a human mental model (Chakraborti
et al., ). Counterplanning requires a model of the opponent agent in order to rec-
ognize its goals (Pozanco et al., ) and Model Reconciliation aims to conform the
models of two agents with respect to an observation of a plan computed with one of the
two models (Chakraborti et al., ). Additionally, there is common agreement in the
planning community that the unavailability of an adequate domain model is a bottleneck
in the applicability of planning technology to many real-world domains (Kambhampati,

)

Motivated by the difficulty and cost of crafting action models, research in action model
learning has seen huge advances. Since the emergence of pioneer learning systems like
ARMS (Yang et al., ), we have seen systems able to learn action models with quanti-
fiers (Amir & Chang, ;Zhuoet al., ), from noisy actions or noisy states (Mourao
et al., ; Zhuo & Kambhampati, ), from null state information (S. N. Cresswell
etal., ), from incomplete domain models (Zhuo & Kambhampati, ; Zhuo et al.,

) and many more. A limitation shared by all of these approaches is that they are
unable to learn when the learning examples contain gaps (an unknown number of lost
observations). This limitation is, however, easily addressed when the learning problem is
formulated under our framework since support for gapped sequences is naturally provided
by a planner.



1.2. Overview of contributions

In this thesis we develop a framework for inference and learning in the state-space model
given by the classical planning model extended with a rich observation model. Our frame-
work serves as a unifying umbrella that allows a crisp and cohesive formulation of infer-
ence and learning problems and their solutions. Moreover, as discussed above, inference
in the state-space model of classical planning presents some distinguishing and challeng-
ing features that are not found in other state-space models, being the lack of a bounded
horizon solution the most interesting one.

The main contributions of this thesis are then the framework itself, as well as the
inference and learning problems formulated under it:

1. Observation Decoding is the problem concerned with finding the most likely ex-
planation to some observed behaviour. Solving the Observation Decoding problem
presents two challenges: 1) computing the explanations, and ii) a mechanism to rank
explanations that allows us to identify and compute the most likely one. We address
both challenges with a planning-based approach that interprets the observations as
an LTL property. This allows us to compute a Deterministic Finite Automaton
(DFA) that monitors the property that embodies the observations which we com-
pile away into a planning problem. An explanation is any solution to this planning
problem, as the DFA is effectively restricting the possible trajectories of the actor to
those that satisfy the observations. Ranking the explanations is done on the basis of
the cost functions associated to the model of the actor and the observation model.

2. Temporal Inference is a hypothesis-based formulation that generalizes the problem
of estimating the past (e.g., for finding explanations), present (e.g., for diagnosis
and monitoring), or future state (e.g., for prediction and goal recognition) of an
agent based on some observations of its behaviour. We use LTL as a language for
expressing hypotheses, which allows us to specify expressive hypotheses and also
exploit the same ideas used for Observation Decoding. The solution of a Tempo-
ral Inference problem is the most likely hypothesis, which we define as the one
supported by the best explanation following the principles of Inference to the Best
Explanation (Harman, ; Schupbach, ).

3. The goal of Model Recognition is to figure out the model of the actor from a set
of candidate models. The solution is the candidate model more likely to generate
the observation sequence. Our definition of most likely model follows a double
criteria that considers 1) the capacity of the candidate model to explain the ob-
servations, and 2) the modifications required by the model in order to generate an
explanation. Our planning-based approach leverages a novel encoding that allows
representing any STrips action model using a finite set of variables. This encoding
is incorporated into the compilation to planning which allows the planner to make



the necessary modifications to the candidate model and search for an explanation in
a single planning episode.

4. Learning is about estimating the model of the actor from a set of learning examples
so that the resulting model can explain the examples. Our planning-based approach
to learning leverages the same encoding used in Model Recognition which allows
a planner to modify the input model. We will also serialize the learning examples
into a single sequence so that we can build a monitor DFA for all of them and
compile them away. The resulting planning problem will have as solutions plans
that first build the output model and then generates a serialized explanation for all
the learning examples.

1.3. A Note on Software

We make fully available the source code for our planning-based approach at this repos-
itory https://github.com/daineto/meta-planning. The repository also includes most of the
evaluation scripts and the benchmarks used to generate our experimental data.

1.4. Declaration of Previous Work

This thesis is based on the following previously published material:

e Diego Aineto, Sergio Jiménez and Eva Onaindia. Learning STRIPS action models
with classical planning. In Proceedings of the 28th International Conference on
Automated Planning and Scheduling (ICAPS-18), pages 399-407. AAALI Press,
2018. [Chapter 7]

e Diego Aineto, Sergio Jiménez, Eva Onaindia and Miquel Ramirez. Model recog-
nition as planning. In Proceedings of the 29th International Conference on Au-
tomated Planning and Scheduling (ICAPS-19), pages 13-21. AAAI Press, 2019.
[Chapter 6]

e Diego Aineto, Sergio Jiménez Celorrio and Eva Onaindia. Learning action models
with minimal observability. In Artificial Intelligence Journal (AlJ), volume 275,
pages 104-137, 2019. [Chapter 7]

e Diego Aineto, Sergio Jiménez Celorrio and Eva Onaindia. Explanation-Based
Learning of Action Models. In Knowledge Engineering Tools and Techniques for
Al Planning, pages 3-20. Springer, 2020. [Chapter 7]

e Diego Aineto, Sergio Jiménez and Eva Onaindia. Observation decoding with sensor
models: Recognition tasks via classical planning. In Proceedings of the 30th In-
ternational Conference on Automated Planning and Scheduling (ICAPS-20), pages
11-19. AAAI Press, 2020. [Chapter 4].



e Diego Aineto, Sergio Jiménez and Eva Onaindia. Generalized Temporal Inference
via Planning. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning (KR-2021), pages 22-31. AAAI Press,
2021. [Chapter 5].

e Diego Aineto, Sergio Jiménez and Eva Onaindia. A comprehensive framework for

learning declarative action models. In Journal of Artificial Intelligence Research
(JAIR), volume 74, pages 1091-1123, 2022. [Chapter 7]

Additionally, the Observation Decoding problem presented in Chapter 4 has been re-
cently extended in the following publication:

e Diego Aineto, Eva Onaindia, Miquel Ramirez, Enrico Scala and Ivan Serina. Ex-
plaining the Behaviour of Hybrid Systems with PDDL+ Planning. In Proceed-
ings of the 31st International Joint Conference on Artificial Intelligence (IJCAI-22),
2022 (accepted).

1.5. Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 covers the necessary
background on classical planning. The chapter starts by providing a formal account of the
classical planning problem and its semantics, as well as of the planning languages. We
will also describe the most relevant approaches to solve classical planning problems and
briefly present the main ideas of some extensions that are relevant to this thesis.

In Chapter 3 we present our framework for inference and learning. The chapter pro-
vides a thorough formalization of the model of the observer, a clear description of funda-
mental assumptions that shape our framework, and a brief introduction to the inference
and learning problems that will be developed in later chapters.

Chapters 4, 5, and 6 are dedicated, respectively, to Observation Decoding, Temporal
Inference, and Model Recognition, and all follow the same structure. These chapters start
with a working example that serves to illustrate the problem and aid explanations. Fol-
lowing, a formal definition of the problem and its solution is provided and extensively
justified. Afterwards, we present our planning-based approach to address the problem
which usually entails compiling some elements of the inference problem (like the obser-
vations) away into one or more classical planning problems. Finally, we experimentally
evaluate our approach and briefly discuss some related topics and works.

The learning problem is presented in Chapter 7 and its structure is not all that different
from the previous chapters. The main difference is that instead of a working example, we
start the chapter with a quick discussion of the state-of-the-art and motivating the use of
planning for learning.



Finally, we conclude with Chapter 8 providing a summary of contributions and results,
and outlining open challenges and future lines of research related to this thesis.



Part 11

Background



2. CLASSICAL PLANNING

In this chapter, we will introduce the basic definitions of classical planning that will
be used throughout the manuscript as well as an overview of the main approaches and
topics of classical planning most closely related to this contribution.

2.1. The Classical Planning Problem

Classical planning is the problem of finding a sequence of actions that starting from an
initial state reaches a goal state. In classical planning the initial state is fully known and the
effects of actions are deterministic. Classical planning can be understood as a path-finding
problem in the directed graph whose nodes represents states and whose edges represent
actions. Following we formalize all the components of a classical planning problem and
the underlying finite state model.

Let X = {x;,..., x;} be a finite set of state variables, where each x € X is associated
with a finite domain D(x). A valuation is a function v : X — D(X) from X to a particular
set of values in the domain D(X)'. Additionally, given a valuation v and Z C X we define
vz : Z — D(X) by vz(x) = v(x) for every x € Z.

Definition 1 (Constraint). A constraint over X is a pair {(Z,R) where Z C X is a subset
of k variables and R is a k-ary relation on the domains of the variables Z. We denote by
Constr(X) the class of constraints over the set of variables X.

Definition 2. Given a valuation v : X — D(X) and a constraint ¢ = (Z, R) belonging to
Constr(X), we write v = ¢ and say that v satisfies ¢, if vz € R.

Let us illustrate Definitions 1 and 2 with a small example that assumes the set of
variables X = {xj, x», x3} with domain D(X) = {a, b}. As a constraint let us use "x; # x3"
expressed by ¢ = (Z,R) where Z = {x1, x3} and R = {(a, b), (b, a)}. Given the valuations
v = (a,b,b) and v" = (b, a,b), we say that v satisfies ¢ but v’ does not. This is because
vz = (a,b) is in R while v/, = (b, b) is not.

Definition 3 (Planning Problem). A planning problem is a tuple P = (X, A, App, Eff, 59, G)
where:

o X ={xi,...,x;} is a finite set of multivalued variables,
e A is a finite set of actions,

e App : A — Constr(X) is the applicability constraint and it describes the condition
in terms of variables in X that allow an action to be executed.

IFor ease of notation, we will sometimes assume that all state variables X share the same domain D(X)

10



o Eff : A — Constr(X U X™) with X* = {x{,...,x[} is the effects constraint. The
variables in X* refer to the updated values of the state variables after the execution
of an action. The effects constraint describes changes in variables in X* in terms of

variables in X.
e 50 : X — D(X) is the known initial state.

e G € Constr(X) is the goal condition.

We note that this definition of planning problem implicitly defines a state s as a valu-
ation over X, that is, s : X — D(X). The value of a state variable x € X in a state s is then
given by s(x). Additionally, we refer by action model to the part of a planning problem
that abstracts the initial situation and goal condition.

Definition 4 (Action model). Given a planning problem P = (X, A, App, Eff, so, G), its
action model is the tuple M, = (X, A, App, Eff).

The definitions above only define the components of a planning problem, but not
the behaviour of the system that they describe. Following we define the semantics of a
planning problem as a state-space model.

Definition 5 (Semantics of a Planning Problem). The semantics of a planning problem
P = (X, A, App, Eff, so, G) is the state-space model S(P) = (S, so,S g, A, f) where:

o S ={s|s€ D(X)X}is the finite and discrete state space?,

e 50 € S is the known initial state,

Sc =1{s €S |skE G}is the set of goal states,

A is the set of actions,

and f : S X A — S is the deterministic transition function where s’ = f(a,s) is
the state that follows s after executing a € A and it holds that s = App(a) and

(s, ") E Eff(a).

A plan in the state model S(P) is a finite sequence of actions 7 = (ay,...,a,) that
generates the state trajectory 7 = (o, ..., s,) such that for alli € {1,...,n}s; = f(s;i_1,a)).
We define the state reached after the execution of a plan recursively as follows:

solm] = f(f(... f(f(s0,a1),a2)...),ay)

Similarly, we define the trajectory generated by a plan as:

soll7] = (so, solmi:1], solmi2l, - .., solm])

2The notation D(X)¥ in set theory refers to the class of functions s : X — D(X), i.e., the set of all
valuations over X.

11



We denote by TI(M,, so) (resp. 7 (M, so)) the set of plans (resp. trajectories) that
can be generated with the action model M, starting from sy. A solution plan is one that
reaches a goal state, i.e., such that s, € S. We denote by I1(M,, s, G) or II(#) the set of
solution plans for a planning problem ¥ and by 7 (M,, sy, G) or 7 (P) the set of trajectories
generated by II(P). Generally, solution plans with lower length || are preferred.

A planning problem may be extended with a cost function ¢ : A — R* that assigns
non-negative costs to the actions of the problem. Plan costs can be computed by accumu-
lating the costs of all actions in the plan.

Definition 6 (Plan cost). The cost of a plan nt = (ay,...,a,) is

n

cost(m) = Z c(a;)
i=1

When action costs are considered, plans with lower costs are preferred over plans
with higher costs. We say that a solution plan r is optimal if it has minimum cost, i.e,
cost(m) < cost(n’) for all 7’ € T1(#P). Planning without costs can be considered a special
case of planning with costs where all actions have unitary cost, i.e., Ya € A c(a) = 1,
which leads to solution plans with lower length |r| being preferred. Hereafter, we will
assume that planning problems and action models always include a cost function.

2.2. The Planning Domain Definition Language

The most common representation in classical planning uses Boolean state variables that
assert whether a proposition about the world holds in a given state. This representation,
known as Strips (Fikes & Nilsson, ), is the one that has attracted most of the work
in classical planning. More recently, the Planning Domain Definition Language, PDDL
(D. McDermott et al., ) has become the de facto standard to express classical plan-
ning problems, primarily, because it is the language used in the International Planning
Competitions (IPC) (Bacchus, ; Gerevini et al., ; Hoffmann & Edelkamp, ;
Long & Fox, ; Lopez, Celorrio, & Olaya, : D. V. McDermott, ). PDDL is a
relational language with a finite number of predicates, actions, variables and objects used
to represent STRIps problems as well as extensions of Strips. Classical planners ground
predicates and actions by substituting variables for objects to achieve a propositional rep-
resentation like STrips.

In the following, we formalize the Strips fragment of PDDL (D. V. McDermott, )
as well as the extension that considers conditional effects.

2.2.1. The Strirs Fragment of PDDL

Let V be a set of variable symbols and P be a set of predicate symbols such that each
predicate p € P has arity ar(p) € N. We start by defining a schematic state variable as a

12



combination of a predicate and a tuple of variable symbols of the same arity.

Definition 7 (Schematic State Variable). A schematic state variable is of the form x =
plargs) where p € P and args € V¥P. We denote by X(P,V) the class of schematic
variables defined over P and V.

Schematic state variables are useful for the purpose of specifying actions in a rela-
tional way. A relational specification of an action, which we refer to as operator, defines
all its components in terms of a subset of variables from V. A characteristic of STriPs
operators is the closed-world representation via a set of variables that implicitly represent
conjunctive constraints.

Definition 8 (Operator). A STrips operator over V and P is a tuple a = (name, Pars, Pre, Add, Del)

where

e name is the name of the operator,

e Pars C V is a set of parameters,

Pre C X(P, Pars) is the precondition list,

Add C X(P, Pars) is the add list,

Del C X(P, Pars) is the delete list.

STrIPS constraints require that Del C Pre, Del N Add = 0 and Pre N Add = 0.

Grounding 1s the process by which predicates and operators are instantiated using a
set of objects 0. Grounding a predicate results in a propositional state variable.

Definition 9 (State Variable). A state variable is of the form p(args) where p € P and
args € 0" We denote by X(P, O) the class of state variables defined over P and O.

The grounding of an operator @ = (name, Pars, Pre, Add, Del) with a set of objects
args C O, |args| = |Pars|, results in the grounded operator a(args) = (name, args,

Pre(args), Add(args), Del(args)) where all occurrences of the i-th parameter in Pars are
replaced by the i-th argument in args.

A grounded operator a(args) = (name, args, Pre(args), Add(args), Del(args)) can
be seen as an action with structure that encodes action a as well as its applicability App(a)
and effects Eff(a) constraint in the following way:

e [ts name and arguments are used as label or identifier of action a, i.e., a = hame(args).

e The precondition list Pre(args) defines the propositional state variables in X(P, O)
that must be evaluated to T in order for action a to be applicable and encodes the
applicability constraint

App(a) = (Pre(args),{(T,..., T} 2.1

13



e Add (resp. Del) defines the propositional state variables in X(P, O)* that are evalu-
ated to T (resp. L) after the execution of action a. The add and delete lists together
encode the effects constraint

Eff(a) = (Add(args)” U Del(args)*, {(T,..., T, L,..., L)}) 2.2)

Then, the state transition function is defined as f(a, s) = s” such that

T x € Add(args)
s'(x)=41  x e Del(args) (2.3)
s(x) x ¢ Add(args) A x ¢ Del(args)

so that the resulting state s is computed by setting state variables in Add(args) to T,
variables in Del(args) to L, and leaving the rest of variables as they were in s.

Definition 10 (Strirs Planning Problem). A Strips planning problem P = (P,V,0,A, so,G)
consists of

e a finite set P of predicates,

a finite set 'V of schema variables,

a finite set O of objects

a finite set A of operators over V and P

a initial state sy : X(P,0) — {T, L}

a goal condition G € Constr,(X(P, 0))

A Strips planning problem ? = (P, V, O, A, 5o, G) encodes the planning problem P =
(X(P,0),A(A, 0), App, Eff, 59, G) in the following way:

e X(P, O) is the set of propositional state variables obtained by grounding predicates
P with objects O.

e A(A,O) is the set of actions encoded by the grounding of the operators in A with
objects O.

e App is defined for every action in A(A, O) following equation 2.1.
e Eff is defined for every action in A(A, O) following equation 2.2.
e 5 is a valuation over the propositional state variables X (P, O).

e G is a constraint over the propositional state variables X(P, O).

14



As we did for a classical planning problem, we refer to the part of a STrips problem
that abstracts the situation and goals as schematic action model and denote it by M, =
(P,V,A).

The PDDL specification (Fox & Long, ; D. V. McDermott, ) describes a
number of extensions including those involving negated fluents, conditional effects and
disjunctive and quantified (existential or universal) preconditions and effects. These ex-
tensions can be compiled into the present formulation of a STrips planning problem and,
in fact, most of the state-of-the-art planners support such extensions either natively or
through compilations.

2.2.2. Conditional Effects

Conditional effects are fundamental to the formulation of the problems described in this
thesis so we will formalize them. Conditional effects extend the expressiveness of STRIPS
by allowing to describe the state variables X* of a successor state in terms of the current
state variables X. While conditional effects can be compiled away into regular STrIPs
the cost of such compilation is an exponential blow up in the size of the problem or a
polynomial increase in the plan length (Nebel, ; Rintanen, ). Consequently,
classical planners that natively support conditional effects perform better than those that
compile them away.

Definition 11 (Conditional effect). A conditional effect over predicates P and schema
variables V is a tuple ce = (CPre, CAdd, CDel) where CPre, CAdd, CDel are subsets of
X(P, V).

CPre? defines the condition which is required to be true in order to trigger the effects
described by CAdd and CDel.

Definition 12 (Operator with conditional effects). An operator with conditional effects

over predicates P and variable symbols V is a tuple
a = (name, Pars, Pre, Add, Del, CE)

where name, Pars, Pre, Add, Del are as defined in Definition 8 and CE is a set of condi-
tional effects over P and Pars.

Let a be the action encoded by the grounded operator a(args) = (name, args, Pre(args),
Add(args), Del(args), CE(args)). We denote by Trigger(s,a) the subset of conditional
effects triggered by the execution of a in s

Trigger(s,a) = {ce(args) € CE(args) | s E (cpre(ce(args)),{{T,..., TP}

3The conditional effects extension of PDDL also allows defining CPre as a universally quantified for-
mula

15



where function cpre returns the component CPre of the given conditional effect.
Then, the transition function of equation 2.3 is now defined as

T x € Adds(s, a)
sS'(x)=31 x € Dels(s,a) (2.4)
s(x) x €& Adds(s,a) A x ¢ Dels(s,a)

where Adds(s, a) is the subset of state variables that are evaluated to T after the exe-
cution of a in s

Adds(s,a) = Add(args) U U cadd(ce(args))

ce(args)eTrigger(s,a)

and Dels(s, a) is the set of state variables that are evaluated to L after the execution of

ain s

Dels(s,a) = Del(args) U U cdel(ce(args))
ce(args)eTrigger(s,a)

where functions cadd and cdel return respectively the components CAdd and CDel of
a given conditional effect.

2.3. Complexity of Strips Planning

The two decision problems related to classical planning are 1) PlanEx concerned with
the complexity of finding a plan reaching a goal state, and 2) P1lanCost concerned with
the complexity of finding solution plans below a given cost.

Definition 13 (P1anEx). Given a classical planning problem P, PlanEx(P) is the decision
problem defined by the question

Does a solution plan n for P exist?

Definition 14 (PlanCost). Given a classical planning problem P and a constant k € R,
PlanCost(P, k) is the decision problem defined by the question

Does a solution plan r for P with cost(rr) < k exist?

Following the characterization of the complexity of classical planning problem in the
StrIPS representation created by Bylander ( ), both decision problems are PSPACE-
complete, that is, the class of problems that can be solved in polynomial space with no
restrictions on running time. These complexity results, however, are at odds with the prac-
tical results of planning where problems that have been shown to be in NP and even in P

16



are commonly used as benchmarks (Helmert, , ). More recently, (Bickstrom &
Jonsson, ) narrows the gap between theory and practice by introducing new methods
for complexity analysis of planning that seek to provide more precision and complexity
separations than previous methods allowed.

2.4. Main Approaches to Classical Planning

This section reviews the state-of-the-art approaches to classical planning developed in
recent years, namely, heuristic search and propositional satisfiability.

2.4.1. Classical Planning as Heuristic Search

A solution plan for a classical planning problem % can be seen as a path in the state space
model S(P) whose nodes represent states and whose edges represent actions. Standard
graph search algorithms, such as Dijkstra (Cormen et al., ), can be used to find such
solutions. However, blind search algorithms require enumerating the state space, which
is exponential in the number of state variables, making them ineffective.

In contrast, a more successful approach is the use of heuristic search algorithms that
make use of model-based heuristics automatically extracted from the structure of STrips
planning problems. This success is evidenced by the fact that the IPC is dominated by
planners implementing the planning as heuristic search approach (Bonet et al., ;
Helmert, ; Hoffmann & Nebel, ; Lipovetzky & Geffner, ; Richter & West-
phal, ). Heuristics are often computed by solving relaxations of the original problem.
Among the possible relaxations, the delete relaxation which assumes that actions have no
negative effects (empty delete lists) is very prominent in classical planning. Following we
comment on some effective heuristics.

e Max and additive heuristics: The 4,,,, and A, heuristics estimate the cost of a
goal condition by decomposing it into atomic formulas and estimating cost of each
atom independently (Bonet & Geftner, ). Then, the h,,,, heuristic uses the
maximum of such costs, while the /,4, uses the sum of them all. The 4,,,, heuristic
is admissible and can be used to find optimal plans but its practical performance is
lower than h,,, for satisficing planning that only seeks to find a solution plan.

e The FF heuristic: The hpr heuristic uses the length of a relaxed plan, extracted
from the relaxed planning graph (Hoffmann & Nebel, ), as an estimation for
the distance to a goal state.

e /" heuristics: The A" heuristics generalizes h,,,, by assuming that the cost of a
goal G is the cost of the most expensive m-tuple of atoms in G. In practice, the
computation of 4% is too expensive but, if it is only computed in the initial state,

17



it can be useful for optimal planning (Haslum & Geftner, ) and for capturing
mutexes (Blum & Furst, ).

e Landmark heuristics: Landmarks are necessary features of any solution plan
(Hoffmann et al., ) and they can refer to both state variables and actions. Land-
mark heuristics compute the landmarks of a problem in the initial state and then es-
timate the distance from the current state to a goal state as the number of landmarks
that still need to be achieved.

The downside of the heuristic approach is that the search process can get stuck in dead
ends when heuristics fail to identify them. Related to this is the topic of unplannability
(Muise & Lipovetzky, ), that aims to prove that a planning problem is unsolvable
and has direct applications for the recognition of dead ends.

We conclude this section with a brief description of the two heuristic planners used in
this thesis: FF (Hoffmann & Nebel, ) and Fast Downward (Helmert, ). The FF
planner uses the hgr heuristic extracted from the relaxed plan as well as the relaxed plan
itself. First, FF implements an incomplete but very effective greedy search that only con-
siders actions of the relaxed plan. Then, if it fails to find a solution, it launches a complete
Greedy Best First Search guided by the Agp heuristic. The Fast Downward planner im-
plements several advanced techniques such as multi-queue search for combining different
heuristics, helpful actions (preferred operators), and anytime search for improving plan
quality. Nowadays, Fast Downward has become an extensible planning framework that
offers a large quantity of search methods and heuristics over which it is easy to develop
new techniques and heuristics.

2.4.2. Classical Planning as Propositional Satisfiability

The planning as propositional satisfiability approach (Kautz & Selman, , ) maps
a planning problem % into a propositional formula C(#, N) that encodes all solution plans
for # of up to N time steps. Then, the problem of finding a solution plan for # can be
solved by progressively increasing N until a model of C(#, N), representing a solution
plan  of N time steps, is found. In contrast, if no model is found, it can be said that
the problem is unsolvable at that horizon. We note that the length of the solution plan |x|
may be greater than N as a single time step may involve the parallel execution of multiple
actions.

The formula C(P, N) uses propositional variables annotated with a temporal index
in 0,..., N to represent both the state variables and actions of ¥ at a given time step.
C(P, N) is a propositional formula in Conjunctive Normal Form (CNF), represented as
a set of clauses. Clauses are used to represent the initial state and goal conditions of a
planning problem P as well as the applicability and effects constraints of the set of actions.
Additional clauses are defined to preserve the value of state variables not modified by an
action and to forbid the parallel execution of incompatible actions.

18



With the recent advances in the area of propositional satisfiability, state-of-the-art SAT
solvers are now able to deal with thousands of variables and hundreds of thousands of
clauses. As a result, planning as SAT has become feasible and can be considered a com-
pelling alternative to the planning as heuristic search approach. In particular, planning
as SAT is a competitive approach for optimal classical planning even though such ap-
proaches minimize the parallel length, makespan, instead of the number of actions in the
plan. Moreover, it is well known that the SAT approach outperforms heuristic search in
domains with large dead-ends (Hoffmann et al., ).

In this thesis we use the SAT-based planner Madagascar (Rintanen, ) that imple-
ment several refinements that improve the performance of planning as SAT. In particular,
Madagascar uses a heuristic for variable selection in the SAT solver, an improved planning
horizon search and better memory management.

As closing thoughts we highlight some limitations that affect both the heuristic search
and SAT approach. The first limitation has to do with the ground representation of a
planning problem as it can sometimes become a bottleneck if the grounding is too large to
compute without running out of memory. To address this issue, recent investigations work
on the computation of heuristics directly from the lifted representation of the problem
(Corréaet al., ). Another line of investigation to overcome the limitation of searching
in huge state spaces is generalized planning, which proposes to search in compact solution
spaces such as programs or policies (Aguas et al., ).

2.5. Planning with Temporally Extended Goals

Classical planning is the simplest model for automated planning that makes many assump-
tions. More expressive planning models, such as non-deterministic planning, temporal
planning, or planning with temporally extended goals (TEGs), relax these assumptions.
Among these models, planning with TEGs is of special interest in the context of this thesis
because, as we will show in Chapter 4, observations of an actor agent can be assimilated
to TEGs.

In planning, a goal is traditionally understood as a property that a final state must
satisfy. Temporally extended goals (TEGs) extend this notion to express properties that
must hold over intermediate and/or final states of the trajectory generated by a solution
plan. In other words, TEGs describe the desired qualities of a solution instead of qualities
of the state reached by a solution. TEGs are compelling because many real-world planning
problems involve complex goals such as achieving subgoals following some order, safety
and liveness constraints, and deadlines. This has led to TEGs being commonly expressed
with rich logical languages such as Linear Temporal Logic (LTL) (Pnueli, ).

Planning with LTL goals has been addressed by using blind search on a search space
that is constantly being pruned via goal progression (Bacchus & Kabanza, ; Kvarn-
strom & Doherty, ). Another line of research advocates for a compilation-based

19



approach that translates a planning problem with an LTL goal into a classical planning
problem (Baier & Mcllraith, ; S. Cresswell & Coddington, ; Patrizi et al., ;
Rintanen, ). This latter approach generally outperforms the former as it is able to
leverage state-of-the-art classical planning technology.

The compilation-based approach to planning with TEGs involves a double translation
step. First, the LTL formula representing the TEG is translated into an automaton that
accepts state trajectories that satisfy the TEG. Then, the planning problem is augmented
to include the initial location of the automaton as part of the initial state and the accepting
conditions of the automaton as part of the goal condition. The transition system of the
planning problem is similarly augmented to encode the transitions of the automaton.

2.6. Planning with Sensing

A sensing process is often imprecise, either because the information provided by the
observations is partial or because it is incorrect. The discrepancy about the actual state of
the actor and what an observer is able to gather generates uncertainty. One way to deal
with uncertainty, and the one followed in this thesis, is to compile uncertainty away into
a classical planning problem (Albore et al., ; Hoffmann & Brafman, ). There
are, however, other planning models that deal with uncertainty about the current state. We
dedicate this section to briefly discuss planning with sensing and its associated models.

In planning with sensing the true state of the system is not assumed to be fully known.
Instead, sensors are used to obtain partial information about the states. Uncertainty is
represented by sets of states, referred to as beliefs that contain all states consistent with
our partial knowledge of the state. The solution of a planning with sensing problem is a
choice of actions, often expressed as a policy, that ensures that all resulting trajectories
reach a goal belief, that is, a belief state where all the possible states are goal states.

The logical model for planning with sensing is known as contingent planning (Peot &
Smith, ; Pryor & Collins, ). Contingent planning extends classical planning by
1) allowing uncertainty in the initial situation and in the transition function, and 2) by the
addition of a sensing model that maps state-action pairs into a set of possible observation.
The observation provides information about the true state of the system as it rules out any
state that does not map into it. A policy that solves a contingent planning problem can be
computed with dynamic programming using the Value Iteration (VI) method (Bellman,

; Bertsekas, ). The problem with VI is that it is an exhaustive method that
considers the full set of belief states which is exponential in the number of variables. An
alternative solution method formulates policies as solutions of an acyclic AND/OR graph
that can be solved by the heuristic method AO* (Bonet & Geffner, ; Bryce et al.,

; Nilsson, ; Pearl, ).

A probabilistic alternative for the planning with sensing problem is given in the form
of Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al., ).

20



POMDPs generalize MDPs by allowing partially observable states and using a proba-
bilistic sensor model that maps the true but possibly hidden state into observations. A
POMDP can be seen as an MDP over belief states where beliefs are now interpreted as
probability distributions over the set of states. As a consequence, the number of belief
states is infinite but policies can still be computed using the VI implementation enabled
by Sondik’s results (Smallwood & Sondik, ).

21



Part 111

The Learning and Inference
Framework

22



3. FRAMEWORK

This chapter presents our main contribution, a framework for inference and learn-
ing where the underlying state-space model is implicitly described by an action model.
The purpose of the proposed framework is to present an unifying umbrella under which
inference and learning problems can be defined and solved following homogeneous pro-
cedures. Our framework integrates a model of action (the actor) that describes the agent,
system or environment being observed, and a model of observation of an agent that ob-
serves what the actor does (the observer). We assume that the behaviour of the actor agent
is governed by an action model that implicitly represents all the possible behaviours that
the actor may follow. Similarly, we assume that the observer perceives the world through
a sensor model that determines the observations that may be captured. Since this is a
framework for inference and learning, the observer is assumed to be a passive agent that
cannot control the actor; the observer’s role is limited to collecting data and using this
data to obtain some knowledge about the actor.

In this chapter, we first introduce the fundamental notions to formalize the sensor
model of the observer, establishing the connection between the sensor model and the
model of action of the actor. Then, we provide a high-level unifying view of the prob-
lems that are approachable with our framework, which will be explained in depth in the
subsequent chapters.

3.1. The Observer

The observer describes the entity whose role is to collect data on the actor and use this data
to answer some questions or ascertain some aspects about the actor. In our framework,
the observer is described through a sensor model that abstracts the actual sensing process.
The sensor model describes the information that a sensor is able to provide and how
this information is limited by the environment. Consequently, while the collected data
stem from a state of the actor, the information of such actor’s state that the sensor model
actually conveys is partial and possibly noisy. Following, we formalize the sensor model
and its components.

3.1.1. The Sensor Model

First, we define the observable variables of the observer as a set Y = {y,...,y;}, where
each y € Y is associated with a finite domain D(y). The set of observable variables is
disjoint from the state variable of the actor (X N'Y = 0) and allows us to introduce a
second level of representation. In this way, observable variables can be used to represent
features and abstractions that provide partial information about the actor state. Even if in

23



some domains some state variables might be observable, defining X and Y as disjoint sets
allows us to distinguish distinguish between the true state, given by the state variables,
and the perceived state, given by the observable variables. We refer to a valuation over
observable variables as observation.

Definition 15 (Observation). An observation o : Y — D(Y) is a valuation over the ob-
servable variables Y. We will use the notation 0 = (y; = wy,...,Ym = Wy,) when we want

to make explicit the values emitted for each observable variable in an observation.

Consider, for example, the set of observable variables ¥ = {color, texture} with
D(color) = {white,black} and D(texture) = {rough, smooth}. A possible observa-
tion would be 0 = (color = black, texture = rough). Observing the execution of the
actions of the actor’s plan is a common practice in planning-related inference problems.
This is enabled by assuming that the set of state variables X includes a special variable
action with domain D(action) = {v,},c4a Which always takes value action = v, after
the execution of action a.

An observation by itself is not sufficient to infer the state of the actor. It is necessary
to know how state variables and observable variables connect to each other. A sensing
function relates a subset of state variables Z C X to an observable variable y € Y by
defining the constraints over Z that produce an emission w € D(y) for y.

Definition 16 (Sensing Function). Let Z C X be the subset of state variables that de-
termines the value of an observable variable y € Y; a sensing function for y sense, :
Constr(Z) — D(y) maps constraints over Z into observed values in D(y).

Figure 3.1: Example of a 4 X 4 grid featuring tiles with white and black color, and
smooth and rough texture.

Continuing with our previous example assume that the state variables of the actor are
given by the set X = {x_coord, y_coord} with domain D(X) = {1,...,4} representing
the location of the actor in the 4 X 4 grid illustrated in Figure 3.1. We have a sensor for
the observable variable color that emits the value white when the actor is in the left
half-side of the grid and black when it is in the right half-side. Regarding the sensor for
the observable variable texture, it emits the value smooth when the actor is in the top

24



half-side of the grid and rough when it is in the bottom half-side. The sensing function
for color is formally defined as

sense.({x_coord}, ’x_coord < 2”) = white 3.1
sense.({x_coord}, ’x_coord > 3”) = black '

where "x_coord < 2" succinctly represents the relation R = {I1,2}, that is, when
x_coord takes values 1 or 2, and "x_coord > 3" represents the relation R = {3,4},
in which case the variable x_coord takes the values 3 or 4. The sensing function for
texture is similarly formalized as

sense.({y_coord},”y_coord < 2”) = smooth (32)
sense.({y_coord},”y_coord > 3”) = rough '

The domain of a sensing function Dom(sense,) is the set of constraints in Constr(Z)
where sense, is defined. Each constraint ¢ € Dom(sense,) defines a subset S, = {s € S |
s | ¢} of the state space S of the actor where an observed value of variable y can be emit-
ted*. For instance, the constraint @uphie that makes the emission color = white possi-
ble denotes the set of states S .. = {1, 1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}.
Hereinafter, we will denote the constraint that generates the emission y = w by ¢,
(or simply ¢, when it is clear from the context), i.e., ¢}, € Dom(sense,) such that
sense,(¢),) = w.

Definition 17 (Exhaustiveness). We say that a sensing function sense, is exhaustive if it
holds that

s= |J s, (3.3)

peDom(sensey)

Alternatively, sense, is exhaustive if the constraints in Dom(sense,) consider all
possible tuples of values for variables Z, that is,

DX)t = U R (3.4)
(Z,R)eDom(sensey)

where |Z| = k and D(X)* is the Cartesian product of the domains of Z, that is, the set
of all possible tuples of values for Z.

Whatever characterization we follow, the exhaustiveness property guarantees that the
sensing function always emits a value for the observable variable in all the states of the

“For ease of notation we assume that given a value w € D(y), there is a single constraint ¢ € Dom(sense)
such that sense(¢) = w.

25



state space S. We can easily check that, in fact, the sensing functions sense. and sense,
defined in equations 3.1 and 3.2 are exhaustive. For instance, let @ynite and @pack be
the constraints that emit respectively color = white and color = black as defined in
equation 3.1. Following the characterization of exhaustiveness of equation 3.3 we have

S e = (1, 1),(1,2),(1,3),{1,4),(2,1),(2,2),(2, 3),(2,4)}

(3.5)
S gnase = 103, 1),(3,2),(3,3),(3,4),(4, 1), (4,2),(4,3), (4, 4)}

and the union S, U S

characterization of equation 3.4, let Rynie = {1,2} be the relation of @yhite and Ryjack =

onaee d0€s indeed result in the complete state space S. For the

{3, 4} the relation of @pack- Since Z = {x_coord} we have that

{17 2, 3’ 4}1 = Rwhite U Rblack

which indeed holds.

Finally, we are ready to define the sensor model, which relates the state variables
of the actor X with the observable variables of the observer Y by including one sensing
function for each observable variable.

