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Resum
El Model Estàndard, que és el marc teòric físic més acceptat en l’actualitat, presenta

certes deficiències i manca d’explicació per a algunes qüestions fonamentals sobre el com-
portament de la matèria. Per a resoldre aquestes qüestions es va crear, entre d’altres, el
projecte ATLAS: dissenyat per a aprofitar al màxim el potencial del Large Hadron Collider
en cerca de senyals de la denominada Nova Física. Aquests tipus de senyals es trac-
ten d’una extensió de l’actual model que permetrien explicar les incògnites presents en
l’actualitat. Comparant dades reals, obtingudes a partir de l’experimentació, amb dades
simulades, procedents de models teòrics, és possible determinar si s’han trobat aquests
senyals, validant així el descobriment de nous successos.

Com què la simulació de dades amb els mètodes tradicionals és temporalment i com-
putacionalment molt costosa, nosaltres tractem d’utilitzar mètodes generatius amb un
cost inferior que permeten generar esdeveniments de Monte Carlo simulats d’una quali-
tat similar, facilitant així el disseny de detectors i el descobriment de Nova Física.

En aquest treball, proposem utilitzar models generatius basats en Deep Learning com
generadors ràpids d’esdeveniments de Monte Carlo i simuladors de detectors en el con-
text del LHC, reduint el cost temporal i energètic dels mètodes actuals, i facilitant una
estimació completa i detallada d’errors sistemàtics. En particular, explorem diferents es-
cenaris de Nova Física i comparem el rendiment de les actuals tècniques que pertanyen
a l’estat de l’art.

Paraules clau: Deep Learning, Esdeveniments de Monte Carlo, Nova Física, Models ge-
neratius basats en Deep Learning, Large Hadron Collider

Resumen
El Modelo Estándar, que es el marco teórico físico más aceptado en la actualidad, pre-

senta ciertas deficiencias y carece de explicación para algunas cuestiones fundamentales
sobre el comportamiento de la materia. El proyecto ATLAS, entre otros, se creó para resol-
ver estas cuestiones. Este proyecto fue diseñado para aprovechar al máximo el potencial
del Large Hadron Collider en la búsqueda de señales de la denominada Nueva Física. Estos
tipos de señales se tratan de una extensión del actual modelo que permitirían explicar las
incógnitas presentes en la actualidad. Comparando datos reales, obtenidos en base a la
experimentación, con datos simulados, procedentes de modelos teóricos, es posible de-
terminar si se han encontrado dichas señales, validando así el descubrimiento de nuevos
sucesos.

Debido a que la simulación de datos con los métodos tradicionales es temporal y
computacionalmente muy costosa, tratamos de utilizar modelos generativos con un coste
inferior que permitan generar eventos de Monte Carlo simulados de una calidad similar,
facilitando así el diseño de detectores y el descubrimiento de Nueva Física.

En este trabajo, proponemos utilizar modelos generativos basados en Deep Learning
como generadores rápidos de eventos de Monte Carlo y simuladores de detectores en el
contexto del LHC, reduciendo el coste temporal y energético de los métodos utilizados
en la actualidad, y facilitando una estimación completa y detallada de errores sistemá-
ticos. En particular, exploramos diferentes escenarios de Nueva Física y comparamos el
rendimiento de técnicas que pertenecen al actual estado del arte.

Palabras clave: Deep Learning, Eventos de Monte Carlo, Nueva Física, Modelos genera-
tivos basados en Deep Learning, Large Hadron Collider
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Abstract
The Standard Model, which is currently the most accepted physics theoretical frame-

work, presents certain deficiencies and lacks an explanation for some fundamental as-
pects of the behavior of matter. Project ATLAS, among others, was created to solve those
questions. This project was designed to make the most of the capabilities of the Large
Hadron Collider while looking for signals of the so-called Physics Beyond the Standard
Model. These kinds of signals are an extension of the current model that should be able
to explain the current unknowns. Comparing real data, obtained from experimentation,
with simulated data, coming from theoretical models, it is possible to determine if those
signals have been found, validating the discovery of new events.

