
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Deep Learning applied to health

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Martínez Bernia, Javier

Tutor: Gómez Adrian, Jon Ander

ACADEMIC YEAR: 2021/2022

Resum
Els avanços en el camp de la Intel·ligència Artificial ens han portat a una no-

va era de recerca. Els models de Deep Learning permeten detectar i diagnosticar
malalties en pacients de manera automàtica. En aquest projecte, s’apliquen tècni-
ques de Deep Learning a diversos casos d’ús relacionats amb la salut. Es fa ús de
xarxes neuronals per construir models capaços d’afrontar les diverses tasques de
cada cas d’ús. Les tasques presentades en aquest treball estan relacionades amb
l’anàlisi d’electroencefalogrames i imatge mèdica. El projecte cau en el marc de
desenvolupament de la eina EDDL, un software que permet crear i manipular els
models esmentats. L’objectiu principal és fer ús de l’eina per afrontar problemes
d’aprenentatge automàtic amb models de l’estat de l’art.

: Aprenentatge profund, Imatge mèdica, Xarxes neuronals, Electroencefalogra-
mes (EEG), Reconeixement de patrons

Resumen
Los avances en el campo de la Inteligencia Artificial nos han llevado a una

nueva era de investigación. Los modelos de Deep Learning permiten detectar y
diagnosticar enfermedades en pacientes de manera automática. En este proyecto
se aplican técnicas de Deep Learning a diversos casos de uso relacionados con la
salud. Se hace uso de redes neuronales para construir modelos capaces de afron-
tar las distintas tareas de cada caso de uso. Las tareas presentadas en este trabajo
están relacionadas con el análisis de electroencefalogramas e imagen médica. El
proyecto cae en el marco del desarrollo de la herramienta EDDL, un software que
premite crear y manipular los modelos mencionados. El objetivo principal es ha-
cer uso de la herramienta para afrontar problemas de aprendizaje automático con
modelos del estado del arte.

: Aprendizaje profundo, Imagen médica, Redes neuronales, Electroencefalogra-
mas (EEG), Reconocimiento de patrones

Abstract
The progress in the field of Artificial Intelligence has led us to a new research

era. Deep Learning models can automatically detect and diagnose diseases in pa-
tients. In this project, Deep Learning techniques are applied to several use cases
related to health. Neural Networks are used to build models which are able to
face the different tasks in each use case. The tasks presented in this work are re-
lated to the analysis of electroencephalogram signals and medical imaging. The
project was carried out under the development of the EDDL toolkit, a software
that allows for creating and manipulating the mentioned models. The main goal
is to use this toolkit to face machine learning problems with state-of-the-art mod-
els.

: Deep Learning, Medical Imaging; Neural Networks, Electroencepha-logram
(EEG), Pattern Recognition

i

Contents

Contents iii
List of Figures v
List of Tables vi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Structure of the document . 4

2 Related work 5
2.1 Epilepsy detection . 5
2.2 Covid-19 detection from chest X-ray images 6

3 European Distributed Deep Learning Library 9
3.1 EDDL: European Distributed Deep Learning Library 9
3.2 ECVL: European Computer Vision Library 10

4 Use Case 13: Introduction and Problem Analysis 11
4.1 Problem description . 11

4.1.1 Epilepsy . 11
4.1.2 Patient-Specific vs. Patient-Independent approaches 12
4.1.3 Seizure detection vs. Seizure prediction task 12

4.2 Description of the data . 13
4.2.1 Splits . 16
4.2.2 Class imbalance . 16

4.3 Solution proposal . 17
4.3.1 Data preparation . 17
4.3.2 Recurrent approach . 17
4.3.3 Convolutional approach . 19
4.3.4 Post Inference process . 21
4.3.5 Evaluation Metrics . 21

5 Use Case 13: Experiments and results 25
5.1 First experiment: Selection of Best Model 25

5.1.1 Recurrent Approach . 26
5.1.2 Convolutional Approach . 27

5.2 Second Experiment: Test Selected Model 29
5.3 Third experiment: Post Inference Process 30
5.4 Discussion . 32

6 Use Case 15: Introduction and Problem Analysis 35
6.1 Problem description . 35

6.1.1 Defined tasks . 36
6.2 Description of the dataset . 36

iii

iv CONTENTS

6.3 Solution proposal . 37
6.3.1 Preprocess . 37
6.3.2 Neural Network Models . 38
6.3.3 Data augmentation . 40

7 Use Case 15: Experiments and results 41
7.1 Lung alignment . 41
7.2 Detecting Pulmonary conditions . 42

7.2.1 Covid-19 vs Healthy results 43
7.2.2 Multi-label task results . 43

7.3 Discussion . 44
8 Conclusions and future works 47

8.1 Conclusions . 47
8.2 Future Work . 48

Bibliography 51

Appendix
A Beyond Use Case 13 55

A.1 Autoencoders . 55
A.2 Feature Extraction . 55

A.2.1 Feature extraction process . 56
A.3 Review on the prediction task . 58

List of Figures

4.1 Epilepsy brain stages. 12
4.2 Seizure detection vs seizure prediction task. The seizure prediction

aims to differentiate between interictal and preictal stages. The de-
tection aims to distinguish interictal and ictal stages. Image ex-
tracted from [16]. 13

4.3 The 10-20 International system of EEG electrode placement. Image
extracted from [29]. 15

4.4 This is a 10 seconds extract of an EEG recording from file 3 of
patient chb01. On the left side we can observe the labels for the
recorded channels. Snapshot taken from the LightWave visualizer
of Physionet [18]. 15

4.6 Dataset splits. 16
4.5 Extract of a summary file of patient chb01. 16
4.7 Recurrent model architecture. The recurrent layer type could be ei-

ther LSTM or GRU. The input sequence has 19 timesteps, and the
data dimension is 256 because we are using one-second-long peri-
ods. Each of the 23 channels that compose the signal is processed
independently. 18

4.8 Training vs Inference process in Use Case 13. In the training phase,
the 23 channels that compose the signal are passed independently
and in the inference phase the results are combined. 19

4.9 Convolutional approach model architecture. 20

5.1 Experimentation with different window lengths in the post-inference
function. 32

5.2 Experimentation with configurations A, B, C, and D for the hyper-
parameters αpos and αneg in the post-inference function. 32

6.1 BIMCV-COVID19+: Summary of data. Image extracted from the
dataset publication [14]. 36

6.2 Image preprocessing: All images were padded, resized (lanczos)
and normalized using the Contrast Limited Adaptive Histogram
Equalization (CLAHE). 38

6.3 Residual connection. The weight layer is the convolutional block
composed of a convolutional layer and a Batch Normalization layer
in our case. Image extracted from [19] 39

7.1 Lungs alignment: To align the lung images (cropping and cen-
tring), we first trained a U-net model to segment the lung regions.
Then, we combined the bounding boxes of the segmented regions
to extract the region of interest. 42

v

A.1 Hamming window shape. 56
A.2 Processed signal. The top figure shows the frequency of the orig-

inal signal and the filtered signal. The figure in the middle shows
the energy that falls on different filter banks. The bottom figure
shows the time-domain statistics of the signal. 59

List of Tables

4.1 Summary of the available recordings. 14

5.1 Results in the test set with the GRU architecture, SGD optimizer
and initial learning rate of 1e−5. 26

5.2 Results in the test set with the LSTM architecture, Adam optimizer
and initial learning rate of 1e−4. 26

5.3 Results in the test set with the best GRU model in terms of balanced
accuracy. This model was trained with SGD as optimizer and an
initial learning rate of 1e−5. 27

5.4 Results in the test set with the GRU model trained with Adam as
optimizer and an initial learning rate of 1e−5. 28

5.5 Results in the test set by the convolutional architecture. The opti-
mizer used was Adam with an initial learning rate of 1e−6. 28

5.6 Results in the test set with the convolutional approach selected
model. 29

5.7 Results of the neural network classifier for all of the patients in the
dataset. 30

5.8 Results after the post-inference process with the selected model for
all the subjects in the dataset. 31

6.1 Dataset partitions: Classes are not mutually exclusive. 37

7.1 Best results on the binary classification task. 43
7.2 Average results of five experiments obtained with the ResNet-18

model using different input sizes. Mean and standard deviation
are shown. 43

7.3 Results with ResNet-101 on the multi-label task. The input image
size used was 512x512. 44

vi

CHAPTER 1

Introduction

Artificial Intelligence has made significant steps in latter years. That is because
of the field of Deep Learning, which is nowadays in the spotlight for many re-
searchers worldwide. It is more relevant than ever because we can design mod-
els that learn by themselves from large amounts of data. Deep Learning is part
of the Machine Learning techniques used to make computers learn from data.
The results that are being reported in real-world tasks are making this field very
important at this time. These techniques are being applied in many industries,
thanks to the large amounts of data that can be collected nowadays.

Deep Learning systems are based on the use of neural networks, which have
existed since the sixties. The improvement that made this field grow up a lot in
recent years has been the computational power acquired by GPUs. Thanks to
this, Deep Learning systems are being used for many real-world problems and
different industries.

In the field of healthcare, data scientists are applying Deep Learning to many
use cases, and some of the results that are being reported are better than human
experts. One of the most popular applications is Medical Imaging, where differ-
ent kinds of images are used to visualize the human body to diagnose, monitor or
treat medical conditions. Some types of images that are being used are CT scans,
MRI scans, X-rays and different images generated by medical devices such as mi-
croscopes. In the Medical Imaging field, researchers are approaching tasks such
as lung analysis from X-rays, brain segmentation for multiple sclerosis detection,
skin lesion analysis to diagnose skin cancer, and many more tasks. Apart from
Medical Imaging, there are a lot of Deep Learning applications in healthcare, such
as the analysis of Electronic Health Records, drug discovery, genomics analysis,
and more. Deep learning experiments are cheap and can perform well on many
tasks, sometimes better than human experts. This has raised the interest of many
researchers, as they could develop systems that could play an essential role in
medical diagnoses.

In this work, we are presenting two applications of Deep Learning on prob-
lems related to healthcare. The first one will approach the automatic detection of
epileptic seizures through the analysis of electroencephalogram recordings. The
second application will be a Medical Imaging task, where the aim will be to anal-
yse lung X-ray images in order to detect covid-19 and other pathologies.

1

2 Introduction

Both applications are use cases of DeepHealth [1], a project funded by the
European Commission that aims to offer a unified framework with High-Perfor-
mance Computing infrastructures combined with Deep Learning and Artificial
Intelligence techniques to support biomedical applications. This final work has
been carried out under the development of the EDDL library, a part of the Deep-
Health project. The applications that we are presenting in this work are two
use cases that were set to test the library. The work done in both use cases re-
sulted in two papers: "Automatic Detection of Epileptic Seizures with Recurrent and
Convolutional Neural Networks" [10] and "Detection of Pulmonary Conditions Us-
ing the DeepHealth Framework" [11]. These papers were presented at the Deep-
Health Workshop at the International Conference on Image Analysis and Pro-
cessing (ICIAP2021), celebrated in May 2022 in Lecce, Italy. The presented work
has been carried out by a team of the Pattern Recognition and Human Language
Technology (PRHLT) research centre [5], one of the teams that are working on the
DeepHealth project.

1.1 Motivation

The progress in technology and medicine has been improving the quality of life of
humanity over history. The 21st century is currently living a technological revolu-
tion, where Artificial Intelligence seems to be one of the most critical technologies
for the future. This discipline is developing in giant steps, and the possibility of
using Artificial Intelligence techniques to help individuals in healthcare has mo-
tivated many researchers to develop systems that could improve the quality of
life of many people.

Epilepsy is a chronic non-communicable disease of the brain that affects around
50 million people worldwide. According to the World Health Organization, this
disease is characterised by recurrent seizures, which are episodes of involuntary
movement that involve parts of the body or even the entire body. These seizure
episodes are unpredictable events; therefore, they affect the daily lives of the peo-
ple who suffer them. Epilepsy patients are prone to suffer unexpected accidents
and have increased stress due to the life conditions of suffering this disease. Early
detection and immediate warning of these seizures could significantly improve
the quality of life of these people. Additionally, detecting these seizures with high
reliability could help to better understand this disease as well as open the door to
improve existing treatments or computer-aided diagnosis to help neurologists.

The most common way of detecting seizures is through the analysis of the
scalp Electroencephalogram (EEG), which is a non-invasive recording of the elec-
trical activity of the brain. Many studies have demonstrated that the automatic
detection and the automatic prediction of seizures through EEG signals is possi-
ble [17, 35, 25, 27]. The automatic detection of seizure events would significantly
contribute to improving the quality of life of epileptic patients in many aspects.
First, it will provide advantages to the patients such as avoidance of injuries, in-
creasing the feeling of security, the possibility to drive a car, and reduction of
anxiety [32]. Additionally, if a system was able to raise alarms before the onset
of a seizure and provide enough time for intervention, it could open the door for

1.2 Objectives 3

new treatment methods and strategies.

On the other hand, humanity is currently living through a pandemic caused
by Covid-19. Covid-19 is a contagious disease caused by the SARS-CoV-2 virus.
It was first detected in Wuhan, China, in December 2019 after diagnosing a group
of people with pneumonia of unknown cause. The World Health Organization
recognised this disease as a global pandemic on March 11, 2020 [6]. The number
of cases kept growing and the virus spread out, reaching a total of 385 million
cases in January 2022 and a total of 5.7 million deaths worldwide. This virus has
changed our way of living in the last two years. From the beginning of the pan-
demic, the scientific community has made great efforts to help fighting against
the problems arising from the pandemic, such as finding a vaccine or develop-
ing medicines to help patients with severe symptoms. In the field of machine
learning, researchers have been developing systems to detect Covid-19 from X-
ray images using the potential of Convolutional Neural Networks (CNNs). It
might seem that there would be no reason to perform an X-ray scan on a poten-
tial Covid-19 patient with the success of PCR tests. However, it is common to
perform chest X-ray scans on patients presenting respiratory problems in med-
ical practice, so having an automated system for Covid-19 detection could save
healthcare systems a lot of time and money.