Definition 18 (Sensor Model). A sensor model is a tuple My = (X, Y, Sense) where:

o X ={xi,...,x;} are the state variables of the acting agent,
o Y ={y,...,y} are the observable variables of the observer agent,
e Sense = {sensey,...,sense,} is a set of exhaustive sensing functions for observ-

able variables Y.

Considering the idea that an emitted value of an observable variable defines a con-
straint that limits the number of states where the emission is feasible, we state that an
observation defines a set of constraints where each constraint is associated to a different
observable variable. More specifically, an observation o = (y; = wy,...,y; = w;) defines
the set of constraints

D, ={g) |1<i<l} (3.6)

where |Y| = [ and ¢,;, € Dom(sense,,) is the constraint such that sense,,(¢,,) = w;i. A
state can generate an observation o only if it satisfies all the constraints in @,,.

Definition 19. We say that a state s accepts an observation o if s = ¢ for all ¢ € ©,.

26



The set of states that satisfies all constraints in ®, and, therefore, accepts the observa-
tion o is given by the intersection of the sets that satisfy each constraint

So=1{") 5,

ped,

Let us go back to our example to illustrate this, using the sensor model M = (X, Y, Sense)
given by:

e X ={x coord,y_coord}
e Y ={color, texture}

e Sense = {sense., sense;}

Consider next the observation o = (color = black, texture = rough) that defines
the set of constraints @, = {@p1ack, Prougn}- Recall that ¢p1acx = ({Xx_coord}, x_coord > 3)
constrains the emission of the value black to the right half-side of the grid, and ¢rougn =
{{y_coord}, y_coord > 3) constrains the emission of the value rough to the bottom half-
side of the grid, so the set of states defined by these constraints is:

S ena = 1(3,1),3,2),(3,3),(3,4),(4,1),(4,2),{4,3), (4. 4)}
S groun = 1(1,3),42,3),(3,3),(4,3),(1,4),(2,4),(3,4),(4,4)}

Then, the set of states that accept the observation 0 = (color = black, texture = rough)
is

So=S§ NS

— * Pplack

=1(3,3),¢4,3).(3,4), <4, 4)}

Prough

which represents the bottom-right quadrant of the grid.

3.1.2. Deterministic and Non-Deterministic Sensor Models

A deterministic sensor model is one that, given a state, always emits the same observa-
tion. In contrast, a non-deterministic sensor model may emit different observations from
the same state. Our definition of sensor model (and by extension our framework) is gen-
eral and allows the representation of non-deterministic sensor models. Nevertheless, it is
convenient to be able to distinguish a deterministic sensor model from a non-deterministic
one. Next, we define another property of interest to sensing functions, exclusiveness, that
is useful to characterize deterministic sensor models.

27



Definition 20 (Exclusiveness). We say that a sensing function sense, is exclusive if it
holds that

S,NSy =0, forall p,¢" € Dom(sensey) 3.7

Alternatively, sense is exclusive if all pairs of constraints in Dom(sense,) define
disjoint relations

RNR =0, forall (Z,R),(Z,R’Y € Dom(sense,) (3.8)

The exclusiveness property ensures that, for a given state, the sensing function sense,
of the observable variable y will always generate the same emission since the state will
only satisfy one of the conditions in Dom(sense,). Going back to our example, we can
check that the sensing function sense. of Equation 3.1 is also exclusive, since the sets
S gunie and S
{3,4}.

ovee (EQ. 3.5) are disjoint and so are the relations Rynite = {1, 2} and Ryjack =

A deterministic sensor model is one in which all its sensing functions are exclusive,
and, consequently, it always generates the same observation from a given state. Deter-
ministic sensor models are generally coupled with observable variables that represent ab-
stractions or features of the actor state. Note that, even with a deterministic sensor, there
is still uncertainty about the actor state if observations only convey partial information.
Non-deterministic sensor model are those that contain one or more non-exclusive sensing
function and may, therefore, generate different observations from the same state. Non-
deterministic sensors are generally associated to noise as they can be used to represent
erroneous or spurious readings of a sensor.

3.1.3. Extending a Sensor Model with Costs

Given an observable variable, modeling which value is more likely to be emitted by a
sensor in a non-deterministic setting is particularly interesting. This can be quite helpful,
for instance, in noisy sensors to indicate that emissions with small deviations from the
correct value happen more often. In order to support this feature we introduce the concept

of sensing cost function.

Definition 21 (Sensing Cost Function). Given a sensing function sense, : Constr(Z) —
D(y), a sensing cost function sc, : Constr(X) x D(y) — R* assigns a non-negative cost to

pairs of constraints and emitted values for observable variable Yy.

Given a sensing function sense, and its associated sensing cost function scy, let ¢,
be the constraint such that sense,(¢,,) = w and let Dom,,(sc,) = {{¢,w") | w = w’} be the
subset of the domain of sc that assigns costs to the emitted value w. For the sensing cost
function to be properly defined, we require that

28



Se= | Sy forallwe D() (3.9)

w

(p,wyeDom,,(sc)

S,NSy =0, forall p,¢" € Dom,(scy,) and for all w € D(Y) (3.10)

Equations 3.9 and 3.10 can be seen as the exhaustiveness and exclusiveness properties
subject to the subsets S, C §. Equation 3.9 ensures that a sensing cost is assigned to
every state within S, , while Equation 3.10 ensures that the costs are deterministically
assigned. As long as these properties are respected, the sensing cost function can decom-
pose a constraint ¢,, € Dom(sense,) into a set of constraints Dom,,(sc,), which allows
the sensing cost function to define regions of the state space that assign different costs to
the same emission.

In order to illustrate this, assume that the sensing function sense. now describes a
noisy sensor that can non-deterministically emit white or black from any tile in the
grid, but we have a sensing cost function sc. that assigns a lower sensing cost to white
from the left side than from the right side, and vice-versa for black. Equation 3.9 says
that we can decompose the constraint "the whole board" into "left side" and "right side"
as long as they define the same set of states. Equation 3.10 requires that the constraints
"left side" and "right side" are disjoint so only one cost is assigned. We will show a more
in-depth example of a non-deterministic sensor model with costs in the next chapter.

A sensor model with costs M, = (X, Y, Sense, S C) extends a sensor model with a set
of sensing cost functions SC = {scy,..., s¢;}, each associated to a sensing function. A
sensor model with costs allows us to assign a cost to an observation by accumulating the
costs of each emission.

Definition 22 (Observation Cost). Given a sensor model with costs M, = (X, Y, Sense, S C)
and a state s that accepts the observation o = (y; = wy,...,y; = wy), the cost observing o
from s is

!
ocost(s,0) = Z scy, (o, w;) 3.11)

i=1

where |Y| = l and ¢ € Dom,,(scy,) is the constraint that holds in s.

The observation cost is an score of how likely it is for a state to emit an observation
when observed through a sensor model. Given two observations o and o” accepted by a
state s, we consider o a more likely observation than o’ if ocost(s,0) < ocost(s,0"). In
the absence of sensing cost functions this distinction cannot be made so it is equivalent to
considering the observation costs of all observations accepted by a state as equal. This is
known as fair non-determinsm and it means that all observations accepted by a state are
considered equally likely.

29



3.2. A Theory for Acting and Sensing

Our framework for inference and learning integrates the action model of the actor and the
sensor model of the observer. The result of the integration is a state-space model where
the action model describes how the hidden state of the actor evolves in time, and the
sensor model describes how observations are generated by the true hidden state at each
time step. The state-space model defined by the action model of the actor can no longer be
considered fully observable from the perspective of the observer. Instead, the state of the
actor is considered hidden and only partially observable via the observations generated by
the sensor model.

The inherently sequential data of this state-space model are collected by the observer
in the form of an observation sequence w = (0y,...,0;). Each observation o; of w is
defined as expressed in Definition 15, where index i is an integer that denotes the order of
occurrence of o; in a discrete-time system.

An observation sequence w = (0y, ..., 0,) is emitted by the true trajectory 7 = (so, ..., S,)
which remains hidden to the observer. The sensing process that generates the observation
sequence is assumed to be intermittent, which broadly speaking can be understood as the
actor and the observer being out of sync. More formally, intermittency in the sensing pro-
cess means that the rate of change at which the actor generates new states and the rate at
which the observer samples the states may not be the same. This assumption is generally
interpreted as the observer failing to observe some of the actor’s states which means that
the length of the observation sequence w is lower than the length of the state trajectory
that emitted it, i.e., [w| < |7|. An important implication of intermittency is that it is not
possible to know or even set a bound to the length of the true trajectory that generated an
observation sequence. This is in stark contrast with other state-space models where the
length of the observation sequence denotes the length of the true state trajectory.

In the remainder of this section we first explain the fundamental assumptions that
shape the state-space model of our framework. Afterwards, we discuss the scope of the
acting-sensing integration, that is, the kind of questions that the observer can ask about
the actor with our proposal.

3.2.1. Fundamental Assumptions

Our acting-sensing framework relies upon two fundamental assumptions:

o The synthesis assumption says that the possible ways in which the actor may behave
starting from a known initial situation are governed by its action model.

o The sensing assumption says that the observations that the observer is able to cap-
ture from the behaviour of the actor agent are governed by its sensor model.

30



These two assumptions establish the dependencies between the elements of our frame-
work, namely, an action model M,, a sensor model Mj, an initial state sy, a state trajectory
7 of the actor, and an observation sequence w of the observer. We represent the funda-
mental assumptions of our framework and the resulting dependencies with the Bayesian
network of Figure 3.2. Synthesis refers to the process of generating a state trajectory 7
starting from sy with the action model M,. Sensing refers to the process of perceiving an
observation sequence w from a state trajectory 7 through a sensor model M.

Initial State °
Trajectory Observations

Synthesis
Action Model
Sensing

Sensor Model

Figure 3.2: Bayesian network illustrating the synthesis and sensing assumptions.

Our two fundamental assumptions are analogous to those that shape any other state-
space model. The general understanding of a state-space model is that of a discrete-time,
stochastic model that contains one set of equations describing the evolution of the latent
state, and another set describing how the observer perceives the latent state at each time
step. For instance, Hidden Markov Models (HMMs), one of the most common kinds
of state-space models use a transition matrix A that encodes the transition probability
P(s;|s;—1), an emission matrix B that encodes the emission probability P(o;|s;) and a priors
vector  that encodes the probability of the initial states P(sy). The main difference with
respect to the state-space model defined by our framework is that the evolution of the
latent space is implicitly represented with an action model, and that ours is a cost-driven
process instead of a stochastic one. Moreover, it is generally assumed that each visited
state generates at least one observation so our assumption of intermittency in the sensing
process can also be considered an important difference with respect to other state-space
models.

Both the synthesis and sensing assumptions can be interpreted from a satisficing and
an optimization perspective. The satisficing interpretation of the synthesis assumption re-
stricts the possible situations in which an actor with action model M,, can find itself to the
state space S of the action model. A trajectory 7 then describes some specific behaviour of
the actor, and the set of possible behaviours starting from an initial situation s, is limited
to the set of trajectories 7 (s9, M,). The satisficing interpretation of the sensing assump-
tion states that the observer knows the conditions which led to some specific observation
and that the observer can use this information to narrow down the state of the actor at

31



the time of the observation. More specifically, the observer uses its sensor model M, to
delimit the states of the actor from which an observation o can be emitted to the subset S,
of the state space.

The optimization interpretation of the synthesis and sensing assumptions is supported
by the cost function of M, and (possibly) the sensing cost functions of M,. This inter-
pretation is related to the assumption of rationality that is often used to rank solutions.
Rationality is identified with the maximization of expected utility. Rational agents are
those that when presented with different options act in a way that maximizes their ex-
pected utility. In the field of Automated Planning rationality is commonly interpreted as
choosing the actions that achieve the agent’s goals in the most efficient way. Plan cost
provides a score that allows us to measure the efficiency with which an agent pursues its
goals. Additionally, an optimal plan describes the behaviour of a perfectly rational agent
and provides an upper bound on the efficiency with which goals may be pursued.

In this work, however, the goals of the actor agent are not assumed to be known and,
even if they are known, they are treated agnostically and plugged into the model of Figure
3.2 as a last observation. Therefore, we cannot measure the efficiency with which they
are pursued. Efficiency in our framework takes a different meaning, which concerns both
the synthesis and sensing process. We understand efficiency in the synthesis process as
the actor being more likely to follow trajectories generated by lower cost plans, while
efficiency in the sensing process is understood as the sensors being more likely to emit
lower cost observations. Based on this, the optimization interpretation of the synthesis
assumption states that a trajectory 7 is more likely than another 7’ if cost(t) < cost(7’).
Similarly, the optimization interpretation of the sensing assumption states that given two
states s and s’ in S, s is more likely to be the source of the observation o if scost(s, 0) <
scost(s’, o).

3.2.2. The Scope of the Acting-Sensing Integration

This section poses a number of question regarding the actor and explains how these ques-
tions translate into inference and learning problems involving the elements of our frame-
work. All of the problems discussed here are initiated by the observer watching the actor
and willing to use its data to ascertain some aspect of the actor.

The first problem at hand follows from the uncertainty inherent to the sensing process
itself. The observer collects some pieces of data on the actor in the form of observations
and uses this data to guess what the actor was doing, that is, to find the true trajectory. We
refer to this problem as Observation Decoding since the term decoding is commonly used
to refer to the problem of finding the most likely explanation to some evidence. In the
context of this dissertation, the evidence is the sequence of observations collected by the
observer and the explanation is a trajectory of the actor that accounts for the observations.
The Observation Decoding problem takes as input the action model M, of the actor and
its initial situation sy as well as a sequence of observations w and the sensor model M

32



used to capture w. Then, the input is used to compute the most likely state trajectory that
explains the collected sequence of observations w. In terms of the Bayesian network of
Figure 3.2, the solution to the observation decoding problem is given by

7" = argmax P(t|w, so, M, M) (3.12)
T€T (My,s0)

We consider the observation decoding problem as the building block of our framework
because solving more involved inference and learning problems generally requires the
ability to find an explanation to a sequence of observations.

Building on top of the observation decoding problem we can define other inference
problems concerned with different aspects of the actor. Our next problem, temporal in-
ference, allows the observer to answer a wide landscape of questions regarding the past,
present and future of the actor. The Temporal Inference problem extends the observation
decoding problem with a set of hypotheses H such that each hypothesis € H describes
a possible answer to the question at hand. Hypotheses will be formalized in Chapter 5 but,
for now, it suffices to understand that hypotheses allows the observer to make conjectures
about the past and future of the actor. Hypothesizing about the past is useful to understand
parts of actor’s behaviour that were not clearly portrayed by the sensing process due to
its intermittency or the partial information conveyed by the observations. On the other
hand, hypothesizing about the future can be used to predict the behaviour of the actor
based on what we already know. Solving the Temporal Inference problem is finding the
best answer to the question defined by the set of hypotheses H so it can be formalized as
finding the most likely hypothesis in the set.

n* = argmax P(n|w, so, My, M) (3.13)
neH

The last inference problem addressed in this thesis is the Model Recognition problem.
In contrast with the previous inference problems, model recognition works on the premise
that the observer is uncertain about the model of the actor. In Model Recognition, the
observer has at its disposal a finite and explicit set of candidate models for the actor and
wants to figure out which one fits better with the observed behaviour. Then, the Model
Recognition problem extends the observation decoding problem by considering a set of
candidate action models M, instead of a single one. The Model Recognition problem can

be regarded as a classification problem whose solution is formulated as

M, = arg max P(w|so, M,, M\)P(M,) (3.14)
M,eM,

The Learning problem, similar to the Model Recognition problem, is also concerned
with the model of the actor. The difference lies in that the observer does not have now
an explicit set of candidate models to choose from and instead needs to use the collected

33



data to learn the action model of the actor. Learning a state-space model is widely un-
derstood as estimating the free parameters that define the transitions of the model from a
set of learning examples. In the context of planning, the learning problem is traditionally
referred to as Action Model Learning or Action Model Acquisition, and its most common
formulation assumes that the free parameters to learn are the App and Eff constraints that
define the transition function of the underlying state model. Here, learning examples are
the result of multiple episodes of the observer watching the actor and are represented as
pairs (sp, w). An Action Model Learning problem takes as input an unspecified action
model M,[] = (X, A, ¢) that leaves the App and Eff constraints undefined, a set of learning
examples £, and the sensor model M, used to collect the learning examples. Then, the
goal of Action Model Learning is to compute

0" = arg max P(L|M,[6], M) (3.15)
0

where 6 = (App, Eff). In other words, learning is about estimating the App and Eff
constraints within the defined syntax that maximizes the likelihood of the learning exam-
ples.

As a final summary, this section has introduced the inference and learning problems
that are addressed in this thesis. Each problem is accompanied with a probabilistic in-
terpretation of its solution based on the dependencies established by our fundamental
assumptions and illustrated in Figure 3.2. In following chapters, the solutions presented
here will be used as starting points to develop approximations that allows us to solve these
problems. The remaining chapters of this dissertation are structured as follows:

e The Observation Decoding problem is explained in detail in Chapter 4.

e The Temporal Inference problem is explained in detail in Chapter 5.

e The Model Recognition problem is explained in detail in Chapter 6.

e The Action Model Learning problem is explained in detail in Chapter 7.

34



Part IV

Inference

35



4. OBSERVATION DECODING

This chapter is dedicated to the Observation Decoding problem, the problem of finding
the best explanation for the sequence of observations collected by the observer. We start
the chapter presenting a working example in section 4.1 that will be used throughout the
chapter to aid explanations. Section 4.2 formalizes the Observation Decoding problem,
its solution and other related concepts. In section 4.3, we justify and motivate the solution
of the Observation Decoding problem presented in the previous section. Next, in section
4.4 we present our proposal to address the Observation Decoding problem using planning.
We finally conclude this chapter with an evaluation of the approach (section 4.5) and a
discussion of topics related to the Observation Decoding problem (section 4.6).

4.1. Working Example: Blindspots

This section presents a working example named Blindspots that is based on a simple grid
navigation domain. The main draw of this example is that it features a non-deterministic
sensor model with sensing cost functions which will allow us to highlight the importance
of exploiting sensing costs when this knowledge is available. The Blindspots domain
receives its name because it simulates a scenario where the observer uses a zenith camera
to locate the actor in a grid with some covered tiles that block the vision of the camera.
Figure 4.1 shows the grid that we will be using for this working example. In this figure
we have colored open tiles in white and covered tiles in grey. The figure also shows a
trajectory of the actor agent represented by a solid arrow. Assuming that a tile (x,y) is
described by their x and y coordinates, the trajectory shows the actor moving from tile
(3, 1) to tile (3, 5) passing through four tiles of the covered area.

Figure 4.1: 5 x5 grid used in the Blindspots working example. Open tiles are colored in
white and covered tiles in grey. The arrow depicts a trajectory that shows the actor agent
moving from tile (3, 1) to tiles (3, 5).

The actor can only move one tile at a time, in any of the four directions N,S,W or E,
and all moves are equally likely (moving against the wall has no effect). The camera used

36



by the observer can pinpoint the location of the actor with 90% reliability when it is on
an open tile, but has a 10% chance to fail meaning that the observed location is unknown.
Additionally, when the actor is moving through the covered tiles the camera’s line of sight
is blocked so it is completely unable to locate the agent.

Regarding the definition of the action model of the actor, this working example consid-
ers a single state variable 1oc with domain D(loc) = {1, ..., 5}? representing the location
of the actor in the 5 X 5 grid. For instance, 1loc = (1,1) would situate the actor in the
bottom left tile, while 1loc = (3,3) would mean that he is in the centermost tile. The set
of actions of the actor consist of actions move((x1,yl), (x2,y2)) that represent the actor
moving from a tile (x1,yl) to an adjacent tile (x2,y2). Since moving in any direction
is equally likely, we define all actions cost as —log 0.25 which is the log probability of
moving in one specific direction.

The sensor model also presents a single observable variable obs_loc that represents
the observed location of the actor. Variable obs_1loc has the same domain as state variable
loc but extended with a special token unknown that represents the failure of the camera
to locate the actor. Formally, D(obs_loc) = D(loc) U {unknown}. The sensing function
for obs_1loc is defined as follows:

SeNnseqps 10c(loc, ’open tile”) = loc

SeNseqps 10c(loc, “anywhere”) = unknown

The first rule of the sensing function indicates that the camera can emit the correct
location of the actor when it is in a clear tile. The relation represented by "open tile"
encompasses all pairs in {3,...,5} X {1,...,5}, that is, all tiles in the three rightmost
columns of the grid which are the open tiles. The second rule says that the camera can
sometimes fail to locate the actor no matter its position in the grid. This means that loc =
unknown can be emitted from any tile, so the relation of this constraint is effectively the
domain of state variables loc.

Following, we define the sensing cost function sceps_10c fOr variable obs_loc as

SCobs_10c({1oC, "open tile”’), 1loc) = —1og 0.9
SCobs_10c({10C, “open tile”’), unknown) = —log 0.1

SCobs_10c({10C, “covered tile”’), unknown) = —log 1

The first and second rules are associated to the sensing process when the actor is in
the open area and define the costs for emitting its correct position or unknown position,
respectively. The last rule is the cost associated to the emission of unknown when the
agent moves through the covered area. The cost associated to each emission are defined
as the log probability of the emission.

37



The Blindspots working example also lends itself to a Hidden Markov Model repre-
sentation. Figure 4.2 shows a fragment of the HMM representation that accounts for the
top left corner of the grid. In this HMM representation tiles are represented as states (col-
ored blue) and actions as transitions between states. Since the actor moves in any of the
four directions with equal probability, each transition has probability 0.25. The orange
rectangles show the emission probabilities associated to each state. For instance, the state
representing tile (3, 5) emits the correct position with probability 0.9 because (3,5) is an
open tile, and emits unknown (representing the failure to locate the actor) with probability
0.1.

(3,5 |09
unknown ‘ 1 unknown ‘ 1
H “ unknown | 0.1
0:5 0.25 0.25
() 0.25 f 0.25 0
LS {2 5 T 35
’ — ’ ~— N 5 L

0.25 025
025/ 1025  025| |025 .

0.25 A
025 (1,4 a4
0.25 A

025 ]0.25 |

025 (1,3

f/ A\

Figure 4.2: Fragment of the HMM representation of the Blindspots working example.

The action and sensor models defined in this working example and the HMM of Fig-
ure 4.2 are equivalent considering that transition probabilities have been translated to
action costs and emission probabilities to sensing costs. The translation applies a log-
arithmic transformation to the action and sensing costs that transforms the probability
maximization natural to HMMs into an equivalent cost minimization more suited for clas-
sical planning approaches (Jiménez et al., ; Little & Thiebaux, ). Another key
difference with respect to the HMM representation is that the state-space model is not

38



fully enumerated but implicitly defined with an action model. The same happens with the
relation between states and observations. In the next section we will see that, while both
our framework and HMMs can model the same domain, our approach is more flexible to
observation sequences with gaps caused by the inttermitency of the sensing process.

4.2. The Observation Decoding Problem

In this section, we formalize the Observation Decoding problem along with some other
related concepts. An Observation Decoding problem takes as inputs the model and initial
situation of the actor, as well as a sequence of observations and the sensor model used to
capture them.

Definition 23 (Observation Decoding problem). An Observation Decoding problem is
given by the tuple (M, My, sy, w) where:

o M, =(X,A, App, Eff, ¢) is the action model of the actor,
e M, =<(X,Y,Sense,SC) is the sensor model of the observer,
e 5 is the known initial situation,

e w=1(01,...,0,) is an observation sequence.

The solution to an Observation Decoding problem is the most likely explanation for
the collected observation sequence w. Broadly speaking, we understand an explanation
as a state trajectory that can be the source of the observation sequence. This means that
a state trajectory T = (so,...,s,) explains an observation sequence w = (0y,...,0,) if
all the observations in w are accepted by states in 7 while also preserving the order of
the sequence. Since we are working under the assumption that the sensing process is
intermittent, the length of w is always less or equal than the length of 7, i.e., |w| < |1].
Therefore, we must first decide on an alignment that determines which state of T emitted
each observation of w. An alignment is a strictly monotonic function @ : N — N that
maps observation indices {1, ..., ?} into trajectory indices {0, ..., n}.

Definition 24 (Explanation). Given a decoding problem (M, M, sy, w) with w = (01, ..., 0,),
we say that a state trajectory T = (S, . .., S,) explains the observation sequence w under
alignment « if T € T (M,, so) and for all i € {1,...,t} it holds that s, accepts o;. We
denote by T ,(M,, s¢) the set of explanations.

The definition of explanation is related to the satisficing interpretation of the synthesis
and sensing assumptions. Under the synthesis assumption an explanation must describe
some possible behaviour of the actor so they are limited to trajectories in 7 (M,, sy). The
sensing assumption further reduces the possible explanations to the subset 7,(M,, s¢) C
T (M,, sy) of trajectories that accept all the observations.

39



04

01

50

Figure 4.3: Example of an Observation Decoding problem in the Blindspots working
example. The example considers a four-observation sequence w = (01, 0;, 03, 04) With
0, and 03 being unknown emissions, and two explanations (solid and dotted arrows) that
might generate the given observation sequence.

Figure 4.3 shows an example of a decoding problem in our Blindspots working exam-
ple. In this decoding problem the observer has collected four observations: two of them,
denoted as 0, and o4 in the figure, successfully locate the actor, but in between those two
observations the camera produces two obs_loc = unknown emissions. The observation
sequence is then

Time Observation
1 obs_loc = (3,2)
2 obs_loc = unknown
3 obs_loc = unknown
4 obs_loc = (3,5)

where "Time" is not a time-stamp but an indication of how observations are sequenced.
The doted and solid arrows represent two possible explanations for the collected obser-
vations assuming an initial situation sy = (loc = (3, 1)). We refer to the explanations
denoted by the dotted and solid arrows as 71 and 72, respectively. The two explanations
shown in the figure and their alignments are specified below

Tl 72
Time State Time State

0 loc=(@3,1) 0 loc=(@3,1)
1 loc =(3,2) 1 loc =(3,2)
2 loc =(3,3) 2 loc =(2,2)
3 loc=(3,4) 3 loc =(2,3)
4 loc =(3,5) 4 loc=(2,4)

5 loc =(2,5)

6 loc=(3,5)

40



al(l) =1 a2(l) =1

al(2) =2 a2(2) =3
al(3) =3 @2(3) = 4
al(4) = 4 a2(4) = 6

According to the sensor model for the Blindspots working example, when the emitted
value for obs_loc is a location the actor must be in the corresponding open tile. The
unknown emission, on the other hand, can be emitted from any tile. Both 71 and 72 are
valid explanations for w as in both cases the observation (obs_loc = (3,2)) is aligned
with state (loc = (3,2)), and (obs_loc = (3,5)) is aligned with (loc = (3,5)), while
(obs_loc = unknown) can be aligned with any state. We also note that observations o,
and o3 could have been aligned with any other of the unmatched states in 72 without
affecting the validity of the explanations.

This example also serves to highlight an important difference between our approach
that assumes intermittency in the sensing process and other state-space models such as
HMMs that do not. In the previous section we have already shown that this working
example can be represented as an HMM and, therefore, we could find the most likely ex-
planation using the appropriate HMM algorithm which is known as the Viterbi algorithm.
However, HMM algorithms do not assume intermittency so our observation sequence of
length 4 can only be explained by a state trajectory of length 4. This means that under
the HMM assumptions the set of explanations 7,(M,, so) would in fact be the singleton
consisting only of 71. In our framework, however, intermittency causes the length of an
explanation to be unbounded, which also means that the set of explanations 7,(M,, s¢) is
actually infinite in domains with reversible actions, like our working example.

Now that we have defined the set of explanations 7,(M,, sy), our next step is to rank
explanations in 7,(M,, s¢) in order to define the most likely explanation. We leverage the
optimization interpretation of our fundamental assumptions in order to define two costs
associated to an explanation and that will be used to define the most likely explanation.
The first cost is the synthesis cost, named after the synthesis assumption. The synthesis
cost of an explanation 7 is the cost incurred by the actor when following the behaviour
described by 7. We define this cost as the cost of the plan that generates 7.

Definition 25 (Synthesis cost). The synthesis cost of a trajectory T € T (M,, s¢) is

synCost(t) = cost(rm) “4.1)
where 1 is the plan in 11(M,, s¢) such that T = sy[[x]).

Similarly we define the sensing cost that follows from the sensing assumption. The
sensing cost measures the cost incurred by the sensors during the emission of the observa-
tion sequence from the explanation. We define the sensing cost of an explanation and an
observation sequence as the accumulated observation cost of each pair of aligned states
and observations

41



Definition 26 (Sensing cost). The sensing cost of a trajectory T that explains an observa-
tion sequence w under alignment « is

t
senCost, (T, w) = Z 0COSt(Sa(iy, 0;) “4.2)
i=1

Recall that the observation cost is defined as a constant when the sensor model does
not include sensing cost functions so, by extension, the sensing cost is also a constant in
this case. Following, we summarize all the costs associated to the sensing process:

e The sensing cost function sc, defines the cost of an emission y = w.

e The observation cost ocost(s,0) accumulates the cost of the emission of each ob-
servable variable in o.

e The sensing cost senCost, (T, w) accumulates the observation cost of aligned state-
observations pairs in an explanation.

Finally, we define the most likely explanation as the explanation in 7,,(M,, so) that
minimizes the sum of the synthesis and sensing costs. An in-depth justification of this
solution is given in the next section.

Definition 27 (Most likely explanation). The solution to an Observation Decoding prob-
lem (M., My, sy, w) is the most likely explanation given by

*

7" = argmin synCost(t) + senCost(t, w) 4.3)
T€T o(My,s0)

We note that, when the sensor model M = (X, ¥, Sense) does not include sensing cost
functions the sensing cost is a constant for all explanations so the term can be removed
from the minimization

*

7 = argmin synCost(t) 4.4)
T€T o(M,,s0)

Let us go back to our working example and talk now about the costs associated to
the explanations 71 and 72. Starting with the synthesis cost, we find that synCost(r1) <
synCost(t2) since in the Blindspots working example all actions have the same cost and
the plan for 71 has fewer actions than the plan for 72.

synCost(tl) = 4(—1og0.25) = 2.41
synCost(12) = 6(—1og0.25) = 3.61

42



The sensing costs paint a very different picture where cost, (71, O) > cost, (72, O).
The computations are as shown below

senCost, (11, w) = 2(—10g 0.9) + 2(-1og0.1) = 2.09
senCosty,(12, w) = 2(-10g0.9) + 2(—log 1) = 0.09

where —1og 0.9 corresponds to the emission of a location from an open tile, —log 0.1
to an empty reading from an open tile, and —log 1 to an empty emission from a covered
tile. These costs indicate that the observation sequence w is more likely to be emitted
from the trajectory 72 than from 71.

From these results we can see that, if the sensing cost functions were unavailable,
the most likely explanation would be 71 as it is the one that most efficiently reproduces
the observed behaviour of moving from tile (3, 1) to tile (3,5). On the other hand, if we
consider the sensing costs, the overall cost of 71 is higher than the cost of 72 due to a
much higher sensing cost. This higher sensing cost is modelling the fact that it is very
unlikely for the actor to go unnoticed to the camera twice while on an open tile.

4.3. The Solution of the Observation Decoding Problem

In this section we explain how we arrive at the definition of most likely explanation given
in Definition 27. Our starting point is Equation (3.12) of Section 3.2.2 that provides
a probabilistic interpretation of the Observation Decoding problem under the Bayesian
network that defines the state-space model of our framework. We repeat this equation
below for convenience.

7" = argmax P(t|w, so, M, M) (4.5)
T€T (My,s0)
From the definition of conditional probability we arrive at the following equation.
7" = arg max P(t, wl|so, M,, M) (4.6)
€T (My,50)

The joint likelihood P(t,w|M,, M) expresses the probability that 7 and w happen
together given the models M, and M, and the initial situation sy. From the Bayesian
Network of figure 3.2 it follows that the joint likelihood can be computed as:

P(t,wIMy, M) = P(tls0, Mo)P(wlt, M) 4.7)

43



where P(7|sy, M,) is associated to the synthesis process and P(w|t, M) to the sensing
process. We will therefore refer to these probability distributions as the synthesis and
sensing probabilities.

The synthesis probability: The synthesis probability P(t|sy, M,) is the probability
of generating T with action model M, starting from the initial situation sy. Therefore,
we consider a trajectory 7 ¢ 7 (M,, so) has a synthesis P(t|sg, M,) = 0. Following the
synthesis assumption, the synthesis probability assigns higher probability to lower cost
trajectories:

P(t|s9, M,) oc —synCost(T) (4.8)

The sensing probability: The sensing probability is the likelihood of generating an
observation sequence w = (01,0;...,0,) from a trajectory 7 through the sensor model
M. The sensing probability assigns a probability P(w|tr, M) = 0 to trajectories not in
T (M., so) since these trajectories cannot generate the observation sequence w. Following
the sensing assumption, the sensing probability assigns higher probability to lower cost
observations:

P(w|t, M) o« —senCost, (T, w) 4.9)

Substituting Equation 4.7 in Equation 4.6 we arrive at

7" = argmax P(t|so, M,)P(w|t, M) (4.10)
T€T o (Mgy,80)

This equation defines the most likely explanation as the trajectory that maximizes the
product of the synthesis and sensing probabilities. Since our framework is cost-driven,
we redefine this solution as a cost minimization of the sum of the synthesis and sensing
costs of a trajectory arriving at the solution given in Definition 27.

*

7 = argmin synCost(t) + senCost(t, w) 4.11)
7€T (My,s0)

4.4. Observation Decoding as Planning

We come up with a proposal that exploits planning technology as a resolution method
for discovering the true state trajectory from a sequence of observations of the actor, that
is, to solve the Observation Decoding problem. Our Observation Decoding as planning
approach draws on the idea that an observation sequence expresses a property about the

44



true trajectory. We make this observation based on the already established notion that an
observation o defines a constraint @, that states that accept o must satisfy. An observation
sequence extends the constraint with the total order relationship that exists between the
observations of an observation sequence.

Linear Temporal Logic (LTL) is a formalism for specifying properties about sequences
of states where each state has a unique successor, based on a linear-time perspective. LTL
formulas have been used by the planning community to represent Temporally Extended
Goals (TEGs) that describe properties about the state trajectories generated by solution
plans. We leverage these ideas in our proposal by interpreting an observation sequence
w as an LTL property that any explanation in 7,(M,, so) must satisfy. This allows us
to compile an Observation Decoding problem into a classical planning problem whose
solutions are explanations.

In summary, our Observation Decoding as planning approach compiles an Observa-
tion Decoding problem (M,, M, sy, w) into a classical planning problem $(w) such that
[I(P(w)) is the set of solution plans that generate the set of explanations 7, (M,, so). Ad-
ditionally, by properly defining the action costs of P(w), the optimal solution plan will
generate the most likely explanation. As is the case in the compilation-based approach to
planning with TEGs, our approach also involves two translation steps:

1. translate the LTL property of the observation sequence w into a monitor automaton
A(w) that accepts only state trajectories in 7,(M,, s¢) and

2. encode A(w) as part of the classical planning problem P (w)

The rest of this section is structured as follows: sections 4.4.1 and 4.4.2 are devoted
to explain the first translation step of the compilation scheme, an outline of LTL and the
constructions of the monitor automaton; section 4.4.3 explains the second translation step,
i.e., how to encode the automaton A(w) in a planning problem $(w); section presents two
theorems regarding the soundness and completeness of the compilation; section 4.4.5
explains how to define the action costs for (w) so that the most likely explanation can be
computed; and section 4.4.6 guides the reader through the compilation with an example.

4.4.1. LTL Preliminaries

Following, we briefly introduce the syntax and semantics of LTL; (Giacomo & Vardi,

), a variant of LTL interpreted over finite state trajectories which uses the same syntax
as that of LTL, and suffices for our purposes. The LTL; syntax uses negation (—), boolean
connective (A), and temporal operators X (next) and U (until). An atomic formula is true,
false, or an element of a set of propositional symbols P. Non-atomic formulae are defined
inductively:

e ) if i is a formula.

45



o (Y A y)if ¢ and y are formulae.
o Xy ify is a formula.

e (¢ Uy)ify and y are formulae.

Other temporal operators such as F (eventually), G (always), and R (release) are de-
fined in terms of the basic operators of the language. F i is defined as (true U ¢), G ¢ as
=F=y, and (¥ R y) as =(—¢ U —y). We also assume the standard boolean abbreviations
V and — (implies) as well as the abbreviation Last, which stands for —Xtrue and denotes
the last instant of the finite trace (Giacomo & Vardi, ).

The semantics of a LTL; formula ¢ is given in terms of finite sequences of states
T = (80, $1,...,Sy) such that s; € P fori € {0,...,n}. We say that 7 satisfies i, and write
T E y, iff T if 79, E ¢, where for every i € {0,...,n}:

e 7., Epwhere pe Piff p € s,.

® Ty E Y iff iy U

o Ty EWAY)iff Ty EYand 7y, E x.
o 7., EXyiffi <nand 1y, E .

e 7y E (Y U y) iff there exists a j € {i,...,n} such that 7;,, F x and for every
keli,...,j— 1} itholds that 7y, F ¥

While LTL is defined over propositional variables, it is simple to draw an equivalence
to the finite domain variables used in this thesis. It suffices to understand P as the set of
propositions of the form x = v where x € X and v € D(x), and a state as a subset of P
containing one such proposition for each variable in X. Consequently, each tuple in the
relation R of a constraint (Z, R) € Constr(X) defines a conjunction of propositions (or a
proposition if |Z| = 1), and the relation itself defines a disjunction.