Because data simulation with traditional models is temporally and computationally
very demanding, we try to use generative models with a lower cost that allow generating
simulated Monte Carlo events with a similar quality, making the design of detectors and
the discovery of Physics Beyond the Standard Model easier.

In this work, we propose the use of generative models based on Deep Learning as fast
Monte Carlo event generators and detector simulators in the LHC context, reducing the
time and energy cost of currently used methods, and making it easier to obtain a com-
plete and detailed estimation of systematic errors. In particular, we explore several New
Physics scenarios and compare the performance of existing state-of-the-art techniques.

Key words: Deep Learning, Monte Carlo events, New Physics, Deep Generative Models,
Large Hadron Collider





Contents

Contents v
List of Figures vii
List of Tables ix
Acronyms xi

1 Introduction 1
1.1 Motivation and problem description . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Analysis of the current situation . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The dataset 7
3.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Proposed solution 11
4.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 β-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 α-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Used technologies 15

5.1 Software environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Model definition and training . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Hardware infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Experimentation 19

6.1 Data partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Data analysis and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Experiment I: Initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 Experiment II: Input subdivision . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4.1 Without BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4.2 With BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Experiment III: Introducing the α-VAE . . . . . . . . . . . . . . . . . . . . . 43
6.5.1 Without BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5.2 With BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6 BSM event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 Conclusions 63

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Bibliography 65

v



vi CONTENTS

Appendices
List of Figures in Appendices 69
A Activation functions 73

A.1 Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Loss functions 75
B.1 Categorical Crossentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C Keras layers 77
C.1 Dense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.2 BatchNormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.3 Flatten and Reshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D Data distributions 79
D.1 Standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
D.2 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

E Full experiment results 91
E.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
E.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

E.2.1 Without BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
E.2.2 With BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

E.3 Experiment III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.3.1 Without BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.3.2 With BGMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F Sustainable Development Goals 171



List of Figures

1.1 Computer-generated image of the ATLAS detector located at CERN. . . . 2

4.1 Scheme of the internal structure of a Variational Autoencoder. . . . . . . . 12

5.1 Used software and hardware technologies diagram. . . . . . . . . . . . . . 15
5.2 NVIDIA TU104 graphics chip scheme. . . . . . . . . . . . . . . . . . . . . . 17

6.1 Representation of the circular buffer of open files when creating a batch. . 20
6.2 Histogram of b-jet object parameter E in the whole SM dataset. . . . . . . 20
6.3 Histogram of b-jet object parameter E after applying log10 in the SM dataset. 20
6.4 VAE architecture scheme for the initial model (variator omitted for sim-

plicity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Training the β-VAE using events from type T. . . . . . . . . . . . . . . . . . 23
6.6 Training one BGMM per event type using encodings from the β-VAE. . . . 23
6.7 Sampling from the BGMM of events of type T using the β-VAE. . . . . . . 23
6.8 Histogram of first jet object parameter E with ttbar events (β = 0.01, γ = 50). 24
6.9 Histogram of first jet object parameter φ with ttbar events (β = 0.01, γ = 50). 24
6.10 VAE architecture scheme in experiment II (variator omitted for simplicity). 25
6.11 Generating events with the β-VAE without using BGMMs. . . . . . . . . . 26
6.12 Histograms of MET event parameter in experiment II with different β values. 26
6.13 Histograms of METphi event parameter in experiment II with different β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.14 Histograms of first jet parameter E in experiment II with different β values. 28
6.15 Histograms of first lepton parameter E in experiment II with different β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.16 Histograms of first jet parameter η in experiment II with different β values. 30
6.17 Histograms of first lepton parameter η in experiment II with different β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.18 Histograms of first jet parameter φ in experiment II with different β values. 32
6.19 Histograms of first lepton parameter φ in experiment II with different β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.20 Histograms of first jet parameter pT in experiment II with different β values. 34
6.21 Histograms of first lepton parameter pT in experiment II with different β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.22 Comparison of MET event parameter with and without BGMMs (γ = 100). 36
6.23 Comparison of METphi event parameter with and without BGMMs (γ = 100). 37
6.24 Comparison of first jet particle feature E with and without BGMMs (γ =