Additionally to the consequences on the health of the people suffering from
Epilepsy or Covid-19, another reason for accomplishing this project is to test the
EDDL library to demonstrate that it is suitable to solve real-world problems.

1.2 Objectives

The main objective of this work is to develop solutions for two applications of
Deep Learning to real-world problems in relation to healthcare: Epilepsy detec-
tion and Covid-19 and other pulmonary conditions detection.

On the one hand, in the Epilepsy detection task, the objective is to provide
patient-specific classifiers capable of distinguishing between a normal state and
a seizure state within an electrical signal from the brain. This task will involve a
data processing part, model designing, and experimental part. In order to verify
the performance of the models, the solutions will be compared with state-of-the-
art results.

On the other hand, for the Covid-19 detection task, the aim is to build a sys-
tem based on convolutional neural networks able to detect the lesions caused by
Covid-19 in chest X-ray images.

To sum up, the goals of this project can be listed as follows:

• Use case 13: Epilepsy detection

1. Implement a pipeline with models based on recurrent architectures for
detecting seizure events in epilepsy subjects.

2. Implement a pipeline with models based on convolutional architec-
tures for detecting seizure events in epilepsy subjects.

4 Introduction

3. Test the best models on different subjects and analyse the results.

• Use case 15: Covid-19 detection

1. Apply preprocessing techniques to the images.

2. Build classifiers based on state-of-the-art image classification architec-
tures.

3. Test the models and compare the results with state-of-the-art studies.

1.3 Structure of the document

This document is structured in eight chapters. In Chapter 2, we will give an
overview of the recent works and studies on similar tasks as the use cases. In
Chapter 3, we will introduce and describe the software library in which this
project will be carried out. After that, there are two chapters for each use case. In
Chapter 4, Use Case 13 is introduced, and the proposed solution is described. In
Chapter 5, we describe the experiments carried out on the Use Case 13, as well as
the results and a discussion. After that, in Chapter 6, we describe the Use Case 15
task and the proposed solution. In Chapter 7, we report the experimental results
of the Use Case 15, and we give a discussion of the reported results. Finally, in
Chapter 8 we conclude this report of the work, summarising the most important
aspects of each part, as well as mentioning future works to explore.

CHAPTER 2

Related work

In this chapter, we present recent works that have been developed to solve tasks
similar to the ones of the use cases of this work and the difficulties that have
been found. First, we explain some of the current approaches used to solve the
epileptic seizure detection task. After that, we will review the solutions that have
been presented in recent years for the detection of Covid-19 and other pathologies
from X-ray scans.

2.1 Epilepsy detection

Epilepsy detection using EEG signals has been approached with many different
solutions, which generally rely on a first feature extraction and selection pro-
cess and a machine learning classifier afterwards. Most approaches achieve high
scores in detecting seizures in terms of sensitivity and specificity. One of the first
solutions that were successful was a self-organized map (SOM) neural network
to detect seizures in 24 long-term EEG recordings. It was presented in [17] in
1996 by Gabor et al., and they demonstrated the possibility of automatic seizure
detection. In [31], discrete wavelet transform (DWT) was used in order to extract
features from the EEG signals, and the method achieved a 76% of sensitivity in
detecting seizures.

In [37], a novel algorithm for feature extraction called MinMaxHist is pre-
sented to describe the waveform characteristics of the spikes and sharp waves of
the EEG signals in order to classify the events by using these kinds of features.
The solution achieved 86.27% of accuracy in a patient-independent classifier. In
[35], it was designed a feature vector with spectral features using filter banks to
measure the energy falling within the passband of each filter. They classified
the feature vectors into ictal or interictal using an SVM and generated non-linear
boundaries with an RBF kernel. Overall, 96% of the 173 test seizures were de-
tected with an average detection latency of 4.6 seconds. Finally, in [9] they trained
a CNN with raw signals in order to get the probability of each time window be-
ing ictal. Afterwards, they proposed an onset-offset detector for determining the
seizure onsets and offsets. The model correctly detected 90% of the seizures in the
CHB-MIT Database. In [7], a deep convolutional autoencoder with a Bi-LSTM
classifier achieved a 98.86% of accuracy in the CHB-MIT dataset, trained with

5

6 Related work

raw signal. Additionally, an undersampling technique was applied to the Inter-
ictal class samples in order to balance the data before feeding the network

Regarding the preprocessing techniques used in similar tasks, the signal is
processed in most cases before using it in the classifiers. The typical way is to
extract spatial and spectral features in order to create a feature vector to be clas-
sified by a machine learning based system. This work aims to show different
perspectives of approaching the task with raw signal, without applying any pre-
processing to the data.

2.2 Covid-19 detection from chest X-ray images

Due to the immense impact of Covid-19 and the necessity of quick and reliable
screening methods, many studies have arisen to use X-ray images to provide a
fast way to detect infected patients. Many deep learning approaches have been
developed thanks to the power of convolutional neural networks to recognise
patterns from the images and use such patterns to make predictions. CNNs are
the dominant approach for almost all recognition and detection tasks [24].

Many works can be found in the literature achieving high accuracy in classi-
fying chest X-ray images, usually in two (healthy vs. Covid-19) or three (healthy
vs. pneumonia vs. Covid-19) class classification tasks. In Khan et al. [22], they
used a novel architecture called STM-RENet combined with Channel Boosting,
using two pre-trained models, to perform the two-class classification task achiev-
ing an accuracy of 96.53%. In de Moura et al. [15], some architectures well-
known in Computer Vision and pre-trained with Imagenet (DenseNet-121 and
DenseNet161; ResNet-18 and ResNet-34; VGG-16 and VGG-19) were used to
build classification models to analyse different classification scenarios: Healthy
vs Pneumonia, Healthy vs Pneumonia/Covid-19, Healthy/Pneumonia vs Covid-
19, and Healthy vs Pneumonia vs Covid-19. They analysed the grade of separa-
bility of Covid-19 from Pneumonia and Healthy X-ray images, with satisfactory
results for all the experiments and accuracy of 97.44% for the three-class classifi-
cation task. In Kumar et al. [23], they propose a model called SARS-Net, a com-
bination of a CNN with inception blocks and a graph convolutional network.
It was used to solve the three-class classification task achieving an accuracy of
97.60%. The model predictions were analysed using GRAD-CAM (Selvaraju et
al. [34]) to see heat maps on the input images with the most suitable pixels for the
model in order to make the prediction. In Bhattacharyya et al. [8], they used first
a Conditional GAN to segment the lungs; with the extracted lungs, they applied
two feature extractors, a Pre-trained VGG19 and the feature detector algorithm
BRISK. The extracted features were combined and fed to a final Random Forest
classifier that makes the final prediction, achieving an accuracy of 96.6% in the
three-class classification task. In Nayak et al. [26], they tested different popular
CNN architectures (AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet,
ResNet-34, ResNet-50, and Inception-V) pre-trained with the ImageNet dataset,
and concluded that the ResNet-34 was the one achieving the best results with
an accuracy of 98.33% in the two-class classification task. In Qi et al. [28], they

2.2 Covid-19 detection from chest X-ray images 7

followed a semi-supervised approach with a Teacher-Student architecture to per-
form the three-class classification task achieving an accuracy of 93%. The model
used had two inputs, where one of them was the original CXR image, and the
other was a three-channel image where each channel was a filtered version of the
original image.

One of the problems of working with medical data is the lack of images. The
available datasets are usually small, and it is challenging to train robust models
with a good generalisation capacity. A crucial technique to deal with the lack
of data is applying Data Augmentation during the training phase. In the works
analysed here, the common practice is to apply affine transformations like Rota-
tion, Flip, Scaling, and Shear. Furthermore, in some cases, other transformations
are also applied: Gaussian Noise in Nayak et al. [26]; Elastic Transform, CutBlur,
MotionBlur, Intensity Shift, and CutNoise in Kumar et al. [23].

From the analysed works, it can be seen that researchers usually take more
than one dataset to create a more extensive dataset for training; for example, in
Nayak et al. [26], they picked the COVID-19 images from one dataset and the
healthy samples from another one. This kind of combination can introduce a bias
that the model can use just for classifying the samples depending on specific char-
acteristics of each dataset and not original medical-related patterns of Covid-19.
In [12], authors analyse various Covid-19 datasets and discuss the kinds of biases
that can be present when using these datasets. This practice could be hazardous
on these use cases and even more when the samples of each class come from dif-
ferent datasets.

CHAPTER 3

European Distributed Deep
Learning Library

In this chapter, we will briefly introduce the software that will be used in this
work.

3.1 EDDL: European Distributed Deep Learning Li-
brary

As we introduced in Chapter 1, this work has been carried out under the de-
velopment of the European Distributed Deep learning Library (EDDL). It is part
of the DeepHealth project, and it is an open-source library for Distributed Deep
Learning and Tensor operations for CPU, GPU and FPGAs.

The library is written in C++, and it also provides a Python wrapper called
pyEDDL, which offers the possibility for the programmer to use Python. This
library is being developed by a team of the Pattern Recognition and Human Lan-
guage Technology (PRHLT) research centre, and the source code and documen-
tation are publicly available on the GitHub repository of the project 1.

EDDL provides multiple layers in order to build state-of-the-art Deep Learn-
ing architectures, from Dense layers to 2D and 3D convolutional layers. It also
provides many loss functions and metrics. Optimizers like SGD, Adam, Ada-
grad, RMSProp and others are also implemented.

Not only layers, but the EDDL also provides many Tensor operators, which
let the user decide how to use the library. It has different levels of abstraction, and
the user can work from a high level of abstraction with built-in high-level func-
tions to a lower level with Tensor manipulation and atomic functions. For exam-
ple, to train a neural network, the user can use the fit() function, which passes the
entire dataset through the network and trains it for a specific number of epochs.
Nonetheless, another possibility is to use the train_batch() function to perform the
training (forward and backward) of a batch of data. However, if the user prefers
to have more control over the execution, there are low-level functions such as

1EDDL GitHub: https://github.com/deephealthproject/eddl

9

https://github.com/deephealthproject/eddl

10 European Distributed Deep Learning Library

forward(), backward() to perform the training of the network in a more controlled
way, in combination with Tensor operations.

Regarding distributed training, EDDL can work on different GPUs in the same
machine and different machines, but an extra infrastructure is needed for the
latter case. When a model is created, it can be compiled for different devices.
The user can select if the model will work on CPU, GPU, or FPGA. For the GPU
option, there are two compilations of the library, the EDDL implementation for
GPUs and the CUDNN implementation, which uses Nvidia cuDNN accelerated
library for Deep Learning.

EDDL library provides some pre-trained models that can be loaded in a line
of code. It also can import and export models. The standard for these models is
ONNX [4], a widely known neural network standard to define models.

All of these features make EDDL a complete library for Deep Learning, ad-
justable for different types of users and perfect for High Performance Comput-
ing, thanks to the possibility of distributed training. All of the experiments that
are carried out in this work are developed using the EDDL toolkit. Although the
library can train in distributed environments, all the experiments carried out for
this work were performed on a single machine, using a single GPU, as the pur-
pose of these use cases was to test the libraries and validate that the DeepHealth
toolkit is suitable for solving real-world problems.

3.2 ECVL: European Computer Vision Library

In this work, we will also use the ECVL library, which is a part of the DeepHealth
toolkit as well. It is a Computer Vision library that provides many operators
for classic Computer Vision and provides a lot of Data Augmentation techniques
implemented that will be used in this work.

ECVL library is also written in C++, and it provides a Python wrapper called
pyECVL for Python users. It can work with different image types, and it is a
powerful tool for working with images. In order to support the EDDL, it has
implemented a data loader called DLDataset, which can load lots of images very
fast, using parallel workers. The source code and documentation can be found
on the GitHub repository2.

2ECVL GitHub https://github.com/deephealthproject/ecvl

https://github.com/deephealthproject/ecvl

CHAPTER 4

Use Case 13: Introduction and
Problem Analysis

In this chapter, we will introduce Use Case 13 and give a detailed description of
the dataset and the different proposed solutions to solve the task.

4.1 Problem description

Epilepsy is a chronic neurological disorder characterised by recurrent seizures.
Epileptic seizures can vary from brief and nearly undetectable periods to long
periods of vigorous shaking due to abnormal electrical activity in the brain. The
Use Case 13 of the DeepHealth project is focused on automatic epileptic seizure
detection through the analysis of Electroencephalogram signals (EEG).

4.1.1. Epilepsy

Epilepsy is a chronic non-communicable disease of the brain that affects people
of all ages. This disorder is characterized by recurrent seizures, episodes when
the affected subject has involuntary movement that can involve parts of the body
or the whole body. Seizures can vary from short lapses of attention to prolonged
convulsions. Around 50 million people around the world are diagnosed with
epilepsy. It is one of the most common neurological diseases, and it is estimated
that up to 70% of the cases could live seizure-free if they had a proper diagnosis
and treatment [2].

An Electroencephalography is a method to record the electrical activity of the
brain. An Electroencephalogram (EEG) is the resulting recording, which is a sig-
nal formed by different channels. These channels are collected by computing the
difference between potentials measured at two electrodes. There are two main
ways of recording Electroencephalogram signals: the intracranial EEG and the
scalp EEG. The intracranial EEG collects the brain activity by electrodes placed
on the brain surface, while the scalp EEG signals are collected by placing elec-
trodes on the scalp. This second method is noninvasive and easier to perform,
but the signals can be corrupted by artefacts and noises. Meanwhile, intracranial
EEG is more accurate, but it has important risks for the patient.