4.4.2. A Monitor Automaton for the Observation Sequence

An observation sequence w = (0y,...,0;) expresses the property that a state trajectory
T = (So,...,S,) must first contain a state that accepts observation o0;, then a state that
accepts 0,, and so on for all observations. This kind of property is known in temporal
logic as an ordered occurrence. An ordered occurrence is a property of the form XF(y; A
XF@, A ... A XF,)) where subformulas ¢ . . ., must be satisfied in order. In the case
of an observation sequence w = (0y,...,0,), the subformulas that must be satisfied in
order are the constraints ®@,, ... ®,, imposed by the observations. Given an observation
sequence w = (01, 0,...,0;), we denote by ord(w) = XF(®,, A XF(D,, A ... A XFD,,))
the LTL ; property described by w.

46



Figure 4.4: Monitor automaton for an observation sequence w = (01, 02, 03, 04) Where ; = @,,.

Our next step is to compute a monitor automaton A(w) such that all accepted tra-
jectories satisfy the property ord(w) and, therefore, are explanations in 7,,(M,, so). The
ordered occurrence property described by an observation sequence translates to a De-
terministic Finite Automaton (DFA) with a sequential structure and self-loops as shown
in Figure 4.4. This automaton includes a location and two transitions for each obser-
vation in the observation sequence. One transition is used to move to the next location
when the current state accepts the observation, and the other is used to remain in the
same location when the state does not accept it. Formally, given an observation sequence
w = (0y,...,0,), the monitor automaton A(w) = (Q, X, d, gy, F') that accepts state trajec-
tories that satisfy the property ord(w) is specified as follows:

e O =1{qo,...,q,} 1s the set of automaton locations consisting of one location for each
observation in w plus an additional initial location gy,

e X = Constr(X) is a finite set of input symbols defined here as the class of constraints
over X,

e § : QXX — Q is the transition function. This automaton defines transitions
qi = 0(gi-1,D,,) fori € {1 < i < ¢t} that advance the location of the automaton, and
loop transitions of the form g;_; = 6(g;-1, =P,,) to remain in the same location.

e F C Qis the set of accepting locations. a singleton in this case. In this automaton,
F ={q,} is a singleton consisting only of the last location.

The locations of A(w) represent the current progress in the verification of the prop-
erty ord(w) by a trajectory 7. Being at location g; means thereby that 7 satisfies ord(w)
up to ®,., which can be interpreted as having explained the first i observations of w.
When a state s of a trajectory 7 is processed in the automaton location g;_, the transition
qi = 0(gi-1,D,,) is triggered iff s accepts o;, progressing the automaton to location g;;
otherwise the automaton remains at g;_; through transition ¢;_; = 6(¢g;-1, 7 ®,,). Conse-
quently, reaching location g; means that 7 satisfies ord(w); i.e., that 7 is an explanation for
w.

4.4.3. The Compilation

Before deepening into the compilations scheme, let us summarize what we know so far.
We have an observation sequence of the actor, w, and we know that w implicitly encodes

47



an LTL property which determines the set of trajectories that comply with w. This set
of trajectories is named 7,(M,, so) and we are interested in finding the trajectory that
reports the best (most likely) explanation to w. This is the problem known as Observation
Decoding and formulated as (M,, M, sy, w).

In the previous section, we explained how to build the automaton A(w) that accepts
the state trajectories of 7,(M,, so). Since our proposal consists in formulating the Ob-
servation Decoding problem as a planning problem $(w), the next translation step is to
encode the automaton A(w) as part of the planning problem. In other words, the outcome
of the compilation will be a planning problem whose search space is restricted to the state
trajectories that explain w (7 ,(M,, so)).

Therefore, our aim is to build a planning problem #(w) that incorporates the monitor
automaton A(w). In order to do so, we extend the action model of the actor M, with a new
set of state variables and actions to encode A(w). The resulting $(w) can thus be regarded
as the parallel composition of the state-space model of the actor and the automaton A(w).

Formally, an Observation Decoding problem (M,, M, sy, w) is compiled into a classi-
cal planning problem £(w) defined as follows:

P(w) =(XUX“ AUA“, App A App”, Eff A Eff”, 55, G*)

where:

e X U X extends the sets of state variables X with X“ = {q} such that variable q is
used to keep track of the location of A(w). Variable q has domain D(q) = {0, ..., 1}
where |w| = t.

e AU A® extends the actor actions with A“ = {a“!, ..., a”}, which contains one action
for each transition in A(w) that advances the location of the automaton. We will
refer to the actions in A“ as sensing actions.

e The applicability and effects constraints are extended to account for the new sensing
actions and used to encode the transitions g; = 6(g;—1, ®,,) of A(w). More details of
this encoding will be given below.

e the initial state s; is defined as si'(x) = so(x) for x € X and s;(q) = 0.

G* is the condition given by (q,’q = 7).

The initial state si sets the initial situation of the actor agent given by s, as well as the
initial location g, of the automaton A(w). The goal condition G* is to reach the accepting
location g, of A(w) which is interpreted as having satisfied the LTL ; property ord(w) and
ensures that all solution plans generate explanations for w. A sensing action a” € A“
encodes the automaton transition g; = 6(g;—1, ®,,). Then, a sensing action a” is applicable

48



in a state s when 1) the automaton is in location ¢;_;, i.e., s = (q,”’q =1i—17), and 2)
s E ®,,, meaning that s accepts the observation o;. The execution of a” updates the value
of g to reflect that A(w) transitions to the next location ¢;. Hence, the effect constraint of
the sensing actions, Eff* : A“ — Constr(X U X“ U X“"), does not update the value of state
variables X and, therefore, sensing actions do not modify the state of the actor. We also
note that loop transition g; = 6(g;, ~®,,) of A(w) are not encoded as part of P(w) since
they can be considered noop actions with no effect on the state of the problem.

A plan r that solves the compiled problem $(w) is a sequence composed of both actor
actions and sensing actions that starting from the initial state s; reaches a state s E G*“.
Any solution plan for £(w) must contain all actions in A“ exactly once so a solution plan
contains ¢ sensing actions if 7 is the length of the observation sequence. Additionally, the
last action of x is always the sensing action a” as this is the only action that can achieve
the goal condition G* : (q,”q = t”).

Following, we present two different encodings for the sensing actions and discuss their
efficiency as well as the scenarios where each one could be applied.

Basic encoding of A“. Let a” € A“ be the sensing action which represents the tran-
sition g; = 6(g;—1, D,,) of the automaton A(w). The basic encoding simply consists in
defining the applicability constraint of a” so that it checks that the automaton is in the
starting location g;_; of the transition and that the actor’s state accepts the observation o;,
L.e., it satisfies @,,. The effect of ¢ will simply update the location of the automaton to
the destination location g;. Formally:

App(a”) : @, U{{q,”q =i - 17)}

where the starting location of the transition ¢g;_; is encoded as q =i — 1, and

Eff(a”) : (a","a" = i7)

meaning that the automaton A(w) transits to the destination location ¢; which is en-
codedasq = 1.

Encoding of A“ with dead-ends. In this encoding, the applicability constraint of the
sensing action a” only checks that the automaton A(w) is in the starting location g;_; of
the transition. Formally:

App(a™) : {{g,"q =1 -17)}

This makes a” applicable even in states that do not accept the observation o;. We deal
with this situation by making the sensing action a” introduce an artificial dead-end that
makes the problem #(w) unsolvable if it is executed in a state that does not accept the
observation. In order to create the dead-end, we extend the state variables of the planning
problem #(w) with a Boolean variable valid that must be true in the goal state.

49



Creating a dead-end involves defining constraints dend(yp) for every ¢ € @, that
introduce the dead-end valid = L iff ¢ is not satisfied. This way, if any of the observed
values in o; cannot be emitted from the current state a dead-end is created invalidating the
solution. Formally, a dend(¢) constraint defined over ¢ = (Z, R) is of the form:

dend(p) = (Z U {valid*},R x {1})

where |Z| = k and R = D(Z)* \ R. Since the negation of a constraint ¢ = (Z,R) is
the constraint @ = (Z, R), a dend(¢p) constraint can be interpreted as "if @, then create the
dead-end valid = L".

The effects of the sensing action consider the dead-end constraint imposed by each
emission in the observation and updates the location of the automaton A(w). Formally,
given @,, = {¢)),, ..., ¢w,}, we define the effects constraint of the sensing action a” as

k
Eff(a”) : a*,7a" = 1”)|_Jdend(gl)
=1
This way, the effect constraint states that the solution remains valid if the observation
o0; 1s accepted, but if it is not, then the solution is invalidated through the introduction of
the dead-end.

Notes on Implementation

In this section, we show how to implement each encoding in PDDL, and discuss the
limitations and advantages of each one. We start with an example of a sensing action
implemented in PDDL. In order to do this we are going to go back to the example of
Figure 4.3, and implement the sensing action associated to the first observation 0; =
(obs_loc = (3, 2)). If we follow the basic encoding, we need to implement the following
constraints

Pre(sense_1) : (q,7q = 0") U ¢
Eff(sense_1): (q*,”’q" = 17)

where sense_1 is the name given to this sensing action, and ¢,y = (loc,{(3,2)}).

Figure 4.5 shows how this action is implemented in PDDL. Since PDDL uses propo-
sitional variables, assume that variable 1oc is implemented by the propositional variables
resulting from the grounding of predicate at of arity 1 and objects O = {tile_i_j|i,j €
N=°} representing tiles of the grid. Additionally, the propositional variables q_i,i € 0...t,
implement the variable q that represents the current location in the automaton.

50



(:action sense_1
:parameters ()
:precondition
(and (q_-0
(at tile_3_2)
)
reffect
(and (not (g_0))
(a_D
)

Figure 4.5: PDDL implementation of a sensing action following the basic encoding.

As we can see in the figure, the implementation of the basic encoding is straightfor-
ward. However, it is important to take into account that a constraint ¢), = (Z, R) with
IR| > 1 means that there are multiple possible ways to emit y = w. In other words, ¢,
defines a disjunction where each tuple in R is a disjunct. This makes the basic encoding
undesirable when we have constraints with |R| > 1 as it leads to disjunctive preconditions
which would rapidly increase the branching factor of the compiled problem.

Next, we are going to implement the same action following the encoding with dead-
ends. This time the constraints to implement are

Pre(sense_1) : {(q,”’q = 0")
Eff(sense_1):(q",”q" = 1) Udend(¢32))

where

dend(¢i.) = ({loc,valid*}, R X {L1})

and R = D(1oc¢) \ (3,2)

The most challenging part of this encoding is the implementation of the dead-end con-
straints which is done with conditional effects. To this end, for each tuple in the relation
R we define a conditional effect where the condition is given by the tuple and the effect is
valid = L. Assuming that the cardinality of the relations R of the dead-end constraint is
b, i.e., |R| = b, the number of conditional effects in this encoding scales linearly with the
number of observable variables |Y| = [ so that each sensing action contains b -/ conditional
effects.

Figure 4.6 shows the PDDL implementation of the sense_1 sensing action of our
example following the encoding with dead-ends. As we can see, encoding the constraint
dend(¢2)) has resulted in 24 conditional effects, one for each location that cannot emit
obs_loc = (3,2). From this example, it is clear that the use of the basic encoding is
preferable as long as the constraints have cardinality 1.

51



(:action sense_1
:parameters ()
:precondition
(and (q_0))
reffect
(and (not (q_0))

(CIRD)
(when (at tile_1_0) (not (valid)))
(when (at tile_1_1) (not (valid)))
(when (at tile_1_2) (not (valid)))
(when (at tile_1_3) (not (valid)))
(when (at tile_1_4) (not (valid)))
(when (at tile_1_5) (not (valid)))
(when (at tile_2_0) (not (valid)))
(when (at tile_2_1) (not (valid)))
(when (at tile_2_2) (not (valid)))
(when (at tile_2_3) (not (valid)))
(when (at tile_2_4) (not (valid)))
(when (at tile_2_5) (not (valid)))
(when (at tile_3_0) (not (valid)))
(when (at tile_3_1) (not (valid)))
(when (at tile_3_3) (not (valid)))
(when (at tile_3_4) (not (valid)))
(when (at tile_3_5) (not (valid)))
(when (at tile_4_0) (not (valid)))
(when (at tile_4_1) (not (valid)))
(when (at tile_4_2) (not (valid)))
(when (at tile_4_3) (not (valid)))
(when (at tile_4_4) (not (valid)))
(when (at tile_4_5) (not (valid)))
(when (at tile_5_0) (not (valid)))
(when (at tile_5_1) (not (valid)))
(when (at tile_5_2) (not (valid)))
(when (at tile_5_3) (not (valid)))
(when (at tile_5_4) (not (valid)))
(when (at tile_5_5) (not (valid)))

Figure 4.6: PDDL implementation of a sensing action following the encoding with dead-
ends.

As a final summary, on one hand we have the basic encoding which is more efficient
but is limited to very restrictive sensor models whose constraints do not define disjunc-
tions. On the other hand, the encoding with dead-ends is flexible to implement any type of
sensor model but the use of conditional effects and dead-ends makes the compiled prob-
lem much harder. As a rule of thumb, we recommend using the basic encoding whenever
applicable and the encoding with conditional effects in the rest of cases. It is also worth
noting that the very common assumption that the values of state variables are directly
observed can be cast into a sensor model that fits the criteria for the basic encoding. In
order to build this type of sensor model, we only need to define an observable variable y
for each state variable x € X such that D(y) = D(x) and define the sensing function as
sense,({x,”x = v”)) = v so that the actual value of x is always emitted.

52



4.4.4. Properties of the compilation

A solution plan © € [I(P(w)) is a sequence of actor and sensing actions of the form
= (ay,....0ap,...,0p,,...,ap) With a,, = a” for 1 < i < ¢. 7 contains all the infor-
mation needed to generate an explanation 7 for the observation sequence w. Looking
only at the actor actions in the solution, we can extract the actor plan ™ =(a,..., Ap -1,
Apy+1s- -+ Ap,_—1> Ap,_,+1, - - - » dp,—1) Where only the sensing actions, ay,, ... ,ap,, of the so-
lution plan 7 are missing in 7.

Theorem 1. Let it be a solution plan for P(w) and let n* be the actor plan, the execution
of m in the actor’s initial state s, generates a trajectory T that explains the observation
sequence w.

Proof: Let m;.; denote the subsequence of all the actions from q; to a; of plan 7, and
let by, ..., b, be the indexes of the ¢ sensing actions in 7. We can prove by induction that
the trajectory 7, generated by the execution of 7 in the actor initial state s,, explains w.

Let ﬂ’l‘:bl = my,—1 be the subsequence of 7 containing all actor actions up to the first
sensing action. The basis of the induction is to prove that the execution of 7{. p, 10 the
actor’s initial state sy reaches a state that accepts oy, that is, SO[”?:bl] E ®,. Given
that a,, = a', its pre-state Sg'[ﬂ‘?:hl] necessarily satisfies @, otherwise a’' would either
not be applicable or si[n] ¢ G“ (depending on the used encoding) invalidating 7 as a
solution. Since the actions of the actor A neither have their applicability dependant on
X“ nor modify X“ by definition of the effects constraint Eff : A — Constr(X U X*), the
trajectories generated by executing ﬂ’?:bl starting from s and from s, are identical with
respect to variables X. Therefore, if s‘(‘)’[ﬂ‘ﬁbl] E ©,, then SO[”?;;;I] E ©,, too.

Now let 772‘[ b, = Thi+1:,,-1 D the subsequence of 7 containing all actor actions be-
tween the sensing actions that occupy positions b; and b;,1, 1 < i < ¢t. For the induction
step we need to prove that from the state s = so[7/. »,] reached by applying all actor ac-
tions up to sensing action a,, = a® we can reach a state that accepts observation 0,4
by executing the subsequence of actions 7T2 b, that is, S[ﬂ?i:bi”] E ©,. . Assuming
that s" = s[m1,,] and using the same reasoning as used above for the basis of the in-
duction we can be sure that S’[ﬂ’;}i s, ] E @, . We also know that ;. and ﬂ?:bi only
differ in the sensing actions and that sensing actions, by definition of the effects constraint
EffY : AY — Constr(X U X“ U X“*), do not modify state variables X. Therefore, Vx € X
it holds that s(x) = §'(x) and if &’ [n‘;‘[ s, ] F @, then S[ﬂ?ﬁbiﬂ] E®,,. O

Oi+1

The position of the sensing action in the solution plan 7 also determines the alignment
between the trajectory T = so[[7*] and the observation sequence w.

Corollary 1. Let 7t be a solution plan for I1 and let by, . . ., b, be the indexes of the t sensing
actions in n. The alignment between the explanation t = so[n*] and the observation

sequence w is a(i) = b; —iforie{l,...,t}
We already know from Theorem 1 that the pre-states of the sensing actions in the

53



solution plan 7 are the states that accept the observations and therefore the points where
the explanation 7 and the observation sequence w align. Additionally, it is easy to see
that Iﬂ‘;‘:bl_l = |myp,] — i as ﬂj‘:bi contains the same actions as ., except for the i sensing
actions in that segment of the plan. From this, we arrive at the alignment «(i) = b; — i for
i €{1,...,t} by offsetting the position b; of the sensing action a” by i.

Theorem 2. For every trajectory T that explains the observation sequence w, there exists

a solution plan & to the compiled problem P(w) such that T = so[7*].

Proof: Assume that 7 is an explanation for w under alignment « and let 7’ = (ay, as, . .., a,)
be the sequence of actor actions such that 7 = sy[[n’]]. Now let 7 be a plan built by adding
sensing actions to 7’ such that a” is inserted after action a,, fori € {1,...,t}. We proof
that 7 is indeed a solution to $(w) by contradiction. If 7 is not a solution to £(w) it means
that either 7 is not a valid plan or it does not achieve the goal condition. For 7 to be invalid
it is necessary that the inserted sensing actions are not applicable or their execution makes
following actions not applicable. We know that sensing actions do not modify the actor
state variables X so their execution cannot affect the applicability of following actions.
Additionally, a sensing action a” not being applicable in state s = sg'[7}., ] implies that
s ¥ @, and consequently that So[ﬂ"l:a(i)] ¥ @, which contradicts the initial assumption
that 7 is an explanation for w under alignment @. O

4.4.5. Computing the most likely explanation

Now that we have demonstrated that valid explanations for an observation sequence can
be extracted from solution plans to our compiled problem $(w), our next step is to find
the most likely explanation. In order to accomplish this, we define the cost of a solution
plan 7 € II((w)) to be the same as the cost of the explanation contained in 7. In this
way, by optimally solving P(w) we will be able to find a plan from where the most likely
explanation can be extracted.

Let 7 be a solution to the compiled problem P(w) and 7 = so[[7*] the explanation
generated by the embedded actor plan 4. We want the cost of the solution plan 7 to be

cost(rm) = synCost(t) + senCost, (T, w) 4.12)

where « is the alignment denoted by the sensing actions. By definition, synCost(1) =
cost(m*) so the synthesis cost is already given by the cost of the actor actions in 7. Then,
our objective is to define the action costs of sensing actions in such a way that their
accumulated cost is equal to the sensing cost of the explanation.

t t

senCost, (T, w) = Z 0COSt(Sq(iy, 0i) = Z c(a’)

i=1 i=1

54



From this equation we can establish an equivalence between the action cost of a sens-
ing action a’ and the observation cost ocost(s, 0;) where s is the pre-state of a’ and also
the state aligned with observation o;. In order to define such a cost, we need to redefine
action costs as state-dependant c,(a) so that the cost of executing action a depends on the
state s where it is executed. Then, the cost of executing a sensing action a¢” in a state s
such that s = ®,, is given by the observation cost of the observation o; in state s.

cy(a’) = ocost(s, 0;)

With this we have achieved our objective of Equation 4.12 and the actor plan 7* em-
bedded in the optimal solution plan 7* will render the most likely explanation 7* = so[[7].
We also note that, when the observation cost is a constant (because the sensor model does
not include sensing cost functions), all sensing actions are assigned the same cost. There-
fore, all solution plans in I[1(P(w)) will have the same accumulated cost for the sensing
actions and will only differ in the cost of the actor actions. This is the same as ranking
explanations only by their synthesis cost which is what happens when the sensor model
does not include sensing cost functions.

4.4.6. A walk-through of the compilation

In this section we revisit the Blindspots example of Figure 4.3 to walk the reader through
the compilation scheme. Recall that the actor is initially situated at tile (3, 1), and the
observation sequence contains four observations that show: first, the actor is observed at
tile (3, 2); the next two observations are given by the inability of the camera to capture the
actor’s location as it is in a covered tile; lastly, the actor is seen at tile (3, 5).

Time Observation Sensing action
1 obs_loc =(3,2) sense_1
2 obs_loc = unknown sense_2
3 obs_loc = unknown sense_3
4 obs_loc =(3,5) sense_4

Following our compilation, we extend the set of state variables with a variable q with
domain D(q) = {0, ..., 4}, where q = 0 represents the starting location of the automaton,
and q = 4 the accepting location. In order to encode the transitions of the automaton we
need four sensing actions, one for each observation, as indicated in the above table. The
sensing action sense_1 is defined as follows

Pre(sense_1):{(q,”’q = 0")
Eff(sense_1): (q*,”q" = 1”") U dend(¢3.2))

55



where dend(¢; 2)) is the dead-end constraint defined over ¢35y = (loc, ”’loc = (3,2)”).
This constraint is defined as

dend(¢;2)) = ({loc,valid™},”loc # (3,2)” x {L})

where "loc # (3,2)" the relation R = D(loc) \ {(3,2)}. Action sense_1 encodes the
transition that advances the location of the automaton A(w) from location g, to g; when
observation o, is accepted. The only precondition of the action is q = 0, which is initially
true. The execution of sense_1 updates the value of q through effect "q* = 1", which
encodes the change of location in the automaton. However, executing sense_1 in a state
that satisfies "loc # (3,2)" will introduce a dead-end valid® = L. Therefore, the only
way to reach the goal is to execute sense_1 in state s = {loc = (3,2),q = 0}.

Action sense_2 is an interesting case as the emission obs_loc = unknown is valid
no matter the location of the actor. This means that the dead-end constraint is unnecessary
and the action is simply encoded as

Pre(sense_2):(q,”’q =17)
Eff(sense_2): (q",”’q" =27)

As we can see, sense_2 only checks and updates variable q so it becomes applicable
immediately after sense_1 is executed. The two remaining sensing actions follow the
same structure as sense_2 and sense_1, respectively.

Regarding the cost of the sensing actions we identify the following cases:

e Actions sense_1 and sense_4 have a cost of —1og0.9 (because the probability
that the camera reliably captures the location of the agent when it is at an open tile
is 0.9).

e Actions sense_2 and sense_3 have a cost of —log 0.1 when the actions are exe-
cuted in a state in which the agent is located at an open tile.

e Actions sense_2 and sense_3 have a cost of —log 1 in states where the agent is
located on a covered tile (because the probability that the camera is unable to locate
the agent when it is at a covered tile is 1).

Next, we discuss the solution to the classical planning problem generated by our com-

pilation. It is worth noting that any solution plan will contain the four sensing actions
executed in order. Solving the planning problem optimally renders the following plan.

56



# Action Cost
1 | move((3,1),(3,2)) | —log0.25
2 sense_1 —1og 0.9
3 | move((3,2),(2,2)) | —1log0.25
4 | move((2,2),(2,3)) | —log0.25
5 sense_2 —log1
6 | move((2,3),(2,4)) | —log0.25
7 sense_3 —log1
8 | move((2,4),(2,5)) | —log0.25
9 | move((2,5),(3,5)) | —log0.25
10 sense_4 —1og 0.9

This plan contains all the information needed to build the solution to our Observation
Decoding problem. First, the execution of the actor’s actions (numbered 1,3,4,6,8, and
9 in the plan) in the initial situation of the actor generates the following trajectory 7 that
explains the observation sequence.

Time State
0| loc=(@31)
1| loc=(3,2)
2| loc=(2,2)
3| loc=(2,3)
4 | loc =(2,4)
5| loc=(2,5)
6 | loc =(3,5)

Next, the sensing actions (numbered 2,5,7, and 10 in the plan) indicate the alignment
between the explanation and the observation sequence. More specifically, a sensing action
indicates an alignment between the state where it is executed and its associated observa-
tion. For instance, the action sense_1 indicates and alignment between the post-state of
move((3,1),(3,2)), (loc = (3,2)), and the observation (obs_loc = (3,2)). Considering
this, the solution plan shows the following alignment a:

a(l)=1
a2)=3
a3)=4
a(4)=06

meaning that the first observation is emitted by state 1 of the trajectory 7, the second
observation obs_loc = unknown is emitted by state 3 of the trajectory, the third obser-

57



vation obs_loc = unknown is emitted by state 4 and finally the fourth observation is
emitted by the last state (6) of 7.

Lastly, the cost of the solution plan is exactly

synCost(t) + senCost,(t, w) = 6(—10g0.25) + 2(—10g 0.9) + 2(—log 1)
where:

e The term synCost(t) is the accumulated cost of the actor’s actions; in this case, the
resulting value is given by the number of transitions of the agent across the cells of
the grid (6 transitions) and the probability of each transition, which is 0.25.

e The term senCost, (1, w) is the accumulated cost of the sensing actions (see the table
of the solution plan).

4.5. Experimental evaluation

In this experimental evaluation we analyse the performance of our approach to infer the
real trajectory followed by the actor agent. We also want to evaluate the benefit of ex-
ploiting sensing cost functions when this information is available so we will compare our
approach when the sensor model includes sensing costs, ODyg, to when it does not, ODy.

The evaluation consists in providing the same observation sequence w to both ODyg
and ODy and measuring the similarity of the most likely explanation found by each ap-
proach with the actual trajectory that generated w. In order to compare the similarity
between two trajectories we use the plan diversity metric presented in (Srivastava et al.,

) to instead measure the diversity (or similarity) of the plans that generated each
trajectory. This is an appropriate approach when actions have deterministic effects and
provides some benefits such as being insensitive to symmetries. More specifically, we
selected the o, variant of the diversity metric that interprets a plan as a bag of actions
and computes the similarity between two plans as the set-difference between the two.
Formally:

|B; — Bl N |B; — Bil
|B;| + |Bj| |Bi| + |B|]

0o (i, 7Tj) =

where B; and B; are the bag of actions of plans 7r; and 7, respectively. A value of O for
this metric represents complete similarity of plans while a value of 1 represents complete
diversity. For this experiment we computed 6, (r, 715) and é,(r, my) where r is the original
plan followed by the actor, and g and 7y are the plans corresponding to the most likely
explanations found by ODg and ODy, respectively.

58



4.5.1. Evaluation Benchmark

We created a benchmark of Observation Decoding problems defined over planning do-
mains. The action and sensor models for these domains are defined in similar fashion
to our Blindspots working example. This means that we make the state partially observ-
able by defining counterpat observable variables for some of the state variables (as in the
obs_loc and loc variables), and extending their domain with the unknown emission that
represents a sensor failure. Additionally, we use the sensing functions and sensing cost
functions to split the state space into regions of high (H) and low (L) observability. For
instance, in the Blindspots working example, open tiles define the H region and covered
tiles the L region. Following we briefly describe the domains used and how they were
modified for this evaluation:

e Blindspots: This is the domain of our working example. Briefly, the only observ-
able variable is the location of the actor which is more visible from the open tiles
than from covered tiles. For the creation of the benchmark, the grids were randomly
generated as well as the initial and final positions of the actor.

o Intrusion: This domain emulates attacks on host computers (Pereira et al., ;
Ramirez & Geffner, ). The attacker needs to perform a number of steps in order
to steal data or vandalize a host. We added a few modifications to allow more ways
to accomplish the goal and made it so that some attack paths are more observable
than others. In this way the attacker can choose between a faster attack approach
that is easier to detect (by the observer) or a slower but safer one.

e 2-handed Blocksworld: The classic blocksworld domain with four operators but
using an additional hand. We define several variables to emit the status of a block,
and one variable for each hand, one of them highly observable.

e Office: This is a transportation domain used in (Alford et al., ), where a robot
needs to pick up and deliver packages in a building. The building is represented
as rooms connected by doors, and the robot may need to go through many rooms
to deliver a package. In this domain, we define an observable variable for each
package and make it so packages are easily traceable (high observability) in some
rooms while in others not (low observability).

For each of these domains, we defined three sensor models with observability 100-
0, 80-20 and 60-40 for the H and L regions by tuning the sensing cost functions. For
instance, the Blindspots sensor model with observability 100-0 means that the actor can
always be located in an open tile but never in a covered tile. The observation sequences
used as input of the decoding problems were generated by applying each sensor model
to a dataset consisting of 50 trajectories of the corresponding action model. We also
simulated an intermittent sensing process by removing observations consisting only of
unknown emissions, thus creating gaps in the observation sequence.

59



4.5.2. Results

Following, we present the experimental results obtained by solving our evaluation bench-
mark with the ODg and ODy configurations of our approach. All experiments were run
on an Intel Core i5 3.10GHz x 4 16GB of RAM. The compiled planning problems were
optimally solved with an A* search guided by the blind heuristic (h=0), using the search
code of the METRIC-FF (Hoffmann, ) planner.

Table 4.1 compiles the results for the four domains. The values of column H (high
observability) and column L (low observability) denote the observability degree of each
region. For both ODg and ODy we report the quality of the solutions (measured as plan
diversity) and run-time, averaged over 50 Observation Decoding problems.

M ODg ODy
Domain H | L || 6,(m,7s) t Oo(m, ) t
100 | O 0.04 0.32 0.22 0.02
Brmospors | 80 | 20 0.08 0.10 0.20 0.02
60 | 40 0.11 0.17 0.17 0.03
100 | O 0 0.02 0.58 0.78
INTRUSION 80 | 20 0.07 1.45 0.18 0.81
60 | 40 0.13 3.57 0.14 0.76
100 | O 0 0.20 0.34 78.748
Brocks 21 | 80 | 20 0.05 0.150 0.27 74.440
60 | 40 0.07 0.122 0.26 76.020
100 | O 0 0.20 0.58 0.20
OFFICE 80 | 20 0.23 0.57 0.38 0.19
60 | 40 0.16 4.88 0.23 0.19

Table 4.1: Comparison between ODg and ODy

We can observe that the average diversity of ODy is always higher than ODg, mean-
ing that ODy is able to find explanations that are closer to the original trajectory. Inter-
estingly, the difference between ODg and ODg narrows down as the difference between
the observability of the H and L regions decreases. This results seems to indicate that
as we get closer to a uniform distribution (which would be a 50-50 sensor model) the
information provided by the sensing cost function decreases. This is perfectly reasonable
since not considering the sensing functions is equivalent to assuming a uniform distribu-
tion of observations; in other words, once we reach the uniform distribution (50-50 sensor
model) both ODgs and ODg become equivalent. This is also the reason why the quality of
the solutions found by ODgs (resp. ODy) increases (resp. decreases) as we go from the
100-0 to the 60-40 sensor model. This phenomena is manifested in a fairly gently way,
with the exception of the significant diversity drop of ODy from sensor model 100-0 to
80-20 in the InTRUsION domain. This happens because only two solution paths exist for
these problems and increasing the low observability degree from 0 to 20 uncovers some

60



variables that identify almost unambiguously the solution path.

Regarding run-time, it is difficult to draw conclusions as results vary from domain to
domain. We see domains like office and blindspots where ODy 1is faster, and domains
like blocks 2h where the opposite is true. However, it is important to point out that the
state-dependant costs needed to compile the sensing cost functions in ODy forces as to
use an A* search guided by a blind heuristic, which in turn forces us to keep the problems
at a small size. This is not a problem for ODy, as it does not use state-dependant costs,
and can benefit from planning heuristics.

In conclusion, exploiting the information provided by sensing cost functions does in-
deed give us an edge and improve the quality of the explanations found to the Observation
Decoding problems. However, the planning community has so far ignored the research of
heuristics that support state-dependant costs, a feature needed to exploit this information,
which limits its applicability to small problems. In light of these results, in the following
chapters we will assume that the sensor model does not include sensing costs in order to
tackle more interesting problems.

4.6. Discussion

While in this thesis we restrict our attention to the classical planning model, we believe
that the proposed approach naturally extends to more expressive planning models such
as hybrid planning, temporal planning or non-deterministic planning. The hybrid setting,
in particular, looks very appealing in our view as it allows the representation of dynami-
cal systems that exhibit a discrete and continuous behaviour, and captures the control of
continuously evolving physical activities typical in automated manufacturing, chemical
engineering and robotics systems. We can find preliminary results of what this extension
looks like in (Aineto, Onaindia, et al., , ), where the problem of finding expla-
nations in a hybrid setting is formalized using the Hybrid Automata formalism and then
translated to PDDL+ planning.

On the topic of the sensor model, extending observations to handle noise over state
variables is proposed in (Sohrabi et al., ) but this formulation is constrained to a sin-
gle fluent per observation and noisy observations are handled by skipping them. The idea
of skipping observations is better suited for atomic observations (such as actions) that
are either right or wrong. In our formulation we have several observable variables, and a
single observation may contain a noisy reading for one variable and a correct one for an-
other. Our model-based approach to noise, or non-determinism in general, is much more
flexible as it checks whether that a reading is possible with the given sensor model. It is
also worth pointing out that our proposal of compiling the monitor A(w) away in order to
restrict solutions to explanations for w is compatible with existing inference approaches.
Our compilation can be plugged directly into Ramirez and Geftner’s Goal Recognition
problem (Ramirez & Geftner, ) and other derived approaches with the advantage of

61



being able to exploit richer sensor models which has the added benefit of making away
with the existing limitation of single element observations.

An important topic for discussion is the scalability of the proposed approach and how
it can be improved. It is well known that compilations to planning tend to sacrifice scal-
ability for the ability to be solved with off-the-shelf planners. It is our belief that a more
integrated approach that interprets observations as landmarks (and the monitor automa-
ton as a landmark graph) and incorporates them inside a search scheme would improve
scalability considerably. Similar ideas have been proposed for Goal Recognition (Pereira
et al., , : Vered et al., ) where the scores of landmark-based heuristics are
used to predict the most likely goal.

The last topic we want to touch upon is related to the information conveyed by an
observation. It is important to understand that the gain of information is not the same
for all observations. This is something that we can easily see in our working example.
Consider, for instance, the observations (obs_loc = unknown) and (obs_loc = (3, 2)).
It is clear that the latter provides more information since it can only be emitted by state
(loc = (3, 2)) while the former can be emitted from any state. In that regard, being able
to observe the actions executed by the actor, as is the case in many inference approaches,
is very informative as it provides information about both the pre-state and post-state of
the action.

62



S. TEMPORAL INFERENCE

This chapter revolves around exploiting the action model of the actor and the sens-
ing model of the observer to do Temporal Inference, that is, for uncovering the (past)
behaviour of the agent prior to some observation, the (present) behaviour at the time of
the last captured observation, or the (future) behaviour after the last observation. In other
words, Temporal Inference is about seeking answers to questions regarding unknown seg-
ments of the actor’s behaviour. Inspecting the actor’s behaviour from a sequence of obser-
vations is approached as providing an answer to the question posed by a set of alternative
hypotheses. A question may be related to a single state of the agent or to several states
visited by the agent.

We start off by introducing a working example in Section 5.1 that we will use through-
out the chapter. Section 5.2 formalizes the concept of hypothesis. The Temporal Inference
problem and three special classes are formulated in sections 5.3 and 5.4, respectively,
and followed in Section 5.5 with a justification of their solutions. Then, we present our
planning-based approach to solve the Temporal Inference problem in Section 5.6 and
evaluate it in Section 5.7. We conclude this chapter in Section 5.8 with a discussion of
related topics and works.

5.1. Working Example: Driverlog

The working example used in this chapter is based on the Driverlog domain introduced
at the 3"International Planning Competition (IPC) (Fox & Long, ). This is a trans-
portation domain where trucks deliver packages between locations. The actor in this
working example refers to a system composed of trucks, drivers and packages, and their
interactions with the environment, which is defined by the graph of locations illustrated
in Figure 5.1:

o A single truck named trk.
e Two drivers named drv1 and drv2.

e Two packages named pkgl and pkg2.

e Asetof 17 locations Loc = {d1,...,d4,s1,...,s4,tl,...,t3,hl,..., h6} grouped
in four cities such that {d1,...,d4} are the locations of the Diamond city (Dc),
{s1,...,s4} are the locations of the Square city (Sc), {t1,..., t3} are the locations
of the Triangle city (Tc), and {h1, ..., h6} are the locations of the Hexagon city (Hc).

The action model of the actor contemplates a set of actions for drivers and trucks

63



Diamond (Dc)

Triangle (Tc)

Figure 5.1: Working example based on the Driverlog domain.

to move between locations, drivers to board and debark from trucks and packages to be
loaded and unloaded from trucks. More specifically:

e A driver can board onto a truck when both are in the same location. Alternatively,
the driver can debark from the truck he is driving.

e A driver boarded in a truck can drive the truck between connected locations.
Drivers can also walk between two locations but only when the locations are within
the same city.

e A truck can load a package if both are in the same location. Alternatively, the truck
can unload packages in its current location.