100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.25 Comparison of first lepton particle feature E with and without BGMMs

(γ = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.26 Comparison of first jet particle feature η with and without BGMMs (γ = 100). 39
6.27 Comparison of first lepton particle feature η with and without BGMMs

(γ = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.28 Comparison of first jet particle feature φ with and without BGMMs (γ = 100). 40

vii



viii LIST OF FIGURES

6.29 Comparison of first lepton particle feature φ with and without BGMMs
(γ = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.31 Comparison of first jet particle feature pT with and without BGMMs (γ =
100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.32 Comparison of first lepton particle feature pT with and without BGMMs
(γ = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.33 Training the α-VAE using one kind of event. . . . . . . . . . . . . . . . . . . 43
6.34 Generating events with the α-VAE without using BGMMs. . . . . . . . . . 44
6.35 Histograms of MET event parameter in experiment III with different α values. 44
6.36 Histograms of METphi event parameter in experiment III with different α

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.38 Histograms of first jet parameter E in experiment III with different α values. 46
6.39 Histograms of first lepton parameter E in experiment III with different α

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.40 Histograms of first jet parameter η in experiment III with different α values. 47
6.42 Histograms of first lepton parameter η in experiment III with different α

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.43 Histograms of first jet parameter φ in experiment III with different α values. 48
6.44 Histograms of first lepton parameter φ in experiment III with different α

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.46 Histograms of first jet parameter pT in experiment III with different α values. 50
6.47 Histograms of first lepton parameter pT in experiment III with different α

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.48 Training the BGMM using the generated latent representations from the

α-VAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.49 Sampling from the BGMM to generate events from the α-VAE. . . . . . . . 51
6.50 Comparison of MET event parameter with (•, •) and without (•) BGMMs. . 52
6.51 Comparison of METphi event parameter with (•, •) and without (•) BGMMs. 52
6.52 Comparison of first jet parameter E with (•, •) and without (•) BGMMs. . 53
6.54 Comparison of first lepton parameter E with (•, •) and without (•) BGMMs. 54
6.55 Comparison of first jet parameter η with (•, •) and without (•) BGMMs. . 54
6.56 Comparison of first lepton parameter η with (•, •) and without (•) BGMMs. 55
6.58 Comparison of first jet parameter φ with (•, •) and without (•) BGMMs. . 56
6.59 Comparison of first lepton parameter φ with (•, •) and without (•) BGMMs. 56
6.60 Comparison of first jet parameter pT with (•, •) and without (•) BGMMs. . 57
6.62 Comparison of first lepton parameter pT with (•, •) and without (•) BGMMs. 58
6.63 Comparison of event parameter MET using the trained models in the BSM

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.64 Comparison of event parameter METphi using the trained models in the

BSM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.65 Comparison of first jet parameter E using the trained models in the BSM

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.66 Comparison of first lepton parameter E using the trained models in the

BSM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.67 Comparison of first jet parameter η using the trained models in the BSM

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.68 Comparison of first lepton parameter η using the trained models in the

BSM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.69 Comparison of first jet parameter φ using the trained models in the BSM

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.70 Comparison of first lepton parameter φ using the trained models in the

BSM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



6.71 Comparison of first jet parameter pT using the trained models in the BSM
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.72 Comparison of first lepton parameter pT using the trained models in the
BSM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

List of Tables

3.1 Definition of symbols representing final-state objects of each event. . . . . 8
3.2 Generated SM and BSM signal processes with their identification. . . . . . 9

ix





Acronyms

AE Autoencoder. 11

AI Artificial Intelligence. 16

ANN Artificial Neural Network. 73, 77

API Application Programming Interface. 15

BGMM Bayesian Gaussian Mixture Model. vii, viii, 13, 15, 21, 23–26, 36–44, 51–58, 63