11

12 Use Case 13: Introduction and Problem Analysis

Figure 4.1: Epilepsy brain stages.

An epileptic seizure has commonly four stages. The interictal stage is a period
with regular brain activity, where the patient is not having any epileptic symp-
toms. The preictal stage is the period between the interictal stage and the seizure
onset. It is the time before the epileptic seizure begins. This period can vary
from minutes to hours, so it is challenging to determine it. There could be some
strange brain activity alerting that a seizure is about to happen in this stage. The
ictal stage is when the patient suffers the seizure, and the brain activity in this pe-
riod is quite abnormal. The patient has obvious physical symptoms at this stage.
Finally, after the seizure ends, there is a postictal period, when the patient is re-
covering, and the brain activity starts to be normal again. It usually lasts several
hours. Then, the brain activity returns to the interictal stage. We can see the brain
stages cycle in Figure 4.1.

The characteristics of EEG vary significantly across patients. In fact, the pat-
terns associated with a seizure onset for one patient may be similar to a normal
stage of another patient. This causes patient-independent classifiers to have poor
accuracy or long delays in detecting seizures. However, patient-specific seizure
detection and prediction remain challenging. Patients with epilepsy have consid-
erable overlap in the EEG signal associated with normal and seizure periods. The
EEG is also constantly transitioning between stages in a non-stationary process.
Additionally, since seizures are rare events, algorithm designers must create so-
lutions that work with limited seizure data. These particularities complicate the
task of detecting and also predicting epileptic seizures.

4.1.2. Patient-Specific vs. Patient-Independent approaches

Epileptic seizure detection or prediction can be solved using two approaches: a
patient-specific or a patient-independent approach. On the one hand, patient-
specific approaches construct a classifier for each patient, considering the high
inter-subject variability. In these studies, a single architecture is defined, and it
is fine-tuned for each subject. The used data is not mixed between the classifiers
of different patients. The performance is measured by averaging the accuracy for
all of the patients.

On the other hand, patient-independent approaches aim to design a classifier
that can detect or predict seizures of any patient. In these approaches, the entire
dataset is used to train the classifier, which has to learn a global function able to
work with data from any patient.

4.1.3. Seizure detection vs. Seizure prediction task

EEG signals are being used for solving different problems, such as seizure detec-
tion or seizure prediction. The seizure detection task aims to detect where the

4.2 Description of the data 13

Figure 4.2: Seizure detection vs seizure prediction task. The seizure prediction aims to
differentiate between interictal and preictal stages. The detection aims to distinguish

interictal and ictal stages. Image extracted from [16].

seizures happen in a recording. It is a binary classification task between the ictal
periods and the rest.

The main objective of the seizure prediction task is to distinguish between
the interictal periods and the preictal ones. The ictal and postictal stages are not
involved in this task because there is no need to detect them to predict a seizure.
In fact, we only need to determine when the signal has a preictal period, which is
the first stage after a long normal activity period that would become in a seizure
event. The differences between both tasks are illustrated in Figure 4.2.

In this use case, we are focusing on the detection task. Early detection and
immediate warning of the seizures could significantly improve the quality of life
of the patients. In addition, detecting these seizures with high reliability could
help better understand the disease as well as open the door to improve existing
treatments or computer-aided diagnosis to help neurologists.

4.2 Description of the data

In this use case, we will work with the CHB-MIT scalp EEG database, published
in Physionet [18]. The dataset comprises 24 sessions of EEG recordings from 23
pediatric subjects from the Children’s Hospital of Boston. Subjects were moni-
tored for up to several days following withdrawal of anti-seizure medication in
order to characterize their seizures and assess their candidacy for surgical inter-
vention. Each session was recorded on one subject, and the additional one was
captured from subject chb01 a year and a half after the first recording, so it is
treated as a different case, resulting in 24 cases (or patients).

Each session contains between 9 and 42 continuous signal files. Most of the
files last 1 hour, but there are recordings of 4 hours in a single file for some pa-
tients. Due to hardware limitations, there are gaps (of around 10 seconds) be-

14 Use Case 13: Introduction and Problem Analysis

Table 4.1: Summary of the available recordings.

Patient id # seizures # interictal hours # ictal hours # seizures per hour
chb01 7 40.43 0.12 0.17
chb02 3 35.22 0.05 0.09
chb03 7 37.89 0.11 0.18
chb04 3 155.96 0.11 0.02
chb05 5 38.85 0.16 0.13
chb06 8 66.69 0.04 0.12
chb07 3 66.96 0.09 0.04
chb08 5 19.75 0.26 0.25
chb09 3 67.79 0.08 0.04
chb10 7 49.90 0.12 0.14
chb11 3 34.57 0.22 0.09
chb12 16 20.41 0.28 0.77
chb13 8 10.88 0.12 0.73
chb14 7 25.95 0.05 0.27
chb15 17 38.46 0.55 0.44
chb16 6 16.98 0.02 0.35
chb17 3 19.93 0.08 0.15
chb18 6 34.54 0.09 0.17
chb19 3 28.86 0.07 0.10
chb20 6 27.52 0.08 0.22
chb21 4 32.77 0.06 0.12
chb22 3 30.95 0.06 0.10
chb23 4 26.44 0.12 0.15
chb24 13 21.15 0.14 0.61
Total 150 948.85 3.08 5.46

tween files. Table 4.1 summarises the number of hours recorded for every patient
and the corresponding number of seizures.

The dataset contains digitized scalp EEG recordings, and the signals were cap-
tured at 256hz with a 16-bit resolution. The format of the files is EDF (European
Data Format), a standard file format designed for the exchange and storage of
medical time series. The signals are composed of many channels, each one re-
lated to a pair of electrodes located on the scalp. The electrodes were located
following the international 10-20 system, as shown in Figure 4.3. For this task,
23 channels were used, which are the ones that repeat the most in the dataset,
ignoring some extra channels in some cases and files with fewer channels. Figure
4.4 is a 10 seconds extract from a signal of the dataset.

The labels for the files are indicated in summary files, one per patient. On the
summary file, we can find the name of the recorded channels, the start and end
time of each recording, the number of seizures that occur and the start and end
time of the corresponding seizures. A summary file for a patient looks like in
Figure 4.5.

4.2 Description of the data 15

Figure 4.3: The 10-20 International system of EEG electrode placement. Image extracted
from [29].

Figure 4.4: This is a 10 seconds extract of an EEG recording from file 3 of patient chb01.
On the left side we can observe the labels for the recorded channels. Snapshot taken from

the LightWave visualizer of Physionet [18].

16 Use Case 13: Introduction and Problem Analysis

Figure 4.6: Dataset splits.

File Name: chb01_03.edf
File Start Time: 13:43:04
File End Time: 14:43:04
Number of Seizures in File: 1
Seizure Start Time: 2996 seconds
Seizure End Time: 3036 seconds

Figure 4.5: Extract of a summary file of patient chb01.

4.2.1. Splits

The dataset was divided into three splits: training, validation and test. The train-
ing split will be used for training the neural networks, and the validation set will
be used to check how the model is learning and stop the training process before
overfitting the network. Finally, the test set will be used by the model with the
best hyperparameters.

For this purpose, the dataset was split using 65% of the recordings for training,
a 15% for validation and the 20% left for testing. This was done for each subject
independently, so, for instance, if the whole session of a subject has a total of 48
hours, there will be 31.2 hours in the training set, 7.2 hours in the validation set
and 9.6 hours in the test set.

As the data is split into recordings (of one-hour-long mostly), the recordings
were divided into two groups: recordings with seizures and recordings without
seizures. Then, the splits were generated, trying to keep the same proportion of
each class. Figure 4.6 shows a summary of the splits.

4.2.2. Class imbalance

One of the most critical problems when approaching such a task is the high class
imbalance. As seizures usually last a few seconds, the number of seizure samples
compared to non-seizure samples (interictal class) is excessively low. If we look
at Table 4.1, we can see the difference between the number of interictal hours and

4.3 Solution proposal 17

the number of ictal hours. This high imbalance makes this task difficult because
it leads to overfitting in the training phase.

In order to deal with the class imbalance, we applied undersampling to the in-
terictal class and oversampling to the ictal samples, in order to obtain a balanced
dataset (only for the training process). When generating each batch, we used half
of the samples of one class and the other half of the other. The interictal samples
(the majority class) were selected randomly at each epoch, so some of them were
excluded. The ictal samples were repeated to balance the dataset. In order to deal
with overfitting problems, we used some techniques such as Dropout layers in
the neural network models or Gaussian Noise added to the input data in the way
of data augmentation.

4.3 Solution proposal

Our solution for this task involves a classifier based on neural networks and a
post inference process that will act as a seizure detector. For each one of the pa-
tients, a classifier will be trained only with data from the same patient, following
a patient-specific approach. The first classification part will be tackled with two
different architectures: recurrent neural networks and convolutional neural net-
works.

4.3.1. Data preparation

Both the approaches work with raw signals as input, but the signals were pro-
cessed before using them. This process transforms EDF files into Python dic-
tionaries containing the signals and the information about the seizures. It also
homogenizes the data. As we are using 23 channels and there are files with more
or fewer channels, this process only keeps the desired channels and excludes the
ones that will not be used. At the end of this process, we have a standardised
dataset with the same channels on every recording and easy to load by the data
loaders to feed our neural networks.

In both approaches, a custom data loader was built. This data loader is an ob-
ject that loads the data and prepares it to fit the input of the networks. These data
loaders will also perform a Z-score normalization, in order to have zero mean and
a standard deviation of one. This normalization is essential because the values of
the data have high variability. For instance, the range of values can vary between
-2200.73 and 2403.13 for subject chb01.

4.3.2. Recurrent approach

This first approach is based on recurrent neural networks. These types of net-
works can handle temporal data and find temporal dependencies. The input of
the network will be a sequence of data from the signal. On each step, the network
will output the class of the last sample of the sequence, so in each time step, we
will get a prediction.

18 Use Case 13: Introduction and Problem Analysis

Figure 4.7: Recurrent model architecture. The recurrent layer type could be either LSTM
or GRU. The input sequence has 19 timesteps, and the data dimension is 256 because we
are using one-second-long periods. Each of the 23 channels that compose the signal is

processed independently.

Model architecture

In this approach, two recurrent models were tested: one based on Long Short
Term Memory (LSTM) layers and one based on Gated Recurrent Units (GRU)
layers. The architecture of the models is the same, except for the recurrent layer
type. The inputs for this approach are sequences of one-second-long periods ex-
tracted from raw signals. This input data goes through a recurrent layer (LSTM
or GRU) of 256 units, followed by a fully-connected part with a Dense layer of
256 units and the output layer with one unit and a Sigmoid activation function.
The output layer will provide an approximation of the posterior probability of
the input to be ictal. In Figure 4.7, we can observe a diagram of the recurrent
model architecture. As we can see, it is a noncomplex model, composed of a
single recurrent layer and a Dense layer afterwards.

Data Loader: Sequences

Before feeding the recurrent neural networks, the data was prepared in sequences.
For this purpose, a data loader was built for loading the data and preparing
batches of sequences. To generate each sequence, a one-second-long sliding win-
dow is shifted through the signal every 500ms, in such a way that every single
sample corresponds to a period of one second of the signal, which is overlapped
50% with its surrounding previous and next samples. Each time step, the network
looks at the last 10 seconds of the signal in order to predict the current state. In
this approach, the channels that compose the signal are processed independently.
They are passed one by one by the same network, and the results are combined
to make the prediction at each step.

The data loader applies the oversampling and undersampling techniques,
providing balanced batches when training the model, so each batch has the same
proportion of samples of each class.

Training vs Inference

When the network is fed with data, two processes can be distinguished: the train-
ing and inference processes. The training process is when the neural network is
fed with the training subset, providing pairs of [sample, label] so the network

4.3 Solution proposal 19

Figure 4.8: Training vs Inference process in Use Case 13. In the training phase, the 23
channels that compose the signal are passed independently and in the inference phase

the results are combined.

weights are modified to associate the input sample with the label. In the infer-
ence process, only the input samples are provided, so the validation or test set
samples are passed through the network to "inference" the class they correspond
to (in a classification scheme). In this recurrent approach, as the data is a signal
composed of many channels, these two processes are done as follows.

In the training process, the network is trained with each channel indepen-
dently, so at each time step, the channels are passed one by one. In the inference
process, all signal channels are passed one by one, but the results are combined,
and the classification of that sample is done with the combination of the channels.
As the output of the network can be interpreted as the probability of the sample
belonging to class ictal, the outputs of the channels are added and normalized in
order to get a single output. A summary of these two processes can be observed
in Figure 4.8.

4.3.3. Convolutional approach

The second approach to solve this task is based on convolutional neural networks.
These networks use convolutional layers, which can learn spatial and temporal
dependencies from the input data. They are usually used with images for tasks
such as classification or segmentation. In this task, we treat periods of the signal
as "images" and the convolutional layers perform the feature extraction process
to classify these periods posteriorly in a fully-connected part.

As we extract periods to create samples, our data has two dimensions: a di-
mension with the different channels that compose the signal, where it is possible
to extract spatial features, and a temporal dimension, where it is possible to ex-
tract temporal features.

20 Use Case 13: Introduction and Problem Analysis

Figure 4.9: Convolutional approach model architecture.

Data Loader

In order to load the data for this approach, another data loader was built. In
this approach, the samples are generated by sliding a temporal window of 10
seconds through the signal, shifting it each 250 milliseconds. It extracts periods
of 10 seconds that are highly overlapped. As the data was acquired at 256 Hz,
the shape of the samples will be 2560x23, corresponding to a period of 10 seconds
long and the 23 channels. In this case, no sequence is generated, and the label for
each sample is the label of the last value inside the window. This data loader also
provides balanced batches when training.