The state of the actor can be described in terms of the locations of the trucks, the
drivers and the packages involved. With that regard, the set of state variables of the actor
are:

e Variables 1loc_pkgl and loc_pkg2 with domain Loc U {trk} that represent the lo-
cation of the two packages. For instance, (loc_pkgl = s1, loc_pkg2 = s4) means
that pkgl is at location 1 of Square city (Sc) and that pkg2 is at location 4 of the
same city. These variables also indicate whether a package is loaded into the truck,
e.g. loc_pkgl = trk.

e Variables loc_drvl and loc_drv2 with domain Loc U {trk} that represent the lo-
cation of the two drivers. For instance, (loc_drvl = t3, loc_drv2 = h3) indicates

64



that drv1 is at location 3 of the Triangle (Tc) city and drv2 is at location 3 of the
Hexagon city (Hc). These variables also represent that a driver is inside the truck,
e.g. loc_drvl = trk.

e A variable loc_trk with domain Loc representing the location of the truck. For
instance, loc_trk = h4 means that trk is at location 4 of Hexagon city.

Besides these variables there are also other variables used to represent the static state
knowledge of the environment, the locations graph, which we will skip for clarity. The set
of state variables considerd in this working example is thus X = {loc_pkg1l, loc_pkg2,
loc_drvl, loc_drv2, loc_trk}, which contains the variables that describe the location
of the packages, the drivers and the truck of our working example. Figure 5.2 shows the
representation of the state depicted in Figure 5.1.

sl
loc_pkg2 s4
loc_drvl = t3
loc_drv2 = h3
loc_trk = h6

loc_pkgl

Figure 5.2: State representation of the situation shown in Figure 5.1

In the deterministic sensor model used in this working example, observable variables
are considered features that abstract the state of the actor. In particular, we assume that
the truck is equipped with a low resolution GPS that reports the city where the truck is
located. Additionally, cities track down the number of available drivers (those who are
not driving), and the number of undelivered packages (e.g. the delivery company has an
office at each city for tracking down this information). The exact location of a truck, a
package, or a driver is, however, unknown. The sensor model for this example is thus
defined with the following set Y of observable variables:

e Variable city_trk with domain D(city_trk) = {Dc, Sc, Tc, Hc} indicates the city
where a truck is located; the precise location within the city is, however, unknown.
For example, the emission city_trk = Hc means that trk is at some location of
the Hexagon city.

e Variables free_Dc, free_Sc, free_Tc and free_Hc represent the number of avail-
able drivers in a city,i.e., those who are not already driving a truck. For instance,
free_Tc = 1 means that there is one available driver at the Triangular city.

e Variables undel_Dc, undel_Sc, undel_Tc and undel_Hc represent the number
of undelivered packages in a city (packages that already loaded into trucks are not
counted). For instance, undel_Sc = 2 means that there are two packages pending
delivery at the Square city.

65



Next, we show how the sensing functions must be defined in order to achieve the
desired behaviour for our observable variables. The simplest case is the sensing function
of variable city_trk since its value is only dependent on the state variable loc_trk:

SeNnsecity trk(loc_trk, Locp.) = Dc
SeNnsecity trk(loc_trk, Locs.) = Sc
Sensecity trk(loc_trk, Locrc) = Tc

SeNnsecity trk(loc_trk, Locy.) = Hc

where Loc, C Loc is the subset of locations of city c. In this way, the sensing function
Sensecity trx Will always emit the correct city where the truck is located.

The observable variables for undelivered packages and available drivers count the
number of packages or drivers in a city. In both cases, their values depend on two state
variables because there are two packages and two drivers. Since their sensing functions
are similar we will only use free_Dc as an example. Assuming Locp. C Loc is the set of
locations of the Diamond city and Locp. = Loc \ Locp., the sensing function for free_Dc
is defined as follows:

SeNSesree pc({loc_drvl, loc_drv2}, Locp. X Locpe) = 2
SeNnSefree pc({loc_drvl, loc_drv2}, Locp. X L_OCDC U L_ocDc X Locpe) = 1

S€NSe«ree pe({loc_drvi, loc_drv2}, Locpe X Locpe) = 0

The first rule says that the sensor will emit free_Dc = 2 when both drv1 and drv2
are in the Diamond city; the second rule produces the emission free_Dc = 1 when either
of the drivers is in a location of Diamond city; and the third rule emits free_Dc = 0 when
none of them are in the city.

city_trk = Hs

free_Sc = 0 free_Dc = 0
free_Tc = 1 free_Hc = 1
undel_Sc = 2 undel_Dc = 0
undel_Tc = 0 undel_Hc = 0

Figure 5.3: Representation of the observation of the state shown in Figure 5.1

The observation of the state illustrated in Figure 5.1, with the sensor model described
above, is shown in Figure 5.3. For clarity, we will often omit observable variables whose
value is O as follows 0 = {(city_trk = Hs, undel_Sc =2, free_Tc =1, free_Hc = 1).

66



The observations generated by the sensor model used in this working example are
abstractions that summarize the world state. As a consequence, there may exist multiple
states that emit the same observations. For instance, the observation of Figure 5.3 would
also be emitted from the state s = (loc_pkgl = s2, loc_pkg2 = s3, loc_drvl = h6,
loc_drv2 = t1, loc_trk = h1) among others.

5.2. Hypotheses

Hypotheses describe assumptions regarding the past, present or future of the actor which
are used to pose questions concerning the explicability or predicatability of the actor’s
behaviour. Moreover, a hypothesis may refer to a single actor state, such as hypothesizing
about the goals of the actor, or to several states, for instance, if we wish to know the path
followed by the actor or the order in which it will pursue its goals.

First, we need to clarify what is considered as the "past" and "future" of the actor.
In our framework, we regard the last observation o, of an observation sequence w =
(01,...,0,) as an observation of the present state of the actor as it contains the most recent
information. Hence, if we want to find an answer about something that happened before
o, then it means we are looking into the past of the actor. If we ask for something that will
happen after o, then we are speculating about the future.

We start by defining the concept of a conjecture, which is used to describe an assump-
tion over a single state of the actor.

Definition 28 (Conjecture). A conjecture 5 : Z — D(Z), Z C X, is a valuation of a subset

of state variables.

A conjecture is similar to the traditional concept of partial state, where only some
variables have known values and the rest of variables remain undefined. As an example,

5 =(loc_trk = t1,1loc_drvl = trk)

is a conjecture over Z = {loc_trk, loc_drv1} that specifies that trk is being driven
by drv1 and that trk is at location t1 of the Triangle city. Moreover, much like observa-
tions, conjectures can also be interpreted as constraints. Specifically, a conjecture 5 over
the subset of state variables Z = {x,...,x;}, describes a constraint ¢; = (Z, R) where
R is a singleton consisting of a tuple (5(x;),...,3(x;)). In that regard, the conjecture
§ =(loc_trk = t1,1oc_drvl = trk) specifies the constraint

¢; = ({loc_trk, loc_drvl}, {(t1, trk)})

A hypothesis combines the collected data, in the form of observations, with conjec-
tures about parts of interest in the actor’s trajectory. Depending on how hypotheses are

67



formulated, particularly in the temporal relation between conjectures and observations,
they can be used to indistinctly pose queries about the past (e.g., for finding explana-
tions), present (e.g., for diagnosis and monitoring) or future (e.g., for prediction and goal
recognition). A hypothesis then expresses state constraints as well as temporal constraints
between observations and conjectures. Hypotheses can only be interpreted in the context
of an observation sequence.

Definition 29 (Hypothesis). A hypothesis is a sequence n = (hy, hy, ..., h,,) where

0 o € D(Y)¥
h=13 5 e D(Z)* (5.1
(0,35) o€ DY) A5 € D(Z)*

and at least one of the elements of the sequence is a conjecture or a pair observation-

conjecture.
This definition is sufficiently expressive to write hypotheses that interleave observa-

tions and conjectures in many different ways. Figure 5.4 shows a visual representation of
a hypothesis and the interleaving between observations (in blue) and conjectures (in red).

(P (P (P (P (P (P observations _
R

conjectures

Figure 5.4: A hypothesis interleaving observations (blue) and conjectures (red).

Figure 5.4 illustrates all three cases of Equation (5.1) where observations and conjec-
tures can occur in isolation or coincide in time. Table 5.1 presents the hypothesis of Figure
5.4 in more detail. As we can see in the table, this hypothesis interleaves a sequence of
six observations with four conjectures. Considering that the last observation, og in this
example, is an observation of the present state of the actor, conjectures 33 and 35 refer to
the past of the agent, 3g refers to its present, and 5§ to a future state.

Following we present two examples of hypothesis using our driverlog working exam-
ple. Both hypotheses are based on the same observation sequence shown in Table 5.2,
which assumes city_trk as the only observable variable. The observation sequence of
Table 5.2 stands for a piece of information where the GPS has located first trk at the
Hexagon city (Hc), and later at the Diamond city (Dc).

Hypothesis example 1. We know by the observation sequence of Table 5.2 that trk
has visited first Hc and Dc afterwards. We conjecture that trk was driven by drv2 and
that it traversed location t2 and then t1 of the Triangle city after visiting Hc and before
visiting Dc. The hypothesis that describes this situation is shown in Table 5.3

68



Time | Observation | Conjecture
1 01 -
2 0; -
3 - 53
4 04 -
5 - 55
6 0¢ -
7 07 -
8 03 Sg
9 - 59

Table 5.1: Hypothesis illustrated in Figure 5.4

Time Observation
1 city_trk =Hc
2 city_trk =Dc

Table 5.2: Example of a 2-observation sequence in the driverlog working example that
assumes a single observable variable city_trk.

Hypothesis example 2. In this hypothesis we make the conjecture that, at some point
after observing trk1 in the Diamond city, pkgl will be delivered at location d4. Table
5.4 shows the hypothesis of this example.

5.3. The Temporal Inference problem

Temporal Inference is about seeking answers to questions regarding unknown segments
of the actor’s behaviour. The observer, having collected some observations on the ac-
tor, poses a number of alternative hypotheses each embodying a different answer to the
question at hand. A Temporal Inference Problem (TIP) extends the observation decoding
problem with a set of hypotheses, with the goal of finding the hypothesis that best fits
the observed behaviour of the acting agent. Following, we formally define the Temporal
inference problem.

Definition 30 (Temporal inference problem). We formally define a Temporal inference
problem as a tuple (M, M, so, w, H) where:

e M, =(X,A, App, Eff, ¢) is the action model of the actor.
o M, =(X,Y,Sense) is the sensor model of the observer.
e sy is the initial situation of the actor.

e w=1(01,...,0,) is an observation sequence.

69



Time | Observation Conjecture
1 city_trk = Hc -
- loc_trk = t2,loc_drv2 = trk
- loc_trk =tl1,1loc_drv2 = trk
city_trk =Dc -

BN

Table 5.3: Hypothesis of Example 1.

Time | Observation Conjecture
1 city_trk = Hc -
2 city_trk =Dc -
3 - loc_pkgl =d4

Table 5.4: Hypothesis of Example 2.

o H is a finite and non-empty set of hypotheses over w.

The solution to the Temporal Inference problem is the most likely hypothesis, which
we define as the hypothesis satisfied by the lowest cost trajectory. Since a hypothesis
n € H contains the observation sequence w alongside some conjectures, a trajectory that
satisfies 77 can be interpreted as an explanation for w that complies with the conjectures in
n. In light of this, we can also interpret the most likely hypothesis as the one supported

by the best explanation.
Formally, we say that a state trajectory 7 = (so,...,s,) satisfies a hypothesis n =
(hy,...,h,) when there exists an alignment between 7 and 1 such that all conjectures and

observations of 1 are accepted by states of 7.

Definition 31. A state trajectory T = (s, ..., S,) satisfies a hypothesis n = (hy,...,hy,)
under alignment a if, fori € {1,...,m}, it holds that s, E ®y, where

D, when h; = o;
(Dh,- = {(pgl} when h,‘ = S,‘ (52)
®,, Ulps} when h; = (0;,5))
As we can see, Definition 31 simply extends the definition of explanation (Def. 24)
to account for the constraints imposed by the conjectures. Later, when we present our

proposal to solve the TIP with planning, we will see that interpreting conjectures as con-
straints will allow us to use the same ideas presented in the previous chapter.

Now we are ready to define the solution to a TIP as the most likely hypothesis.

Definition 32 (Most likely hypothesis). The solution to a Temporal Inference problem
(M,, My, sy, w, H) is the most likely hypothesis n* € H computed as

n' = arg min{ min synCost(‘r)} (5.3)

776’1‘( TE‘T’,,(M{,,S())

70



where T,(M,, so) is the set of trajectories that satisfy the hypothesis n.

This definition follows the principles of Inference to the Best Explanation (Harman,

; Schupbach, ). Inference to the Best Explanation is a form of inference that

reasons to a hypothesis based upon the premise that it provides a better explanation than

any other available, competing hypothesis. Hence, one reaches the conclusion that a

hypothesis is true from the premise that it provides a better explanation for the evidence
than would any other hypothesis.

5.4. Special Classes of Temporal Inference Problems

A wide palette of inference problems can be expressed as particular instances of a TIP.
This section describes three special classes of Temporal inference problems in which we
will put the focus for the remainder of the chapter. The three selected classes of TIP are
based on the crisp semantics of problems that refer to the present, the past or the future of
the actor.

Monitoring. The goal of monitoring is to ascertain the present state of the actor. In a
monitoring problem the conjectures refer exclusively to the current state of the actor, that
is, to the state associated to the last observation. Hypotheses in a monitoring TIP only
contain a single conjecture that corresponds in time with the last observation. Formally,
a set of hypotheses H represents a monitoring problem if, for every single hypothesis
n = (hy,ho,..., hy) € H, it holds that

o Vi,l <i<m,h; e D(Y)Y, and

e h, € DY) x D(Z)*

Hindsight. Hindsight is about looking into the past of the acting agent. A hindsight
problem poses a question about unknown segments of the actor’s behaviour so far and,
therefore, all conjectures refer to past states. Formally, a set of hypotheses H represents
a hindsight problem if, for every single hypothesis = (hy, hs, ..., h,) € H, it holds that

e i, i < m, such that h; € D(Z)? or h; € D(Y)Y x D(Z)?, and

e Vji<j<mh,e€DY))

Prediction. Prediction is concerned with the future of the actor. A prediction problem
speculates about the actor’s future by making conjectures about its future states. Formally,
a set of hypotheses H represents a prediction problem if, for every single hypothesis
n=(hy,hy,..., hy,) € H,itholds that

e Jj,j<msuchthatVi,1 <i< j h; € D(Y)Y, and

71



o Vi,j<i<mh; € DZ)*

Figure 5.5 provides a graphical guide on how hypotheses must be defined in each class
of problems. Summarizing, in monitoring we have a single conjecture about the present
state of the actor, in hindsight all conjectures are about past states, and in prediction all

conjectures are about future states.

. present time
Monitoring

09 9 990 ,
5

Hindshight

09 9 996 ,
S & 5

Prediction

29 9 999

RS

(O observation <> conjecture

Figure 5.5: Special classes of Temporal inference problems

Following, we illustrate the three types of Temporal inference problems using the
driverlog working example. In all examples, we assume that the hypothesis are defined
over the two-observation sequence shown in Table 5.5. This sequence shows that we first
observed the two packages in the Square city, one free driver in the Triangle city and trk
in the Hexagon city; afterwards we observed one less package in the Square city and trk

in the Diamond city.

Time Observation
1 undel_Sc=2, free_Tc=1, city_trk = Hc
2 undel_Sc=1, free_Tc=1, city_trk = Dc

Table 5.5: Example of a two-observation sequence in the driverlog working example.

Monitoring example. An example of monitoring is identifying the driver who is cur-
rently driving trk, for which we generate two alternative hypotheses H = {n,7n’}, one
where trk is driven by drvl and another where it is driven by drv2. These two hy-

72



potheses are shown in Table 5.6, where o0, and o, refer to the two observations previously

described.
’ ‘ Time ‘ Observation Conjecture
1 01 -
g 2 09 loc_drvl = trk
, 1 01 -
g 2 0, loc_drv2 = trk

Table 5.6: Example of hypotheses in a monitoring TIP.

Hindsight example. The observation sequence of Table 5.5 used for these examples
show that a package is picked up between the first and the second observation. In light of
this, we can formulate a hindsight problem in which we ask about the package which was
picked up. To this end we create two alternative hypotheses H = {n,n’} (Table 5.7), one
with pkgl in trk and another with pkg2. Note that inserting the conjecture between the
two observations pushes the second observation to time index 3.

’ ‘ Time ‘ Observation Conjecture ‘
1 01 -
n 2 - loc_pkgl = trk
3 03 -
1 01 -
n 2 - loc_pkg2 = trk
3 03 -

Table 5.7: Example of hypotheses in a hindsight TIP.

Prediction example. For the prediction example, let us assume that the delivery point
of the two packages is location d1 of the Diamond city. An example of a prediction
problem is speculating about the order in which packages pkgl and pkg2 will be delivered
after having observed that one package was already picked up and that the truck traveled
to the Diamond city. This problem is formulated with the two hypotheses shown in Table
5.8 where 1 conjectures that pkgl will be delivered before pkg2 and n" conjectures the
reverse order. In order to speculate about the order in which goals are achieved, the
hypotheses must include a sequence of conjectures such that goals not satisfied in previous
conjectures are satisfied in later ones. For this particular example, in both hypotheses the
conjecture 33 says that one package has already been delivered to location d1 while the
other is still in its initial location (s4 for pkg2 and sl for pkgl), while conjecture 3,
shows both packages at the delivery point.

This prediction example shows that writing hypotheses that contain multiple conjec-
tures enriches the expressiveness of the Temporal inference problem as it enables express-
ing properties concerning several states of the actor like, for instance, the order in which

73



’ ‘ Time ‘ Observation Conjecture

1 04 -

2 09 -
g 3 - loc_pkgl =d1,loc_pkg2 = s4
4 - loc_pkgl =d1,loc_pkg2 =dl

1 01 -

, 2 09 -
7 3 - loc_pkgl = s1,1oc_pkg2 =d1
4 - loc_pkgl =d1,loc_pkg2 =dl

Table 5.8: Example of hypotheses in a prediction TIP.

goals will be satisfied. The same is applicable to the hindsight problem to query about the
specific order of two past occurrences.

5.5. The Solution to the Temporal Inference Problem

This section explains how we arrive at the solution to the Temporal Inference problem
shown in equation 5.3. The goal of Temporal Inference is to identify the hypothesis that
better adjusts the evidence provided by the observations, all while complying with the
models of the actor and the observer. Equation (5.3) of Section 3.2.2 (replicated below for
convenience) provides a probabilistic interpretation of the exact solution to this problem.

arg max P(nlw, so, My, M) (54)
neH

where P(n|w, sg, M,, M) is the likelihood that the actor behaves as described in n
given its action model M, and the sequence w observed with the sensor model M. From
the definition of conditional probability we arrive at the following equality

arg max P(n|w, so, My, M) = arg max P(n, w|so, My, M) (5.5)
neH neH

where P(n, w|so, M,, M) is the joint likelihood of 7 and w happening at the same time.
Since the likelihood P(w|sy, M,, M) can be computed by marginalizing over all trajecto-
ries, a natural way to define P(n, wl|sg, M,, M) is to marginalize only over trajectories that
satisfy 7, that is, the set 7,,(M,, so). Consequently, we define this joint likelihood as

P(p, wlso, My M) = > P, Tlso, My, M) (5.6)

€T (Ma,50)

74



where P(w, 7|59, M,, M) is the joint likelihood of the observation sequence and the
trajectory that we are already familiar with. The computation of equation 5.6 is still
intractable as the inference setting is unbounded and, therefore, the set 7,,(M,, s¢) is po-
tentially infinite. We articulate the following common approximation that assumes that
the sum is dominated by its largest term:

P(m, wlso, M,, M) = . max )P(w, 7|50, My, M) (5.7)
7€) yMg,S0

Ultimately, this approximation leads us to the following solution to the Temporal In-
ference problem, which defines the most likely hypothesis as the one supported by the
best explanation.

arg max P(n|w, so, My, M) =~ argmax max P(w,7|sy, M,, M) (5.8)
neH neH  T€Ty(Ma,s0)

As we can see, Equation (5.8) is the probabilistic interpretation of our cost-based
solution presented in Equation (5.3).

5.6. Temporal Inference as Planning

This section presents our proposal to address the TIP using planning. From Definition 32,
the most likely hypothesis is the one satisfied by the lowest cost trajectory. This means
that, for each hypothesis n € H, we need to compute the lowest cost trajectory in the set
T4(M,, so). This problem is closely related to an observation decoding problem with the
exception that:

1. a trajectory needs to satisfy a hypothesis that now includes not only observations
but both observations and conjectures

2. the calculation needs to be done for every hypothesis

Our proposal addresses these differences in the following way:

1. We extend our observation decoding as planning approach in order to find trajecto-
ries that satisfy a hypothesis. This implies compiling a planning problem %(77) such
that its solutions generate trajectories 7,(M,, o).

2. We compile a TIP (M,, M, sy, w, H) into |H| planning problems #(r), one for
each hypothesis in H. After solving each problem $(n) optimally, the solutions are
ranked by cost to determine the most likely hypothesis.

75



We leverage the ordered occurrence of the components of a hypothesis to extend our
observation decoding as planning approach to solve a TIP. More specifically, a hypothesis
n = (hy, hy, ..., h,)expresses an ordered occurrence property ord(h) = XF(®j, AXF(Djy, A
...AXF®,, )). Thus, the same ideas used for finding explanations to observation sequences
can be exploited to finding trajectories that satisfy a hypothesis. In this case, we translate
the property ord(n) to its corresponding monitor automaton A(n) and build a classical

planning problem #(n) following the compilation proposed in Section 4.4.3.

Regarding the implementation of the sensing actions, we note that the constraint de-
fined by a conjecture always has cardinality 1 and, therefore, meets the criteria for the
basic encoding of the sensing actions. Recall from Section 4.4.3 that constraints with
cardinality 1 can be directly encoded in the applicability constraint of a sensing action,
while for higher cardinality constraints (as is generally the case for observations) we rec-
ommend the encoding with dead-ends. The same rules applies here for a sensing action
a" encoding the transition ¢; = 6(g;_1, ®),) of the monitor automaton A(n). Consequently,
assuming @, = ®,. U ¢, the constraints ®@,, defined by the observation will be encoded
following the criteria specified in Section 4.4.3, and the constraint ¢;, defined by the con-

jecture will be encoded following the basic encoding.

5.7. Experimental evaluation

This section evaluates the ability of an off-the-shelf planner to solve the palette of Tempo-
ral inference problems presented in this work. We tested our approach on a benchmark of
monitoring, hindsight, and prediction problems, in five well-known classical planning
domains from the IPC: grid, miconic, driverlog, floortile, and openstacks.

A Temporal inference problem (M, M, sy, w, H) is constructed as follows:

e We use the action model M, of the original domain as available in http://api.planning.
domains.

e The sensor models are defined in the same way as the one used in our driverlog
working example. This means that the values of the observable variables Y are
high-level observations of the world states that convey how many objects meet some
particular property, but not the actual identity of the objects. For instance, in the
miconic domain, we have "the number of passengers inside a lift"; in the openstacks
domain, we have "the number of waiting/started/shipped orders". In both cases, the
actual identity of the passengers/orders remains unknown to the observer.

e H is a set of hypotheses regarding the current state in monitoring TIPs, a sequence
of past states in hindsight TIPs, and a sequence of future states in prediction TIPs.
Hypotheses allow us to answer queries such as "which are the currently opened
locks?" (grid), "what was the order of the first four painted tiles?" (floortile), and

76


http://api.planning.domains
http://api.planning.domains

Monitoring Hindsight Prediction
Domain 0% | |H| | IH*| Q T [H| | H Q T [H| | H| Q T
30 1.00 | 1.00 7.97 1.00 | 1.00 | 135.52 1.00 | 1.00 | 32.17
Grid 50 | 540 | 1.00 | 1.00 | 27.85 | 2.00 | 1.00 | 1.00 | 146.05 | 2.00 | 1.00 | 1.00 | 13.73
70 1.00 | 1.00 | 65.78 1.00 | 1.00 | 138.33 1.00 | 1.00 | 17.79
30 1.10 | 1.00 | 53.22 1.90 | 0.90 | 149.04 3.00 | 1.00 | 140.57
Miconic 50 | 6.00 | 1.10 | 1.00 | 180.29 | 5.00 | 2.00 | 1.00 | 140.24 | 5.00 | 2.60 | 1.00 | 255.56
70 1.20 | 1.00 | 120.13 1.80 | 1.00 | 121.02 2.60 | 1.00 | 320.65
30 1.40 | 0.90 | 162.61 1.00 | 1.00 | 238.16 1.00 | 1.00 | 169.24
Driverlog 50 | 540 | 1.40 | 0.90 | 284.90 | 5.30 | 1.00 | 1.00 | 399.23 | 530 | 1.00 | 1.00 | 250.70
70 1.40 | 0.90 | 390.91 1.00 | 1.00 | 560.77 1.00 | 1.00 | 349.16
30 1.30 | 040 | 37.31 470 | 0.80 | 443.10 3.00 | 1.00 | 676.76
Floortile 50 | 590 | 1.30 | 0.50 | 5697 | 6.00 | 4.00 | 0.80 | 141.56 | 6.00 | 3.80 | 0.90 | 713.32
70 1.50 | 0.60 | 44.53 3.50 | 0.80 | 128.48 470 | 1.00 | 734.02
30 2.30 | 0.80 5.93 2.00 | 1.00 | 11.19 2.50 | 1.00 | 15.70
Openstacks | 50 | 5.60 | 2.30 | 0.80 6.81 580 | 1.70 | 1.00 | 11.32 | 590 | 2.50 | 1.00 | 20.30
70 2.30 | 0.80 9.60 1.60 | 1.00 | 14.28 2.50 | 1.00 | 18.77

Table 5.9: Results for Temporal inference problems of monitoring, hindsight, and predic-
tion 1n five different domains and for three different levels of observability.

"what will be the order in which the last three packages will be delivered?" (driver-
log). For each TIP, we created a set H in which only one of the hypothesis is correct
with respect to the original trajectory of the actor. Observations were collected by
observing some trajectory 7 of the agent with the sensor model. We also define an
observability parameter that determines the intermittency of the sensing process by
specifying the percentage of states of 7 that emit an observation.

All experiments were run on an Intel Core i5 3.10GHz x 4 16GB of RAM. The plan-
ning problems were optimally solved with the FAsST-DowNwARD planning system, following
the configuration for the merge and shrink heuristic (Helmert et al., ) that uses bisim-
ulation based shrinking, the merge strategy SCC-DFP, and the appropriate label reduction
setting (Sievers et al., ), as recommended at the http://www.fast-downward.org/ web-
site. Planning problems are solved with a timeout value of 120 secs of CPU-time, and
8GB of memory. The source code and test benchmark for the evaluation is available at
https://github.com/anonsubs/planning_inference.

5.7.1. Empirical Results

Table 5.9 summarizes the results of evaluating our approach on monitoring, hindsight
and prediction TIPs. Column "O%" is the observability parameter (30%, 50%, or 70%).
For each type of TIP, we report the size of the hypotheses set (|7H]), the number of most
likely hypotheses as computed by our approach (|H*|), the ratio of TIPs whose correct
hypothesis is among H* (Q), and the accumulated time (T) in secs to solve the TIP. We
note that solving a TIP implies solving || planning instances P(n7), one instance for each

nin H.

The best score is obtained when [H*| = 1 and Q = 1, meaning that only one hypoth-

77


http://www.fast-downward.org/
https://github.com/anonsubs/planning_inference

esis is recognized as the most likely and that such hypothesis is the correct one. For each
combination of TIP (monitoring, hindsight and prediction), domain and observability per-
centage, we report in Table 5.9 the average score across 10 problems. Thus, our approach
was evaluated over 5 X 3 X 3 x 10 = 450 TIPs.

As expected, the best results, i.e. larger values for Q and/or lower values for |H"|,
are obtained for high degrees of observability since more data is available. Yet, we also
find quite a few cases of 30% observability that achieve the top performance. Increasing
observability comes however at the cost of longer planning solutions (more sensing ac-
tions), which require longer computation times. The prediction results for the floortile in
Table 5.9 show that increasing the observability may actually hinder the performance of
the system as computation times are pushed over the set timeout of 120s.

Interestingly, we can observe in Table 5.9 that the worst quality results are found in
monitoring TIPs and to a lesser extent also in hindsight TIPs. This is particularly remark-
able in the floortile domain which features highly interconnected goals. In general, a drop
in the quality of the solutions is expected when the observation sequence only conveys a
small subset of the final goals that the actor pursues. This is because our approach does
not assume that the goals of the actor are known so we find explanations that are optimal
with respect to what is revealed by the observation sequence. However, the prefix of an
optimal plan is not necessarily optimal with respect to the subset of goals achieved by
that prefix. This is what is causing the low performance in the floortile domain, since the
goal of the actor is to have the whole board painted but the last observation only shows
that a handful of tiles are painted. As a result, this mismatch between the information
conveyed by the observations and the goals pursued by actor causes a drop of the quality.
This limitation can easily be overcome if the actor’s goals are known, in which case they
will be added as the last conjecture of the hypothesis.

Summarizing the results of our evaluation, we have shown that our approach offers
an homogeneous and versatile solution to the problem of uncovering the past, present
and future of an actor. Our approach is generally accurate and unambiguous in selecting
the most likely hypothesis. The exception to this is found in domains with highly inter-
connected goals, a limitation that is primarily caused by the goals being unknown in our
framework.

5.8. Discussion

The Temporal Inference problem blurs the line between explicability and predictability,
cementing the view that inference oriented towards explaining the past or to predicting the
future are two sides of the same coin and as such, they can be formulated within a single

unified framework (Chakraborti et al., ). In doing so, our approach generalizes a
number of inference problems found in the literature like Diagnosis (Sohrabi et al., ),
Plan Monitoring (Fritz & Mcllraith, ) and Goal Recognition (Ramirez & Geffner,

78



).

Another relevant aspect is that existing formulations of inference problems typically
account for hypotheses on the unobserved behaviour at a single point of the actor’s trajec-
tory. Assumptions regarding the initial state are included in approaches to the Diagnosis
problem (Sohrabi et al., ), estimations about the actual state are considered in Plan
Monitoring (Fritz & Mcllraith, ), and the set of hypotheses in Goal Recognition
contains goal states. The ability to hypothesize that two variables are achieved in some
particular order or conjecturing about whether a variable is achieved before or after some
observation is a powerful inference ability.

The trade-off between information and scalability that we can find in existing ap-
proaches to inference is also an important topic of discussion. On the more informative
but less scalable side, we have (Ramirez & Geftner, ) that solves two planning prob-
lems for each hypothesis. One problem is used to compute the most likely explanation
given the observations and the other to compute a “null hypothesis™ (a solution inconsis-
tent with the observations) to determine the degree in which the explanation is necessary
for a given goal. Then, if the cost of the null hypothesis is much larger than the cost of
the most likely explanation, they can conclude that the explanation is not only sufficient
but necessary. Our Temporal Inference problem makes no assumption regarding the goals
of the actor so we cannot follow this counter-factual approach. Instead, we follow the
principles of Inference to the Best Explanation that requires a single planning problem
per hypothesis and allows for a more general formulation. On the opposite side of the
balance we find the heuristic-based approach (E-Martin et al., ; Pereira et al., ,

; Vered et al., ) that use heuristics as fast but less informed estimates to predict
the goal of the actor.

79



6. MODEL RECOGNITION

In this chapter we present the Model Recognition problem, a problem that shifts the
focus to the action model of the actor. In contrast with observation decoding and tem-
poral inference, in Model Recognition it is assumed that the action model of the actor is
unknown and, instead, we are presented with a finite set of candidate models from which
to pick the one that best fits the observed behaviour of the actor.

As usual, we start the chapter by presenting a working example in Section 6.1. The
Model Recognition problem is formalized in Section 6.2 and its solution motivated in
Section 6.3. While we provide a formalization of Model Recognition that is general to
any action model, we restrict our attention to the specific case of action models encoded
by Strirs schematic representations to which we dedicate Section 6.4. In Section 6.5
we present our approach to solve the Model Recognition problem, an approach that is
later experimentally evaluated in Section 6.6. Finally, we conclude the chapter with a
discussion (Section 6.7) of related topics.

6.1. Working Example: Navigation Strategies

The Model Recognition problem, as well as the learning problem that we will see in the
next chapter, are concerned with the action model of the actor. Therefore, hereinafter
we will put the focus of the working example on the action model and we will assume a
fairly simple sensor model for the observer. This working example includes two different
action models that serve as the set of candidate action models. In particular, the two action
models used here describe different strategies to visit all the tiles of the 6 X 6 grid. In both
models the actor can choose to move in any of the four directions (up, down, left, right)
but the applicability of some actions is partly restricted by a controller.

inc-y
stirt dec-y
@ dec-x
N P
nc-y :
dec—y PR PR A A A L.

Figure 6.1: Example of navigation strategy. (Left) Automata to control that the actor is
allowed to increments its x-coordinate in mode m and decrease it in mode m;. (Right)
Actor navigating a 6 X 6 grid.

Figure 6.1 shows one of the navigation strategies considered in this working example
as well as the automaton that acts as its controller. In this example, the controller has two

80



modes, mg and m; (m is the initial mode), and the navigation strategy it implements can
be described by the following three rules:

e The actor can move right (inc-x) but not left (dec-x) when in mode m.
e The actor can move left (dec-x) but not right (inc-x) when in mode m; .

e The actor can move up (inc-y) or down (dec-y) at any time but by doing so it
switches the controller mode.

This navigation strategy contemplates several different ways to visit all the tiles of the
grid, including the horizontal zig-zag pattern shown in Figure 6.1. Our second navigation
strategy, illustrated in Figure 6.2, is very similar to the first one but swaps the controller
modes for the left and right moves of the actor.

inc-y
Stin dec-y
dec-x C@C\/@Q inc-x Gobes
ey e
dec-y

Figure 6.2: Another example of navigation strategy. (Left) Automata to control that the
actor is allowed to decrease its x-coordinate in mode m, and increment it in mode m;.
(Right) Actor navigating a 6 x 6 grid.

The two action models that make up the candidates set of this working example are
MR and ME, corresponding to the navigation strategies of Figure 6.1 and Figure 6.2,
respectively. We use the superscript "R" to identify the navigation strategy that allows the
actor to move right when in mode m, and similarly, the superscript "L" to identify the one
that allows to move left when in mode m1,. In both action models, the set of state variables
X consists of two coordinate variables xcoord and ycoord with domain {1,...,6} and a
controller mode variable mode with domain {0, 1}. The set of actions A is the same in both
cases, with A consisting of 8 actions, one for each combination of direction and mode.
The two action models differ in the applicability and effects constraints that determine
when an action can be executed and its outcome. In summary, both action models use
the same set of variables to describe the state of the actor and have the same actions
available, but the behaviour of the actions may be different. Tables 6.1 and 6.2 specify the
applicability (App) and effects (Eff) constraints of both action models. In both models,
moving up and down can be done freely as long as it is within the bounds of the grid, and
doing so switches the controller mode. The M can move right if it is in mode m1 and left
if it is in mode m, and vice-versa for the ML action model.

Regarding the sensor model of the observer, in this working example we assume that
the observer can correctly locate the actor through the observable variables xobs and yobs

81



Action App Eff
m0-inc-x | "mode = 0 A xcoord < 6" "xcoord’ = xcoord + 1"

m0-dec-x | "mode = 0 A xcoord > 1" -

m®-inc-y | "mode = 0 A ycoord < 6" | "mode” = 1 A ycoord" = ycoord + 1"

mO-dec-y | "mode = 0 A ycoord > 1" | "mode* = 1 A ycoord* = ycoord — 1"

ml-inc-x | "mode = 1 A xcoord < 6" -

ml-dec-x | "mode = 1 A xcoord > 1" "xcoord’ = xcoord — 1"

ml-inc-y | "mode = 1 A ycoord < 6" | "mode* = 0 A ycoord* = ycoord + 1"

ml-dec-y | "mode = 1 A ycoord > 1" | "mode* = 0 A ycoord* = ycoord — 1"

Table 6.1: Applicability (App) and effects (Eff) constraints of the M¥ action model.

Action App Eff
mO-inc-x | "mode = 0 A xcoord < 6" -

m0-dec-x | "mode = 0 A xcoord > 1" "xcoord’ = xcoord — 1"

mO-inc-y | "mode = 0 A ycoord < 6" | "mode* = 1 A ycoord" = ycoord + 1"

mo-dec-y | "mode = 0 A ycoord > 1" | "mode* = 1 A ycoord* = ycoord — 1"

ml-inc-x | "mode = 1 A xcoord < 6" "xcoord’ = xcoord + 1"

ml-dec-x | "mode = 1 A xcoord > 1" -

ml-inc-y | "mode = 1 A ycoord < 6" | "mode* = 0 A ycoord* = ycoord + 1"

ml-dec-y | "mode = 1 A ycoord > 1" | "mode* = 0 A ycoord* = ycoord — 1"

Table 6.2: Applicability (App) and effects (Eff) constraints of the M action model.

that always take on the values of their counterparts xcoord and ycoord. The controller
mode that dictates the navigation strategy is however completely hidden to the observer,
as there is no observable variable that depends on the state variable mode.

6.2. The Model Recognition Problem

Model recognition is the problem of identifying the action model of the actor among a
set of candidate models on the basis of an observation sequence. We require that all the
candidate action models share the same state variables and actions. The motivation behind
this requirement is to ensure that all candidate models are consistent with the sensor model
so that a priori they can generate explanations for the observation sequence. We say that
two models that share the same state variables and actions are comparable.

Definition 33 (Comparable action models). Two action models M, = (X, A, App, Eff, ¢)
and M!, = (X', A’, App’, Eff’, ¢’) are comparable iff both share the same state variables
and actions, i.e, X = X and A = A’'.