BSM Beyond the Standard Model. v, ix, 1, 2, 5, 6, 9, 11, 58, 59, 61, 63, 69, 79, 90

CERN European Organization for Nuclear Research. 1, 3, 5

CPU Central Processing Unit. 16, 17

CUDA Compute Unified Device Architecture. 15

DNN Deep Neural Network. 11

GAN Generative Adversarial Network. 5, 6, 11, 63

GMM Gaussian Mixture Model. 13

GPU Graphics Processing Unit. 16, 17

LHC Large Hadron Collider. ii, iii, 1, 5

MC Monte Carlo. 2, 3, 5, 13, 28, 29, 31, 32, 34, 37, 41, 43, 46, 50, 54, 56–58, 62, 63, 91

MSE Mean Squared Error. 27, 36

PRHLT Pattern Recognition and Human Language Technology. 17

SM Standard Model. vii, ix, 1, 6, 9, 20, 21, 63, 69, 79, 84

VAE Variational Autoencoder. v, vii, viii, 1, 5, 6, 11–13, 21–23, 25, 26, 36, 43, 44, 51, 62, 63

xi





CHAPTER 1

Introduction

Currently, the Standard Model is the theoretical framework that provides an explanation
of how matter is constituted and describes the forces that govern the different physical
processes exhibited by these constituents, with the Higgs boson [1] being the most recent
discovery. However, there are some notable discrepancies in some observables that do
not agree with theoretical predictions and the model does not explain several fundamen-
tal aspects that are key in physics. For instance, it cannot explain some experimentally
observed phenomena like neutrino masses, gravity, and dark matter. The SM also fea-
tures some unexplained parameters, such as the relatively low value of the Higgs mass
despite its large quantum corrections, which implies a lack of understanding.

For that reason, at the Large Hadron Collider (LHC), the most powerful and largest
collider in the world, located at the European Organization for Nuclear Research (CERN),
particles are accelerated to high velocities and collided in order to study their interactions
and to give an insight to the fundamental laws of nature.

At the LHC, there exists a program for obtaining real data. In that program, events
from the proton-proton collisions (that are a very small fraction of the total) are recorded.
Online selection of events is made from a trigger, and then the recorded events are pro-
cessed and reconstructed. Data is collected from four collision points using seven detec-
tors by different experiments [2] on the 27-kilometer circular ring of the LHC.

Throughout the life of an experiment, simulated data is produced in both fast and
detailed ways in order to compare possible models with the characteristics of the real
events. Then, results from analyses of the collected data are discussed.

In addition to precision measurements of Standard Model observables, experiments
search for new Physics Beyond the Standard Model that could explain some of the previ-
ously mentioned shortcomings of the current model.

For now, a significant amount of data at the LHCb, ATLAS, ALICE and CMS experi-
ments has been taken. ATLAS and CMS are so-called general purpose experiments with
the objective of researching about the origin of masses and Physics Beyond the Standard
Model. While there is no clear sign of confirmed new models of physics for now, it is
expected that some promising results could follow when more experimentation is done.
LHCb instead focuses on B physics, matter-antimatter asymmetry and CP violation. AL-
ICE is a quite different experiment as it investigates Heavy Ion physics.

In this work, we focus on the ATLAS experiment (fig. 1.1), trying to use Deep Gener-
ative Models1 to provide a faster way to simulate physical events. In particular, we focus
on different variants of a particular type of model: the Variational Autoencoders (VAEs),
which have already obtained significant results in similar experiments.

1Unsupervised learning tasks in machine learning that involve learning patterns in input data so that the
model can be used to generate new samples that follow the same patterns found in the original dataset.
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2 Introduction

Figure 1.1. Computer-generated image of the ATLAS detector located at CERN. [3]

1.1 Motivation and problem description

The simulation of physical processes following the Monte Carlo method is usually per-
formed in two steps:

• Firstly, pseudo-random numbers are sampled.