Model architecture

The model of this approach starts with a convolutional layer that performs the
convolution along the temporal axis, similar to a Time Delay Neural Network
(TDNN). This first convolution layer has a kernel size of 128x23, and it has strides
of 64x1. These values for kernel size and strides make the convolution operation
to be applied horizontally through the input data, in the temporal axis, taking the
information of all of the 23 channels at once.

After the first convolution, there are more convolutional layers, with 3x3 ker-
nels and strides of 1x1, that extract more relevant features and reduce the dimen-
sionality. These latter convolutions are followed by ReLU activations, Dropout
layers and MaxPooling layers. The ReLU activation is essential because it can
avoid the gradient vanishing problem; the Dropout layer helps the model not
overfit because of the problems derived from the data imbalance, and the Max-
Pooling layer reduces the size of the feature maps. These groups of layers form
convolutional blocks, which are repeated four times. After these blocks, there
is a last convolutional layer, followed by fully-connected part with two Dense
layers of 1024 and 512 units, followed by Dropout layers. Finally, the 512 units
layer connects with the output layer of 1 unit, followed by a Sigmoid activation
function. A summary of the model architecture can be observed in Figure 4.9.

In order to prevent overfitting, an L2 regularization with a factor of 1e−5 is
applied on each convolutional and Dense layer, so the weights of the network are
penalized. Additionally, the input data is modified with Gaussian Noise in the
training phase, acting as a data augmentation technique.

4.3 Solution proposal 21

4.3.4. Post Inference process

After the neural network models do the classification part, a post inference pro-
cess is done to act as a detector of seizures. It is a function that analyses the
consecutive outputs of the network and raises alarms when it detects a seizure.

The post inference function is based on a finite-state machine of two states:
interictal and ictal. As the outputs of the classifier are ones or zeros (one for Ictal,
zero for Interictal), this function analyses the predictions and makes transitions
between the states, so it can raise alarms when a seizure onset is detected. It
works by sliding a window over the predictions, so it can analyse the last predic-
tions in order to know the current state of the brain (interictal or ictal). There are
two possible transitions between the states:

• If the current state is Interictal and the proportion of ones inside the window
is greater than a parameter αpos, then it makes a transition from Interictal to
Ictal.

• If the current state is Ictal and the proportion of ones inside the window is
lower than a parameter αneg, then it makes a transition from Ictal to Interic-
tal.

In addition, there are two more intra-state transitions, so in the case that none
of the previous conditions is met, the function keeps transitioning in the same
state in a loop.

The function has four parameters that can be tuned to perform the detection:
the size of the analysis window, given in time steps; αpos, the minimum ratio of
positive predictions required inside the window to trigger a transition from Inter-
ictal to Ictal; αneg, the maximum ratio of positive predictions required inside the
window to trigger a transition from Ictal to Interictal; and the detection thresh-
old, which is the number of seconds that the model will be allowed to detect a
seizure, so if it detects it outside the detection threshold it will be counted as a
false alarm because it is a late detection.

To sum up, this function performs as a seizure detector, which raises an alarm
when it detects a new seizure. This process is done after the inference of the test
samples of each subject.

4.3.5. Evaluation Metrics

In this use case, two groups of metrics will be evaluated. One group is associ-
ated with the neural network classifier, and the other is associated with the post
inference process.

When training and testing the neural network models, the evaluated metrics
are accuracy, macro f1-score and balanced accuracy.

22 Use Case 13: Introduction and Problem Analysis

Accuracy

The accuracy is the proportion of predictions that the model did correctly among
the total number of predictions and can be defined in terms of positives and neg-
atives as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Where TP, FP, TN and FN refer to True Positives, False Positives, True Nega-
tives and False Negatives, respectively.

Macro F1-score

The F1-score is a metric that considers both precision and recall, so it is a very
helpful metric to evaluate a classifier. It can be defined as follows:

F1-score =
TP

TP + 1
2(FP + FN)

This metric is calculated per class. Therefore, to compute the Macro average
F1-score, it is as simple as calculating the arithmetic mean (unweighted mean) of
the metric for each class.

This Macro averaging was selected for this task because it treats all classes as
equal independently of the number of samples they have. A metric that gives the
same contribution to each class is handy for unbalanced data when the aim is to
perform well in each class.

Balanced Accuracy

Balanced Accuracy avoids inflated performance estimates on unbalanced datasets.
It is the accuracy where each sample is weighted according to the inverse preva-
lence of its true class, or the average recall obtained on each class [3]. For the
binary case, it can be defined as follows:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)

Post Inference Metrics

When the neural network has been trained, and the test set samples have been al-
ready predicted, the post inference process is performed, as it has been described.
In this process, a set of event-based metrics is calculated to evaluate the detection
performance. These metrics are the following:

4.3 Solution proposal 23

• Percentage of correctly detected seizures: Proportion of the seizures that
were correctly detected, similar to the recall associated to the detection of
events.

• Average latency of detection: Average time in seconds that the model needs
to detect the seizures.

• False Alarms per Hour: Number of false alarms raised by the model per
hour.

CHAPTER 5

Use Case 13: Experiments and
results

This chapter presents the experiments that were carried out on Use Case 13. After
the experiments section, there is a discussion of the presented results.

To begin with the experiments, a subset of eight patients was selected, in order
to find which one of the approaches performed better, as well as to find the best
training configurations. This was done because of resources and time limits, as
each configuration had to be trained and tested for each patient specifically. This
subset was composed by patients chb01, chb03, chb05, chb08, chb12, chb14, chb15
and chb24. The group of patients was selected trying to have a very diverse set of
patients, taking patients with different number of seizures per hour.

After the best model and configuration were selected, it was tested with all
of the subjects in the second experiment. In the end, an extra experiment was
performed to analyze different configurations of the post inference process pa-
rameters.

Regarding the hardware used, the experiments were performed on different
machines from the Pattern Recognition and Human Language Technology re-
search centre. The available hardware was:

• 1 Machine with 2 Nvidia GTX 1080 8Gb GPUs

• 3 Machines with 2 Nvidia RTX 2080 8Gb GPUs each.

As it has been explained, the experiments were performed in a sequential
environment, only using one machine and GPU at a time.

5.1 First experiment: Selection of Best Model

In this first experiment, both approaches were trained and tested with different
configurations using the subset of eight patients.

25

26 Use Case 13: Experiments and results

5.1.1. Recurrent Approach

In the recurrent approach, two architectures were tested: the LSTM based and
the GRU based. Optimizers Adam and SGD were tested, with an initial learning
rate ranging from 1e−4 to 1e−6. The best results in the test set for the GRU
architecture were obtained using SGD as the optimizer and an initial learning rate
of 1e−5. The best results for the LSTM architecture were obtained using Adam
as optimizer and an initial learning rate of 1e−4. Tables 5.1 and 5.2 summarize
these results.

Table 5.1: Results in the test set with the GRU architecture, SGD optimizer and initial
learning rate of 1e−5.

Patient id Model Accuracy Macro F1-Score Balanced Accuracy
chb01 GRU 96.34% 0.6039 95.98%
chb03 GRU 92.10% 0.5206 94.97%
chb05 GRU 95.42% 0.5618 96.21%
chb08 GRU 82.18% 0.5153 86.29%
chb12 GRU 65.60% 0.4274 67.43%
chb14 GRU 87.28% 0.4760 86.41%
chb15 GRU 89.50% 0.5907 89.96%
chb24 GRU 97.49% 0.6701 92.32%

Average 88.24% 0.5457 88.70%

Table 5.2: Results in the test set with the LSTM architecture, Adam optimizer and initial
learning rate of 1e−4.

Patient id Model Accuracy Macro F1-Score Balanced Accuracy
chb01 LSTM 99.91% 0.9573 92.40%
chb03 LSTM 99.64% 0.5034 50.21%
chb05 LSTM 99.89% 0.9234 86.75%
chb08 LSTM 99.38% 0.8714 80.84%
chb12 LSTM 97.92% 0.6142 59.06%
chb14 LSTM 99.86% 0.5728 53.95%
chb15 LSTM 97.73% 0.6165 59.75%
chb24 LSTM 99.62% 0.8422 76.12%

Average 99.24% 0.7377 69.89%

As we can see in Tables 5.1 and 5.2, the models achieve high scores for Ac-
curacy, especially the LSTM based model. This score is very optimistic because
the dataset is highly unbalanced. In the balanced accuracy column, it is observed
that the GRU model performs better than the LSTM for all of the subjects. For
subjects chb01, chb03, chb05 and chb24, the GRU model achieved more than 90%
of balanced accuracy. Regarding the F1-score, for the GRU model, the scores are
lower than in the LSTM in general, but the LSTM scores could be a bit inflated be-
cause of the high performance in the majority class observed in the experiments.
Therefore, the balanced accuracy score is the best to look at in this case.

After inferring the test set samples with the GRU model, which has performed
better in terms of balanced accuracy, it achieves the results shown in Table 5.3. In

5.1 First experiment: Selection of Best Model 27

general, the model detected 80.76% of the seizures, with an average latency of 8.11
seconds. For patients chb01, chb03, chb05, chb08 and chb24, the model detected all
of the seizures of the test set. The main drawback observed in these results is
the high rate of false alarms per hour, with an average of approximately 26 false
alarms per hour. This means that the model detects most of the seizures, but it
has many false alarms.

Table 5.3: Results in the test set with the best GRU model in terms of balanced accuracy.
This model was trained with SGD as optimizer and an initial learning rate of 1e−5.

Patient
id

No.
Seizures

Detected
Seizures

Average
Latency (s)

False Alarms
per Hour

Test
Hours

chb01 2 100.00% 8.25 12.06 9.62
chb03 2 100.00% 4.50 20.73 8.97
chb05 1 100.00% 1.50 13.04 7.98
chb08 1 100.00% 14.00 48.27 4.99
chb12 11 81.82% 7.72 51.81 5.98
chb14 2 50.00% 7.00 38.82 6.98
chb15 7 14.29% 17.00 23.06 8.98
chb24 4 100.00% 4.88 4.14 6.28

Average 80.76% 8.11 26.49 7.47

After testing another GRU based model, it was found that it had better results
in the test set after the post inference process for some patients, even though the
neural network scores were lower. It was the GRU model trained with Adam as
optimizer and an initial learning rate of 1e−5. The results after the post inference
process can be seen in Table 5.4. As it can be observed, this model detects fewer
seizures in the test set (61.12%) with four more seconds of average latency, but it
has a big difference in terms of false alarms. This model has an average of 1.32
false alarms per hour compared to the 26.49 false alarms of the other one. These
results are definitively better than the ones shown in Table 5.3, even though the
model could not detect any seizure for patients chb03 and chb05 in the test set.
The results generally show a significant reduction in the number of false alarms,
with a slight increase in the latency and a lower detection rate.

5.1.2. Convolutional Approach

In the convolutional approach, only one architecture has been tested, using dif-
ferent configurations in order to find the best results. The experiments have been
testing optimizers as Adam or SGD, and initial learning rates from 1e−3 to 1e−6.
As in the recurrent approach, the model has been tested first with a subset of pa-
tients. After training the neural network classifier with the different subjects and
configurations, the best results achieved by the network in the test set can be seen
in Table 5.5.

In these experiments with the convolutional approach, something similar hap-
pens in the results as with the recurrent models. In Table 5.5, the accuracy column
shows very high scores, but as it has been mentioned, these are very optimistic.
In the balanced accuracy column, it is observed that the model achieves more

28 Use Case 13: Experiments and results

Table 5.4: Results in the test set with the GRU model trained with Adam as optimizer
and an initial learning rate of 1e−5.

Patient
id

No.
Seizures

Detected
Seizures

Average
Latency (s)

False Alarms
per Hour

Test
Hours

chb01 2 100.00% 11.25 0.10 9.62
chb03 2 0.00% - 0.11 8.97
chb05 1 0.00% - 0.13 7.98
chb08 1 100.00% 16.00 1.00 4.99
chb12 11 81.82% 10.83 7.02 5.98
chb14 2 50.00% 19.00 0.00 6.98
chb15 7 57.14% 7,63 2.01 8.98
chb24 4 100.00% 8,38 0.16 6.28

Average 61.12% 12.18 1.32 7.47

Table 5.5: Results in the test set by the convolutional architecture. The optimizer used
was Adam with an initial learning rate of 1e−6.

Patient id Accuracy Macro F1-Score Balanced Accuracy
chb01 99.69% 0.8850 96.52%
chb03 99.75% 0.8719 99.13%
chb05 99.95% 0.9694 95.09%
chb08 99.41% 0.8926 87.03%
chb12 97.53% 0.6815 70.41%
chb14 96.50% 0.4959 53.84%
chb15 97.66% 0.7905 95.74%
chb24 99.66% 0.8805 84.73%

Average 98.77% 0.8084 85.31%

than 95% on patients chb01, chb03, chb05 and chb15. It is remarkable that for pa-
tient chb03 this model achieved a 99.13% of balanced accuracy, the highest score
obtained for any patient thus far. If we compare these results with the ones ob-
tained in the recurrent approach, this model achieves higher scores for five out of
the eight patients.

After the post inference process, the obtained results are presented in Table
5.6. In this case, the average detection rate is 86.12%. The model has detected
all of the seizures for five subjects. The average latency is 8.79 seconds, and a
low false alarm rate of 2.33 on average is observed. In fact, for subject chb05,
the model detected the only seizure in the test set with a latency of 6.50 sec-
onds and no false alarms in a total of almost 8 hours. Even though this model
achieved a lower balanced accuracy in the neural network classifier than the re-
current model, it achieved better results in the post inference process. Therefore,
this was the model selected for further experiments.

5.2 Second Experiment: Test Selected Model 29

Table 5.6: Results in the test set with the convolutional approach selected model.