We will use the term space to refer to the set of all action models defined over the
same set of state variables. An important observation to be made is that, as the state

82



variables and actions are the same for all models within the space, all models in the space
are comparable to one another.

Definition 34 (Space of action models). The space of action models M(X, A) is the set of
all models defined over state variables X and actions A.

Proposition 1. All action models belonging to the same space are comparable to one
another.

Comparable models can differ in the App and Eff constraints and in the cost function c.
This leads to different scenarios for two given comparable models M, = (X, A, App, Eff, ¢)
and M! = (X, A, App’, Eff’, ¢’):

e If App = App’ and Eff = Eff’ but ¢ # ¢/, then the sets of trajectories 7 (M,, so) and
T (M, so) are the same but the cost of the trajectories is different, which may lead
to different preferred explanations for each model.

e If App # App’ or Eff # Eff’, then the set of trajectories 7 (M,, so) and 7 (M., s,) are
different and, therefore, the explanations each model can generate are also different.

This latter case is exactly what happens in our navigation policies working example,
where M® and M~ are comparable action models that differ only in the effects constraints.
We will see later how this difference results in M* and ML generating different explana-
tions for the same observation sequence.

A Model Recognition problem takes as input the initial situation and a sequence of
observations of the actor, the sensor model used to capture them, and a set of candidate
action models.

Definition 35 (Model Recognition Problem). A Model Recognition problem is a tuple
(M, My, so, w) where:

o M, is a set of candidate comparable action models.
o M, =(X,Y,Sense) is the sensor model of the observer.
o sy is the known initial situation of the actor.

e w=1(01,...,0,) is an observation sequence.

In Model Recognition the goal is to find the model among the set of candidates that
best fits the observed behaviour. More formally, the solution to the Model Recognition
problem is the most likely action model M, € M, that is, the action model in the candi-
dates set that best explains the observation sequence w.

83



Definition 36 (Most likely action model). The solution to a Model Recognition problem
(Mg, My, 5o, w) is the most likely action model M, € M,

M = arg min min  synCosty, (T) (6.1)
M,eM, 7€7 w(50,.Ma)
where synCosty, (T) explicitly denotes the action model used to compute the synthesis
cost since in this problem we are dealing with multiple models.

Let us illustrate a Model Recognition problem and its solution using our working
example. Recall that in this working example we have two action models M® and M~
both describing different strategies to visit all of the tiles in a 6 X 6 grid. M® cannot
move left when the controller is in mode m and right when it is in mode m;,; vice-versa
for ME. Figure 6.3 presents an example of Model Recognition problem that assumes
M, = {MR, ML} as the set of candidate models. On the left of the figure we have the initial
situation of the actor and 5 observations distributed on the grid and annotated with their
order in the observation sequence. On the right we have the best explanation computed
with action model MR. While M~ can also explain the observations, it is forced to revisit
tiles to do so. This means that the synthesis cost of the explanation by M is lower than the
one by ML and, consequently, M® is the most likely action model that solves the Model
Recognition problem illustrated by this figure.

05 O5¢f-nnefemmefonenifenns “es

03 04 FERE Y28 EEETEE FEPPR S04

01 02 S Y73 P .():2

50 SQpefeenen i LI B i

Figure 6.3: (Left) Example of initial situation and 5-observations sequence in the naviga-
tion strategies working example. (Right) Best explanation computed with MR,

Figure 6.4 presents a different example where some of the observations have changed.
In this case, the situation is reversed and Mf cannot explain the observations without
revisiting tiles, while M% can as shown in Figure 6.4 Right. This makes M% the most
likely action model for the Model Recognition problem illustrated in this figure.

When the candidates set M, does not include any model that can explain w, Definition
36 fails to discriminate between models and there is no solution to the Model Recognition
problem. Considering that the premise of Model Recognition is that the observer does not
know the action model of the actor and wants to ascertain it, the possibility that none of the
candidate models can explain its behaviour should be accounted for. This situation arises
frequently when candidate models are the output of some machine learning algorithm.

84



05 [EEI EEEEEE EEPRRS PEREPRE PRPPRY .05

04 03 PN N5 M B .03

4] 02 FERI RY 75 'R% EEFRRS PEPE e

S0 5o T e o

Figure 6.4: (Left) Another example of initial situation and 5-observations sequence in the
navigation strategies working example. (Right) Best explanation computed with action
model ME.

Our proposal to tackle this problem is to allow the modification of candidate models so
that the modified model can generate an explanation for the observation sequence. More
specifically, we allow a candidate model M, to be edited into a comparable model M, and
redefine the synthesis cost to consider the cost of the explanation by M, as well as the
cost of editing M, into M. With that regard we redefine the synthesis cost as

synCosty, (1) = Még}/i((r}l(’A)oz costy (T) + (1 — @) ecost(M,, M) (6.2)
where M, is the edited candidate model, costyy (1) is the cost of T with the edited
model, ecost(M,, M) is the cost of editing the candidate model M, into M/ and @ € [0, 1)
weighs both costs. This technique, known as the weighted-sum method (Miettinen, ),
results in a single-objective optimization problem, whose optimal solution is global Pareto
optimal, if it is unique. We note that using @« = 0 means that models that require less
modifications (or no modifications) are preferred, but it will not discriminate between
models with the same editing cost. On the other hand, o should be kept smaller than 1,
otherwise it will not be possible to discriminate between candidate models that explain
the observations, since any model could be transformed into the one that generated the
lowest cost explanation at no cost.

The editing cost ecost(M,, M) measures the cost of editing an action model M, to
transform it into a comparable model M. This cost needs to be defined for any pair of
models within the same space M(X, A). Defining this cost requires us to characterize the
space of action models and to define the allowed edit operations. We focus our attention
on the case of study where the set of candidate models are induced by Strips schematic
action models. As we will see later in Section 6.4, working with STrips schematic action
models makes it possible to define the space of action models as a finite set of action
models and to use simple edit operations to modify them.

85



6.3. The solution to the Model Recognition Problem

This section explains how we arrive at the solution to the Model Recognition problem
shown in equation 6.1. A Model Recognition problem (M,, M, s¢, w) is a classification
problem where each class is represented by a different action model in M, and the ob-
servation sequence w is the example to classify. The action model associated to each
class acts as the corresponding class prototype and it summarizes the set of trajectories
T (M,, so) that can be synthesized with such model. The solution to the Model Recogni-
tion problem is then the model M, € M, that maximizes this expression.

M, = arg max P(wl|so, M,, M\)P(M,) (6.3)
M,eM,

where P(w|M,, M) is the likelihood of the observation sequence w and P(M,) is the
prior probability of the action model M,. The P(M,) probability expresses whether one
model is known to be a priori more likely than the others, for example, because the ma-
chine learning algorithm that generates the candidate models assigns different confidence
values to each model. When this probability is not given as input, we can reasonable
assume that, a priori, all models are equiprobable and remove the term from equation 6.3.
The P(w|sy, M,, M;) likelihood can be computed by marginalizing over all trajectories

that can be generated with M,,.

P(@lso, Mo, M) = ) P(w, Tls0, My, M) (6.4)
T€T (My,s0)

where P(w, 7|59, M,, M) is the joint likelihood of the observation sequence and the
trajectory that we are already familiar with. The computation of equation 6.4 is intractable
as the inference setting is unbounded and, therefore, the set 7 (M,, sy) is potentially infi-
nite. In order to deal with this, we articulate the following approximation:

PwM,, M)~ max P(w,7IM,, M) (6.5)
€T (Mq,50)

The difference between Equation (6.4) and Equation (6.5) is that the former favors the
model that maximizes the probability of all ways of explaining w, while the latter favors
the model that maximizes the probability of the most likely explanation. We argue that
Equation (6.5) aligns better with the principle of rationality as it prefers models that can
produce one good explanation rather than several worse explanations.

Finally, recall from previous chapters that the joint likelihood P(w, 7|M,, M;) is com-
puted as the product of the synthesis probability P(t|sy, M,) and the sensing probabil-
ity P(w|t, M,) associated, respectively, to the synthesis and sensing costs. We can then
rewrite equation 6.3 into

86



M, = argmax max (w|t, M,)P(t|so, M,)P(M,) (6.6)
M,eM, T€T (My,50)

which simplifies to

M; = argmax max P(t|so, M,) (6.7)
M,eM, €T (My,s0)

under the assumptions that 1) all candidate models are a priori equally likely, and 2)
all observations emitted from a state are equally likely (which is the case when no sensing
costs are considered). As we can see, Equation (6.7) is the probabilistic version of our
cost-based solution presented in Equation (6.1).

6.4. Recognition of Strips Action Models

While our formulation of the Model Recognition problem is general for any action model,
the definition of an edit cost in such an unconstrained setting is unfeasible, so going for-
ward we will focus on a specific type of action models. In particular, we restrict our
attention to the recognition of Strips and Strips-compilable action models. It is well-
known that HTNs as well as diverse automata representations like finite state controllers,
GOLOG programs or reactive policies can be encoded as Strips classical planning mod-
els (Alford et al., ; Baier et al., ; Bonet et al., ; Segovia-Aguas et al., ;
Segovia-Aguas et al., ).

The edit cost ecost(M,, M) that will be defined later in this section measures the
cost of transforming M, into M, as the edit distance between their schematic represen-
tation. Strips schematic action models provide a compact and general representation for
specifying classical planning models since it applies to different instances with different
sets of objects. For instance, the action models M® and M~ of our navigation strategies
working example can be represented by schematic action models 1\7[5 = (P,V,A) and
Mﬁ; = (P, V,A/) where:

e The set of predicates P consists of predicates xcoord and ycoord of arity 1, pred-
icates m@ and m1 of arity O, and predicate next of arity 2.
o V = {vy,Vv,}is the set of schema symbols.

e Operators A are as shown in Figure 6.5 (Left) and operators A’ in Figure 6.5 (Right),
represented in the Strips fragment of PDDL

In this schematic representation the set of object O represents coordinates, so for the
6 X 6 grid of our working example we would have O = {c;,c;,...,cg}. Then, state

87



variables xcoord(c;) and ycoord(c;) represent the current coordinates of the actor in a
grid that is described by static state variables next(c;, ci;1), and m@() and m1() represent
the controller mode. It is also worth noting that the same schematic action model can be
used to define the navigation strategy for N X N grids of any size, just by changing the set
of objects.

We start by adapting our definitions of comparable action models and space of ac-
tion models for the specific case of schematic action models. Two action models are
comparable if they share the same state variables and actions. Similarly, we want two
comparable schematic action models to induce the same state variables and actions when
grounded with the same set of objects. Recall from Section 2.2.1 that the set of state
variables induced by the grounding of predicates P with objects O is X(P, O) where
x € X(P,0) is of the form p(args) such that p € P and args € O“”). Therefore, two
comparable schematic action models should share the same predicates to induce the same
state variables. On the other hand, the induced set of actions A(A, O) is composed of
actions of the form a = name(args) such that a is encoded by the grounded operator
a(args) = (name, Pre(args), Add(args), Del(args)). In other words, the name of the
operator and the objects used to ground it serve as the identifier of the action, while
the Pre(args), Add(args), Del(args) lists define its applicability and effects constraints.
Then, two comparable schematic action models will induce the same set of actions if
their operators have the same headers, understanding a header as the pair of name and
parameters of an operator (head(a) = (name, Pars)).

Definition 37 (Comparable schematic action model). Two schematic action models M, =
(P,V,A) and M; =(P,V, A,> are comparable iff P = P’ and Head(A) = Head(A/) where
Head(A) = {head(d) | & € A} is the set of headers of a set of operators A.

Definition 38 (Space of schematic action models). The space of schematic action models
M(P, Head) is the set of all models defined over predicates P and headers Head.

For example, we claim that schematic action models 1\71§ and Ms are comparable since
they share the same set of predicates and the headers of their operators are also the same
as seen in Figure 6.5. Additionally, it is implicit by this definition that two comparable
schematic action models also share the same set of variable symbols V as this set is given
by the parameters of the operators (v; and v, in our working example).

The notion of "comparable" also applies to operators, in which case we want the
two operators to induce the same set of actions when grounded with the same set of
objects. More formally, two operators & € A and &’ € A’ are comparable if head(a) =
head(a’). Think, for instance, of two operators @ = (name, Pars, Pre, Add, Del) and
a’ = (name, Pars, Pre’, Add’, Del’) with the same header but different precondition, add
and delete lists. Both d and & induce the same set of actions but the semantics of the
actions (their applicability and effects) are different. Figure 6.5 presents several examples
of comparable operators, since mQ-inc-x(vy, v;), m@-dec-x(vy, v,), ml-inc-x(vy, v,) and

88



raction m@-inc-x
:parameters (?vl ?v2)
:precondition (and (xcoord ?v1l) (m®)
(next ?vl ?v2))
reffect (and (not (xcoord ?v1)) (xcoord ?v2)))

raction m@-dec-x

:parameters (?vl ?v2)

:precondition (and (xcoord ?v1l) (m®)
(next ?v2 ?vl))

reffect )

raction m@-inc-y
:parameters (?vl ?v2)
:precondition (and (ycoord ?v1) (m®)
(next ?vl ?v2))
:effect (and (not (ycoord ?vl1)) (ycoord ?v2)
(not (m®)) (m1)))

raction m@-dec-y
:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (m®)
(next ?v2 ?vl1))
:effect (and (not (ycoord ?v1)) (ycoord ?v2)
(not (m0®)) (ml1)))

raction ml-inc-x

:parameters (?vl ?v2)

:precondition (and (xcoord ?v1) (ml)
(next ?vl ?v2))

reffect )

raction ml-dec-x
:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (ml)
(next ?v2 ?vl))
:effect ((not (xcoord ?vl1)) (xcoord ?v2)))

raction m@-inc-y
:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (ml)
(next ?vl ?v2))
:effect (and (not (ycoord ?vl1)) (ycoord ?v2)
(not (m1)) (m®))

raction m@-dec-y
:parameters (?vl ?v2)
:precondition (and (xcoord ?v1l) (ml)
(next ?v2 ?vl))
reffect (and (not (ycoord ?v1)) (ycoord ?v2)
(not (m1)) (m0)))

raction m@-inc-x

:parameters (?vl ?v2)

:precondition (and (xcoord ?v1l) (m®)
(next ?vl ?v2))

reffect )

raction m@-dec-x

:parameters (?vl ?v2)
:precondition (and (xcoord ?v1l) (m®)
(next ?v2 ?vl))
reffect (and (not (xcoord ?vl1)) (xcoord ?v2)))

raction m@-inc-y

:parameters (?vl ?v2)
:precondition (and (ycoord ?v1l) (m®)
(next ?vl ?v2))
reffect (and (not (ycoord ?vl1)) (ycoord ?v2)
(not (m®)) (m1)))

raction m@-dec-y

:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (m®)
(next ?v2 ?vl))
:effect (and (not (ycoord ?v1)) (ycoord ?v2)
(not (m0)) (m1)))

raction ml-inc-x

:parameters (?vl ?v2)

:precondition (and (xcoord ?v1) (ml)
(next ?vl ?v2))

reffect ((not (xcoord ?vl1)) (xcoord ?v2)))

raction ml-dec-x

:parameters (?vl ?v2)

:precondition (and (xcoord ?v1) (ml)
(next ?v2 ?vl))

reffect )

raction mO@-inc-y

:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (ml)
(next ?vl ?v2))
:effect (and (not (ycoord ?vl1)) (ycoord ?v2)
(not (m1)) (m®)))

raction m@-dec-y

:parameters (?vl ?v2)
:precondition (and (xcoord ?v1) (ml)
(next ?v2 ?vl))
reffect (and (not (ycoord ?v1)) (ycoord ?v2)
(not (m1)) (m0)))

Figure 6.5: Representation in the Strips fragment of PDDL of the operators of Mf (left)

and ]\V/Ii (right) from the navigation strategy working example.

89



. . .o L .
ml-dec-x(vy,vy) in Mf are comparable to their counterparts in M,. In conclusion, we
can think of comparable operators as alternative definitions for the same actions.

6.4.1. Edit costs for Strirs schematic action models

The edit cost is a way of quantifying how dissimilar two comparable models are to one
another. In this work, we understand this cost as the distance between the schematic
representation of the two models that is computed by counting the number of operations
required to transform one model into the other. We start this section by describing the two
edit operations that can be performed on an operator @ = (name, Pars, Pre, Add, Del)
defined over predicates P:

e Insertion: An schematic variable X € X(P, Pars) is added to Pre or to Add U Del.

e Deletion: An schematic variable X € X(P, Pars) is removed from Pre or from AddU
Del.

We can now formalize an edit cost that quantifies the number of edit operations re-
quired to transform a STrips schematic action model into a comparable one. The distance
is symmetric and meets the metric axioms provided that the two edit operations, deletion
and insertion, have the same positive cost.

Definition 39 (Edit cost). Let M, and M, be two comparable action models with schematic
representation given by M, = (P, V,A) and M; = (P, V,A/), respectively. The edit cost
ecost(M,, M) is the minimum number of edit operations that is required to transform M,
into M;

ecost(M,, M) = Z |pre(a)apre(d’)| + (add(a) U del(a))A(add(a’) U del(a'))|

G, eAxA’
head(&)=head(d")

(6.8)

where pre(a), add(a), del(a) return the precondition, add or delete list of operator a,
and AAB denotes the symmetric difference between sets A and B, i.e., AAB = (A\ B) U
(B\ A).

As an example, the edit cost between MX and ME is ecost(MR, ML) = 8 because we
: . v . oL .
need to perform 8 edit operations on Mf to transform it into M ,. We can break down this
cost into the following operations:

e Delete xcoord(v;) and xcoord(v;) from Add U Del of the m0-inc-x(vy, v,) opera-
tor.

90



e Insert xcoord(v;) and xcoord(v;) into Add U Del of the m@-dec-x(vy, v,) operator.
e Insert xcoord(v;) and xcoord(v;) into Add U Del of the m1-inc-x(vy, v,) operator.

e Delete xcoord(v;) and xcoord(v;) from Add U Del of the m1-dec-x(vy, v,) opera-
tor.

6.5. Model Recognition as planning

This section presents our planning-based approach to compute solutions to Model Recog-
nition problems. Following Definition 36, the solution to a Model Recognition problem
(M, My, sy, w) is the most likely action model M, € M,, that generates the explanation 7
with minimal synthesis cost synCosty, (t). Our Model Recognition as planning approach
compiles the Model Recognition problem into |M,| classical planning problems P, (w)
(one for each M, € M,) where P, (w) is defined in such a way that the cost of a solution
plan coincides with the synthesis cost induced by that solution. Then, the most likely ac-
tion model is identified by solving the compiled planning problems and ranking candidate
models according to the cost of the best solution found with them.

If we do not consider the redefinition of the synthesis cost (Eq. (6.2)) that contem-
plates the editing of candidate models, the Model Recognition problem can be interpreted
as finding the candidate model that generates the best explanation for the observation
sequence. Under this assumption, planning problems P, (w) can be built following the
compilation presented in our observation decoding as planning approach (Section 4.4.3).
On the other hand, if we do consider the editing of candidate models, this compilation
cannot be used as it is and it needs to be extended. The main challenge here, and the
focus of this section, is in how to extend the compilation presented for our observation
decoding as planning approach so as to enable the editing of action models.

We address this challenge by leveraging an encoding that allows representing any
Strips schematic action model using a finite set of variables, which we will refer to as
alphabet. The alphabet of a schematic action model will be formally presented in the
next section, but for now it suffices to understand that it is composed of Boolean variables
that indicate whether an schematic variable belongs to the precondition (Pre) or effects
(Add U Del) of an operator. As an example, Figure 6.6 shows a simple move operator and
its alphabet.

Without delving into the details of the compilation, let us give an intuitive explanation
of the main changes with respect to the original compilation for Observation Decoding.
The first change consists in augmenting the state variables of the original compilation
with the alphabet of the candidate action model M,. This change is accompanied with a
redefinition of the applicability and effects constraints of the actor actions which are now
defined with respect to the values of the alphabet variables. As a consequence, the se-
mantics of the actor actions are now encoded as part of the state variables of the compiled

91



(:action move
:parameters (?vl ?v2)
:precondition (and (at ?vl)
(connected ?vl ?v2))
:effect (and (not (at ?vl))
(at ?v2)))

<move, pre, at(vl)>
<move, pre, connected(vl,v2)>
<move, eff, at(vl)>
<move, eff, at(v2)>

Figure 6.6: move(vy, v,) operator represented in the Strips fragment of PDDL (Left) and
its alphabet (Right).

problem using the alphabet variables, and any change in the values of these variable will
effectively edit the candidate action model. Hence, the last extension that we need to con-
template is a way to modify the value of the alphabet variables. In our compilation, this
is done through a new set of edit actions that implement the two edit operations, insertion
and deletion, defined in Section 6.4.1. Summarizing, in order to make candidate models
editable we need to make the following three extensions with respect to the compilation
for observation decoding as planning:

e Augment the state variables of the compiled problem with the alphabet of the can-
didate action model.

e Redefine the applicability and effects constraints of the candidate action model so
that the behaviour of the actor actions depends on its alphabet.

e Add edit actions implementing the edit operations that modify the values of the

alphabet variables.

A solution plan to the compiled problem Py, (w) presents a distinct structure as illus-
trated in Figure 6.7. In particular, a solution plan is split in two distinct parts:

1. An (optional) prefix consisting of edit actions that edit the candidate action model
M, into a comparable model M.,

2. A suffix consisting of actor and sensing actions that denote the explanation for the
observation sequence w with the edited candidate model M.

editing (optional) explaining

edit actions actor and sensing actions

commit

Figure 6.7: Structure of a solution plan for the compiled problem $, (w).

92



It is important that the editing process and the explanation process are isolated. Oth-
erwise, we could run into situations where the action model is edited after part of the
observation sequence has already been explained. We avoid these undesired situations
by introducing a commit action whose sole purpose is to freeze the values of the alpha-
bet variables thus committing to the current model. Therefore, this action marks the end
of the prefix, where the editing takes place, and the beginning of the suffix, where an
explanation is computed.

6.5.1. The Alphabet of a STrirs Schematic Action Model

This section formally presents the alphabet of a STRIPs schematic action model. An alpha-
bet is a finite set Boolean variables that can be used to represent the precondition, add and
delete lists of all the operators in an action model. We will also see that all models within
the same space can be represented using the same set of variables, and that a full valuation
over these variables encodes an specific action model. Consequently, an alphabet allows
the representation of all schematic action models belonging to the same space. Further-
more, it opens a way to systematically enumerate the space of models and to quantify the
distance between any two models with respect to their alphabets.

Let us start by recalling the elements that can appear in the precondition, add and
delete lists of an operator. As defined in Section 2.2.1, the Pre, Add, and Del lists of
an operator with header (name, Pars) defined over predicates P are subsets of the set
X(P, Pars) consisting of schematic state variables defined over P and Pars. As an ex-
ample, the operators of Figure 6.5 all share the same parameters Pars = {v;,v;}. In
this case, X(P, Pars) = {xcoord(v;), xcoord(v,), ycoord(v;), ycoord(v,), mo(), m1(),
next(vy, vy), next(vy, vy), next(vy,vy), next(vy, vy)} for the eight operators in each
model.

However, not every combination of Pre C X(P, Pars), Add C X(P, Pars), and Del C
X(P, Pars) is valid, since STrips operators need to satisfy the STRIPs syntactic constraints.
Strips constraints require Del € Pre, Del N Add = 0 and Pre N Add = (. Considering
these syntactic constraints, there are four possibilities for a schematic state variable X €
X (P, Pars):

X only belongs to the precondition list,

X belongs to the precondition and delete lists,

X only belongs to the add list, or

X does not belong to either of the precondition, add or delete lists.

Then, given the set of schematic state variables X(P, Pars) for a STrips operator & with
header (name, Pars) defined over predicates P, there is a total of 4X(>Pas)l different ways

93



in which & can be specified. Furthermore, the 4IX(PPars) possible operators are comparable
since Pars is common to all of them and they are defined over the same set of predicates
P. For the operators of Figure 6.5, this means that every operator has a total of 4!° =
1,048,576 comparable operators or, in other words, that every operator can be specified
in 4'° different ways by changing their semantics. The important takeaway here is that
given an operator and the set of predicates over which it is defined, it is possible to define
a bounded set of all comparable operators. This also means that the space of schematic
action models M(P, Head) is finite as long as we assume the same cost function for all of
them (which we will do in the following).

The four ways in which a schematic variable can appear in the precondition, add and
delete lists of an operator are stored using two bits and, therefore, lend itself naturally to
a representation using two Boolean variables. Let X € X(P, Pars) be a schematic state
variable for a Strips schematic action ad with header (name, Pars), we define the two
Boolean variables (name, pre, X) and (name, eff, x) that represent how X appears in a.
Table 6.3 summarizes how the truth values of variables (name, pre, x) and (name, eff, x)
are interpreted.

(name, pre, x) | (name, eff, x) Meaning
L L X ¢ Pre and X ¢ Add and X ¢ Del
1 T X ¢ Pre and X € Add and X ¢ Del
T L X € Pre and X ¢ Add and X ¢ Del
T T X € Pre and X ¢ Add and X € Del

Table 6.3: Interpretation of the truth values of Boolean variables (name, pre, X) and
(name, eff, x)

Definition 40 (The alphabet of a Strips operator). Let X(P, Pars) be the set of schematic
state variables over P for a STRIPS operator a with header {name, Pars). The alphabet of
operator a is the set Az = {{name, pe, X) | pe, x € {pre, eff} x X (P, Pars)}. We will refer
to the variables A € N, as the alphabet variables.

From this definition we can also conclude that two comparable operators will have the
same alphabet, since the set of schematic variables X(P, Pars) as well as the name of the
operators are the same.

Proposition 2. Two operators have the same alphabets iff they are comparable.

Let us exemplify the alphabet of an operator using our navigation strategies work-
ing example. In particular, we are going to look at operator m@-inc-x(vi, v;) shown in
Figure 6.5 (Left). The alphabet of this schematic action is the finite set of Boolean vari-
ables (m@-inc-x, pre, X) and (m0-inc-x, eff, X), where X belongs to the set X(P, Pars) =
{xcoord(v;), xcoord(v,), ycoord(v,), ycoord(v;), m0(), m1(), next(vy, vi), next(vy, vy),
next(vy, vy), next(v,, v,)}. We show the complete alphabet in Figure 6.8.

94



(m®-inc-x, pre, xcoord(vy))
(m®-inc-x, pre, xcoord(vy))
(m®-inc-x, pre, ycoord(v;))
(m@-inc-x, pre, ycoord(vy))
(m®-inc-x, pre,m0())
(m@-inc-x, pre,ml())
(mO@-inc-x, pre,next(vy, vy))
(m®-inc-x, pre,next(vy, vy))
(m®-inc-x, pre,next(vy, vy))
(m@-inc-x, pre,next(vy, v;))

(m®-inc-x, eff, xcoord(v,))
(m®-inc-x, eff, xcoord(v;))
(m®-inc-x, eff, ycoord(v,))
(mO-inc-x, eff, ycoord(vy))
(m®-inc-x, eff, mO())
(m®-inc-x, eff, mi())
(mO-inc-x, eff, next(vy, vy))
(m®-inc-x, eff, next(vy, vy))
(m®-inc-x, eff, next(vy, vy))
(m®-inc-x, eff, next(vs, v;))

Figure 6.8: Alphabet of Strips operator m0Q-inc-x(v;, v;) from schematic action model
Mf of the navigation strategies working example.

The alphabet of an operator is used to represent any possible specification of the
operator by simply assigning different values to the alphabet variables. Let A; be the
alphabet of an operator &, a valuation m :
(name, Pars, Pre, Add, Del) such that:

A; — {T,L1} induces the operator ¢ =

e Pre = {X € X(P, Pars) | m({name, pre, X)) = T}
e Add = {X € X(P,Pars) | m({name, pre, X)) = L A m({name, eff, X)) = T}

e Del = {X € X(P,Pars) | m({name, pre, X)) = T A m((name, eff, X)) = T}

As an example, Table 6.9 shows the alphabet valuation that induces the operator m@-
inc-x(vy, vy) from both MS and Ms . Note that to improve readability in the table, we are
using the notation (m@-inc-x, pe, X) where pe can take a value in {pre, eff}. As we can
see in this table, both operators can be represented using the same set of variables. This
example perfectly illustrates Proposition 2 as it shows that comparable operators share the
same alphabet. The propositional encoding of these operators only differ in the valuation
of some alphabet variables, in particular, the valuation of (m0@-inc-x, eff, xcoord(v,))
and (m0@-inc-x, eff, xcoord(v,)).

The proposed propositional encoding results in the most compact representation as
any valuation of the alphabet defines a valid operator that complies with the syntactic
constraints of STrips. Note that there are a total of 24! possible valuations over A; which
coincides with the 4¥Pas)l ways in which an operator can be specified (since |Az| =
2|X(P, Pars)|).

The notion of alphabet can be extended to an schematic action model. In this case,
the alphabet needs to contain all the alphabet variables of the operators in the schematic
action model.

Definition 41 (The alphabet of a schematic action model). Let M, = (P,V,A) be an
schematic action model such that each operator & € A has alphabet A,. The alphabet of

95



M, I8

a a

Alphabet variable pe = pre | pe = eff || pe = pre | pe = eff
T

_|
~

(mO-inc-x, pe, xcoord(vy)) T

(mO-inc-x, pe, xcoord(vy))

(m®-inc-x, pe, ycoord(vy))

(m®-inc-x, pe, ycoord(v;))

(m®-inc-x, pe, mO())

(m®-inc-x,pe,ml())

(mO®-inc-x, pe,next(vy, vy))

(mO@-inc-x, pe,next(vy, vy))

(mO@-inc-x, pe, next(vy, vy))

Flb|A -] -|F]F
FlblF[F| ][4
Flb|A A F]F
Flb|F[F|F[F][H|F]F

(mO@-inc-x, pe, next(vy, vy))

Figure 6.9: Valuation of the alphabet variables that induces the operators m0-inc-x(vy, v;)
from ]\7[5 and ]\V/Ij

the schematic action model M, is the set A = | J o3 Ay given by the union of the alphabets

of its operators.

In the same way that two comparable operators have the same alphabet, two compa-
rable schematic action models also have the same alphabet.

Proposition 3. Two schematic action models have the same alphabet iff they are compa-
rable.

With that regard, inserting an schematic variable ¥ € X(P,Pars) into Pre (resp.
Add U Del) is represented by toggling the value of the alphabet variable (name, pre, x)
(resp. (name, eff, X)) from "L" to "T". The deletion operation is similarly represented
by toggling the value of an alphabet variable from "T" to "L". This understanding of the
edit operations makes it easy to see that our definition of edit cost is equivalent to a Ham-
ming distance that allows only substitution as edit operation and only applies to strings of
the same length. This is because both source and target models are comparable and thus
have the same alphabet, and the two edit operations can be encoded with a single toggle
operation. The maximum edit cost is achieved when it is necessary to toggle every value
in the propositional encoding in order to transform one comparable model into another
and is given by the size of the alphabet.

Consider, for instance, the comparable operators m0-inc-x(vy, v;) from Ms and 1\715 as
shown in Table 6.9. The propositional encoding of the two operators only differ in the val-
ues of alphabet variables (m0-inc-x, eff, xcoord(v;)) and (m0-inc-x, eff, xcoord(v;)),
both evaluated to "T" in A, and to "L" in M. Transforming m8-inc-x(vi, v;) (M. ) into
mO-inc-x(vy, vy) (AV/[ﬂLl) requires thus two deletion operations to set the value of these to
variables to " L".

96



6.5.2. The Compilation

This section is dedicated to explaining how to build the [M,| planning problems Py, (w)
resulting from the compilation of a Model Recognition problem (M, Mj, sy, w) into plan-
ning. The compilation presented here builds on top of the one presented for observation
decoding that compiled an observation decoding problem (M, M, s, w) into a classical
planning problem P(w):

Plw) =(XUX“ AUA“, App A App”, Eff A Eff”, 55, G*)

Particularly, the elements related to the encoding of the monitor automaton A(w) (X*,
A“, App®, Eff”, and G®) are, for the most part, preserved as they were in the original com-
pilation. The main changes that $); (w) brings with respect to P(w) is the incorporation
of the propositional encoding and edit actions which, together, make the candidate model
M, editable.

Following, we formally define each of the elements of the compiled planning prob-
lem Py, (w) = (X', A’, App’, Eff’, sy» G') associated to the candidate action model M, =
(X, A, App, Eff, ¢).

State variables: The main change to the state variables of ), (w) with respect to the
compilation of observation decoding as planning is that X’ is augmented with the alphabet
A of the schematic representation of M,. This change implements the first step towards
making actor actions A editable, which consists in encoding their applicability (App) and
effects (Eff) constraints as part of the state of the compiled problem #,, (w) through the
variables in A. We also include in X’ a variable edit_mode used to split the editing
process (edit_mode = T) and the explanation process (edit_mode = L). Then, the set
of state variables X’ consists of:

e the state variables of the actor X,

e X“ = {q} used to represent the current location of the monitor automaton A(w),

o the alphabet A of the action model M,, and

e a state variable edit_mode that indicates whether the editing process is over or not

and is used to isolate the editing process and the explanation process.

Actions: As in the compilation for observation decoding as planning, the compiled
problem Py, (w) includes all the actor actions A as well as the actions A“ that encode the
transitions of the monitor automaton A(w). Additionally, A" now includes a new set of
edit actions A that implement the edit operations over the alphabet A. We also need to
include here the commi t action that marks the end of the editing process and the beginning
of the explanation process. In summary, A’ includes:

97



the actor actions A,

actions A“ encoding the transitions of A(w),

the set of edit actions A® consisting of actions insert_A4 and delete_A for every
A €A, and

e a commit action.

Initial situation: The initial state of Py, (w) specifies the valuation over A that en-
codes the applicability and effects constraints of the actor actions, alongside the initial
situation of the actor sy, and the initial location gy of the automaton A(w). With this
regard, the initial state s{, is defined as:

e 54(x) = so(x) for x € X to set up the initial situation of the actor.

so(q) = 0 sets the initial location of A(w) as go.

5o(A) = m(A) for A € A where m is the valuation of A that encodes the action model
M,. With this

so(edit_mode) = T denoting that we start in editing mode.

Goal condition: The goal condition G’ is given by the constraint (g, ’q = ”’) where ¢
is the length of the observation sequence w. This goal condition, which is the same as in
the compilation for observation decoding as planning, symbolizes reaching the accepting
location of the monitor automaton A(w) and, therefore, finding an explanation for w.

Applicability and effects constraints: We left the formalization of the App” and Eff’
constraints for last as this is the part that requires more attention. This is due mainly to
the need to redefine the semantics of the sets A as well as the introduction of the new edit
actions A* and the commit action. Following, we briefly summarize all the changes that
the App’ and Eff’ constraints need to contemplate:

A redefinition of the semantics of actions in A so that actor actions behave according
to the values of the alphabet variables A.

A small modification to the applicability of actions in A“ to forbid their execution
during the editing process.

The definition of the newly introduced edit actions A®.

The definition of the commit action.

98



We start off with the redefinition of the semantics of the actor actions. Leta € A
be the actor action name(args) whose schematic representation is given by the operator
a = (name, Pars, Pre, Add, Del). We make action a editable by making its semantics
dependant on the alphabet of a. Say that X(args) € X is the state variable associated
to an schematic variable X in either Pre, Add, or Del, we redefine the semantics of a as
implications whose antecedent are conditions over the alphabet variables (name, pre, x)
and (name, eff, x), and whose consequent is the state variable X(args). For example, in
the applicability constraint we use implications of the form:

"If (name, pre, X), then X(args)"

which makes it so that X(args) needs to hold if (name, pre, X) holds. In other words,
X(args) is a precondition if {(name, pre, X) says it is. The effects constraint is similarly
specified using implications, with the difference that this time the antecedent contains both
(name, pre, x) and (name, eff, X). This is because we need (name, eff, x) to determine
whether X(args) is an effect or not, and (name, pre, X) to determine if it is a positive or
negative effect.

"If not (name, pre, X) and (name, eff, x), then X(args)*"
"If (name, pre, X) and (name, eff, x), then not X(args)™"

These three implications encode three out of the four ways in which an schematic
variable can appear in the precondition, add, and delete lists of an operator (see Table
6.3). The last remaining case is when the schematic variable belongs to neither of these
lists, which can be ignored for the purpose of this encoding. Hereafter, we denote by
c_pre(x, args), c_add(x, args), c_del(X, args) the constraints that define, respectively, the
precondition, positive, and negative effect X(args) conditioned on the values of alphabet
variables {(name, pre, X) and {(name, eff, X).

The redefined applicability and effects constraints that allow action a to be editable
contemplate these kind of constraints for every schematic variable that can appear in the
operator a, that is, for every X € X(P,Pars). With that regard, we define App’(a) and
Eff'(a) as follows:

App’(a) = (edit_mode, 1) U c_pre(x,args) (6.9)
xeX(P,Pars)
Eff' (a) = U c_add(¥, args) U c_del(¥, args) (6.10)
xeX(P,Pars)

As shown in Equation 6.9, the applicability constraint also checks that the editing
process is over through constraint {(edit_mode, L). This same constraint is also added

99



to the applicability constraint of actions in A“ to forbid their execution during the editing
process. An interesting feature of these redefined actions is that they can assume any
semantics definable by their operator just by changing the valuation over their alphabets.
By extension, this means that an action model whose actions have been redefined as shown
above, can be considered as a "template" that can take on the semantics of any model in
its space just by changing the valuation over the alphabet.