• Secondly, these numbers are transformed by an algorithm into simulated physical
events, which in this case are high energy particle collisions.

Nowadays, a relevant problem with these numerical simulations is their massive
need for computational resources. Because of that, scientific progress related to this topic
is restricted due to the speed of and budget for simulation. For example, the generation
in particle physics experiments of an MC event, including the detector response, may
take up to 10 minutes and depends on non-optimal algorithms like VEGAS [4].

In the next few years, billions of events will need to be generated due to the accu-
mulation of data that will be obtained in the collider. On the one hand, the required
generation times with current methods will be infeasible. On the other hand, if those
methods were used, they would have an enormous impact on the environment in terms
of energy consumption. This makes it imperative to optimize the event generation for it
to be more efficient.

A significant speedup for signal studies could be achieved by accelerating the event
generation pipeline with the help of artificial intelligence and, in particular, Deep Gener-
ative Models. This improvement would allow, for example, more extensive and accurate
searches for signals of Physics Beyond the Standard Model.

However, the use of generative models will allow not only to produce simulated data
in large quantities while saving temporal, energy and economic resources during physics
studies and analysis. It will also allow to make a complete and detailed estimation of sys-
tematic errors. These errors always have to be estimated when measurements of different
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physical magnitudes are made and usually mass productions of simulated data are cre-
ated taking into account the different relevant factors in obtaining these measurements.

Another issue is the inability to specify the properties of the events the simulation
produces exactly. Data analysis often requires the generation of kinematically similar
events to those seen in the data. Current event generators generate a large number of
events and then select the interesting ones, discarding the rest of events. It is of interest
to investigate how to avoid the generation of irrelevant events.

1.2 Objectives

After describing the experiment properties, we define some objectives to achieve as the
result of this work in an effort to overcome some of its current difficulties.

First, we require to create a framework that is suitable for generating events from
existing Monte Carlo data in a similar way to the current methods, taking as the starting
point already generated events (known as ground truth).

Then, the obtained results will be compared with the classical approaches to ver-
ify that our newly designed framework performs similarly regarding data quality (i.e.,
events are generated accurately) while being more efficient in terms of time and/or re-
quired resources.

Finally, several approaches shall be considered to decide which one best suits the
presented purpose, obtaining a balance of efficiency and quality of the generated events.
It is important to obtain event distributions that adjust properly with real Monte Carlo
events.

1.3 Structure of this work

This paper is structured as follows: in the first chapter, we first make a brief explanation
of the problem and its related ongoing experiments at CERN, followed by a description
of the current shortcomings and a description of the defined objectives to accomplish.
Then, in the following chapter, we analyze the current state-of-the-art with a concise
description of classical and similar approaches, together with machine learning solutions
that are close to what we try to achieve.

After that, in chapter three, we describe the dataset that we are working with, detail-
ing the types of events and particles, the information that is recorded for each of them,
and the format in which data is provided. In chapter four we propose our own solution,
attempting to improve the models of the previously mentioned references and obtaining
a valid model that meets the specified objectives. Then, before beginning with the details
of the practical work, we present the technologies that make all the experiments possible.

In chapter six, we present and describe our experimentation results, explaining the
framework for each experiment and focusing on the results and some analysis that guides
the exploration of different models until reaching the best approach. We conclude in
chapter seven with an interpretation of how suitable the chosen approach is for the de-
sired experiment, and which is the best model architecture comparing all the studied
possibilities.





CHAPTER 2

State of the art

Several attempts have been made in the past aiming to detect signals of new physics at
the LHC using supervised and unsupervised machine learning algorithms. For now, no
signal of BSM physics was found, so our methods are crucial to facilitate the investigation
and to create a solid framework for future experiments.