Patient
id

No.
seizures

Detected
Seizures

Average
Latency (s)

False Alarms
per Hour

Test
Hours

chb01 2 100.00% 8.50 0.62 9.62
chb03 2 100.00% 2.88 0.56 8.98
chb05 1 100.00% 6.50 0.00 7.98
chb08 1 100.00% 17.00 1.20 4.99
chb12 11 81.82% 12.81 3.51 5.98
chb14 2 50.00% 9.50 9.31 6.98
chb15 7 57.14% 6.75 2.78 8.98
chb24 4 100.00% 6.38 0.64 6.28

Average 86.12% 8.79 2.33 7.47

5.2 Second Experiment: Test Selected Model

After testing both approaches with a subset of patients, the convolutional model
achieved the best results. Thus, it was the model selected for testing again with all
of the subjects of the dataset. The corresponding neural network classifier results
after training and testing are presented in Table 5.7.

Regarding the neural network classifier results, the accuracy scores are very
high, as has been happening with all the experiments so far. The model achieved
an F1-score of 0.7371 and a balanced accuracy of 76.77% on average for the 24
subjects. For nine subjects, the model achieved more than 90% of balanced accu-
racy. However, poor results are observed in six patients, with balanced accuracy
values of approximately 50%. Values around 50% of balanced accuracy suggest
that the model is not learning anything or almost anything, as it could be predict-
ing all the samples to the same class. Nonetheless, there are nine subjects with
results between 60% and 90% of balanced accuracy that could perform well in the
post inference process.

After the post inference process with all of the subjects, the obtained results
are shown in Table 5.8. In general, the model has detected 56.67% of the seizures,
with an average latency of 9.51 seconds and 2.15 false alarms per hour on aver-
age. As it can be seen in the table, most of the patients only have one or two
seizures in many hours in the test subset, so the percentage of detected seizures
is very sensitive, with extreme observable values of 0% and 100%, which makes
the average not very meaningful, even though it is weighted to the number of
seizures of each patient.

There are nine patients for whom the model could not detect any seizure in
the test subset and ten patients with a 100% of detected seizures. If we look at the
15 patients for whom the model could detect at least one seizure, the average rate
of detected seizures is 85.93, the average latency is 9.51 seconds, and the average
rate of false alarms per hour is 2.31. Moreover, there are remarkable results for
patients chb02, chb05, chb09 and chb10, with a 100% of detected seizures and no
false alarms. Finally, the best results in terms of accurate and fast detection were
obtained with patients chb03 and chb10: with 3.12 seconds of latency and 0.22 false
alarms per hour in the case of patient chb03, and with 4.88 seconds of latency and

30 Use Case 13: Experiments and results

Table 5.7: Results of the neural network classifier for all of the patients in the dataset.

Patient id Accuracy Macro F1-Score Balanced Accuracy
chb01 99.70% 0.8868 96.59%
chb02 99.98% 0.7985 77.02%
chb03 99.84% 0.9072 97.80%
chb04 95.74% 0.5097 74.45%
chb05 99.95% 0.9682 94.88%
chb06 97.90% 0.4947 48.98%
chb07 99.88% 0.7816 69.63%
chb08 99.40% 0.8909 87.16%
chb09 99.98% 0.9539 91.57%
chb10 99.98% 0.9795 97.99%
chb011 99.66% 0.9607 92.85%
chb12 97.61% 0.6860 70.54%
chb13 98.51% 0.7466 68.96%
chb14 96.46% 0.4955 53.49%
chb15 97.63% 0.7877 95.47%
chb16 99.82% 0.4996 50.00%
chb17 99.26% 0.5581 54.95%
chb18 96.17% 0.5575 90.14%
chb19 99.85% 0.8606 83.51%
chb20 98.64% 0.5746 72.21%
chb21 98.13% 0.4967 52.15%
chb22 99.89% 0.8797 81.48%
chb23 99.47% 0.4987 50.00%
chb24 99.74% 0.9162 90.73%

Average 98.88% 0.7371 76.77%

no false alarms in the case of chb10. All the seizures of these two patients in the
test subset were detected (2 seizures each).

5.3 Third experiment: Post Inference Process

Finally, after selecting the best model and testing it with all of the patients, an ex-
tra experiment was done in order to analyse the performance of the post inference
process function by varying some of its parameters.

First, the length of the analysis window used in the post-inference function
was in the range of 10 to 80 predictions. This length indicates how many pre-
dictions from the neural network classifier has to analyze to predict the current
state. As in the case of the convolutional approach, predictions are performed
every 0.25 seconds, so a window length of 80 will analyze the last 20 seconds to
decide on switching the state (from interictal to ictal or vice-versa). The hyper-
parameters αpos and αneg were set to 0.4, the same values used in all of the previ-
ous experiments. The results of this experiment can be observed in Figure 5.1. It
can be noticed that as the analysis window is longer, the latency increases and the

5.3 Third experiment: Post Inference Process 31

Table 5.8: Results after the post-inference process with the selected model for all the
subjects in the dataset.

Patient
id

No.
seizures

Detected
Seizures

Average
Latency (s)

False Alarms
per Hour

Tested
Hours

chb01 2 100.00% 8.38 0.62 9.62
chb02 1 100.00% 6.25 0.00 8.98
chb03 2 100.00% 3.12 0.22 8.98
chb04 2 0.00% 6.86 35.16
chb05 1 100.00% 7.00 0.00 7.98
chb06 2 0.00% 3.46 15.03
chb07 1 0.00% 0.05 19.34
chb08 1 100.00% 17.00 1.40 4.99
chb09 1 100.00% 9.50 0.00 13.62
chb10 2 100.00% 4.88 0.00 13.98
chb11 1 100.00% 5.00 0.91 8.77
chb12 11 81.82% 12.72 3.18 5.98
chb13 4 50.00% 11.75 1.00 2.99
chb14 2 50.00% 9.75 9.45 6.98
chb15 7 57.14% 7.06 2.78 8.98
chb16 4 0.00% 0.00 4.99
chb17 1 0.00% 1.80 4.99
chb18 2 100.00% 11.12 4.57 8.98
chb19 1 0.00% 0.25 7.90
chb20 2 50.00% 14.00 3.84 7.54
chb21 1 0.00% 6.77 7.98
chb22 1 0.00% 0.29 6.98
chb23 4 0.00% 0.00 12.88
chb24 4 100.00% 6.31 0.32 6.28

Average 56.67% 9.51 2.15 10.00

number of false alarms is reduced. This happens because the model can observe
more predictions in order to predict if there is a seizure, so it is more confident in
the predictions, but also slower because the latency is affected. The percentage of
detected seizures is not much affected by these changes.

The second experiment was devoted to see the effect of the hyper-parameters
αpos and αneg on the performance. The following configurations were tested:

Configuration A: αpos = αneg = 0.2
Configuration B: αpos = αneg = 0.4
Configuration C: αpos = αneg = 0.8
Configuration D: αpos = 0.8, αneg = 0.2

Figure 5.2 shows the results for configurations A, B, C and D with a fixed win-
dow length of 20 predictions. It can be observed that the configurations can vary
the performance in terms of latency and false alarms. As higher are the values
of αpos and αneg, the function needs more positive predictions inside the analysis
window in order to raise an alarm, therefore the alarms are more delayed, and

32 Use Case 13: Experiments and results

Figure 5.1: Experimentation with different window lengths in the post-inference func-
tion.

the false alarms are reduced because the model is more confident. Regarding the
detection rate, it does not seem to be affected by these variations either.

Figure 5.2: Experimentation with configurations A, B, C, and D for the hyper-parameters
αpos and αneg in the post-inference function.

5.4 Discussion

The process of designing and implementing the proposed solution has had many
steps. There was not a straightforward solution strategy at first, so different so-
lutions were proposed, and after the phase of the experiments, the solution that
has been presented is the one that performed better.

First of all, the most considerable difficulty of this task, which consequences
have been present during all the experiments, is the class imbalance of the sam-
ples. As it has been analysed, seizures are events that are short and occur occa-
sionally. It means that if we want to classify between seizure periods and normal
ones, we will have to deal with a small amount of seizure data, in the sense of
the duration and number of periods available. When splitting the dataset into
three subsets, ictal periods were distributed in the training, validation and test
subsets without mixing samples from the same seizure in different splits. There
were eight subjects with only three seizures in the whole session, so one seizure
went to a different subset. In these cases, the difficulty of the task shows up when
trying to train with only one seizure in the training set. Also, the results may

5.4 Discussion 33

not be generalist when only considering one seizure in the test set. A different
training and evaluation strategy such as performing K-fold cross-validation or
leave-one-recording-out cross-validation could be a better approach. However,
we could not consider these strategies for this work because of time limits.

The small number of ictal samples leads the training phase to problems like
overfitting. There is a lot of interictal data but only a few samples of ictal peri-
ods. On each epoch, the data loaders provided the network with batches with
half of the samples of each class. As there were less ictal samples, these were
repeated various times during an epoch. These clones of the same samples lead
to overfitting problems, even that Gaussian Noise was added to the input data in
the convolutional approach to slightly modify the samples. Although the dataset
was balanced thanks to oversampling and undersampling techniques, the mod-
els tended to overfit in a few epochs.

Another drawback observed was that the values coming from the EDF signal
had a significant variance that makes the neural network training so challenging.
Even though the values were normalized in order to have zero mean and unit
variance, there were still some extreme values not too appropriate to use as input
for the neural networks. At this point, a limit was set to the data, so the accepted
values were between [−20, 20]. This limit was necessary in order to achieve some
acceptable results.

When defining and implementing a detector, engineers experience with a
tradeoff between good detection and fast detection. This tradeoff has been ob-
served during the experimentation part of this presented work. A high-quality
detection and a rapid alarm when detecting a seizure are needed to consider a
classifier acceptable. The mentioned tradeoff can be reached when fitting the clas-
sifier and also in the parameters of the post inference function, the one that analy-
ses the predictions of the network and raises alarms when it detects a seizure. As
it has been seen, some parameters can be adjusted to focus on a quality detection
or a fast detection. When focusing on a fast detection, the quality will be lower
because more seizures will not be detected, and there will be more false alarms.
When focusing on the quality of the detection, the number of detected seizures
is higher and the false alarms are reduced, at the cost of having a higher latency.
This concept is quite interesting in order to deploy the models in a real scenario,
so that the parameters could be adjusted to improve the effectiveness.

Regarding the benefits of the presented work, the experimentation process in
this use case has shown a model capable of detecting seizures correctly in the case
of some patients. The classifier achieves high and good scores for some patients,
e.g. patients chb03 and chb10, showing that it can work well even with a small
amount of training data of the ictal class. In general, the model detected a 56.67%
of the test seizures for all of the patients, with an average latency of 9.51 seconds
and 2.15 false alarms per hour on average. In comparison with state-of-the-art
works, these results are far from approaching the reported results in [35] and [9],
with a 96% and a 90% of detected seizures in the CHB-MIT dataset, respectively.
Despite that, in [9] they report an F1-score of 0.2947 on the CNN classifier, and
the mean F1-score of our classifier has been 0.7371, which is quite better. Nev-
ertheless, the followed training strategies are different, and the test splits are not
the same. In fact, they use a leave-one-record-out cross-validation scheme and

34 Use Case 13: Experiments and results

train with all of the recordings except one recording with seizures that is left for
testing every time. Therefore, the results may not be comparable.

Our solution is not a general model for every patient; in fact, it is a patient-
specific model. However, the method for training and adjusting for each patient
is a general method, which can be used to fit the models to any other patient.
In the experiments, the idea was to select the best model in general for every
patient, because when training in a patient-specific scheme, the model should be
the same and should be fitted with the data of each patient. However, models
with other training configurations achieved better results than the selected one
for some single patients but worse in general, so their results were not shown.
Furthermore, one considerable fact of the proposed solution of this work is that
the classifiers work with raw EEG data, which is not preprocessed at all, and any
feature extraction technique is applied. This is important because it makes the
system easy to implement and faster for the potential use for processing signals
in real-time.

Finally, due to the amount of work done in this use case, we want to mention
other techniques and solutions that were tested to solve this task, as they could be
interesting and helpful to understand better the task. These additional solutions
tested are not presented because the results achieved so far are not significative.
They are summarized in appendix A, where an autoencoder approach and a fea-
ture extraction process are described, and a review of the seizure prediction task
is presented.

CHAPTER 6

Use Case 15: Introduction and
Problem Analysis

This chapter introduces the second task that will be addressed in this work and
the proposed solution.

6.1 Problem description

Covid-19 is a contagious disease caused by the SARS-CoV-2 virus. Since the be-
ginning of the pandemic, the virus spread out, reaching a total of 385 million
cases in January 2022 and a total of 5.7 million deaths worldwide. Diagnosis of
Covid-19 is associated with the symptoms of pneumonia; therefore, Chest X-ray
scans play an essential role in the diagnosis of Covid-19. Nevertheless, the stan-
dard way to diagnose the disease is the use of Reverse Transcription-Polymerase
Chain Reaction (RT-PCR) tests. These tests have become relatively faster, but they
still cause a high risk to medical staff. Moreover, this kind of test is costly and it
exists a limited number of test kits.

With the success of RT-PCR tests, there might be no reason to perform an X-ray
scan on a potential Covid-19 patient. However, it is common to perform chest X-
ray scans on patients presenting respiratory problems in medical practice. Med-
ical imaging techniques such as X-ray or Computed Tomography are relatively
safe, faster and easily accessible. In comparison with CT scans, X-ray scans re-
quire less imaging time, have a lower cost, and their scanners are available in
practically every hospital. Despite that, the visual inspection of X-ray images by
radiologists is time-consuming and may lead to an inaccurate diagnosis due to
the lack of knowledge about the infected regions caused by the virus. Therefore,
having an automated system for Covid-19 detection using X-ray images could
save healthcare systems a lot of time and money.