Next, we move on to the edit actions A*. For the definition of their semantics we
distinguish between insert_A actions, which set the value of A to T, and delete_A
actions, which set the value of A to L. With that regard, the semantics of insert_A for
all A € A are defined as follows:

App’(insert_A) = (edit_mode, T)

Eff (insert_A) = (1%, T)

and the semantics of delete_A for all A € A as follows:

App’(delete_A) = (edit_mode, T) U (A, T)

Eff' (delete_A) = (1", 1)

The applicability constraint of both insert and delete actions restricts their execution
to states where edit_mode = T, that is, to the part of the plan where the editing process
is still undergoing.

The last remaining action whose semantics we need to define is the commit action.
This is a fairly simple action whose sole purpose is to change the value of state variable
edit_mode from T to L, effectively marking the end of the editing process and the be-
ginning of the explanation process. The semantics of commit are thus defined as follows:

App’(commit) = (edit_mode, T)

Eff' (commit) = (edit_mode™, 1)

Solution plan: A solution plan for £, (w) starts with an optional prefix consisting of
edit actions. We say that this prefix is optional because no modification might be needed
for the candidate model M, to explain the observation sequence w. After the prefix (or as
first action if there is no prefix), the first action will always be the commit action since
this is the action that makes it possible for actions in A and A“ to be applicable. The last

100



01 : (insert_m®-inc-x_eff_xcoord-vl) 06 : (mO-inc-x 1 2)
02 : (insert_m0®-inc-x_eff_xcoord-v2) 07 : (mO-inc-x 2 3)
03 : (insert_ml-dec-x_eff xcoord-vl) 08 : @(mO-inc-y 1 2)
04 : (insert_ml-dec-x_eff xcoord-v2) 09 : (ml-dec-x 3 2)
05 : (commit) 10 : (sense_1)

Figure 6.10: Excerpt of a solution plan for the compiled problem P, (w).

part of the solution plan is a suffix consisting of actions in A and A“ which follows the
same structure as a solution plan for observation decoding.

We now show an example of a solution plan using our navigation strategies working
example. Assume the compiled problem #,, (w) where w is the observation sequence
illustrated in Figure 6.1 and as candidate model we use MZX, that is, the navigation strat-
egy that can only move left when the controller is in mode m, and right when in mode
my. Recall also that M% cannot explain w without revisiting tiles and that the schematic
representation of M~ is shown in Figure 6.5 (Right). Figure 6.10 shows the solution plan
for P, (w) up to the first sensing action, but assume that the full plan follows the path
illustrated in Figure 6.3 (Right). In order for MZ to walk this path, it is necessary to edit
the operators m@-inc-x(vy, v;) and m1-dec-x(vy, v;) so they behave as in MX. The solu-
tion plan shows the four edit actions (actions 01 to 04) that are necessary to make these
changes and which also constitute the prefix of the plan. Afterwards, comes the commit
action (position 05) marking the start of the suffix consisting of actor and sensing actions
(actions 06 onward).

Notes on Implementation

In this section, we show how to implement in PDDL the actor actions with redefined appli-
cability and effects constraints so that their behaviour depends on the alphabet variables.
We use as an example action m@-inc-x whose semantics are defined by the operator m0-
inc-x(vy, v,) shown in Figure 6.5. In this case, the constraints that we need to implement
are:

App’(m0®-inc-x) = (edit_mode, 1) U c_pre(x,args)

xeX(P,Pars)

Eff m@-inc-x) = U c_add(x,args) U c_del(x, args)
xeX(P,Pars)

where X(P,Pars) = {xcoord(v;), xcoord(v,), ycoord(v;), ycoord(v,), mo(), m1(),
I.]'eXt(Vl’ Vl)’ neXt(vls VZ)a neXt(VZ’ Vl), neXt(VZa VZ)}

The challenge here is in implementing the constraints c_pre(x, args), c_add(x, args),
c_del(x, args). Recall that these constraints are implications "lhs — rhs" where the

101



left-hand side lhs is a condition over the alphabet variables and the right-hand side rhs
is the state variable associated to this alphabet variables. We take a different approach
to implement these constraints depending on whether they appear in the applicability
constraint (c_pre(Xx, args)) or effects constraint (c_add(x, args) and c_del(x, args)). In
the case of c_pre(x, args) we implement the implication "lhs — rhs" as an equivalent
disjunction ”—lhs V rhs". For c_add(x, args) and c_del(x, args), on the other hand, we
implement them as conditional effects where /s is the condition and rhs the effect.

(:action m@-inc-x
:parameters (?vl ?v2)
:precondition
(and (not (edit_mode))

(or (not (m@-inc-x_pre_xcoord-vl)) (xcoord ?vl))
(or (not (m@-inc-x_pre_xcoord-v2)) (xcoord ?v2))
(or (not (m@®-inc-x_pre_ycoord-vl)) (ycoord ?vl))
(or (not (m@-inc-x_pre_ycoord-v2)) (ycoord ?v2))
(or (not (m@-inc-x_pre_m@®)) (mod))
(or (not (mO®-inc-x_pre_ml)) (ml))
(or (not (mO@-inc-x_pre_next-vl-v1)) (next ?vl ?vl))
(or (not (m@-inc-x_pre_next-vl-v2)) (next ?vl ?v2))
(or (not (m@-inc-x_pre_next-v2-v1)) (next ?v2 ?vl))
(or (not (m@-inc-x_pre_next-v2-v2)) (next ?v2 ?v2))
)

reffect

(and (when (and (not (m®-inc-x_pre_xcoord-v1)) (mO®-inc-x_eff xcoord-v1)) (xcoord ?v1))

(when (and (not (m@-inc-x_pre_xcoord-v2)) (m®-inc-x_eff xcoord-v2)) (xcoord ?v2))
(when (and (not (m@-inc-x_pre_ycoord-v1)) (m®-inc-x_eff_ ycoord-v1)) (ycoord ?vl))
(when (and (not (m®-inc-x_pre_ycoord-v2)) (m®-inc-x_eff_ycoord-v2)) (ycoord ?v2))
(when (and (not (m®-inc-x_pre_m®)) (mO-inc-x_eff m®)) (md))
(when (and (not (m@-inc-x_pre_ml)) (mO-inc-x_eff ml)) (ml))
(when (and (not (m@-inc-x_pre_next-v1l-vl1)) (mO-inc-x_eff next-vl-vl1)) (next ?vl ?vl))
(when (and (not (m@-inc-x_pre_next-v1-v2)) (m@-inc-x_eff next-v1-v2)) (next ?vl ?v2))
(when (and (not (m@-inc-x_pre_next-v2-v1)) (mO-inc-x_eff next-v2-v1)) (next ?v2 ?vl))
(when (and (not (m@-inc-x_pre_next-v2-v2)) (mO-inc-x_eff next-v2-v2)) (next ?v2 ?v2))
(when (and (m®-inc-x_pre_xcoord-vl) (m®-inc-x_eff xcoord-v1)) (not (xcoord ?v1)))
(when (and (mO®-inc-x_pre_xcoord-v2) (m®-inc-x_eff_xcoord-v2)) (not (xcoord ?v2)))
(when (and (m®-inc-x_pre_ycoord-vl) (m@-inc-x_eff ycoord-v1)) (not (ycoord ?v1)))
(when (and (m®-inc-x_pre_ycoord-v2) (m®-inc-x_eff ycoord-v2)) (not (ycoord ?v2)))
(when (and (mO@-inc-x_pre_m®) (mO-inc-x_eff m®)) (not (m®)))
(when (and (m@-inc-x_pre_ml) (mO-inc-x_eff ml)) (not (ml)))
(when (and (m@-inc-x_pre_next-v1l-vl) (m@-inc-x_eff next-v1l-vl1)) (not (next ?vl ?v1)))
(when (and (m@-inc-x_pre_next-v1-v2) (m@-inc-x_eff next-v1-v2)) (not (next ?vl ?v2)))
(when (and (m@-inc-x_pre_next-v2-vl) (m@-inc-x_eff next-v2-vl1)) (not (next ?v2 ?vl1)))
(when (and (m@-inc-x_pre_next-v2-v2) (m@-inc-x_eff next-v2-v2)) (not (next ?v2 ?v2)))

Figure 6.11: PDDL implementation of an actor action with redefined semantics.

Figure 6.11 shows the action with redefined semantics implemented in PDDL. Since
the set X(P, Pars) contains 10 elements, the PDDL implementation results in 10 disjunc-
tions in the preconditions representing the ¢_pre(X, args) constraints, 10 conditional ef-
fects representing the c_add(X, args) constraints, and another 10 conditional effects rep-
resenting the c_del(x, args) constraints. There are a few optimization that can be done
to reduce these numbers. For example, if we know that a variable is static, like the next
variables, there is no need to implement the c_add(x, args) and c_del(X, args) constraints

102



associated to it (since static variables are not modified). Another optimization that often
makes sense is to not consider variables with repeated parameters, such as next(vl,v1l).

6.6. Experimental Evaluation

In this section, we evaluate the empirical performance of Model Recognition as planning
in three different use cases. Each use case presents a meaningful scenario where Model
Recognition can be exploited. As in our working example, we assume a simple sensor
model that assumes that part of the actor state is observable and part is hidden.

All experiments were run in an Intel Core 15 3.10GHz x 4 16GB of RAM and the clas-
sical planner we used to solve the instances that result from the compilation was Mapa-
GASCAR (Rintanen, ) due to its ability to deal with classical planning problems with
dead-ends (L6pez, Celorrio, & Olaya, ). Other planners, such as FastDownward
were also tested but provided worse experimental results. Planning problems were solved
with a timeout value of 1000 secs of CPU-time, and 8GB of memory.

6.6.1. Use Case 1: Recognition of regular automata

The first experiment, which doubles as a proof of concept, exploits Model Recognition
for a classical string classification problem. In this experiment, the observation sequence
represents the string to classify and each candidate model represents a different regular
automaton that accepts strings that belong to its language.

Figure 6.12 illustrates a 4-symbol and 5-state regular automaton for recognizing the
(abcd)*™ language. The input alphabet is £ = {a,b,c,d}, and the machine states are
0 = 190,91, 92,93, 94}, Where g4 is the only accepting state. For instance, executing the
planning model that encodes the regular automaton of Figure 6.12 with the input string
abcdabcd produces the following 8-action plan ({a, o) — q1), (b, q1) — q2), ({¢, q2) = q3),
(d, q3) = q4), Ca,q4) = q1), (b, q1) = q2), (¢, q2) = q3), ({d, g3) = q4).

start —( 40 2 @ b @ < @ d a4

Figure 6.12: A 4-symbol and 5-state regular automata for recognizing the (abcd)* lan-

guage (g4 1s the accepting state).

In this experiment, M, comprises five candidate action models, each representing a
different 5-state and 4-symbol regular automaton. The five regular languages defined by
these automata are the following:

e [1:a*(blc)d(dd) a

103



L1 | L2 L3 L4 L5
L1{20, 00|07 O0
L2110 (20 0|0 O
L3100 |20 01O
0
0

L4 0] 01]20]| 0
L5 0] 0] 020

Table 6.4: Confusion matrix for regular automata recognition.

e [2: bd(abd)*cd*c*
e [3: d"c(ac)*db*ac*b*
o [4: (cc)*bd(abd)*

o [5: (dla)a(ba)*c*d(dc*d)*

For each regular language, we generated 20 random strings (observation sequences),
whose lengths range from 20 to 30 symbols, thus generating a total of 100 strings. Obser-
vations convey only the symbols; the internal state of the automata as well as the transi-
tions taken (actions) remain hidden to the observer. Consequently, observation sequences
only convey the string to classify.

Table 6.4 shows the confusion matrix resulting from classifying the 100 strings with
our method. In this matrix, rows represent the actual class and columns represent the class
predicted by our Model Recognition as planning approach. Despite using a suboptimal
classical planner, we can observe that the class for all 100 input strings was correctly
recognized, which proves the feasibility of our method for classification tasks. The out-
standing results reveal that our approach is very suitable for the classification of generative
planning models that are more restrictive than Strips models, as it is the case of regular
automata.

6.6.2. Use Case 2: Recognizing Failures in a Non-deterministic Blocksworld

In this second use case, we tackle the problem of recognizing failures in a non-deterministic
blocksworld whose actions can fail in the following ways:

o Failure 1: the execution of a stack action fails and causes no effect
e Failure 2: the execution of unstack fails and causes no effect

e Failure 3: unstack fails and drops the block on the table

The problem of recognizing the failure is posed as a Model Recognition problem
My, M, sg, w) such that 1) w stems from a trajectory where a single failure took place,

104



Accuracy in failure identification

04 | f

03 B

02 B

0.1 [ h

0 ! ! ! ! ! ! ! !
10 20 30 40 50 60 70 80 90 100

Degree of observability

Figure 6.13: Accuracy for the recognition of failures in a non-deterministic blocksworld.

and 2) the M, comprises three different 4-operator blocksworld action models, each one
extended with an additional operator that encodes one of the three above failures. In this
way, identifying a failure can be done by solving the Model Recognition problem and
finding the candidate model that best explains the observation sequence. For instance, if
we have two consecutive observations where the same block is held by the gripper, the
candidate model that encodes failure 1 will provide the best explanation as it requires no
editing.

We measure the accuracy of our approach across different degrees of observability.
The accuracy metric is defined as the number of correct predictions about the type of
failure over all predictions made, and the degree of observability indicates the probability
of observing a state variable (through the corresponding observable variable). In this
experiment, we also assume that the sensing process is not intermittent and, therefore, the
length of the explanation is given by the length of the observation sequence.

Figure 6.13 shows the accuracy of our approach when identifying failures over 30
different observation sequences across different degrees of observability. The results show
that accuracy stabilizes in the range of 90% to 100% once we reach a threshold of 20%
observability. These are very positive results as it proves the feasibility of the approach
and its robustness to partial observability.

105



6.6.3. Use Case 3: Recognition of Navigation Strategies

The last use case is based on our navigation strategies working example. Here, the set
of candidates M, consists of 8 different navigation strategies for N X N grids. As in our
working example, all navigation strategies have an underlying hidden 2-mode controller
that restrict the applicability of the actions. We generated a set of trajectories depicting
the paths followed by each navigation strategy to solve the planning problem of visiting
all cells in a grid. After that, observation sequences were extracted using a sensor model
that, as described in our working example, only observes the position of the agent.

An interesting aspect of this experiment is that all navigation policies are at a maxi-
mum edit cost of 4 from the base classical navigation model that can move the robot in
any direction at any given state. In other words, a maximum of 4 edit actions are needed to
remove the restrictions imposed by the controller and, thus, letting the actor move freely.
This aspect heavily constrains the discriminating power of our approach, since only 4 edit
actions are needed for any candidate model to explain any observation sequence.

Figure 6.14 shows the classification accuracy achieved by our approach with respect
to a range of degrees of observability, from 0% to 100% with 10% increments. In this
experiment we included the 0% case which corresponds to observations sequences where
only the initial and final states are observed. The figure shows that for 0% observability
we were unable to unmistakably identify the navigation policies, but from 10% of observ-
ability onwards, we start to correctly classify half of the observations. Accuracy stabilizes
after 40% observability in the range 0.875 to 1 which means that at most only one out of
the 8 observation sequences was not correctly classified.

6.7. Discussion

We start this discussion commenting on a few interesting aspects of our approach. The
first one is that our proposal to address the Model Recognition problem is strongly con-
nected to the Temporal Inference problem. In order to draw this connection it suffices to
understand that an alphabet is a set of static variables (at least with respect to the explana-
tion process) that represents a candidate model. This means that the Model Recognition
problem can be interpretted as a Temporal Inference problem, in the augmented state-
space model that includes the alphabet of the candidate models, where the hypotheses
represent different initial states and each one encodes a different candidate model.

Related to the first topic, an alternative idea to our proposal to discriminate between
models that cannot explain the observation sequence is to enable edit operations over the
actor state variables rather than the alphabet (Sohrabi et al., ). However, editing the
model is more scalable since a single edit operation can see its effects manifested several
times in the trajectory, which otherwise would need to be edited one by one. And on
the topic of alternative formulations, our proposal leverages the Hamming distance that

106



Accuracy in navigation policy recognition

09

0.8

0.7 |

0.6 |

05 |

04 | f

03 B

02 B

0.1 [ h

0 ! ! ! !
0 20 40 60 80 100

Degree of observability

Figure 6.14: Classification accuracy for the recognition of navigation strategies.

allows only substitution, and hence, it only applies to strings of the same length. There
are other edit distances, like the Levenshtein distance which allows deletion, insertion
and substitution, and work for strings of different lengths. We believe this could open the
way for more expressive planning languages that cannot be represented with a finite set of
variables and require, instead, a set of rules or maybe a grammar to describe their syntax.

Another interesting point is that each compiled problem #,;, (w) can be seen as an
online learning problem where M, is updated according to the learning example embodied
by w. With this regard parameter « can be considered a learning rate that weights how
much we are willing to modify the input model in order to explain the new example.

Model Recognition resembles other tasks like Model Reconciliation, which uses model
editing to conform two PDDL models, where one of them can be an annotated model or
an empty model, with respect to a fully observed optimal plan computed with one of
the two models (Chakraborti et al., ; Chakraborti et al., ; Sreedharan et al.,

). Also, the Model Drift (Bryce et al., ) approach estimates the error between
a computational model, and a ground-truth model which changes as the domain evolves,
as the normalized symmetric difference of the propositions that appear in the precondi-
tions and effects of both models. In this case, plan observations are used to hypothesize
variations of the model. Unlike Model Reconciliation and Model Drift, our proposal sup-
ports observations that contain no actions and incomplete — even empty— intermediate
states. Moreover, we leverage our framework to posit the Model Recognition problem as
a cost-driven classification problem with as many classes as candidate models.

107



Part V

Learning

108



7. ACTION MODEL LEARNING

This chapter addresses the learning problem in the context of planning models, which
is usually referred to as Action Model Learning or Action Model Acquisition in the liter-
ature. Broadly speaking, the goal of Action Model Learning is to build an action model
(usually its schematic representation) from a set of learning examples. In that sense, the
learning problem is not that different from a Model Recognition problem, since they both
pursue to identify the action model of the actor. However, in contrast with Model Recog-
nition, no set of candidates is provided and the action model needs to be estimated from
the learning examples.

We start this chapter in Section 7.1 discussing state-of-the-art learning approaches
and motivating the use of a planning-based approach. Section 7.2 formalizes the Action
Model Learning problem and Section 7.3 motivates our proposed solution to this prob-
lem. We continue in Section 7.4 with a presentation of our planning-based approach to
Action Model Learning. In Section 7.5 we propose novel metrics to measure the quality
of the learned models after discussing the limitations of the ones commonly used in the
literature. Then, in Section 7.6 we use these new metrics to evaluate the solutions found
by our approach. Finally, we conclude this chapter in Section 7.7 with a discussion of
related topics.

7.1. On the Use of Planning for Action Model Learning

The purpose of this section is to highlight the benefits of using planning for Action Model
Learning. In our view, the main advantage of a planning-based approach is that it is able
to learn from learning examples that contain gaps, missing actions and states lost due to
the intermittency of the sensing process. While intermittency is commonly assumed in the
planning-based approaches to inference, no Action Model Learning approach makes this
assumption. This leads to a very constrained understanding of learning example, which
limits the applicability of Action Model Learning approaches. In order to stress this mat-
ter, we are going to briefly review the state-of-the-art approaches to Action Model Learn-
ing, giving special attention to the type of learning examples supported by the approach.

Before jumping into the review, let us talk about the kind of learning examples used
in Action Model Learning. Generally speaking, learning examples contain data about
the trajectory followed by some agent walking in the state-space model that we want
to learn and are typically presented in the form of sequences. Since it is not always
realistic to assume that trajectories are fully available, observations of trajectories are
more commonly used in the literature as learning examples. In theory, observations of
trajectories may be noisy and/or intermittent, that is, not every state/action of a trajectory
is always observable. In practice, however, most approaches to Action Model Learning

109



adopt the following two assumptions: (i) the initial state of the trajectory is fully observed,
and (ii) the sequence of actions followed by the actor is fully observed. With that regard,
a learning example can be understood as a pair (sy, w) such that w is the observation
sequence that stems from the trajectory T = sy[[xr] traversed by some actor agent following
plan 7. In Action Model Learning little attention is put on the sensor model used to capture
the observation sequence w and it is usually assumed that state variables and actions are
directly observable although partially.

An important factor to consider when talking about learning examples is the degree
to which states in 7 and actions in 7 are observed so we put forth a broad characterization
of learning examples based on this criteria. The purpose of this characterization is to
give an intuitive idea of how much information the observation sequence w of a learning
example (sy, w) provides, without being too formal. With regards to the state trajectory T
we identify the following cases:

1. We say that 7 is fully-observable (FO) if every state is observed and the observations
are complete, meaning that all state variables are known.

2. We say that 7 is partially-observable (PO) if some states are missing in the learn-
ing example or the observations are partial, meaning that the values of some state
variables are unknown.

3. We say that 7 is non-observable (NO) if all intermediate states are missing. This is
a special case of partial observability.

Similarly, we identify the following cases with regards to the plan x:

1. We say that rr is fully-observable (FO) if every action is observed.

2. We say that r is partially-observable (PO) if some actions are missing in the learning
example.

3. We say that 7 is non-observable (NO) if all actions are missing. This is a special
case of partial observability.

Now we are ready to examine the most recent and relevant approaches to Action
Model Learning found in the literature. As said above, approaches will be examined ac-
cording to the type of learning examples accepted by the system. We also include in this
analysis our planning-based approach, named Flexible Action Model Acquisition (FAMA).
Table 7.1 summarizes the types of learning examples accepted by each approach, includ-
ing also the expresiviness of the learned models and the principal technique used by each
approach. The first column of Table 7.1 shows the learning examples accepted by the
approach according to the observability (FO, PO or NO) of the state trajectory and action
sequence. With that regard, we note that the task of learning from less constrained learn-
ing examples subsumes learning from more constrained ones. Consequently, approaches

110



to learning from, say learning examples with NO states, will also be able to learn from
learning examples with PO states. All the approaches analyzed here accept learning ex-
amples with FO actions and PO states, with some of them being able to learn also from NO
states. Exceptionally, LOCM is the only approach capable of learning without any state
information (the state variables are also unknown to the system), and AMAN and NOISTA
admit some form of noise (denoted with an asterisk in the table). The expressiveness of
the learned action models (second column of Table 7.1) varies across approaches. All
the presented systems are able to learn action models in a STrips representation (Fikes &
Nilsson, ) and some propose algorithms to learn more expressive action models that
include quantifiers, logical implications or the type hierarchy of a PDDL domain.

Learning examples | Learned action model Technique
ARMS NO sta-ltes STRIPS MAX-SAT
FO actions
SLAF PO states quantifiers in effects logical inference
FO actions SAT solver
LAMP PO states quantifiers Markov logic networks
FO actions logical implications
AMAN NO states STRIPS graphical model estimation
FO™ actions
NOISTA PO* states STRIPS classification
FO actions StriPs rules derivation
CAMA PO states STRIPS crowdsourcing annotation
FO actions MAX-SAT
LOUGA NO states STRIPS Genetic algorithm
FO actions negative preconditions
LOCM2 — predicates and types Finite State Machines
FO actions
FAMA NO states STRIPS compilation to planning
NO actions

Table 7.1: Characteristics of action-model learning approaches

We want to bring attention to the fact that all learning approaches with the exception
of FAMA assume that a learning example encompasses a fully observed sequence of the
actions; i.e, they assume all the actions performed by the agent are observable. In con-
trast, FAMA is able to learn from an incomplete or empty sequence of actions, and so the
minimum observability case acceptable by FAMA is when the algorithm is only fed with
an initial and final state of a trajectory (NO states and NO actions).

Let us now discuss why having FO actions is such a common assumption in Action
Model Learning. The quick answer is that knowing all the actions means that the length
of the underlying trajectory is also known. On the other hand, when the learning examples
contain PO states and actions, the length of the trajectory is unknown and unbounded due
to gaps in the observation sequence. Next, we have a closer look at these two scenarios

111



and their impact in the learning task:

1. The learning example determines the length of the underlying trajectory. This
happens when the learning examples contain: (1) a FO action sequence; or (2) a
FO state trajectory; or (3) a PO state trajectory where every state is at least partially
observed.

e The common assumption of having FO action sequences in the learning ex-
amples, as is the case of all the learning approaches of Table 7.1 except for
FAMA, is unrealistic in many domains as it commonly implies the existence
of human observers that annotate the observed action sequences. In some
real-world applications, the observed and collected data are sensory data (e.g.,
home automation, robotics) or images (e.g. traffic) and one cannot rely on
human intervention for labeling actions.

e The assumption of having FO state trajectories means that the sensors are able
to capture every state change at every instant, which is also typically unre-
alistic. Normally, the process of obtaining state feedback from sensors (or
the processing of the sensor readings) is associated with a given sampling fre-
quency that misses intermediate data between two subsequent sensor readings.

e The assumption of having PO state trajectories where every state is at least
partially observed (no missing states) seems more appropriate to reflect a real-
world sensor reading but still requires that every state traversed by the actor is
captured by the sensors.

In this scenario the learning problem is SAT compilable, and it is known that a
Boolean satisfiability problem is a NP-complete task (Cook, ). This is the
reason why SAT solvers are commonly used in the approaches presented in Table
7.1. Furthermore, if the initial state of the trajectory is known and actions are fully-
observable, the underlying trajectory can be computed in linear time by executing
the given sequence of actions, starting from the given initial state. This is the reason
why many learning systems in the literature impose such restrictive assumptions on
the learning examples. We also note that, when the learning example contains a FO
action sequence and a FO state trajectory, learning STrips action models is straight-
forward (Jiménez et al., ). In this case the pre- and post-states of every action
are available and so action effects are derived lifting the literals that change between
the pre and post-state of the corresponding action executions. Likewise precondi-
tions are derived lifting the minimal set of literals that appears in all the pre-states
of the corresponding action. The challenge in this case comes from computing the
least number of examples that are necessary to learn models within a given error
rate (Juba et al., ; Stern & Juba, ).

2. The learning example does not identify the length of underlying trajectory.
This happens when learning examples contain PO or NO actions and states. In this

112



case, we are unaware of the number of actions of 7 and the number of states in 7.
This gives rise to a completely different scenario and a more challenging learning
task that brings one key difference: the transition between two given observed states
may now involve more than one action and so the length of 7 is no longer known.
This justifies the use of planning techniques for solving the learning task, which
now requires finding a model and an explanation to the learning example with that
model. SAT approaches, on the other hand, are no longer straightforwardly applica-
ble given the lack of a length bound for the underlying trajectory. In this particular
scenario, the number of trajectories consistent with a learning example is also un-
bounded and grows exponentially with the actual length of the trajectory (that is
now unknown). Therefore, when we assume partial observability in both actions
and states, a learning approach must consider that a learning example is not an in-
dication of the actual length of the plan. This motivates and justifies the use of
planning since, as we have seen throughout this dissertation, it is able to find expla-
nations for observations that do not convey the length of the underlying trajectory.

7.2. The Action Model Learning Problem

Action Model Learning is similar to Model Recognition in the sense that both problems
pursue to identify the action model of the actor. The main difference lies in that in Model
Recognition a set of candidate models to choose from is explicitly available, while in
learning the model has to be estimated from a set of learning examples. The usual formu-
lation of Action Model Learning, and the one we follow, assumes that the state variables
and actions of the actor are known, and the free parameters to estimate are the applicabil-
ity and effects constraints of the actions. Talking at the schematic level, this is equivalent
to knowing the predicates of the model as well as the headers of the operators, and having
to learn the precondition, add, and delete lists of the operators.

Action model learning uses several learning examples collected from different episodes
of the actor walking through its state space in order to estimate the action model of the ac-
tor. Following this notion, a learning example can be formalized as a pair (s, w) such that
w 1s the observation sequence that stems from the trajectory T = sy[[r] traversed by some
actor agent following plan 7. We have already talked at length in the previous section
that state-of-the-art approaches commonly assume that w contains full information about
the actions in 7 and partial information about the intermediate states of 7. We, however,
impose no such assumptions and our understanding of observation sequence is the same
as followed throughout this dissertation.

An Action Model Learning problem takes as input an unspecified action model M,[] =
(X, A, c) that conveys the state variables and actions of the actor but not their applicability
or effects, a set of learning examples £, and the sensor model M, used to capture them.

Definition 42 (Action Model Learning Problem). An Action Model Learning problem is

113



a tuple (M,[], M, L) where:

o M,[]=(X,A,c)is an empty action model,
e M, =(X,Y,Sense) is the sensor model of the observer.

o [ is a set of learning examples.

The goal of Action Model Learning is to estimate the App and Eff constraints which
are left undefined in the empty action model M,[] = (X, A, c). We define the solution
of the Action Model Learning problem as the pair 8 = (App, Eff) such that M,[0] =
(X, A, App, Eff, c¢) is the action model that best explains the learning examples in L.

Definition 43. The solution to an Action Model Learning problem problem (M 4[], M, L)
is the pair 0 = (App, Eff) minimizes the accumulated cost of the best explanations gener-
ated by M ,|0] for the learning examples in L:

6" = arg min Z min synCost T 7.1
g { Tl matol( )} 7.1
(s0,wyeL

where App and Eff belong to Constr(X).

It is worth noting that, unlike the Model Recognition problem, the space of solutions
in Action Model Learning is not given explicitly, but knowing the state variables X and
actions A means that we know that M,[6] belongs to the space of action models M(X, A)
for any 6 that solves the problem. In other words, the empty action model M,[] implicitly
defines the solution space of the learning problem. This is even more important if we
restrict our attention to Strips-like action models since in that setting the space of action
models, and therefore of solutions, is finite and enumerable (although exponential in the
number of variables).

7.3. The Solution to the Action Model Learning Problem

This section motivates our definition of solution to an Action Model Learning problem
(Definition 43). An Action Model Learning problem (M,[], My, L) is a learning problem
over the state-space model described by the action model M, and the sensor model M,
where the free parameters 6 to estimate are the applicability (App) and effects (Eff) con-
straints of the actor. The set £ consists of learning examples of the form (s, w) used for
the estimation.

The most common criterion in learning is Maximum-likelihood (ML) which computes

0" = argmax P(L | M,[0], M) (7.2)
0

114



where the likelihood of the set of learning examples is

PLIMJOLM) = [ ]| P! so, Ml6), M) (7.3)
(so,w)eL

Alternatively, there is a different approach that instead of maximizing the likelihood of
the learning examples, maximizes the probability of the most likely hidden state sequence
(explanation).

0" = arg max n max P(t | w, s, M,[60], M) (7.4)
0 (s0)el T€T (50,w)

The differences between both approaches have been studied extensively (Allahverdyan
& Galstyan, ), specially in the context of HMMs where the latter approach is known
as Viterbi Training (VT). In general, VT converges faster but is less accurate than the ML
approach. Still, both approaches are widely used and each one has scenarios where they
have the edge over the other. In our formulation of the Action Model Learning problem
we follow the VT approach as it has been shown to produce sparser (simpler) models, i.e.,
models with fewer transitions, resulting in an Occam’s razor effect for learning.

Going back to Equation (7.4), recall from Section 4.3 that

max P(7 | w, so, Ma[0], Ms) = max P(t | so, Mu[0))P(w | T, M) (7.5)
7T (50,W) €7 (50,0)
where P(7 | s9, M,[0]) is the synthesis probability and P(w | 7, M) the sensing proba-
bility. Then, assuming a uniform distribution for observations, we arrive at the following
estimator

g = arg max l—[ max P(t | sy, M,[6]) (7.6)
9 (s0)eL T€T (50,W)

which is analogous to the cost-driven interpretation of solution that we provide in
Definition 43.

7.4. Action Model Learning as Planning

In this section we present FAMA, a planning-based approach for Action Model Learning
focused on the learning of Strips-like action models in schematic form. The main idea
behind FAMA is to interpret the learning problem as an editing problem, by exploiting the
alphabet for Strips action models presented in Section 6.5.1. This allows FAMA to find
a solution to the Action Model Learning problem (M,[], M, L) by editing any model in
M(X, A) at no cost so that it generates the best explanations for L.

115



FAMA compiles an Action Model Learning problem (M,[], M,, L) into a planning
problem P, (L) following a special case of the compilation presented in Section 6.5.2
that was used to build the compiled problem P, (w). The main characteristics of this
special case are:

e M, is the action model whose schematic representation contain empty precondition,
add and delete lists.

e The set of edit actions A* only contain actions encoding the insert edit operation.

e The learning examples L are serialized by concatenating them.

We choose as starting model M, the empty action model, which has no preconditions
nor effects. At the schematic level, this means that the precondition, add and delete lists
of all its operators are empty. More formally, this is expressed as follows: assuming A
is the alphabet for the space of action models M(X, A), M, is the model induced by the
valuation m such that m(41) = L for all A € A. There are two reasons for this choice, one
theoretical and one practical:

o The theoretical reason is that we favor simple models that feature sparse operators
with few preconditions and effects, as was already discussed when we justified our
solution to the Action Model Learning problem (Section 7.3). Therefore, starting
from a model with no precondition nor effects is a closer starting point to a desired
solution.

e The practical reason is that if the operators of the starting model are empty, the
insertion operation is the only edit operation that is needed to reach any other action
model in the solution space. This means that we can remove the delete actions
from the set of edit actions A thus reducing the branching factor of the problem.
Arguably, the same benefit can be gained by starting from a "full" action model
that has every schematic variable as precondition and effect, but action models are
generally closer to the empty model than to the full one.

Serializing the learning examples makes it so that a solution plan needs to explain
all learning examples one after another. This requires that, after a learning example
has been explained, the state variables X are reset to the values of the initial state of
the next learning example. In order to implement this, a small modification is required
in the sensing actions associated to the last observation of each learning example. Let
L= {(s(l), o, ..., (s’(‘), w*)} and assume, for notational simplicity, that all observation se-
quences are of the same length, i.e, w/ = (0{, .. .,0{) where 1 < j < k. The effects
constraint of the sensing actions a” with 1 < J < k are now defined as follows

Eﬂ:(a()'tj) . <q+’”q+ — t”> U Sé+1

116



so that the execution of a sets the initial state for the next learning example.

Interestingly, FAMA supports a grey-scale of prior information regarding the input
model M,[], from an unspecified action model where nothing is known about its precon-
ditions and effects to a fully-specified one where everything is known. This gray-scale
can be generalized by looking at the subset A’ C A of alphabet variables whose values
are actually known. Then, when A’ = ( the input model is unspecified, when A" = A
we have a fully-specified input model, and everything in-between is a partially specified
model. Supporting this grey-scale is straightforward, and only requires disabling all edit
actions associated to the subset A’ of alphabet variables whose value is already known.

As an example, consider an Action Model Learning problem (M,[], My, L) such that
M,[] is a partially specified action model of the 4-operator blocksworld domain, such that
the semantics of pickup, putdown and unstack are already known. The set £ contains
a single learning example corresponding to a partial observation of the execution of the
four-action plan 7 = (unstack(B, A), putdown(B), pickup(A), stack(A, B)) for inverting
a two-block tower. Specifically, the learning example only conveys:

e The initial state of the trajectory, sy = {on(B, A), clear(B),ontable(A)}.
e The second and fourth actions of the plan, (putdown(B), stack(A, B))

e The final state of the trajectory, s, = {on(A, B), clear(A), ontable(B)}

Therefore, this learning example falls under the category of NO state trajectory (since
no intermediate states are observed), and PO plan (since half the actions are unknown).
Figure 7.1 shows a solution plan to the planning problem P, (L) compiled from this
example. Plan steps 01 — 02 insert the preconditions of the stack operator, steps 03 — 07
insert the effects, step 08 freezes the alphabet variables with the commit action, and steps
09 — 13 explain the learning example. As we can see in this example, extracting the
(schematic) action model from the solution plan is a straightforward process that only
requires updating the alphabet A following the insert action in the solution plan.

The logical inference process our approach is based on has trouble learning precon-
ditions that do not appear as negative effects since in this case no change is observed
between the pre-state and post-state of an action. This is specially relevant for static state
variables that never change and, hence, only appear as preconditions in the actions. In
order to address this shortcoming and complete the list of learned preconditions, we ap-
ply a post-process based on the one proposed in (Kucera & Bartak, ). The idea lies
in going through every action and counting the number of cases where a state variable is
present before the action is executed and the number of cases where it is not present. If a
state variable is present in all the cases before the action, it is considered to be a precon-
dition. In order to obtain a complete state trajectory, the proposal in (Kucera & Barték,

) applies the sequence of actions of the learning example and infers the preconditions
from this FO action sequence. In our case, since the sequence of actions of the learning
example might not be fully observable, we use the explanation found by the solution plan.

117



01 : (insert_stack_pre_holding-v1)

02 : (insert_stack_pre_clear-v2)
03 : (insert_stack_eff_clear_vl)
04 : (insert_stack_eff_clear-v2)

05 : (insert_stack_eff handempty)
06 : (insert_stack_eff holding-v1)
07 : (insert_stack_eff_on-v1-v2)
08 : (commit)

09 : (unstack blockB blockA)

10 : (putdown blockB)

11 : (pickup blockA)

12 : (stack blockA blockB)

13 : (sense_1)

Figure 7.1: Example of a solution plan for the compiled problem #,, (£)

7.5. Evaluation of action models

An important topic in Action Model Learning is the evaluation method used to assess the
quality of the solutions found by the learning approach. In this section we discuss the
metrics commonly used in the literature and motivate the use of two standard syntactic
metrics (precision and recall). Then, Section 7.5.1 will define these metrics for action
models, and Section 7.5.2 will introduce a semantic evaluation measure that builds upon
precision and recall.