Among the already performed experiments, the closest approach to the study pre-
sented here was a study for the generation of events from a physical process [4], that
already used Deep Generative Models. That study investigated the feasibility of learn-
ing the event generation and the correct frequency of occurrence to produce events like
MC generators. In the beginning, several Generative Adversarial Network architectures
with recommended hyperparameters and the Variational Autoencoder with a standard
normal prior failed to correctly produce events with the right frequency of occurrence.
Finally, a particular VAE setup, the β-VAE, obtained promising results. By buffering
density information of encoded events given the encoder of a VAE, it was possible to
construct a prior for the sampling of new events from the decoder, obtaining distribu-
tions that were in very good agreement with real MC events and were generated several
orders of magnitude faster.

Another relevant event in the scientific community related to this work was The Dark
Machines Anomaly Score Challenge, whose results are detailed in [5]. The dataset used in
our work comes from this challenge, and its properties are detailed in chapter 3. The
challenge aimed to detect signals of new physics at the LHC using unsupervised ma-
chine learning algorithms. First, an implementation of an anomaly score to define model-
independent signal regions was proposed. Then, a wide range of anomaly detection and
density estimation algorithms, developed in the context of the data challenge, was re-
viewed and their performance in a set of realistic analysis environments was measured.
This challenge lays the foundation for new benchmarks and the development of better
approaches for detecting BSM signals.

The ATLAS project team at CERN also investigated in this matter, defining their own
strategy to find potential indications of new physics [6]. In their approach, events were
classified according to their final state into many event classes. For each event class an
automated search algorithm tested whether the data were compatible with the MC sim-
ulated expectation in several distributions sensitive to the effects of new physics. The
significance of a deviation was quantified using pseudo-experiments. A data selection
with a significant deviation defined a signal region for a dedicated follow-up analysis
with an improved background expectation. The analysis of the data-derived signal re-
gions on a new dataset allowed statistical interpretation. The sensitivity of the approach
was discussed using Standard Model processes and benchmark signals of new physics.

5
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To conclude, it is worth mentioning several approaches that were explored in different
areas of the event processing field of study. Regarding event generation, there have been
a wide number of attempts to use GAN-based models [7, 8, 9, 10], but the possibilities
of VAEs have not been explored deeply. Concerning detector simulation, we can find
some GAN-based models [11, 12, 13], but also some VAE-based ones [11, 12, 14]. Also,
in relation to Monte Carlo integration, we observe the use of regression in many studies
[15, 16] and also some attempts to use GANs [17]. Finally, recent research has also been
made in the use of Flow models [18].

2.1 Analysis of the current situation

After analyzing some of the most relevant and recent contributions related to the topic of
the present work, we obtain several relevant conclusions and observe specific facts that
allow us to have a perspective of the status we are at:

• Most physics research has been done using supervised learning methods. In the
last years, unsupervised learning has started to become popular in the community,
so there is still a lot to explore about that topic.

• The study performed in [4] already experimented with VAEs. However, that exper-
iment featured a very limited number of processes.

• The data challenge described in [5] created a solid framework for evaluating the
performance of different event generating approaches, without focusing on a par-
ticular method.

• While there have been many attempts to use GANs for event generation and detec-
tor simulation, the possibilities of VAEs have been less extensively explored.

Taking the previous observations into account, we focus here on exploring the possi-
bilities of unsupervised learning by using VAE-based models while considering a dataset
with a wide variety of SM and BSM processes, trying to create a valid model that can be
trained for any type of process.



CHAPTER 3

The dataset

As mentioned in the previous chapter, the dataset that we used for our experimentation
is one of those generated to be used in The Dark Machines Anomaly Score Challenge [5], and
it can be obtained in [19]. A detailed explanation of the data generation procedure format
is described in [20], but we give here a brief summary with the most relevant details for
our study.

3.1 Data generation

The simulated events are proton-proton collisions similar to those occurring at the LHC at
a center-of-mass energy of 13 TeV1. The generation of events for the signal and the back-
ground processes was performed using classical methods and tools. After generation,
the final-state physics objects as described in table 3.1 were stored in a one-line-per-event
CSV text file.