The Use Case 15 of the DeepHealth project focuses on detecting Covid-19 and
other pulmonary conditions from chest X-ray images. The solution for this task
is based on Neural Networks as classifiers for these medical images.

35

36 Use Case 15: Introduction and Problem Analysis

Figure 6.1: BIMCV-COVID19+: Summary of data. Image extracted from the dataset pub-
lication [14].

6.1.1. Defined tasks

In this use case, two different tasks were defined. The first one was a binary
classification task between “normal” versus “covid19” samples. In this task, the
idea is to train classifiers to distinguish between an X-ray scan from a healthy
patient and a scan from a patient with Covid-19. With this, we wanted to explore
if the covid19 samples were separable from healthy lungs.

The second task was defined as a multi-label classification task. For this pur-
pose, we used samples from four classes and tried to classify the images into one
or more classes. With this task, the idea was to experiment with the detection of
different pathologies at once with the same classifier.

6.2 Description of the dataset

The dataset that was used in this use case is the BIMCV-COVID19 dataset [14]. It
is a large dataset composed of chest X-ray images (CXR) and Computed Tomog-
raphy (CT) imaging of Covid-19 patients. It contains radiographic findings, Poly-
merase Chain Reaction (PCR) results, immunoglobulin G (IgG) and immunoglob-
ulin M (IgM) diagnostic antibody tests and radiographic reports. Images were
extracted from the DICOM format and stored as 16-bit PNG images. The scans
come from the Medical Imaging Databank in Valencian Region Medical Image
Bank (BIMCV). In Figure 6.1, we can observe a summary of the available infor-
mation of the dataset.

The dataset is divided into two splits, the BIMCV-COVID19+, which contains
the data of COVID-19 patients, and the BIMCV-COVID19-, which contains the
data of non-COVID-19 patients. There are one or more sessions available for
each patient in the dataset, with one or more X-ray images on each session. Every

6.3 Solution proposal 37

patient has a list of pathologies that can be used as labels. There are 190 different
labels distributed in an unbalanced way. We considered just four labels because
they were the most repeated ones and they were related to Covid-19: “covid19”,
“normal”, “pneumonia” and “infiltrates”. These four labels were used for prepar-
ing the two classification tasks: “normal” vs “covid19” on the one hand, and a
multi-label task with the four labels on the other hand.

From all the available images, we selected just the ones with Anterior-Posterior
or Posterior-Anterior views, excluding lateral views. We collected 2, 083 samples
and divided them into three partitions: 1, 667 for training, 208 for validation, and
208 for testing. The partition was made at a patient level to avoid having im-
ages from the same patient in different splits. The distribution of samples inside
each split is shown in Table 6.1. As the classes are not mutually exclusive, there
are images with more than one label; for instance, an image can be labelled as
“pneumonia” and “infiltrates”.

Table 6.1: Dataset partitions: Classes are not mutually exclusive.

Label Train Validation Test

Covid 592 (33.95%) 77 (32.69%) 76 (35.10%)
Normal 219 (43.79%) 29 (43.27%) 29 (38.46%)
Pneumonia 730 (35.51%) 90 (37.02%) 80 (36.54%)
Infiltrates 566 (13.14%) 68 (13.94%) 73 (13.94%)

Total images 1667 (100%) 208 (100%) 208 (100%)

6.3 Solution proposal

For this image recognition task, we will use Convolutional Neural Networks
(CNNs), which are outstanding in many image classification tasks. These CNNs
will act as feature extractors and be combined with fully-connected layers at the
end of the model to perform the classification.

6.3.1. Preprocess

Before feeding the neural networks, the images were padded and resized to the
desired sizes. The images were prepared at two resolutions: 512 × 512 and 256 ×
256, as the original size was too large to manage (ranging from 2500 to 4000px,
height and width). After that, the contrast was improved by applying the Con-
trast Limited Adaptive Histogram Equalization (CLAHE) algorithm. This algo-
rithm can improve the contrast of the image without amplifying or boosting the
noise. An example of this is illustrated in Figure 6.2.

The preprocess was extended with a lung alignment method that was used to
centre the lungs in the images. This preprocessing step was part of the experi-
mental stage, so it will be described in the next chapter.

38 Use Case 15: Introduction and Problem Analysis

(a) Original (b) CLAHE

Figure 6.2: Image preprocessing: All images were padded, resized (lanczos) and nor-
malized using the Contrast Limited Adaptive Histogram Equalization (CLAHE).

6.3.2. Neural Network Models

We trained Convolutional Neural Networks (CNNs) on this image recognition
task, which are outstanding in many image classification tasks. Multiple neu-
ral network topologies were tested. Specifically, we made use of Imagenet pre-
trained models such as VGG-{16, 19}, VGG-{16, 19} with Batch Normalization and
ResNet-{18, 50, 101, 152}. These models were downloaded from the ONNX hub
and loaded into the EDDL library for training and inference. From each neural
model, we added on its top a new classifier with a dense layer with half the num-
ber of input features as units, followed by a ReLU activation, a Dropout layer, and
finally, the output layer with the activation function to perform the classification
on each task. For the binary classification task, the classifiers were prepared to
experiment with a two units output layer followed by a Softmax activation func-
tion, and also to experiment with a single unit output layer followed by a Sig-
moid activation function. For the multi-label classification task, the output layer
had four units, and a Sigmoid activation function was applied element-wise after
each unit.

Regarding the use of Transfer Learning, it is a common way to improve the
classification results. The idea is to use a model that has been trained for another
task with a large dataset of images, and fit it to perform on this task. For that
purpose, the common way is to use the feature extraction part of the model and
add new fully-connected layers in order to adapt the architecture for the current
task. Then, the model is trained by freezing the feature extractor weights to train
only the new part. After some epochs, the weights are unfrozen, and the model
keeps training for some more epochs. Experiments on many tasks have proven
that pre-trained weights improve training performance and stability.

Some of the models tested are Residual Networks, which are Convolutional
Neural Networks with skip connections between some layers. These are called
Residual connections, and a block of some convolutional layer blocks with a
residual connection is called a Residual Block. This is the main idea of Residual
nets. We can find a brief definition of these concepts in the following subsections.
These architectures are the most popular ones in the recent studies on similar
tasks, as we reviewed in Chapter 2.

6.3 Solution proposal 39

Figure 6.3: Residual connection. The weight layer is the convolutional block composed
of a convolutional layer and a Batch Normalization layer in our case. Image extracted

from [19]

Convolutional Block

A convolutional block is a stack of layers, containing a convolutional layer, a
batch normalization layer and an activation function. There are different modi-
fications of the convolutional block, such as using Batch Normalization and the
activation before the convolutional layer. However, we used the following order:
a convolutional layer, a Batch Normalization layer and the activation function.
The activation function used was the Rectified Linear Unit, which helps to avoid
the gradient vanishing problem and makes the models to learn faster and per-
form better.

Residual Block

A residual block is the composition of two or more convolutional blocks. A resid-
ual connection at the end connects the input of the first layer of the first convo-
lutional block and the output of the last layer of the last convolutional block. At
the connection, the residual part (the input) is added to the output of the residual
block, as we can see in Figure 6.3.

Skip / Residual Connection

A skip connection also called a Residual connection, connects some convolutional
blocks. There are different types of building this connection, depending on the
order of the used layers. In this work, we used the original skip connection pre-
sented in [20], which adds the input of the residual block with the output of the
batch normalization of the last convolutional block, right before the activation.
After adding the residual part, the activation is performed, as shown in Figure
6.3.

Residual Network

A Residual Network usually starts with a first convolution with a bigger recep-
tive field (7x7 for the original ResNet models). After this first convolutional layer,

40 Use Case 15: Introduction and Problem Analysis

some residual blocks are connected to form the feature extraction part of the net-
work. In this part, the size of the feature maps is reduced, either using pooling
layers or with convolutional layers with strides of 2x2. In our case, as we used the
original ResNet models, the reduction of the feature maps in the residual blocks is
done by using strides of 2x2 in the convolutional layers. Finally, after the feature
extraction part, there is a fully connected part, which makes the classification.

The main benefit of these networks is the possibility to train much deeper
neural networks, as the gradient can be propagated backwards without vanish-
ing, thanks to the residual connections.

6.3.3. Data augmentation

Another technique that was applied is Data Augmentation. This technique helps
the model be more generalist by slightly modifying the training images to have a
larger dataset. We applied some basic augmentation techniques, such as small
rotations and horizontal flips. These types of augmentations are very recom-
mended for this task because, in real scenarios, we can find X-ray scans in Anterior-
Posterior or Posterior-Anterior positions, and the lungs can have a small orienta-
tion. Additionally, more techniques were applied, such as Brightness augmenta-
tion and Gamma Contrast augmentation. As the brightness and contrast could be
different in the images because they come from different hospitals and, therefore,
different scanners, these Brightness and Gamma Contrast augmentations are also
recommended, as they will add generalization power to the classifiers, and do not
modify the structure or the morphology of the lungs. The techniques are applied
in many of the previous works on similar tasks, as analysed in Chapter 2.

The parameters of the augmentation techniques are the following:

• Horizontal Flip: Applied with a probability of 0.5

• Rotation: A random degree in the range [-15, 15]

• Brightness: Beta value in the range [0, 70]

• Gamma Contrast: Gamma in the range [0.6, 1.4]

These augmentation techniques were applied using the ECVL library. This
library can load many images simultaneously in parallel threads, and apply data
augmentation techniques on-the-fly. It is straightforward to apply these tech-
niques with this library by defining a container object with all the augmentations
that will be applied. This container can be defined independently for each subset
(training, validation and test).

CHAPTER 7

Use Case 15: Experiments and
results

This chapter presents the experiments carried out with Use Case 15. First of all,
we present a method for lung alignment that was explored and used to extend the
preprocessing stage. After that, we present the experiments carried out regard-
ing the detection of pulmonary conditions on both of the prepared tasks: binary
classification and multi-label classification.

Regarding the hardware used, the experiments were performed on the same
machines as in Use Case 13, and were performed in a sequential environment,
using only one machine and GPU at a time.

7.1 Lung alignment

The idea of this first experiment came out because of the necessity of using the
maximum resolution possible when processing our images with neural networks.
The position and orientation of the lungs were quite variable, so in order to im-
prove the quality of our input data, we decided to crop the lungs regions, exclud-
ing the information outside the region of interest and centring the lungs in our
images. This process of lung alignment was done by detecting the lungs first and
then cropping the bounding boxes containing the lungs centred.

The detection of the lungs was done in a semi-automatic process. We first
manually segmented the lungs of 250 X-ray images using the CVAT [33] tool. Af-
ter that, a neural network based on a U-Net architecture was trained with the
manually annotated data in order to segment the remaining X-ray scans. This
process followed a human-in-the-loop strategy to reduce human effort, and thanks
to it, we could efficiently segment the lungs of 2, 083 X-ray images, obtaining
an IoU score of 0.95. The training strategy started with a weak segmentation
model, trained on a small amount of manually labelled data. After training the
first model, more remaining images were automatically segmented. The training
set was extended with the new images and annotations, using only the properly
segmented ones and excluding the images with unexpected results. After some
iterations, we finally segmented the hard negatives manually to boost the perfor-
mance of our model.

41

42 Use Case 15: Experiments and results

Regarding the neural network model, the architecture used was the U-Net
presented in [30], since it is a well-known and widely used neural architecture
for image segmentation tasks. As feature extractors, we experimented with dif-
ferent models pre-trained on ImageNet, such as VGG-16, ResNet34, ResNet50,
ResNet101 and InceptionV3. However, since most of them offered similar re-
sults, we finally chose the ResNet34 architecture as it required fewer parameters
than the larger models.

Finally, as this experiment had high-quality results, we included this method
in the preprocessing of the images. Therefore, the original X-ray scans were first
segmented and cropped into the region of interest, and after that, the histogram
equalization and the resize were performed. An example of the results of this
process is illustrated in Figure 7.1.

(a) Original image (b) Mask image (c) Lungs centered

Figure 7.1: Lungs alignment: To align the lung images (cropping and centring), we first
trained a U-net model to segment the lung regions. Then, we combined the bounding

boxes of the segmented regions to extract the region of interest.

7.2 Detecting Pulmonary conditions

As it was explained in the previous chapter, we defined two classification tasks
for this use case. The first task is a binary classification between healthy samples
(“normal” class) and samples with Covid-19. The second task is a multi-label
classification with four labels: “normal”, “covid19”, “pneumonia” and “infil-
trates”. The preprocessing steps, data augmentation, and used models are the
same for both tasks. The difference between them is in the loss functions used
and the output layers of the models.

The loss functions used on the binary classification task were Binary Cross-
Entropy (BCE) and regular Cross-Entropy (CE). We used BCE when the label was
represented as 0 or 1, and we only used one output neuron in the last layer of
the model. The CE was applied when the labels were encoded as one-hot vectors
of length two. Regarding the multi-label task, we used one-hot vectors of length
four to encode the labels, and the loss function used was BCE applied to each
output unit independently.

Regarding the training process, it was done using pre-trained models as fol-
lows: first, the weights of the base model (pre-trained feature extractor) were

7.2 Detecting Pulmonary conditions 43

frozen so that the new extension on top of it could be trained for 50 epochs. This
was the necessary number of iterations to determine where the loss function be-
came flat. Then, we fine-tuned the entire model with a lower learning rate (1e-5)
for more epochs until reaching a total of 200 epochs in some cases. On each epoch,
the models and weights were stored when a lower loss or a higher accuracy was
reached in the validation set. At the end of the training phase, we inferred the
test set with the best model in terms of validation loss and the best one in terms
of validation accuracy. To avoid overfitting during training, we applied weight
decay (L2) with a penalty of 1e-5, besides the data augmentation and the dropout
layers. The initial learning rates tested were in the range from 1e-3 to 1e-5.