Table 7.2 summarizes the main characteristics of the evaluation of the learned action
models based on the type of evaluation method (first column of Table 7.2), the metrics
used in the evaluation (second column of Table 7.2) and the number of tested domains
alongside the size of the training dataset (third column of Table 7.2).

As we can see in Table 7.2, the most common method is to use a syntax-based eval-
uation that compares the learned model against the Ground-Truth Model (GTM), that is,
the model that generated the learning examples. The large majority of approaches use a
similar syntax-based metric that consists in (1) counting the missing and extra schematic
variables that appear in the learned model wrt the GTM and (2) normalizing this error by
the total number of all the possible preconditions and effects of an action model. This is
an optimistic metric since error rates are not normalized by the size of the actual GTM.
The set of preconditions and effects of the GTM is usually smaller than the set of all
possible preconditions and effects and thereby it turns out that these syntax-based metrics
may output error rates below 100% for totally wrong learned models.

In order to overcome this limitation we propose the use of two standard metrics in
Machine Learning, precision and recall, that are frequently used in pattern recognition,
information retrieval and binary classification (Davis & Goadrich, ). These two syn-

118



Evaluation method Metrics #tested domains/
training data size
ARMS | cross-validation with a test set | error counting of #pre satisfaction 6
of plan traces and redundancy 1,600-4,320 actions
(160 plan traces)
SLAF manual checking wrt GTM — 4
1,000 actions
LAMP checking wrt GTM error counting of extra 4
and missing #pre and #eff 1,300-6,100 actions
(100-200 plan traces)
AMAN checking wrt GTM error counting of extra 3
and missing #pre and #eff 40-200 plan traces
NOISTA checking wrt GTM error counting of extra 5
and missing #pre and #eff 5,000-20,000 actions
CAMA checking wrt GTM error counting of extra 3
and missing #pre and #eff 15-75 plan traces
LOUGA cross-validation with redundant effects 5
a test set of plan traces differences wrt the test set 800 - 3200 actions (160 traces)
LOCM2 manual checking wrt GTM — —
FAMA checking wrt GTM precision and recall 15
validation with a test set 20-50 actions

Table 7.2: Evaluation of action models (GTM: ground-truth model)

tactic metrics are generally more informative than counting the number of errors between
the learned action models and the GTM:

e Precision = , where 7p is the number of true positives and fp is the number

tp
Ip+fp _ i
of false positives. In our particular case, true positives are schematic state vari-
ables that correctly appear in the (schematic) action model, and true negatives are
schematic state variables of the learned model that should not appear.
ip

tp+fn’
that should appear in the learned model but are missing).

e Recall = where fn is the number of false negatives (schematic state variables

7.5.1. Syntactic-based precision and recall for action models

The rationale behind the adaptation of precision and recall for action models lies in count-
ing the edit operations that needs to be applied to the learned action model in order to
transform it into the GTM.

We now provide formal definitions of INS (M, 1\71;) and DEL(M,, 1\71;), the sets of
insertions and deletions, respectively, that are needed to transform an action model M,
into the reference model M ;

Definition 44. Let pre(a), add(a), and del(a) be the precondition, add, and delete lists of
an operator a. We define:

119



INS (M, M) = U pre(@)\pre(d) U add(d’)\add () U del(d’)\del(i)

a,a' eAxA’
head(&)=head(a")

Del(M,, M) = U pre(@)\pre(d’) U add(@)\add(@) U del(d)\del(&)
a8’ eAxA’
head(&)=head(&)

With these ingredients in mind, we adapt the definitions of syntactic precision and
recall to schematic action models. Let M, = (P, V,A) be a schematic action model and
let M; be the GTM. We know that size(M,) = Y..x |pre(@)| + ladd(a)| + |del(@) and by
definition the number of preconditions (elements in the Pre list) and effects (elements in
the Add and Del lists) of the operators in M, is equal to the sum of true positives and false
positives; that is, size(M,) = tp + fp.

DEL(M,, M)
our previous definition of the number of false positives; and |IN S (M., M ;)

The number of deletions required to transform M, into M; ( ) matches

, the number of
insertions required to transform M, into M;, corresponds to the number of false negatives
of M. Then we can affirm that size(M,) = size(M.,) - |DEL(Ma, M)| + |INS (M,, M)
Definition 45. The precision of M, relative to the GTM is defined as the fraction of the

common preconditions and effects between M, and the GTM among all preconditions and
effects of M ;

tp size(My) — |DEL(M,, GT M)
tp+fp size(M )
Definition 46. The recall of M, relative to the GTM is defined as the fraction of the

common preconditions and effects between M, and the GTM among all preconditions
and effects of the GTM.

Precision =

tp size(M,) — |DEL(M,, GT M)
tp+fn size(M,) - |DEL(M,, GTM)| + |INS (M4, GTM)|

Recall =

Intuitively, precision gives a notion of soundness while recall gives a notion of the
completeness of the learned models. We interpret a sound learned model as one in which
all preconditions and effects are correct with respect to the GTM, and so there is no need to
remove anything. A complete model is one in which no precondition or effect is missing.
As an example, a precision of 0.5 means that only half of the predicates that make up the
learned domain model are present in the GTM, while a recall of 0.5 means that only half
of the predicates that make up the GTM are present in the learned domain model.

7.5.2. Semantic-based precision and recall for action models

Pure syntax-based evaluation metrics can report low scores for learned models that are
actually sound and complete but syntactically different from the GTM. Semantic evalua-

120



tion metrics add a distinctive value over the syntactic ones, which is that they evaluate the
learned model with respect to a set of validation examples. These metrics measure how
well a model can explain a given example, so the use of the word "semantic" here is in
reference to the degree to which the learned model is able to capture the physics of the
domain.

Semantic metrics alleviate two important limitations of a purely syntax-based assess-
ment: (a) that the learned model is syntactically different from the reference model but
semantically correct and (b) that the learned model comprises correct though unnecessary
preconditions in regards to the reference model. This latter issue is concerned with the
qualification problem, which is defined as the actual impossibility of listing all the pre-
conditions required for a real world action to have its intended effects (Ginsberg & Smith,

). The use of semantic metrics is appropriate in scenarios where:

1. The GTM is unknown. This is the most common scenario in Machine Learning,
where models are both learned and evaluated with respect to datasets.

2. We are interested in measuring the ability of a model to explain a given example,
which is a good indicator of how the model will perform in actual planning tasks.
As a rule of thumb, it is preferable to evaluate the learned models wrt a dataset
because a learned model can be semantically correct though syntactically incorrect
(different from the GTM). We refer to this phenomenon as model reformulation.

An example of model reformulation is the swapping of the roles of two comparable
operators. Consider, for example, a situation where the blocksworld operator stack could
be learned with the preconditions and effects of the unstack operator, and vice-versa,
because they are comparable. On the contrary, this reformulation will not happen between
the stack and pickup because they are not comparable. In the same way, the roles of
two parameters can also be swapped (e.g., interchanging the roles of the two parameters
of the operator stack or the operator unstack) and yet the learned models would be
semantically correct with respect to the given input observations. A more complex kind
of reformulation occurs when two or more operators are learned in a single macro-action.
These semantic alterations typically appear in the learned models when the observability
is low and the learning examples provide little data.

The ARMS system was the first to show that a semantic evaluation can be done via val-
idation of a set of examples with the learned model (Yang et al., ). The underlying
idea is that an error indication of the learned action models is obtained by counting the
number of preconditions that are not satisfied during the execution of the learned example
with the learned models, similarly to the functionality provided by the automatic valida-
tion tool VAL (Howey et al., ) used in the IPCs. This approach can be understood
as modifying the plan trace (by adding the necessary preconditions to the intermediate
states) so as to allow the execution of the observed actions using the learned models. In
other words, modifying the example to fit the model.

121



Inspired by this approach, we present novel semantic-based metrics that builds upon
the precision and recall metrics. The intuition behind these metrics is to semantically
assess how well the learned model 4, explains a set examples according to the amount
of editing required by M, to explain the examples.

Definition 47. Given a schematic action model M, and a set of validation examples YV,
the closest consistent schematic action model, MZ is the comparable schematic action
model closest to M, (in terms of edit operations) that is able to explain the examples in
(V,'
V. Z = arg min |INS (M, M;) U DEL(M,, M;)
VM, —V

The closest consistent schematic action model /, allows us to define a semantic ver-
sion of precision and recall following definitions 45 and 46.

size(M,)) — |DEL(M,, M)

size(M,)

size(M,) — |DEL(M,, M,)|
size(My) — |DEL(M,, M,)| + [INS (M, M,)|

sem-Precision =

sem-Recall =

Proposition 4. When the closest consistent schematic action model M; is the GTM, the
syntactic and semantic evaluation of a learned model M,) return the same values; that is,
Precision = sem-Precision and Recall = sem-Recall.

The interpretation of a sound and complete model in the semantic perspective is
slightly different from the syntactic one. In this case, a sound model is one were there
is no need to remove any precondition or effect in order to be consistent with some given
plan traces. A complete model is one that can explain the validation examples without
adding any new preconditions or effects. Unlike the semantic metric defined by ARMS,
our novel semantic definitions of precision and recall are not sensitive to flaws in the ac-
tion model that manifest more than once in the validation examples since the flaws are
corrected only once in the learned models instead of at every intermediate state of the
examples.

Computing Semantic Metrics

As we saw when we presented FAMA, our compilation accepts a grey-scale of input mod-
els and can be tweaked to disabled some edit actions, blurring the line between learning
and validation. For example, if the starting model is fully-specified and edit actions are
disabled our compilation can be used to validate a learning example. On the other hand,
if the edit actions are enabled, our compilation performs a soft validation that counts the
number of edit operations required by the model to explain the example.

122



We can use this flexibility of FAMA to pose the problem of computing the closest con-
sistent (schematic) action model as a learning problem (M,, M, V) where M, is a previ-
ously learned action model, and V is a set of validation examples. If all edit actions are en-
abled in the compilation, an optimal solution to this problem will perform the least amount
of edit operations M, required to explain V, thus returning M. Then, the schematic rep-
resentation can be extracted from its alphabet and used to compute sem-Precision and
sem-Recall.

7.6. Experimental Evaluation

This section presents several experiments to evaluate the performance of FAMA and the
quality of the learned models. Whenever applicable, we will consider scenarios with both
known and unknown plan horizon to draw conclusions at both levels of complexity.

After presenting the setup of the experiments in section 7.6.1, we introduce three
experiments that measure different aspects like the minimal number of learning examples
necessary to obtain good quality models (section 7.6.2), a comparison of the quality of
models obtained by FAMA compared to ARMS (section 7.6.3) and an analysis of the quality
of models when using a very small number of learning examples in section 7.6.4. In
these three experiments, the quality of the models is measured using the syntactic-based
precision and recall metrics presented in section 7.5.1, that is, we measure the precision
and recall of the learned models with respect to the GTM for each domain. Finally, the
syntactic evaluation of section 7.6.4 is compared against a semantic evaluation, i.e. how
well the learned models are able to reproduce the input plan traces, in section 7.6.5.

7.6.1. Setup

We evaluate FAMA on 15 IPC domains that satisfy the Strips requirement (Fox & Long,

), all taken from the PLANNING.DOMAINS repository (Muise, ). Table 7.3 presents
the features of the tested domains that affect the size of the planning problem P, (L) that
results from the compilation. For each domain, the columns report, from left to right, the
number of operators, the number of predicates, the maximum arity of the operators, and
the maximum arity of the predicates.

The details of our experimental setup are the following:

e Learning examples. For each domain, we generated 10 trajectories, each with 10
actions and 10 intermediate states, using random walks. Depending on the exper-
iment, these trajectories are used to generate examples used for training or testing
purposes (more details on this issue are provided at the particular experiment).

e Planner. The classical planner we used to solve the instances of Py, (L) that result
from our compilations is MapaGascar (Rintanen, ). We used MADAGASCAR for

123



several reasons:

1. Other planners such as FAsTDownwaRrD were also tested but provided worse

experimental results

2. The ability of MapAGascAR to deal with instances populated with dead-ends,

such as our compiled problem P, (L), is very helpful (Lépez, Celorrio, &

Olaya,

).

3. A SAT-based planner like MADAGASCAR is particularly suitable for tasks where

the learning examples determine the horizon of the solution plan. In this case,

a SAT-based planner solves the prefix of the solution plan in two time steps

because the actions for inserting preconditions can be applied in parallel in a

single time step and the same for the actions inserting the effects.

e Hardware. All experiments were run on an Intel Core 15 3.50 GHz x 4 with 16 GB

of RAM.
Domain features
# actions | # predicates | max action arity | max predicate arity
Blocks 4 5 2 2
Driverlog 6 5 4 2
Ferry 3 5 2 2
Floortile 7 10 4 2
Grid 5 9 4 2
Gripper 3 4 3 2
Hanoi 1 3 3 2
Miconic 4 6 2 2
Npuzzle 1 3 3 2
Parking 4 5 3 2
Rovers 9 25 6 3
Satellite 5 8 4 2
Transport 3 5 5 2
Visitall 1 3 2 2
Zenotravel 5 4 5 2

Table 7.3: Feature description of the domains used in the experiments.

7.6.2. Impact of the size of the set of learning examples

This experiment evaluates the impact of | L], the size of the set of learning examples, on

the performance of FAMA in order to:

1. Identify the minimal amount of input knowledge required by FAMA to learn sound

and complete models,

124



2. Evaluate the scalability of FAMA with respect to the number of learning examples.

The experiment analyzes the evolution of the CPU-time and the precision and recall
of the learned models wrt the GTM as | L] increases from 1 to 10 learning examples. To
keep the experiment practicable, we introduced a 1000s timeout, after which the learning
process is killed and a score of 0 is given to both the precision and recall of the learned
model. We defined two case studies:

e FO action sequence and PO state trajectory (known plan horizon): This is the
common case addressed by most of the state-of-the-art learning approaches, which
corresponds to a scenario where the plan horizon is given by the action sequence.
In this experiment we assume a degree of observability of only 10% for the state
trajectory, meaning that each state variables of a state has a 10% chance of being
observed.

e NO action sequence and NO state trajectory (unknown plan horizon): In this
case study, both the input action sequence and state trajectory are empty and the
length of the plan is unknown. A learning example only contains the initial state
and an observation of the final state.

Figures 7.2 and 7.3 show the quality of the models and computation time, respec-
tively, for the case FO/PO. The values plotted in these figures are averages over the 15
domains. In Figure 7.2 we see that, after three learning examples, precision stabilizes at
0.84 whereas recall stabilizes at 0.95. These results show that FAMA does, in fact, not need
of learning examples to learn sound and complete models as opposite to other approaches
in the literature where models are learned using around 100 traces (see Table 7.2).

Figure 7.3 displays the scalability of FAMA. Interestingly, we can observe an expo-
nential increase in computation time for learning sets beyond five learning examples. Up
to four learning examples the computation time is below 1 sec but it reaches 166 secs
when the input is composed of 10 learning examples. These results match the expected
performance of MabpaGAscaAr since this planner is known to struggle with plan horizons
beyond 150-200 steps (in our case 160 steps corresponds to 8 traces since each trace has
10 actions and 10 intermediate states).

Figure 7.4 displays the average precision and recall of the 15 learned models in the
scenario with unknown plan horizon. As expected, the quality of the learned models
is lower than when the horizon of the plan is known. The higher complexity of this
setting is also reflected in the appearance of some timeouts when solving the learning
task. The first timeout is found in the grid domain at | L] = 3; the floortile times out
with || = 4; and by the time |£| reaches 10 the number of domains where no solution is
found is 6, adding the npuzzle, parking, rovers and zenotravel domains. We can observe in
Figure 7.4 the opposite behaviour to Figure 7.2; that is, we find a drop of the quality as the
number of learning examples increases. The drop in the score is caused by the increasing

125



Precision and Recall

T T
TR ++Pfecnswﬁ—:—
Bt e T Recall ---+--

0.6 | 1

0.5 - 1

0.4 1

0.3 - i

0.2 | 1

0.1 - 1

Traces

Figure 7.2: Precision and recall when learning from [1-10] learning examples with FO
action sequences and PO state trajectories with 10% observability.

Computation time
180 T T T T T T

T
time ——

160 |

Seconds

60

40 -

20 -

Traces

Figure 7.3: Computation time when learning from [1-10] learning examples with FO
action sequences and PO state trajectories with 10% observability.

number of timeouts, meaning that no solution is found within the given time-bound, and
consequently a value of O for precision and recall is assigned to these experiments. Figure
7.5, on the other hand, reflects that the computation time of the second case study is also
higher than in the first case, which is explained by both the higher complexity and the
large number of timeouts.

The conclusions we draw from these experiments is that, when the plan horizon is
known, learning with few input samples yield action models whose operators contain
95% of the preconditions and effects of the GTM plus some extra ones as indicated by the
values of precision and recall. With unknown plan horizons, on the other hand, the learned
models are generally more different from the GTM; while timeouts are the main cause of
the drop in the score, we must point out that pure syntax-based metrics are not adequate

126



to evaluate such under-constrained learning problems since the phenomenon of reformu-
lation occurs and this largely impacts the results (we will provide experimental evidence
of this in section 7.6.4). These results emphasize a relevant feature our approach: the
small size of the training set required by FAMA in comparison with other approaches (see
Table 7.2). Unlike extensive-data approaches, our work explores an alternative research
direction to learn action models from a small number of learning examples. This is an
important advantage, particularly in domains where it is costly or impossible to obtain a
significant number of learning examples.

Precision and Recall

1 T T T T T T T T
Precision —+—
Recall ---+---
09 | i

0.8 - 1

0.7 - i

0.2 i

0.1 | 1

Traces

Figure 7.4: Precision and recall when learning from [1-10] learning examples with NO
action sequences and NO state trajectories.

Computation time
550 T T T T T T

T
time ——

Seconds

Traces

Figure 7.5: Computation time when learning from [1-10] learning examples with NO
action sequences and NO state trajectories.

127



7.6.3. Comparison with ARMS

In this section we analyze the performance of FAMA compared to ARMS, one of the most
well-known approaches to Action Model Learning. ARMS, as well as most of the existing
current learning systems, works under the assumption of learning examples with FO ac-
tion sequences and NO state trajectories and therefore is not able to handle the scenarios
where the plan horizon is unknown. We will thereby restrict the experimentation to the
cases manageable by ARMS.

In this experiment, we defined a degree of observability o for the state trajectory,
ranging from 0% to 100%, that measures the probability of observing a state variable, and
evaluated both FAMA and ARMS for increasing values of o using five learning examples.
When o = 0 we have a NO state trajectory, when o = 100 we have a FO state trajectory
and all cases in-between correspond to the PO scenario.

Figures 7.6 and 7.7 compare FAMA and ARMS in terms of precision and recall. The
horizontal axes represent the degree of observability and vertical axes show the aver-
age precision (Figure 7.6) and recall (Figure 7.7) computed over the 15 tested domains.
Remarkably, FAMA dominates in terms of precision in all cases except for the FO state
trajectories. Particularly, the models learned by FAMA are between 13% to 34% more
precise than those learned by ARMS. A similar trend is observed for recall (Figure 7.7),
where the difference is even larger, meaning that our learned models are more complete.

The results highlight that FAMA outperforms ARMS when very few plan traces are
available. This by no means is conclusive that FAMA is overall better in NP-complete
scenarios but only that it is able to learn better with very limited input knowledge (actually,
Figure 7.3 reflects the exponential behaviour of FAMA with more than five traces).

Precision

ARMS ——
FAMA -+

0.5 -

0.4

03 |

0.2 -

0.1 -

0 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Degree of observability

Figure 7.6: Precision comparison between FAMA and ARMS for different degrees of ob-
servability.

128



Recall

rereeeeenans RSN TRCEEEEEEEEE e FAMA -+

0.3 -

0.2 |

0.1 -

L L L
0 10 20 30 40 50 60 70 80 90 100
Degree of observability

Figure 7.7: Recall comparison between FAMA and ARMS for different degrees of observ-
ability.

7.6.4. Learning with minimal input knowledge

In this section, we will take a closer look at the action models learned from a very small set
of learning examples. To that end, we will limit the input to only two learning examples
and analyze the results under different degrees of observability. We evaluate three case
studies:

e FO action sequence and PO state trajectory: We are, once again, assuming a
degree of observability of 10% for the state trajectory. Results of this case study are
detailed in Table 7.4.

e PO action sequence and PO state trajectory: In this case study we are assuming
a degree of observability of 30% for both the action sequence and state trajectory.
Results are shown in Table 7.5.

e NO action sequence and NO state trajectory: Both the action sequence and state
trajectory are completely empty so only the initial and final states are observed.
Results of this case study are reported in Table 7.6.

All tables in this section (Tables 7.4, 7.5 and 7.6) follow the same structure. preci-
sion (P) and recall (R) scores are computed separately for the precondition (Pre), add
(Add) and delete (Del) lists, and also globally (Global). The last column reports the
computation time (in seconds) needed to obtain the learned models. Missing values in the
tables (reported as -) correspond to domains where no solution was found within a 1800s
timeout.

Table 7.4 shows the results of the case study FO/PO. Recall scores are generally higher
than the precision ones, and, in fact, the models learned for six out of the 15 domains were

129



perfectly complete. Although precision is overall lower, it is interesting to notice that the
learned negative effects are mostly flawless. With regards to the computation time, we can
observe times are below one second in most cases except for some of the more complex
domains.

Pre Add Del Global
P R P R P R P R Time
Blocks 0.86 | 0.67 | 1.0 | 0.67 | 0.8 | 0.44 || 0.89 | 0.59 | 0.24
Driverlog | 0.6 | 0.86 | 0.36 | 0.57 | 0.67 | 0.29 || 0.53 | 0.64 || 0.58

Ferry 0.7 1.0 [ 036|10 |10 |10 0.6 1.0 0.37
Floortile 069 |10 |05 |10 |1.0 | 082 0.69 | 095 | 1.38
Grid 0.68 | 0.88 | 0.5 | 0.86 | 0.88 | 1.0 0.67 | 0.9 0.65
Gripper 10 |10 |10 |10 |10 |10 1.0 | 1.0 0.18
Hanoi 067 |10 |10 |10 |10 | 1.0 0.8 1.0 0.36

Miconic 1.0 1.0 | 05710 |10 1.0 0.84 | 1.0 0.3

Npuzzle 075 | 1.0 | 1.0 1.0 | 1.0 1.0 0.88 | 1.0 0.26
Parking 078 | 1.0 | 0.69 | 1.0 1.0 1.0 0.8 1.0 0.24
Rovers 05410 |03 |076 |10 | 046 | 048 | 0.85 | 2.14
Satellite 093 |10 |05 |10 | 1.0 | 075 | 081 | 096 | 0.4

Transport | 0.83 | 1.0 | 0.5 1.0 | 0.6 | 0.6 0.67 | 0.9 0.19
Visitall 1.0 1.0 | 025 | 05 1.0 1.0 0.57 | 0.8 1.31
Zenotravel | 0.9 | 0.64 | 0.5 | 0.71 | 0.83 | 0.71 || 0.73 | 0.68 || 0.25
0.8 | 094 | 0.61 | 0.87 | 092 | 0.8 0.73 | 0.88 || 0.59

Table 7.4: Precision and recall scores for learning tasks with FO action sequences and PO state
trajectories with 10% observability.

Table 7.5 gathers the results of the case study PO/PO with 30% observability. We can
see in the table that the scores of some domains are missing. This is the case of floor-tile
and grid, which not only are fairly complex domains, but also categorized as puzzle-
like domains, a feature that is known for putting a strain in the planners. Interestingly
enough, we note the high computation time of hanoi and parking, which also qualify as
a puzzle-like domains. Regarding quality, we find that the learned models retain a level
of soundness similar to Table 7.4 but the completeness is lower than in the previous case
study. This is specially noticeable in the preconditions, where recall values drop from
0.88 to 0.64. This is because the actions observed in the learning examples act as strong
constraints playing a key role on the closeness of the learned model to the GTM. The
more actions that are missing in the input knowledge, the more likely the occurrence of
reformulations.

We now analyze the case study with NO action sequences and NO state trajectories
(Table 7.6). A first outstanding observation is that, contrary to what might be expected
by looking at the previous table, we are able in this case to find solutions for all the
domains. This happens because the search is less constrained and consequently there are
far more possible solutions for this learning problem. This broader space of solutions
is also stressed in a diminished quality of the learned models. Thus, despite the learned

130



Pre Add Del Global
P R P R P R P R Time
Blocks 0.89 | 0.89 | 0.8 | 0.89 | 0.83 | 0.56 || 0.84 | 0.78 || 0.77
Driverlog | 0.57 | 0.29 | 031 | 0.57 | 0.4 | 0.29 || 0.4 | 0.36 || 7.35

Ferry 0.83 | 0.71 | 0.36 | 1.0 1.0 1.0 0.62 | 0.87 || 3.38
Floortile - - - - - - - - -

Grid - - - - - - - - -
Gripper 1.0 1.0 | 0.8 1.0 1.0 1.0 093 | 1.0 0.17
Hanoi 0.67 | 0.5 1.0 1.0 1.0 1.0 0.86 | 0.75 || 132.69

Miconic 1.0 {03310 |10 | 1.0 | 067 | 1.0 | 0.56 || 0.71
Npuzzle 1.0 | 067 |10 |10 | 1.0 |10 1.0 | 0.86 || 13.48
Parking 0.83 | 036 | 1.0 | 089 | 0.83]| 056 | 09 | 0.56 | 160.64
Rovers 043 | 0.73 | 0.24 | 0.47 | 0.56 | 0.38 || 0.39 | 0.61 || 31.13
Satellite 06 |021]05 |10 |05 |05 0.56 | 0.43 || 11.55
Transport | 1.0 | 0.2 | 0.57 | 0.8 1.0 |04 0.73 | 04 23.39
Visitall 067 |10 |05 |05 |10 |10 0.67 | 0.8 3.13
Zenotravel | 1.0 | 036 | 04 | 029 | 1.0 | 043 || 0.77 | 0.36 | 226.27
0.81 | 0.56 | 0.66 | 0.8 | 0.86 | 0.68 || 0.74 | 0.64 | 47.28

Table 7.5: Precision and recall when learning with PO action sequences and PO state trajectories,
30% observability in both cases.

models being able to explain the learning examples, they are further from the original
GTM. In Table 7.6 we can observe the global values of precision and recall drop to 0.57
and 0.48, respectively.

We argue, however, that syntax-based metrics are not appropriate for scenarios with
minimal observability as they cannot cope with the reformulations that frequently occur in
these circumstances. To illustrate this, Figure 7.8 shows the PDDL encoding of the action
model of the stack operator learned from learning examples with NO action sequences
and NO state trajectories. This learned operator removes a block from on top of another
block and puts it down on the table in a single step. There are two main differences
with respect to the model of the stack operator of the GTM: (1) the learned action is
actually unstacking a block instead of stacking it and (2) the block on the top ends on
the table, not held by the robot arm. We refer to the first difference as role swapping
and it happens when there are missing actions in the learning examples. If no actions are
present in the input traces, the names of operators become meaningless, in which case the
effectively anonymous actions can interchange their behaviour with any other comparable
operator. The second difference indeed reveals that the learned action model is working
as an unstack+put-down macro-action. This happens when there are missing states in the
learning examples since a macro-action can be seen as the application of more than one
action in a single step, thus skipping some intermediate states.

Reformulated action models, like the one in Figure 7.8, are indeed sound models
that can be used to solve planning tasks. For instance, any blocks-world problem can be
solved unstacking all the blocks to the table (unstack+put-down) and then stacking them

131



to meet the goal conditions (pick-up+stack). Hence, the NO/NO case study features all
the conditions for reformulation to happen, and this is the reason why scenarios such as
this one are better evaluated using semantic-based metrics.

Pre Add Del Global
P R P R P R P R Time
Blocks 0.6 | 0.67 033|022 067|044 | 055|044 || 0.26
Driverlog | 0.5 | 0.29 | 0.33 | 0.57 | 0.0 | 0.0 0.38 | 0.29 || 0.88

Ferry 05 |[043 |05 |025]0.67 0.5 0.55 | 04 0.45
Floortile 048 | 045 | 0.27 | 0.36 | 0.46 | 0.55 || 0.41 | 0.45 || 58.38
Grid 025|024 | 033 | 043 | 0.14 | 0.14 || 0.25 | 0.26 || 234.63
Gripper 1.0 | 06710 |10 |10 | 1.0 1.0 | 0.86 || 0.16
Hanoi 06 [075|10 |10 |10 | 1.0 0.78 | 0.88 || 6.32

Miconic 0.63 | 0.56 | 0.6 | 0.75 | 0.25 | 0.33 || 0.53 | 0.56 || 0.25
Npuzzle 1.0 1.0 1.0 | 1.0 1.0 |10 1.0 1.0 1.52
Parking 0571029 |02 |0.11]08 | 044 ] 053028 | 17.43
Rovers 0.38 | 0.64 | 0.07 | 0.24 | 0.13 | 0.54 || 0.22 | 0.53 || 1.74
Satellite 0.86 | 043 | 043 | 0.6 | 0.75 | 0.75 || 0.67 | 0.52 || 3.15
Transport | 0.29 | 0.2 | 038 | 0.6 | 0.67 | 0.4 0.39 | 0.35 || 1.06
Visitall 00 | 0.0 1.0 |05 |00 |0.0 1.0 | 0.2 1.21
Zenotravel | 0.4 | 029 | 0.25 | 0.29 | 0.2 | 0.14 || 0.3 | 0.25 || 17.48
0.54 | 046 | 0.51 | 0.53 | 0.52 | 0.48 || 0.57 | 0.48 | 22.99

Table 7.6: Precision and recall scores for learning tasks with NO action sequences and NO state
trajectories.

(:action stack

:parameters (70l - object 702 - object)

:precondition (and (on 7?0l ?02) Chandempty ))

reffect (and (not (on 70l ?02))(clear ?ol)(clear ?02)(ontable ?01)))

Figure 7.8: PDDL encoding of the learned sfack operator from the four-operator
blocksworld domain.

7.6.5. Syntactic versus semantic evaluation

Our last experiment is devoted to compare the scores provided by the syntactic and se-
mantic versions of precision and recall. For that purpose, we will evaluate the models
learned in Section 7.6.4 both syntactically, using the GTM, and semantically, using a val-
idation set of five examples. Our goal with this experiment is to gauge the suitability of the
semantic metrics proposed in section 7.5.2 with respect to their well-known counterparts.
With that in mind, we define two case studies:

e FO action sequence and PO state trajectory: In this case study the full sequence
of actions is known and no states are missing, which makes it practically impossible

132



for reformulated models to appear. In fact, in all our experimentation with FAMA
and other approaches we never observed reformulations when the full sequence of
actions is known.

e NO action sequence and NO state trajectory: This is a case study that favors
reformulations in the learned models, as previously discussed.

Precision | Recall | sem-Precision | sem-Recall

Blocks 0.89 0.59 0.89 0.64
Driverlog 0.53 0.64 0.71 0.83
Ferry 0.6 1.0 0.96 1.0
Floortile 0.69 0.95 0.97 0.95
Grid 0.67 0.9 0.95 0.98
Gripper 1.0 1.0 1.0 1.0
Hanoi 0.8 1.0 0.9 1.0
Miconic 0.84 1.0 1.0 1.0
Npuzzle 0.88 1.0 1.0 1.0
Parking 0.8 1.0 0.98 1.0
Rovers 0.48 0.85 0.94 0.99
Satellite 0.81 0.96 0.93 1.0
Transport 0.67 0.9 1.0 1.0
Visitall 0.57 0.8 1.0 1.0
Zenotravel 0.73 0.68 0.85 0.88

0.73 0.88 0.94 0.95

Table 7.7: Syntactic and semantic scores when learning with FO action sequences and PO state
trajectories with 10% observability.

Table 7.7 shows the results of the case study FO/PO. Looking at the high scores of the
syntactic metrics, specially the value of recall, we can conclude that the learned models
are, in fact, fairly similar to the GTM. This supports our conclusion that no reformulation
occurs in this case study, which also means that the space of possible solutions is restricted
to models close to the GTM. The values of sem-Precision and sem-Recall are also very
high across the table, which is exactly the desired behavior for these metrics given that
solutions are very close to the GTM. In comparison, recall and sem-Recall show similar
scores, while sem-Precision is significantly higher than precision, thus showing that the
sem-Precision is more lenient towards extra preconditions or effects. This is in line with
the results of the previous experiments, where the common appearance of redundant or
implicit preconditions in the learned models is penalized by the precision metric. We
can interpret this phenomenon as a manifestation of the qualification problem Ginsberg
and Smith, . For instance, the model learned for the move action of the hanoi domain
specifies that both the origin and destination disks must be bigger than the one moving, but
the GTM contains only one of these preconditions. This learned model is semantically
correct but syntactically different from the GTM and hence penalized by the precision
metric.

133



Table 7.8 details the results of the case study NO/NO. One first observation is the im-
possibility of applying a semantic evaluation in some of the most complex domains with
five learning examples. Contrary to the previous case study, the difference between the
syntactic and semantic metrics is larger in this scenario with unknown plan horizon. Com-
paring the scores of both versions, we find that learned models that achieved mediocre
scores when using the GTM as reference (syntactic metrics), are in fact reasonably sound
and complete, reaching overall scores of 0.92 and 0.89 in sem-Precision and sem-Recall.
This is an indication that the models learned by our approach, despite syntactically differ-
ent from the GTM, require very few editions to explain the validation examples.

Precision | Recall | sem-Precision | sem-Recall

Blocks 0.55 0.44 0.77 0.77
Driverlog 0.38 0.29 0.86 0.86
Ferry 0.55 04 0.82 0.53
Floortile 0.41 0.45 - -
Grid 0.25 0.26 - -
Gripper 1.0 0.86 1.0 1.0
Hanoi 0.78 0.88 0.89 1.0
Miconic 0.53 0.56 1.0 0.89
Npuzzle 1.0 1.0 1.0 1.0
Parking 0.53 0.28 - -
Rovers 0.22 0.53 - -
Satellite 0.67 0.52 - -
Transport 0.39 0.35 0.94 1.0
Visitall 1.0 0.2 1.0 1.0
Zenotravel 0.3 0.25 - -

0.57 0.48 0.92 0.89

Table 7.8: Syntactic and semantic metric scores for learning tasks with NO action sequences and
NO state trajectories.

Looking at the results of both case studies we can draw two conclusions with regards
to the semantic metrics proposed in this paper. The first one is that, when no reformulation
occurs, these metrics behave similarly to their syntactic counterparts, which means they
are a good substitute when the GTM is not available. The second conclusion is that
sem-Precision and sem-Recall are better suited to evaluate reformulated models than the
original syntactic metrics since they contemplate valid solutions outside the GTM that
successfully explain the given input data.

7.7. Discussion

We start this discussion talking about some interesting aspects of our approach and then
move the discussion to broader topics concerning the learning of action models. First, we
would like to point out that our Action Model Learning approach has a lot in common with
the Bayesian approach to learning which treats the parameters as random variables that

134



are added to the state-space. Under this approach learning just amounts to inference in
the augmented model. In our case, the parameters are the alphabet variables and inference
process used to estimate them consists in finding explanations for the learning examples.

Next, we would like to talk about an aspect of our approach that we have not developed
formally in this dissertation. So far we have said that predicates and operator headers are
inputs to the learning problem, but where do these come from? The best way to look at
it is that these are the predicates and headers of the target model, which must contain all
the ones conveyed by the learning examples (so it is possible to explain them) and can
optionally include more. These extra predicates and headers can lead to some exciting
results, since they are not needed to explain the learning examples. In fact, they can be
considered as latent variables to which the planner must attribute some meaning. For
instance, think of what would happen if we tried to learn the blocksworld domain from
NO/NO learning examples (no observed actions, only initial and final states) and asking
FAMA to use only two operators with two parameters. In such a situation FAMA would
use these two operators as unstack + putdown and stack + pickup macro-actions. In
the extreme, the input predicates and headers can be seen as an upper bound on how
many variables and actions FAMA can use to explain the learning examples. This makes
our approach also suitable for scenarios where the predicates and operator headers of the
actor are unknown.

Interestingly, this feature might have application to learn policies, understanding a
policy as an action model with extra preconditions that capture when actions are applied
to achieve a given goal. In fact, the navigation strategies used in working example are not
too far off from this notion of policy, since they are essentially a basic navigation model
extended with an automaton that restricts the applicability of some of their actions. On
the flip side, learning such a policy could be done by starting the learning problem with
a fully-specified action model and giving FAMA some additional variables to build more
restrictive preconditions.

Related to the topic of latent variables is the work in (Asai & Fukunaga, ; Konidaris
et al., ) which falls outside the usual formulation of the action model learning prob-
lem. This recent work tackles the problem of learning action models from low-level
sensing information and unstructured data by first extracting a latent symbolic representa-
tion. Another interesting formulation of the action model learning problem is proposed in
(Bonet & Geftner, , ). This approach uses as learning examples graphs that en-
code a fragment of the state-space model, which can be understood as comprising several
learned examples with some shared segments.