7.2.1. Covid-19 vs Healthy results

On this binary task, we first explored different training configurations and archi-
tectures. The best results are summarized in Table 7.1. As we can observe, the
best topology has been a pre-trained Resnet18, with an 83.57% of balanced accu-
racy when using an input image size of 512x512 pixels. Overall, good precision
and recall scores are observed, with an F1-Score of 0.9231 on the “covid19” class
in the case of the model trained with 512x512 images.

Table 7.1: Best results on the binary classification task.

Precision Recall F1-Score

Model Input
Size Accuracy Balanced

Acc. Covid Normal Covid Normal Covid Normal

ResNet18 256x256 87.62% 81.85% 0.8889 0.8333 0.9474 0.6897 0.9172 0.7547
ResNet18 512x512 88.57% 83.57% 0.9 0.84 0.9474 0.7241 0.9231 0.7778

Regarding the size of the input images, the best results were obtained using
512x512 images. Nevertheless, the improvement of using this input size was not
significant with respect to the smaller size. In table 7.2, we show the average
results of the pre-trained ResNet18 model after five different training experiments
with the same configuration. As we can see, we could replicate quite similar
results using a smaller input size.

Table 7.2: Average results of five experiments obtained with the ResNet-18 model using
different input sizes. Mean and standard deviation are shown.

Input Size Accuracy % Balanced Accuracy %
256x256 84.76 ± 1.4 76.89 ± 2.9
512x512 86.29 ± 1.1 79.94 ± 2.3

7.2.2. Multi-label task results

Regarding the second task, we experimented with different training configura-
tions and topologies. After the experiments, the best results were obtained with
ResNet101, trained with Adam as optimizer and a learning rate of 1e − 5 and
Binary Cross-Entropy as the loss function applied on each output unit indepen-
dently. The results are reported in Table 7.3. As it can be observed, the model

44 Use Case 15: Experiments and results

obtains a mean Accuracy of 0.7067 for the four classes and a mean Precision of
0.6253. However, the obtained results for Recall indicate that this model is not
working as well as in the binary classification task.

Table 7.3: Results with ResNet-101 on the multi-label task. The input image size used
was 512x512.

Metric Normal Covid Pneumonia Infiltrates Mean
Accuracy 0.8702 0.7067 0.5769 0.6731 0.7067
Precision 0.6667 0.6056 0.4512 0.7778 0,6253
Recall 0.1379 0.5658 0.4625 0.0959 0,3155
F1-Score 0.2286 0.585 0.4568 0.1707 0.3603

7.3 Discussion

The impact of the Covid-19 pandemic has been a hard experience for every-
one. Our efforts were focused on helping in the pandemic from our perspective.
Therefore, we approached this task as many researchers have done in the last two
years. After the process of developing our solution and carrying out the experi-
ments, we have found many important aspects to consider when approaching a
similar task.

First of all, as this is a medical use case, it is crucial to build solutions robust
enough to be applied in real scenarios. This starts from the data acquisition pro-
cess. Medical personnel should be conscientious when collecting data for these
purposes because errors in the data or misleading information may lead to prob-
lems in the classifiers and confusing results. In this dataset, we observed that
samples from the COVID19 subset were not labelled as Covid19 by radiologists,
but they had tested positive for Covid19 in a range of 5 days before or after they
joined the hospital. These things make the task more difficult as researchers have
to make decisions when encountering these issues. Our decision was to use as
Covid19 samples only the ones with the “covid” label. These decisions result in
a loss of potential helpful data. Nevertheless, we can only trust that the experts
correctly labelled the images at this point.

The process of exploring the dataset and preparing the images has been such
a complicated task. First, some of the X-ray images had the colors inverted, so
we had to fix them manually. Additionally, we found images with no lungs at
all, and some images with ’Posterior-Anterior’ or ’Anterior-Posterior’ positions
labels but with lateral views. In the end, from the total of images provided on the
dataset, we could only use 2, 083, ending with a few more 100 samples in the test
set.

Another factor that increases the difficulty of the task is the variability of the
images, in particular the images labelled as Covid19. As the virus can affect the
lungs differently depending on many factors, the X-ray scans of Covid19 patients
can be very different. Furthermore, Covid19 X-rays usually have artifacts, that
can introduce a bias in the data, so the classifier could tend to detect artifacts
instead of the virus. An interesting concept to keep in mind in this task would be

7.3 Discussion 45

model explainability, in order to see where the networks are looking at to make
their decisions, but this concept is outside the scope of this work.

Despite the difficulties that have come out during the efforts on this task,
we could finally obtain acceptable scores in distinguishing between healthy and
Covid19 lungs. We achieved an 83.57% of balanced accuracy, demonstrating that
our solution could successfully separate Covid-19 samples from healthy ones.
Nevertheless, our results are far from being used in real scenarios, as we would
need a larger dataset for training and evaluating the models.

It is difficult to establish quantitative comparisons with state-of-the-art works
as there are not any results published on the BIMCV-COVID19 dataset yet. Re-
garding the multi-label task, our results were not as good as in the first task. We
think this is due to the increase in the task difficulty, as the models need to detect
several pathologies at once and some of them are related. Additionally, the sam-
ples may not be enough representative to perform such a task because the two
additional classes had fewer samples than ”covid“ and ”normal“ ones.

Finally, we also presented a method to extract the region of interest from X-ray
images in this work. As we explained, we trained a segmentation model with a
human-in-the-loop strategy, resulting in success. This process helped exclude the
external areas that could introduce more biases to the dataset.

CHAPTER 8

Conclusions and future works

This chapter summarises the most relevant aspects of each use case and gives an
overview of the work done. Additionally, some ideas for future works with these
tasks are given.

8.1 Conclusions

This work presents two ways of working with the DeepHealth toolkit for real-
world use cases related to health. Different deep learning approaches have been
tested to solve two different use cases, one related to epilepsy detection with
EEGs and one related to detecting pulmonary conditions with lung X-ray images.

In Use Case 13, a solution based on raw data as input and a neural network
classifier has been presented. The classifiers followed two approaches, a recur-
rent and a convolutional approach. Despite the fact that recurrent neural net-
works can learn dependencies with data from the past, the convolutional ap-
proach achieved better results. As shown, the results are not consistent for every
patient. In fact, the model works well for some patients but is not enough good
for others. The task addressed is challenging mainly for two reasons: (i) A strong
imbalance of samples of each class in the dataset. The target class (ictal) has much
fewer samples than the other class (interictal). (ii) The high variability between
patients.

Additionally, a post-inference process with a function acting as a seizure de-
tection has been presented. The experimentation results show that it is possible
to reach a trade-off between a fast detection and a low number of false alarms by
adjusting the parameters of the function.

To sum up, the obtained results show that it is possible to achieve a good
enough performance to detect seizures in the case of some patients, and sug-
gest that, with more research and more data, the epilepsy detection task could be
addressed with more reliable models; what could improve the quality of life of
many people affected by Epilepsy.

Regarding Use Case 15 tasks, we first performed a segmentation process in
order to obtain the region of interest from the X-rays and reduce the size of the

47

48 Conclusions and future works

images without rescaling them too much, so the maximum amount of informa-
tion was kept. This process had successful results, as has been described before.

Next, we trained several classifiers with different neural network architec-
tures, obtaining the best results with pre-trained Residual Networks such as Res-
Net-18. We analysed different configurations for two tasks that required a large
set of experiments. We observed that Covid-19 samples can be separated from
healthy ones, as the models could achieve more than 80% of accuracy in our ex-
periments. In addition, we experimented with a multi-label task and obtained
worse results, also working with the same model architectures. Although the ob-
tained results suggest that our solution could not be considered to be used in real
scenarios due to the size of the evaluation set, we hope this work can help other
researchers better understand this use case, and help in the global objective of
finding a cheap and fast solution to detect Covid-19 or other pulmonary patholo-
gies.

This work has shown how to deal with two different use cases related to health
with deep learning based solutions. Even though the solutions presented are not
robust enough to achieve the final objective of using them in real-world cases, we
are proud of our work as this could help other scientists achieve better solutions.
We believe that Deep Learning in particular, and Artificial Intelligence in general,
are one of the most promising fields of research in the current era, and that these
technologies will provide with solutions in next years for many fields such as the
health sector.

We would like to highlight the ease of use of the DeepHealth Framework for
developing advanced Deep Learning models for medical use cases. Our work
suggests that the DeepHealth Framework is a robust framework for perform-
ing reliable medical research. However, given the limited amount of medical
data available and the problems commented on each use case, more research is
needed before these kinds of solutions can be safely deployed in production en-
vironments.

Finally, this work has provided us with more experience in the machine learn-
ing field, particularly in signal processing and medical imaging. Personally, it has
not been an easy way, but it has been an enriching process, as the fact of devel-
oping a solution for medical use cases that could potentially help the health of
people motivated us so much.

8.2 Future Work

Regarding Use Case 13, a patient-specific scheme was used in this work, so that
each model was trained for each patient specifically, only with data from the pa-
tient. This strategy led to many experiments, and many more are still to be done,
either following a patient-specific scheme or a patient-independent scheme. None-
theless, our interests are in the following line of research:

• Test more models and configurations with all the subjects.

• Find a solvent feature extraction technique to improve results.

8.2 Future Work 49

• Test our solution with other EEG datasets.

• Explore the seizure prediction task.

In the case of Use Case 15, our interests are the following ones:

• Test a solution based on a sliding window through a large image to improve
the results.

• Enlarge the training dataset with samples from other datasets, train an au-
toencoder and then use the encoder part for classifying the samples of this
dataset.

• Perform a k-fold cross-validation strategy to verify the robustness of our
results.

• Test our solution with similar datasets, in order to compare it properly with
state-of-the-art solutions.

Bibliography

[1] Deep health – deep-learning and hpc to boost biomedical applications for
health. https://deephealth-project.eu/.

[2] Epilepsy. https://www.who.int/en/news-room/fact-sheets/detail/epil
epsy.

[3] Metrics and scoring: quantifying the quality of predictions — scikit-learn
1.0.2 documentation. https://scikit-learn.org/stable/modules/mode
l_evaluation.html#balanced-accuracy-score.

[4] Onnx | open neural network exchange.

[5] Prhlt research center – pattern recognition and human language technology.
https://www.prhlt.upv.es/wp/es/.

[6] Who director-general’s opening remarks at the media briefing on covid-19 -
11 march 2020. https://www.who.int/director-general/speeches/deta
il/who-director-general-s-opening-remarks-at-the-media-briefing-
on-covid-19---11-march-2020.

[7] Bayoumi Magdy Abdelhameed Ahmed. A deep learning approach for auto-
matic seizure detection in children with epilepsy. Frontiers in Computational
Neuroscience, 15, 2021.

[8] Abhijit Bhattacharyya, Divyanshu Bhaik, Sunil Kumar, Prayas Thakur,
Rahul Sharma, and Ram Bilas Pachori. A deep learning based approach for
automatic detection of covid-19 cases using chest x-ray images. Biomedical
Signal Processing and Control, 71:103182, 2022.

[9] Poomipat Boonyakitanont, Apiwat Lek-uthai, and Jitkomut Songsiri. Au-
tomatic epileptic seizure onset-offset detection based on cnn in scalp eeg.
In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1225–1229, 2020.

[10] Salvador Carrión, Álvaro López-Chilet, Javier Martínez-Bernia, Joan Coll-
Alonso, Daniel Chorro-Juan, and Jon Ander Gómez. Automatic detection of
epileptic seizures with recurrent and convolutional neural networks. In Pro-
ceedings of the International Conference on Image Analysis and Processing 2022, 6
2022.

51

https://deephealth-project.eu/
https://www.who.int/en/news-room/fact-sheets/detail/epilepsy
https://www.who.int/en/news-room/fact-sheets/detail/epilepsy
https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score
https://www.prhlt.upv.es/wp/es/
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

52 BIBLIOGRAPHY

[11] Salvador Carrión, Álvaro López-Chilet, Javier Martínez-Bernia, Joan Coll-
Alonso, Daniel Chorro-Juan, and Jon Ander Gómez. Detection of pulmonary
conditions using the deephealth framework. In Proceedings of the International
Conference on Image Analysis and Processing 2022, 6 2022.

[12] Beatriz Garcia Santa Cruz, Jan Sölter, Matias Nicolas Bossa, and Andreas Do-
minik Husch. On the composition and limitations of publicly available
covid-19 x-ray imaging datasets. arXiv preprint arXiv:2008.11572, 2020.

[13] Hisham Daoud and Magdy A. Bayoumi. Efficient epileptic seizure predic-
tion based on deep learning. IEEE Transactions on Biomedical Circuits and
Systems, 13(5):804–813, 2019.

[14] Maria de la Iglesia Vayá, Jose Manuel Saborit-Torres, Joaquim Angel Mon-
tell Serrano, Elena Oliver-Garcia, Antonio Pertusa, Aurelia Bustos, Miguel
Cazorla, Joaquin Galant, Xavier Barber, Domingo Orozco-Beltrán, Francisco
García-García, Marisa Caparrós, Germán González, and Jose María Salinas.
Bimcv covid-19+: a large annotated dataset of rx and ct images from covid-
19 patients, 2021.

[15] Joaquim de Moura, Jorge Novo, and Marcos Ortega. Fully automatic deep
convolutional approaches for the analysis of covid-19 using chest x-ray im-
ages. Applied Soft Computing, 115:108190, 2022.

[16] Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha Srid-
haran, and Clinton Fookes. Deep learning for patient-independent epileptic
seizure prediction using scalp eeg signals. IEEE Sensors Journal, 21(7):9377–
9388, 2021.

[17] A. J. Gabor, R. R. Leach, and F. U. Dowla. Automated seizure detection
using a self-organizing neural network. Electroencephalography and Clinical
Neurophysiology, 99:257–266, 9 1996.

[18] A L Goldberger, L A N Amaral, L Glass, J M Hausdorff, Ivanov PCh, R G
Mark, J E Mietus, G B Moody, C.-K. Peng, and Stanley H E PhysioBank.
Physiotoolkit, and physionet: Components of a new research resource for
complex physiologic signals.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-
pings in deep residual networks, 2016.

[21] Bo Hjorth. Eeg analysis based on time domain properties. Electroencephalog-
raphy and clinical neurophysiology, 29 3:306–10, 1970.

[22] Saddam Hussain Khan, Anabia Sohail, Asifullah Khan, and Yeon-Soo Lee.
Covid-19 detection in chest x-ray images using a new channel boosted cnn.
Diagnostics, 12(2), 2022.

BIBLIOGRAPHY 53

[23] Aayush Kumar, Ayush R Tripathi, Suresh Chandra Satapathy, and Yu-Dong
Zhang. Sars-net: Covid-19 detection from chest x-rays by combining graph
convolutional network and convolutional neural network. Pattern Recogni-
tion, 122:108255, 2022.

[24] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–44, 05 2015.

[25] Chien-Liang Liu, Bin Xiao, Wen-Hoar Hsaio, and Vincent S. Tseng. Epilep-
tic seizure prediction with multi-view convolutional neural networks. IEEE
Access, 7:170352–170361, 2019.

[26] Soumya Ranjan Nayak, Deepak Ranjan Nayak, Utkarsh Sinha, Vaibhav
Arora, and Ram Bilas Pachori. Application of deep learning techniques
for detection of covid-19 cases using chest x-ray images: A comprehensive
study. Biomedical Signal Processing and Control, 64:102365, 2021.

[27] Ahmet Remzi Ozcan and Sarp Erturk. Seizure prediction in scalp eeg us-
ing 3d convolutional neural networks with an image-based approach. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 27(11):2284–
2293, 2019.

[28] Xiao Qi, David J. Foran, John L. Nosher, and Ilker Hacihaliloglu. Multi-
Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-
Ray Images. Lecture Notes in Computer Science, page 151–160, 2021.

[29] Gonzalo Rojas, Carolina Alvarez, Carlos Montoya Moya, Maria de la Igle-
sia Vaya, Jaime Cisternas, and Marcelo Gálvez. Study of resting-state func-
tional connectivity networks using eeg electrodes position as seed. Frontiers
in Neuroscience, 12, 03 2018.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[31] M. E. Saab and J. Gotman. A system to detect the onset of epileptic seizures
in scalp eeg. Clinical Neurophysiology, 116:427–442, 2 2005.

[32] Andreas Schulze-Bonhage, Francisco Sales, Kathrin Wagner, Rute Teotonio,
Astrid Carius, Annette Schelle, and Matthias Ihle. Views of patients with
epilepsy on seizure prediction devices. Epilepsy and Behavior, 18:388–396, 8
2010.

[33] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zhavoronkov,
Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin, Artyom Zanke-
vich, DmitriySidnev, Maksim Markelov, Johannes222, Mathis Chenuet, a an-
dre, telenachos, Aleksandr Melnikov, Jijoong Kim, Liron Ilouz, Nikita
Glazov, Priya4607, Rush Tehrani, Seungwon Jeong, Vladimir Skubriev,
Sebastian Yonekura, vugia truong, zliang7, lizhming, and Tritin Truong.
opencv/cvat: v1.1.0, August 2020.

[34] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say

54 BIBLIOGRAPHY

that? visual explanations from deep networks via gradient-based localiza-
tion. CoRR, abs/1610.02391, 2016.

[35] Ali Shoeb and John Guttag. Application of machine learning to epileptic
seizure detection. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML’10, page 975–982, Madison, WI,
USA, 2010. Omnipress.

[36] Nhan Duy Truong, Anh Duy Nguyen, Levin Kuhlmann, Mohammad Reza
Bonyadi, Jiawei Yang, Samuel Ippolito, and Omid Kavehei. Convolutional
neural networks for seizure prediction using intracranial and scalp elec-
troencephalogram. Neural Networks, 105:104–111, 9 2018.

[37] Shuhan Yang, Bo Li, Yinda Zhang, Meiyu Duan, Shuai Liu, Yexian Zhang,
Xin Feng, Renbo Tan, Lan Huang, and Fengfeng Zhou. Selection of features
for patient-independent detection of seizure events using scalp eeg signals.
Computers in Biology and Medicine, 119:103671, 4 2020.

APPENDIX A

Beyond Use Case 13

In this appendix, we present the different solutions tested on Use Case 13. These
different approaches were tested, but the results were not significant in order to
be presented in this report. As the work done could be interesting, a description
of the additional approaches is presented in the following sections.

A.1 Autoencoders

One solution that came out when trying to solve this task was the use of autoen-
coders. The idea was to train a neural network model to get a signal as input,
extract the most relevant features while reducing dimensionality, and then recon-
struct the input signal. Different neural network models were tested, from sim-
ple models with only Dense layers to models with convolutional neural networks
similar to image segmentation models such as SegNet or UNet.

These autoencoders were trained with interictal data from at least one hour
away from any ictal period. This was done in order to use interictal data the
more similar to a normal state of the patient. The model was trained to try to
minimize the mean squared error loss function. Once the model was trained with
interictal data, it was tested with the original test signal, and for each sample,
the difference between the output and the original input was measured with the
Euclidean distance. We expected that the difference would be minimal when
the input was an interictal sample, as the sample was not too much different
from the ones that the model was trained on. When the input was a period close
to or inside a seizure, we expected the distance to be higher, as the signal on
these periods is different from the training set. With this in mind, we illustrated
the distance for each sample on the test set, and we tried to find the behaviour
described, but the model did not perform as expected. If the model performed as
expected, we could study the use of a threshold to distinguish different periods
in the signal, not only the ictal from the others.

A.2 Feature Extraction

This section presents a feature extraction method for EEG signals.

55

56 Beyond Use Case 13

Figure A.1: Hamming window shape.

A.2.1. Feature extraction process

Before feeding the deep learning models, we are going to process the signals in
order to extract the most important features. This preprocess has been done fol-
lowing the typical short-term analysis applied for Speech Recognition tasks and
other signals. By applying this kind of analysis, we are assuming that we are
processing a signal that contains information that does not change too fast. This
means that, for a short period of time, the features we are interested to extract do
not change. In Speech Recognition, the short-term considered period is 20-25ms.
In the case of the EEG signals, and due to a large amount of data in this dataset,
the period will be 4 seconds. In these cases, a sliding window is applied. For
Speech Recognition the window slides ten milliseconds each time, but for this
task, we are going to use 2 seconds, exactly half of the period we are analysing.
In summary, we will extract features of the signal using a sliding window of 4
seconds, that we will shift through the signal every 2 seconds.

For each window extracted from the signal, we first compute the Discrete
Fourier Transform (DFT) to obtain a distribution of the energy contained in the
signal in the frequency domain. Additionally, we apply a filter bank in order to
filter the frequency range of values into channels. After this, we would apply the
Discrete Cosine Transform to obtain the Cepstral Coefficients and the energy in
the case of Speech Recognition, but this last part is not done for EEG signals.

Hamming window

The Discrete Fourier Transform is sensitive to sharp changes in the signal, that
are usually represented with a high amount of harmonics. In order to avoid these
changes affecting the DFT, it is required to use a smoothing window. The most
widely used window for smoothing is the Hamming Window, which shape can
be seen in Figure A.1.

A.2 Feature Extraction 57

Filter bank

After applying the DFT, we use a filter bank to filter the frequency values into
channels. In Speech Recognition, the Mel Scale filter bank is the most used. This
filter bank consists of a set of overlapping passband filters of equal size with
more resolution on low frequencies than high frequencies, trying to emulate the
frequency discrimination of human’s Cochlea. For the EEG signals, we are go-
ing to apply a linear filter bank instead of a logarithmic one. The filter will be
restricted to a specific band of frequencies.

We will use the same filter bank as authors of [27]. The frequency domain
EEG signal is separated into 5 spectral bands: δ, θ, α, β and γ. Considering that
high-frequency sub-bands are effective in epileptic seizure tasks, the γ band is
split into four sub-bands, resulting in a total of 8 spectral bands. The range of
frequencies for each band is the following one:

• δ : 0.5 Hz to 4.0 Hz

• θ : 4.0 Hz to 8.0 Hz

• α : 8.0 Hz to 13.0 Hz

• β : 13.0 Hz to 30.0 Hz

• γ 1 : 30.0 Hz to 50.0 Hz

• γ 2 : 50.0 Hz to 75.0 Hz

• γ 3: 75.0 Hz to 100.0 Hz

• γ 4: 100.0 Hz to 128.0 Hz

After applying this filter bank, we get 8 values for each channel of the ex-
tracted window, corresponding to the 8 spectral bands.

Time-domain Statistics

Additionally to the feature extraction in the frequency domain, we are also ex-
tracting some features in the time domain in order to complement the feature
vector for each window. These features will be some statistics, also inspired by
the same paper as for the filter bank [27].

Statistical moments provide information about the amplitude distribution and
shape of time series. This information could be helpful for detecting seizures, as
the amplitude of some of the channels changes drastically depending on the stage
of the seizure. The first four statistical features are mean, variance, skewness and
kurtosis. The last three statistical moments are Hjorth parameters [21]. These
are Activity, which represents the signal power, the variance of a time function;

58 Beyond Use Case 13

Mobility, which represents the mean frequency of the proportion of standard de-
viation of the power spectrum; and Complexity, which represents the change in
frequency. They are calculated with the following equations:

Activity = var(y(t)) (A.1)

Mobility =

√√√√var(dy(t)
dt)

var(y(t))
(A.2)

Complexity =
Mobility(dy(t)

dt)

Mobility(var(y(t)))
(A.3)

As the Activity parameter is the variance of the function, we will have six
statistical features in total. These will complement the feature vector, which will
have 14 values: 8 in the frequency domain and 6 in the time domain.

After processing a signal to extract all of the features explained, an example
of the resulting signal can be seen in Figure A.2. In it, we can see an extract of 5
seconds of the first record of patient chb01. It is the result of the process for the
first channel of the signal.

A.3 Review on the prediction task

The other task associated with epilepsy is seizure prediction, which is more chal-
lenging and has been approached more recently. Many of the solutions from last
years have been based on neural networks, and researchers have been exploit-
ing different deep learning models, which are nowadays very powerful for many
tasks, like processing speech signals for speech recognition. In [25], authors pro-
pose a multi-view convolutional neural network framework to predict seizures.
They had two separated inputs: temporal and spectral features. The network had
to acquire a shared representation of the signal. They achieved an Area Under the
Curve of 0.82 and 0.89 on two patients of the CHB-MIT dataset. In [36], Truong
et al. used the short-time Fourier transform on 30-s EEG windows to extract
information. After that, they use convolutional neural networks to classify the
samples. They achieved an average sensitivity of 81.2% in the CHB-MIT dataset
and similar results in other datasets. In [27], they present a feature extraction that
converts the signal into images by projecting the signal channels’ position in the
head to a 2D space and then computing the points between them by interpola-
tion. They trained a CNN to classify the images and achieved a sensitivity of
85.7% in the CHB-MIT dataset. In [16], the authors propose two Deep Learning
architectures that can learn a global function to predict seizures for any patient.
They present two different strategies for training: a multiple loss function train-
ing and a siamese architecture with a Contrastive loss. Both of the models achieve
state-of-the-art performance for the prediction in the CHB-MIT Dataset, with an
accuracy of 88.81% and 91.54% for the multiple loss strategy and the siamese

A.3 Review on the prediction task 59

Figure A.2: Processed signal. The top figure shows the frequency of the original signal
and the filtered signal. The figure in the middle shows the energy that falls on different

filter banks. The bottom figure shows the time-domain statistics of the signal.

network, respectively. Finally, in [13], Daoud et al. propose four deep learning
models (including convolutional neural networks, recurrent neural networks and
autoencoders) and a channel selection algorithm for selecting the channels of the
signal to use. They achieved an accuracy of 99.96% and a false alarm rate per
hour of 0.004 on the CHB-MIT dataset.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure of the document

	Related work
	Epilepsy detection
	Covid-19 detection from chest X-ray images

	European Distributed Deep Learning Library
	EDDL: European Distributed Deep Learning Library
	ECVL: European Computer Vision Library

	Use Case 13: Introduction and Problem Analysis
	Problem description
	Epilepsy
	Patient-Specific vs. Patient-Independent approaches
	Seizure detection vs. Seizure prediction task

	Description of the data
	Splits
	Class imbalance

	Solution proposal
	Data preparation
	Recurrent approach
	Convolutional approach
	Post Inference process
	Evaluation Metrics

	Use Case 13: Experiments and results
	First experiment: Selection of Best Model
	Recurrent Approach
	Convolutional Approach

	Second Experiment: Test Selected Model
	Third experiment: Post Inference Process
	Discussion

	Use Case 15: Introduction and Problem Analysis
	Problem description
	Defined tasks

	Description of the dataset
	Solution proposal
	Preprocess
	Neural Network Models
	Data augmentation

	Use Case 15: Experiments and results
	Lung alignment
	Detecting Pulmonary conditions
	Covid-19 vs Healthy results
	Multi-label task results

	Discussion

	Conclusions and future works
	Conclusions
	Future Work

	Bibliography
	Beyond Use Case 13
	Autoencoders
	Feature Extraction
	Feature extraction process

	Review on the prediction task