An important topic when talking about learning is how representative are the learning
examples (that is, how much information they convey) and how to collect representative
examples. Ideally, representative examples are obtained by collecting all the different state
trajectories that are generated when traversing the entire state space (Bonet & Geffner,

). Unfortunately, the size of a factored state space grows exponentially with the

135



number of state variables and size of their domain. As the number of world objects
grows, generating the entire set of trajectories becomes intractable. To illustrate this,
the state space of a 3-block blocksworld problem contains thirteen states, and grows to
above five hundreds states for the 5-blocks case (Slaney & Thiébaux, ). Besides the
size, the topology of the state space also affects the gathering of representative learning
examples. It is easier to obtain representative examples in strongly connected state spaces
than in spaces with non-reversible actions and dead-ends. While the theoretical efficiency
of Machine Learning and Reinforcement Learning algorithms has been widely studied in
terms of sample complexity, most of the work in the action model learning report only
empirical results on this issue. Nevertheless, the sample complexity, for learning STrRiPS
action operators in fully observable environments has been successfully characterized in
terms of plan-prediction mistakes (Walsh & Littman, ) and the number of examples
that are necessary to safely learn models (Juba et al., ; Stern & Juba, ). Still,
further research is needed for bounding sample complexity when examples are not fully
observable, are intermittent, or noisy.

Classical blind search algorithms can be used for the systematic exploration of a given
state-space model but they present limitations. Breadth First Search requires exponential
memory and so it is limited to small state spaces; Depth First Search can handle larger
state spaces but it cannot guarantee exploration diversity; and Iferative Deepening pro-
vides exploration diversity with low memory consume but it still demands exponential
running time. Novelty-based algorithms are an appealing family of systematic exploration
algorithms since they determine the states to be explored according to their newness.
What is more, polynomial running time algorithms, like the IW(1), gracefully scale-up
with the number of objects (Lipovetzky & Geftner, ). Interestingly, research on on-
line learning seems to have taken the baton in regards to collecting representative learning
examples. We can see this in works such as (Lamanna et al., ; Verma et al., ),
where the focus is put on keeping track of the part of the action model that we are certain
and uncertain, and guiding the exploration so as to reduce the uncertainty.

136



Part VI

Conclusions and Future Work

137



8. CONCLUSIONS

This chapter summarizes the contributions of this dissertation, and discusses open
lines of research based on the work developed so far.

8.1. Summary of Contributions

This section outlines the main contributions of this PhD Thesis, referring to the chapters
that presents them and the publications where they originally appeared.

1. The main contribution of this thesis is a framework for inference and learning in the
state-space model given by the classical planning model extended with a rich obser-
vation model. This framework allows us to formulate a palette of different inference
and learning problems in a cohesive way and to leverage the latest advances devel-
oped by state-of-the-art, off-the-shelf planners in order to solve them. Moreover, the
state-space model of classical planning presents interesting and distinguishing fea-
tures that are not found in other state-space models, such as a cost-driven transition
model with an implicit schematic representation, and an intermittent observation
model. Our framework was drafted in Aineto, Jimenez, et al., and Aineto,
Jiménez, Onaindia, and Ramirez, and is presented in full in Chapter 3.

2. An Observation Decoding problem (M,, M, sy, w) aims at finding the trajectory
in 7 (sg, M,) that best explains the observation sequence w. Our planning-based
approach to address this problem leverages the fact that an observation sequence
specifies an ordered occurrence property that can be represented in LTL. This al-
lows as to compute a monitor automaton A(w) that only accepts trajectories in
T (s0, M,) (explanations). We present two different encodings, depending on the
type of constraints of the sensor model, to compile away A(w) into a planning
problem $(w) whose solutions are restricted to explanations. Our compilation also
accounts for sensing cost functions which improve the accuracy of the solutions but
severely impact its scalability due to a lack of research in heuristics that support
state-dependant costs. The Observation Decoding problem is presented in Chapter
4 and in Aineto, Jimenez, et al.,

3. The Temporal Inference problem (M,, M, s¢, w, H) generalizes the task of explain-
ing the actor’s past behaviour or predicting its future intentions. We use the LTL
formalism as a language to represent hypotheses in /, which allows us to conjec-
ture about the trajectory rather than a single state. We identify three special classes
of Temporal Inference problems, namely, Hindsight, Monitor and Prediction, ac-
cording to whether the hypotheses refer to the past, present or future of the actor.

138



The solution of a Temporal Inference problem is the hypothesis supported by the
best explanation following the principles of Inference to the Best Explanation. In
order to find the explanations we apply a straight-forward extension of the compi-
lation presented for Observation Decoding, since both observation sequences and
hypotheses are interpreted as LTL properties. This allows us build a planning prob-
lem P(n) for each n € H whose optimal solution would be the best explanations
for n. Temporal Inference is presented in Chapter 5 and in Aineto et al.,

. A Model Recognition problem (M,, Mj, sy, w) is about figuring out the model of
the actor from a set of candidate models M,,. The solution that we seek is the action
model M, € M, that best explains the observation sequence w. Our formulation
of this problem accounts for the possibility that none of the candidate models can
explain the observation sequence by weighting the modifications required by the
model in order to generate an explanation. We do so by leveraging a novel encoding
that allows representing any Strips action model using a finite set of variables that
we call alphabet. Our planning-based approach incorporates this alphabet alongside
a new set of edit actions that implement the insertion and deletion operations. This
allows us to compile a problem P, (w) for every M, € M, whose solutions consider
the necessary modifications to the candidate model and search for an explanation in
a single planning episode. The Model Recognition problem is presented in Chapter
6 and in Aineto, Jiménez, Onaindia, and Ramirez,

. The aim of an Action Model Learning problem (M,[], M,, L) is to estimate the
applicability App and effects Eff constraints of the actor so that they complete the
input model M,[] = (X, A, c) in a way that can explain the learning examples L.
Our planning-based formulation of this problem, FAMA, poses the learning problem
as an editing problem leveraging the alphabet of an action model and edit actions.
Then, FAMA compiles the learning problem into a planning problem #,, (£) whose
solution first edits model M, (which initially has no preconditions nor effects) and
then explains the learning examples L. Our approach takes full advantage of our
framework, which allows it to learn from learning examples with gaps (only initial
and final states in the extreme), a novel feature in the area of Action Model Learn-
ing. We also propose new novel metrics for evaluating the quality of the learned
action models with respect to a set of validation examples. The Action Model
Learning problem is presented in Chapter 7 and in Aineto et al., ,

8.2. Future work

The work developed in this thesis and most of the cited works on inference and learning

focus on the classical planning model or small extensions which are still purely discrete.

Real-world applications such as robotics or autonomous vehicles demand hybrid repre-

sentations, where state variables are discrete or continuous (Xu & Laird, ), and evolve

139



with respect to a time function which can also be continuous (Ramirez et al., ).

Inference in hybrid settings is a task that we have already started tackling in a recent
work with very promising results (Aineto, Onaindia, et al., , ). In this work we
present an extension of the Observation Decoding problem that aims at explaining the ob-
served behaviour of a hybrid system (HS). We formulate the problem using the formalism
of hybrid automata (HA), and characterize the explanations as the language of a network
of HA that comprises one automaton for the HS and another one that serves as monitor.
We observe that this problem corresponds to a Falsification problem in model-checking,
which consists in finding a hybrid trajectory that satisfies (or violates) a given property.
However, state-of-the-art model checkers struggle to find concrete trajectories, so we pro-
pose a formal mapping from HA to PDDL+ and rely on off-the-shelf automated planners.
An experimental analysis over domains with piece-wise constant, linear and nonlinear
dynamics reveals that the proposed PDDL+ approach is much more efficient than solv-
ing directly the explanation problem with model-checking solvers. Regarding learning in
hybrid settings, defining expressive arithmetic-logic preconditions and effects that con-
strain the value of hybrid state spaces can easily yield intractable hypothesis spaces. The
computation of candidates of tractable subsets of the hypothesis space, e.g. by lever-
aging input observations as in regression tree learning, seems a promising approach to
effectively handle these hypothesis spaces.

On the topic of extensions to other planning models, we believe that the conformant
planning model has a lot of potential, specially for Action Model Learning. If we think of
FAMA as a learning as satisfiability approach whose solution is a concrete model, we can
think of an extension of FAMA to conformant planning as a learning as belief propagation
approach. One advantage of such an extension is that it would be able to find all the
action models consistent with the learning examples. Another important benefit is that
the set of solutions could be incrementally updated by individually processing the learning
examples and hence, its computational complexity is not exponentially dependent on the
size of the set of learning examples.

As we have already touched upon in our discussions, scalability is a concerning aspect
of the proposed approach. We envision two ways in which this can be improved. Our first
idea is to discard the compilation of the monitor automaton and, instead, integrate it into a
complete search scheme as a landmark graph. In theory, such approach would take better
advantage of landmark-based heuristics without impacting the quality of the solutions.
However, we would lose the flexibility of being able to easily leverage new advances
in state-of-the-art planners. Our second idea is to follow a heuristic-based approach as
is done in some works for Goal Recognition (Pereira et al., , : Vered et al.,

). This approach uses heuristic scores for its estimations rather than explanations,
so it sacrifices accuracy in favor of much faster solution times. It remains to be seen if
such relaxations will be applicable for problems that require actual explanations, such as
Observation Decoding and Action Model Learning, however the relaxed plan seems like
a plausible proxy here.

140



Finally, we want to end this section talking about a feature of our framework that we
think can lead to interesting applications when it comes to learning. The feature in ques-
tion is support for intermittency, which so far we have understood as being able to explain
gapped observation sequences thanks to the use of planners. We believe that this feature
can also be exploited intentionally, in order to learn procedural action models. For many
problems, preconditions and effects of actions are more naturally defined as procedures.
For instance, in the chess game, the possible moves of a knight are naturally defined as
follows: the knight moves two squares horizontally and then one square vertically, or it
moves one square horizontally and then two squares vertically. In order to learn such
procedures, we can leverage the capabilities of our Action Model Learning approach,
FAMA. The idea is that to explain a procedural action we can use a sequence of actions.
FAMA supports intermittency and therefore will use as many actions as needed to explain
a learning example that comes from a procedural model.

141



BIBLIOGRAPHY

Aguas, J. S., Jiménez, S., & Jonsson, A. (2021). Generalized planning as heuristic search.
Proceedings of the Thirty-First International Conference on Automated Planning
and Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021,
569-5717.

Aineto, D., Jimenez, S., & Onaindia, E. (2020). Observation decoding with sensor models:
Recognition tasks via classical planning. Proceedings of the International Confer-
ence on Automated Planning and Scheduling, 30, 11-19.

Aineto, D., Jiménez, S., & Onaindia, E. (2018). Learning STRIPS action models with
classical planning. International Conference on Automated Planning and Schedul-
ing, (ICAPS-18), 399-407.

Aineto, D., Jiménez, S., & Onaindia, E. (2019). Learning action models with minimal
observability. Artificial Intelligence Journal, 275, 104—-137.

Aineto, D., Jiménez, S., & Onaindia, E. (2021). Generalized temporal inference via plan-
ning. In M. Bienvenu, G. Lakemeyer, & E. Erdem (Eds.), Proceedings of the 18th
international conference on principles of knowledge representation and reason-
ing, KR 2021, online event, november 3-12, 2021 (pp. 22-31).

Aineto, D., Jiménez, S., Onaindia, E., & Ramirez, M. (2019). Model Recognition as Plan-
ning. International Conference on Automated Planning and Scheduling, (ICAPS-
19), 13-21.

Aineto, D., Onaindia, E., Ramirez, M., Scala, E., & Serina, 1. (2020). Towards plan
recognition in hybrid systems. Joint Proceedings of the 8th Italian Workshop on
Planning and Scheduling and the 27th International Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Explosion co-
located with AIxIA 2020, Online Event, November 25-27, 2020, 2745.

Aineto, D., Onaindia, E., Ramirez, M., Scala, E., & Serina, 1. (2022). Explaining the
behaviour of hybrid systems with pddl+ planning. Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, IJCAI-22.

Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach to contingent
planning. Twenty-First International Joint Conference on Artificial Intelligence.

Alford, R. W., Kuter, U., & Nau, D. (2009). Translating HTNs to PDDL: A Small Amount
of Domain Knowledge Can Go a Long Way. 215t International Joint Conference
on Artificial Intelligence, (IJCAI-09), 1629-1634.

Allahverdyan, A., & Galstyan, A. (2011). Comparative analysis of viterbi training and
maximum likelihood estimation for hmms. Advances in Neural Information Pro-
cessing Systems, 24.

Amir, E., & Chang, A. (2008). Learning partially observable deterministic action models.
Journal of Artificial Intelligence Research, 33, 349—-402.

142



Asai, M., & Fukunaga, A. (2018). Classical planning in deep latent space: Bridging the
subsymbolic-symbolic boundary. National Conference on Artificial Intelligence,
AAAI-18.

Bacchus, F. (2001). The AIPS 00 planning competition. Al Mag., 22(3), 47-56. http:
//www.aaai.org/ojs/index.php/aimagazine/article/view/1571

Bacchus, F., & Kabanza, F. (1998). Planning for temporally extended goals. Annals of
Mathematics and Artificial Intelligence, 22(1-2), 5-217.

Bickstrom, C., & Jonsson, P. (2011). All pspace-complete planning problems are equal
but some are more equal than others. In D. Borrajo, M. Likhachev, & C. L. Lépez
(Eds.), Proceedings of the fourth annual symposium on combinatorial search,
SOCS 2011, castell de cardona, barcelona, spain, july 15.16, 2011. AAAI Press.
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4009

Baier, J. A., Fritz, C., & Mcllraith, S. A. (2007). Exploiting procedural domain control
knowledge in state-of-the-art planners. International Conference on Automated
Planning and Scheduling, (ICAPS-07), 26-33.

Baier, J. A., & Mcllraith, S. A. (2006). Planning with temporally extended goals using
heuristic search. ICAPS, 342-345.

Bellman, R. (1957). Dynamic programming (1st ed.). Princeton University Press. http:
//books . google . com /books ?id = fyVtp3EMxasC & pg = PRS & dq = dynamic +
programming+richard+e+bellmané&client=firefox-a#v=onepage&q=dynamic %
20programming%20richard%20e%?20bellman&f=false

Bertsekas, D. P. (1995). Dynamic programming and optimal control (1st). Athena Scien-
tific.

Blum, A., & Furst, M. L. (1995). Fast planning through planning graph analysis. Proceed-
ings of the Fourteenth International Joint Conference on Artificial Intelligence,
1JCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, 1636—1642.
http://ijcai.org/Proceedings/95-2/Papers/080.pdf

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,
129(1-2), 5-33.

Bonet, B., & Geftner, H. (2000). Planning with incomplete information as heuristic search
in belief space. International Conference on Artificial Intelligence Planning Sys-
tems, (ICAPS-05).

Bonet, B., & Geffner, H. (2019). Learning first-order symbolic planning representations
from plain graphs. ECAL.

Bonet, B., & Geftner, H. (2020). Learning First-Order Symbolic Representations for Plan-
ning from the Structure of the State Space. European Conference on Artificial
Intelligence.

Bonet, B., Loerincs, G., & Geftner, H. (1997). A robust and fast action selection mech-
anism for planning. In B. Kuipers & B. L. Webber (Eds.), Proceedings of the
Sfourteenth national conference on artificial intelligence and ninth innovative ap-
plications of artificial intelligence conference, AAAI 97, IAAI 97, july 27-31, 1997,

143


http://www.aaai.org/ojs/index.php/aimagazine/article/view/1571
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1571
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4009
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://ijcai.org/Proceedings/95-2/Papers/080.pdf

providence, rhode island, USA (pp. 714-719). AAAI Press / The MIT Press. http:
//[www.aaai.org/Library/AAAI/1997/aaai97-111.php

Bonet, B., Palacios, H., & Geffner, H. (2010). Automatic derivation of finite-state ma-
chines for behavior control. National Conference on Artificial Intelligence, (AAAI-
10).

Bryce, D., Benton, J., & Boldt, M. W. (2016). Maintaining evolving domain models. In-
ternational Joint Conference on Artificial Intelligence, (IJCAI-2016), 3053—-3059.

Bryce, D., Kambhampati, S., & Smith, D. E. (2006). Planning graph heuristics for belief
space search. Journal of Artificial Intelligence Research, 26, 35-99.

Bylander, T. (1994). The computational complexity of propositional strips planning. Ar-
tificial Intelligence, 69(1-2), 165-204.

Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D. E., & Kambhampati, S. (2019).
Explicability? legibility ? predictability ? transparency? privacy? security ? the emerg-
ing landscape of interpretable agent behavior. 29th International Conference on
Automated Planning and Scheduling, ICAPS 2019, 86-96.

Chakraborti, T., Sreedharan, S., & Kambhampati, S. (2018a). Explicability versus ex-
planations in human-aware planning. International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS-18, 2180-2182.

Chakraborti, T., Sreedharan, S., & Kambhampati, S. (2018b). Human-aware planning re-
visited: A tale of three models. I/JCAI-ECAI XAI/ICAPS XAIP Workshops.
Chakraborti, T., Sreedharan, S., Zhang, Y., & Kambhampati, S. (2017). Plan explanations
as model reconciliation: Moving beyond explanation as soliloquy. International

Joint Conference on Artificial Intelligence, (IJCAI-17), 156—163.

Cook, S. A. (1971). The complexity of theorem-proving procedures. Proceedings of the
third annual ACM symposium on Theory of computing, 151-158.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1989). Introduction to algorithms. The
MIT Press; McGraw-Hill Book Company.

Corréa, A. B., Frances, G., Pommerening, F., & Helmert, M. (2021). Delete-relaxation
heuristics for lifted classical planning. Proceedings of the Thirty-First Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2021, Guangzhou,
China (virtual), August 2-13, 2021, 94-102.

Cresswell, S., & Coddington, A. M. (2004). Compilation of LTL goal formulas into
PDDL. In R. L. de Méantaras & L. Saitta (Eds.), Proceedings of the 16th eureopean
conference on artificial intelligence, ecai’2004, including prestigious applicants
of intelligent systems, PAIS 2004, valencia, spain, august 22-27, 2004 (pp. 985—
986). 10S Press.

Cresswell, S. N., McCluskey, T. L., & West, M. M. (2013). Acquiring planning domain
models using LOCM. The Knowledge Engineering Review, 28(02), 195-213.

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC

curves. International Conference on Machine learning, 233-240.

144


http://www.aaai.org/Library/AAAI/1997/aaai97-111.php
http://www.aaai.org/Library/AAAI/1997/aaai97-111.php

Davis-Mendelow, S., Baier, J. A., & Mcllraith, S. A. (2013). Assumption-based planning:
Generating plans and explanations under incomplete knowledge. 27th AAAI Con-
ference on Artificial Intelligence.

E-Martin, Y., R.-Moreno, M. D., & Smith, D. E. (2015). A fast goal recognition tech-
nique based on interaction estimates. Proc. 24th International Joint Conference
on Artificial Intelligence, IJCAI 2015, 761-768.

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4), 189-208.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20, 61-124.

Fox, M., Long, D., & Magazzeni, D. (2017). Explainable planning. First Workshop on
Explainable Al (XAl), IJCAI-13.

Fritz, C., & Mcllraith, S. A. (2007). Monitoring plan optimality during execution. 7th
International Conference on Automated Planning and Scheduling, ICAPS-2007
2007, 144-151.

Gerevini, A., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell., 173(5-6), 619-668. https://doi.org/10.
1016/j.artint.2008.10.012

Giacomo, G. D., & Vardi, M. Y. (2013). Linear temporal logic and linear dynamic logic
on finite traces. In F. Rossi (Ed.), Proceedings of the 23rd international joint con-
ference on artificial intelligence (pp. 854-860). JICAI/AAAL

Ginsberg, M. L., & Smith, D. E. (1988). Reasoning about action II: the qualification
problem. Artificial Intelligence, 35(3), 311-342.

Grastien, A., Haslum, P., Thiébaux, S., et al. (2011). Exhaustive diagnosis of discrete
event systems through exploration of the hypothesis space. 22nd International
Workshop on Principles of Diagnosis (DX-11), 60-67.

Harman, G. H. (1965). The inference to the best explanation. The philosophical review,
74(1), 88-95.

Haslum, P., & Geftner, H. (2000). Admissible heuristics for optimal planning. In S. A.
Chien, S. Kambhampati, & C. A. Knoblock (Eds.), Proceedings of the fifth inter-
national conference on artificial intelligence planning systems, breckenridge, co,
usa, april 14-17, 2000 (pp. 140-149). AAAL http://www.aaai.org/Library/AIPS/
2000/aips00-015.php

Haslum, P., & Grastien, A. (2011). Diagnosis as planning: Two case studies. Proc. of the
International Scheduling and Planning Applications workshop (SPARK).

Helmert, M. (2003). Complexity results for standard benchmark domains in planning.
Artif. Intell., 143(2), 219-262. https://doi.org/10.1016/S0004-3702(02)00364-8

Helmert, M. (2006a). The fast downward planning system. J. Artif. Intell. Res., 26, 191—
246. https://doi.org/10.1613/jair.1705

Helmert, M. (2006b). New complexity results for classical planning benchmarks. In D.
Long, S. F. Smith, D. Borrajo, & L. McCluskey (Eds.), Proceedings of the six-

145


https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1016/j.artint.2008.10.012
http://www.aaai.org/Library/AIPS/2000/aips00-015.php
http://www.aaai.org/Library/AIPS/2000/aips00-015.php
https://doi.org/10.1016/S0004-3702(02)00364-8
https://doi.org/10.1613/jair.1705

teenth international conference on automated planning and scheduling, ICAPS
2006, cumbria, uk, june 6-10, 2006 (pp. 52-62). AAAL http://www.aaai.org/
Library/ICAPS/2006/icaps06-006.php

Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored state spaces. Journal of
the ACM (JACM), 61(3), 1-63.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating ”Ignoring Delete Lists”
to Numeric State Variables. J. Artif. Intell. Res., 20, 291-341.

Hoffmann, J., & Brafman, R. (2005). Contingent planning via heuristic forward search
with implicit belief states. Proc. ICAPS, 2005.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: an overview. J.
Artif. Intell. Res., 24, 519-579. https://doi.org/10.1613/jair. 1677

Hoffmann, J., Gomes, C. P., Selman, B., & Kautz, H. A. (2007). SAT encodings of state-
space reachability problems in numeric domains. In M. M. Veloso (Ed.), IJCAI
2007, proceedings of the 20th international joint conference on artificial intelli-
gence, hyderabad, india, january 6-12, 2007 (pp. 1918-1923). http://ijcai.org/
Proceedings/07/Papers/309.pdf

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. J. Artif. Intell. Res., 14,253-302. https://doi.org/10.1613/jair.855

Hoffmann, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22, 215-278.

Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continuous ef-
fects and mixed initiative planning using PDDL. Tools with Artificial Intelligence,
2004. ICTAI 2004. 16th IEEE International Conference on, 294-301.

Jiménez, S., Coles, A., & Smith, A. (2006). Planning in probabilistic domains using a
deterministic numeric planner. 25th Workshop of the UK Planning and Scheduling
Special Interest Group.

Jiménez, S., De La Rosa, T., Ferndndez, S., Fernandez, F., & Borrajo, D. (2012). A review
of machine learning for automated planning. The Knowledge Engineering Review,
27(04), 433-467.

Juba, B., Le, H. S., & Stern, R. (2021). Safe learning of lifted action models. Proceedings
of the 18th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2021, Online event, November 3-12, 2021, 379-389.

Kaelbling, L. P, Littman, M. L., & Cassandra, A. R. (1998). Planning and Acting in Par-
tially Observable Stochastic Domains. Artificial Intelligence, 101(1-2), 99-134.

Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges of
planning with incomplete and evolving domain models. National Conference on
Artificial Intelligence, (AAAI-07).

Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. ECAI, 92, 359-363.

Kautz, H. A., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic
and stochastic search. In W. J. Clancey & D. S. Weld (Eds.), Proceedings of the
thirteenth national conference on artificial intelligence and eighth innovative ap-

146


http://www.aaai.org/Library/ICAPS/2006/icaps06-006.php
http://www.aaai.org/Library/ICAPS/2006/icaps06-006.php
https://doi.org/10.1613/jair.1677
http://ijcai.org/Proceedings/07/Papers/309.pdf
http://ijcai.org/Proceedings/07/Papers/309.pdf
https://doi.org/10.1613/jair.855

plications of artificial intelligence conference, AAAI 96, IAAI 96, portland, ore-
gon, usa, august 4-8, 1996, volume 2 (pp. 1194-1201). AAAI Press / The MIT
Press. http://www.aaai.org/Library/AAAI/1996/aaai96-177.php

Keren, S., Gal, A., & Karpas, E. (2019). Goal Recognition Design in Deterministic Envi-
ronments. Journal of Artificial Intelligence Research, 65, 209-269.

Konidaris, G., Kaelbling, L. P., & Lozano-Pérez, T. (2018). From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial
Intelligence Research, 61, 215-289.

Kucera, J., & Bartak, R. (2018). LOUGA: learning planning operators using genetic al-
gorithms. Pacific Rim Knowledge Acquisition Workshop, PKAW-18, 124-138.

Kvarnstrom, J., & Doherty, P. (2000). Talplanner: A temporal logic based forward chain-
ing planner. Ann. Math. Artif. Intell., 30(1-4), 119-169. https://doi.org/10.1023/A:
1016619613658

Lamanna, L., Saetti, A., Serafini, L., Gerevini, A., & Traverso, P. (2021). Online learning
of action models for PDDL planning. Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event /| Montreal,
Canada, 19-27 August 2021, 4112-4118.

Lipovetzky, N., & Geffner, H. (2012). Width and serialization of classical planning prob-
lems. European Conference on Artificial Intelligence, 540-545.

Lipovetzky, N., & Geftner, H. (2017). Best-first width search: Exploration and exploita-
tion in classical planning. Thirty-First AAAI Conference on Artificial Intelligence.

Little, I., & Thiebaux, S. (2007). Probabilistic planning vs. replanning. ICAPS Workshop
on IPC: Past, Present and Future.

Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and
analysis. J. Artif. Intell. Res., 20, 1-59. https://doi.org/10.1613/jair.1240

Loépez, C. L., Celorrio, S. J., & Olaya, A. G. (2015). The deterministic part of the seventh
international planning competition. Artificial Intelligence, 223, 82—119.

Lopez, C. L., Celorrio, S. J., & Olaya, A. G. (2015). The deterministic part of the seventh
international planning competition. Artif. Intell., 223, 82—119. https://doi.org/10.
1016/j.artint.2015.01.004

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL — The Planning Domain Definition Language.

McDermott, D. V. (2000). The 1998 Al planning systems competition. Al Mag., 21(2),
35-55. https://doi.org/10.1609/aimag.v21i2.1506

Miettinen, K. M. (1998). Nonlinear multiobjective optimization. Springer.

Mourdo, K., Zettlemoyer, L. S., Petrick, R. P. A., & Steedman, M. (2012). Learning
STRIPS operators from noisy and incomplete observations. Conference on Un-
certainty in Artificial Intelligence, UAI-12, 614—623.

Muise, C. (2016). Planning.domains. ICAPS system demonstration.

Muise, C., & Lipovetzky, N. (2015). Unplannability ipc track. The International Planning
Competition (WIPC-15), 14. https://people.eng.unimelb.edu. au/nlipovetzky /
papers/WIPC15_unplannability.pdf

147


http://www.aaai.org/Library/AAAI/1996/aaai96-177.php
https://doi.org/10.1023/A:1016619613658
https://doi.org/10.1023/A:1016619613658
https://doi.org/10.1613/jair.1240
https://doi.org/10.1016/j.artint.2015.01.004
https://doi.org/10.1016/j.artint.2015.01.004
https://doi.org/10.1609/aimag.v21i2.1506
https://people.eng.unimelb.edu.au/nlipovetzky/papers/WIPC15_unplannability.pdf
https://people.eng.unimelb.edu.au/nlipovetzky/papers/WIPC15_unplannability.pdf

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. J. Artif. Intell. Res., 12, 271-315. https://doi.org/10.1613/jair.735

Nilsson, N. J. (1980). Principles of artificial intelligence. Morgan Kaufmann Publishers
Inc.

Patrizi, F., Lipovetzky, N., De Giacomo, G., & Geffner, H. (2011). Computing infinite
plans for 1tl goals using a classical planner. International Joint Conference on
Artificial Intelligence, (IJCAI-11), 2003-2008.

Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc.

Peot, M. A., & Smith, D. E. (1992). Conditional nonlinear planning. Artificial Intelligence
Planning Systems, 189-197.

Pereira, R. F., Oren, N., & Meneguzzi, F. (2017). Landmark-based heuristics for goal
recognition. 31st AAAI Conference on Artificial Intelligence (AAAI-17).

Pereira, R. F., Oren, N., & Meneguzzi, F. (2020). Landmark-based approaches for goal
recognition as planning. Artif. Intell., 279.

Pnueli, A. (1977). The temporal logic of programs. 18th Annual Symposium on Founda-
tions of Computer Science (sfcs 1977), 46-57.

Pozanco, A., E.-Martin, Y., Ferndndez, S., & Borrajo, D. (2018). Counterplanning us-
ing goal recognition and landmarks. International Joint Conference on Artificial
Intelligence, (IJCAI-18), 4808—4814.

Pryor, L., & Collins, G. (1996). Planning for contingencies: A decision-based approach.
Journal of Artificial Intelligence Research, 4, 287-339.

Ramirez, M., Papasimeon, M., Benke, L., Lipovetzky, N., Miller, T., & Pearce, A. R.
(2017). Real-time uav maneuvering via automated planning in simulations. Inter-
national Joint Conference on Artificial Intelligence, 5243-5245.

Ramirez, M., & Geftner, H. (2009). Plan Recognition as Planning. International Joint
conference on Artifical Intelligence, (IJCAI-09), 1778-1783.

Ramirez, M., & Geflner, H. (2010). Probabilistic Plan Recognition Using Off-the-Shelf
Classical Planners. 24th AAAI National Conference on Artificial Intelligence, (AAAI-
10).

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res., 39, 127-177. https://doi.org/10.
1613/jair.2972

Rintanen, J. (2000). Incorporation of temporal logic control into plan operators. In W.
Horn (Ed.), ECAI 2000, proceedings of the 14th european conference on artificial
intelligence, berlin, germany, august 20-25, 2000 (pp. 526-530). 10S Press.

Rintanen, J. (2003). Expressive equivalence of formalisms for planning with sensing. In
E. Giunchiglia, N. Muscettola, & D. S. Nau (Eds.), Proceedings of the thirteenth
international conference on automated planning and scheduling (ICAPS 2003),
june 9-13, 2003, trento, italy (pp. 185-194). AAAL http://www.aaai.org/Library/
ICAPS/2003/icaps03-019.php

148


https://doi.org/10.1613/jair.735
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
http://www.aaai.org/Library/ICAPS/2003/icaps03-019.php
http://www.aaai.org/Library/ICAPS/2003/icaps03-019.php

Rintanen, J. (2014). Madagascar: Scalable planning with SAT. International Planning
Competition, (IPC-2014).

Schupbach, J. N. (2017). Inference to the best explanation, cleaned up and made re-
spectable. Best explanations: New essays on inference to the best explanation,
39-61.

Segovia-Aguas, J., Celorrio, S. J., & Jonsson, A. (2019). Computing programs for gener-
alized planning using a classical planner. Artificial Intelligence.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2018). Computing hierarchical finite state
controllers with classical planning. Journal of Artificial Intelligence Research, 62,
755-797.

Sievers, S., Wehrle, M., & Helmert, M. (2016). An analysis of merge strategies for merge-
and-shrink heuristics. Proceedings of the 26th International Conference on Auto-
mated Planning and Scheduling.

Slaney, J., & Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence, 125(1-2),
119-153.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable
markov processes over a finite horizon. Operations research, 21(5), 1071-1088.

Sohrabi, S., Baier, J. A., & Mcllraith, S. A. (2010). Diagnosis as planning revisited.
12th International Conference on the Principles of Knowledge Representation and
Reasoning.

Sohrabi, S., Baier, J. A., & Mcllraith, S. A. (2011). Preferred explanations: Theory and
generation via planning. Proc. of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 201 1.

Sohrabi, S., Riabov, A. V., & Udrea, O. (2016). Plan recognition as planning revisited.
International Joint Conference on Artificial Intelligence, (IJCAI-16), 3258-3264.

Sreedharan, S., Chakraborti, T., & Kambhampati, S. (2018). Handling model uncertainty
and multiplicity in explanations via model reconciliation. International Confer-
ence on Automated Planning and Scheduling, (ICAPS-18), 518-526.

Srivastava, B., Nguyen, T. A., Gerevini, A., Kambhampati, S., Do, M. B., & Serina, L.
(2007). Domain independent approaches for finding diverse plans. IJCAI, 2016—
2022.

Stern, R., & Juba, B. (2017). Efficient, safe, and probably approximately complete learn-
ing of action models. International Joint Conference on Artificial Intelligence,
(IJCAI-17),4405-4411.

Sukthankar, G., Goldman, R. P., Geib, C., Pynadath, D. V., & Bui, H. (2014). Plan, Activ-
ity, and Intent Recognition: Theory and Practice. Morgan Kaufmann.

Vered, M., Pereira, R. F., Kaminka, G., & Meneguzzi, F. R. (2018). Towards online goal
recognition combining goal mirroring and landmarks. Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems, 2018,
Suécia.

Verma, P., Marpally, S. R., & Srivastava, S. (2021). Asking the right questions: Learning
interpretable action models through query answering. Thirty-Fifth AAAI Confer-

149



ence on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, 12024-12033.

Walsh, T. J., & Littman, M. L. (2008). Efficient learning of action schemas and web-
service descriptions. AAAI Conference on Artificial Intelligence, 8, 714-719.

Xu, J. Z., & Laird, J. E. (2011). Combining Learned Discrete and Continuous Action
Models. In W. Burgard & D. Roth (Eds.), AAAI conference on artificial intelli-
gence, AAAI 2011. AAAI Press.

Yang, Q., Wu, K., & Jiang, Y. (2007). Learning action models from plan examples using
weighted MAX-SAT. Artificial Intelligence, 171(2-3), 107-143.

Zhuo, H. H., & Kambhampati, S. (2013). Action-model acquisition from noisy plan
traces. International Joint Conference on Artificial Intelligence, IJCAI-13, 2444—
2450.

Zhuo, H. H., & Kambhampati, S. (2017). Model-lite planning: Case-based vs. model-
based approaches. Artificial Intelligence, 246, 1-21.

Zhuo, H. H., Nguyen, T. A., & Kambhampati, S. (2013). Refining incomplete planning
domain models through plan traces. International Joint Conference on Artificial
Intelligence, IJCAI-13, 2451-2458.

Zhuo, H. H., Yang, Q., Hu, D. H., & Li, L. (2010). Learning complex action models with
quantifiers and logical implications. Artificial Intelligence, 174(18), 1540—1569.

150



	I Introduction
	Introduction
	Inference and Learning with Planning Models
	Overview of contributions
	A Note on Software
	Declaration of Previous Work
	Thesis Outline


	II Background
	Classical Planning
	The Classical Planning Problem
	The Planning Domain Definition Language
	The Strips Fragment of PDDL
	Conditional Effects

	Complexity of Strips Planning
	Main Approaches to Classical Planning
	Classical Planning as Heuristic Search
	Classical Planning as Propositional Satisfiability

	Planning with Temporally Extended Goals
	Planning with Sensing


	III The Learning and Inference Framework
	Framework
	The Observer
	The Sensor Model
	Deterministic and Non-Deterministic Sensor Models
	Extending a Sensor Model with Costs

	A Theory for Acting and Sensing
	Fundamental Assumptions
	The Scope of the Acting-Sensing Integration 



	IV Inference
	Observation Decoding
	Working Example: Blindspots
	The Observation Decoding Problem
	The Solution of the Observation Decoding Problem
	Observation Decoding as Planning
	LTL Preliminaries
	A Monitor Automaton for the Observation Sequence
	The Compilation
	Properties of the compilation
	Computing the most likely explanation
	A walk-through of the compilation

	Experimental evaluation
	Evaluation Benchmark
	Results

	Discussion

	Temporal Inference
	Working Example: Driverlog
	Hypotheses
	The Temporal Inference problem
	Special Classes of Temporal Inference Problems
	The Solution to the Temporal Inference Problem
	Temporal Inference as Planning
	Experimental evaluation
	Empirical Results

	Discussion

	Model Recognition
	Working Example: Navigation Strategies
	The Model Recognition Problem
	The solution to the Model Recognition Problem
	Recognition of Strips Action Models
	Edit costs for Strips schematic action models

	Model Recognition as planning
	The Alphabet of a Strips Schematic Action Model
	The Compilation

	Experimental Evaluation
	Use Case 1: Recognition of regular automata
	Use Case 2: Recognizing Failures in a Non-deterministic Blocksworld
	Use Case 3: Recognition of Navigation Strategies

	Discussion


	V Learning
	Action Model Learning
	On the Use of Planning for Action Model Learning
	The Action Model Learning Problem
	The Solution to the Action Model Learning Problem
	Action Model Learning as Planning
	Evaluation of action models
	Syntactic-based precision and recall for action models
	Semantic-based precision and recall for action models

	Experimental Evaluation
	Setup
	Impact of the size of the set of learning examples
	Comparison with ARMS
	Learning with minimal input knowledge
	Syntactic versus semantic evaluation

	Discussion


	VI Conclusions and Future Work
	Conclusions
	Summary of Contributions
	Future work

	Bibliography