A collision event results in up to 20 objects, and for each of them the full energy (E),
transverse momentum (pT), pseudo-rapidity (η), and azimuthal angle (φ), are recorded.
An event is stored (i.e., included in the dataset) when at least 1 of the following require-
ments is fulfilled:

• At least one jet or b-jet with pT > 60 GeV and |η| < 2.8

• At least one electron with pT > 25 GeV and |η| < 2.47, except for 1.37 < |η| < 1.52

• At least one muon with pT > 25 GeV and |η| < 2.7

• At least one photon with pT > 25 GeV and |η| < 2.37.

Some additional requirements that impacted the event weight were applied. How-
ever, both in the original data challenge and in this study, that variable is not considered
for simplicity. The requirements on the final objects stored in the dataset were:

• jet or b-jet: pT > 20 GeV and |η| < 2.8

• electron or muon: pT > 15 GeV and |η| < 2.7

• photon: pT > 20 GeV and |η| < 2.37

1Amount of kinetic energy gained or lost by a single electron accelerating from rest through an electric
potential difference of 1 volt in vacuum.
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The aim was to create a flexible dataset that allowed for several types of studies that
might require different selection criteria. The full list of generated processes can be seen
in table 3.2.

Symbol ID Object
j jet
b b-jet
e- electron (e−)
e+ positron (e+)
m- muon (µ−)
m+ antimuon (µ+)
g photon (γ)

Table 3.1. Definition of symbols representing final-state objects of each event.

3.2 Data format

As introduced in the previous section, data is provided in a one-line-per-event CSV file,
where each line has variable length and contains 3 event-specifiers, followed by the kine-
matic features for each object in the event.

Each file corresponds to a process. For each of them, the total number of generated
events is at least the number that is needed for obtaining 10 f b−1 of data2 (N10 f b−1). Ad-
ditionally, when N10 f b−1 < 20000, a second file with 20000 lines is provided. The format
of all CSV files is:

event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1, phi1;
obj2, E2, pt2, eta2, phi2; ...

The event ID is an event specifier. It is an integer to identify the generation of a
particular event for debugging purposes. The process ID is a string referring to the
process that generated the event, as mentioned in table 3.2. The event weight depends
on the cross section for a particular process and the number of events in a single file, but
it is not taken into account in our experiments. These conclude the event specifiers of
each line in the CSV file.

Regarding the kinematic features, the MET and METphi entries are the magnitude Emiss
T

and the azimuthal angle φEmiss
T

of the missing transverse energy vector of the event. These
values represent the transverse energy and azimuthal angle of those objects that gen-
uinely escape detection.

The object identifiers (obj1, obj2, ...) are strings identifying each object in the event,
following table 3.1. Each object identifier is followed by 4 comma-separated values fully
specifying the features of the object: E1 (E), pt1 (pT), eta1 (η), phi1 (φ). The features
correspond with those mentioned in the previous section.

The ordering of particles inside each event shows, in this order: b-jets, jets, leptons,
and photons. Inside each type, they are sorted in descending order according to their pT.
Therefore, in the results section when referring to the leading particle, we consider the
one with the highest pT inside its class.

All of the events are separated by process in 65 files with a total size of 66.5 GB of
data. However, for the experimentation part only the largest files for each type of process

2The inverse femtobarn is a measurement of particle-collision events per femtobarn; a measure of both
the collision number and the amount of data collected (1 f b−1 ≈ 1012 proton-proton collisions).



3.2 Data format 9

were chosen (i.e., for processes that reached 10 f b−1 with less than 20K events, the file
with 20K events was chosen).

SM processes BSM processes
Physics process Process ID Physics process Process ID

pp→ jj njets pp→ g̃g̃ (1 TeV) gluino_01
pp→W±(+2j) w_jets pp→ g̃g̃ (1.2 TeV) gluino_02
pp→ γ(+2j) gam_jets pp→ g̃g̃ (1.4 TeV) gluino_03
pp→ Z(+2j) z_jets pp→ g̃g̃ (1.6 TeV) gluino_04
pp→ tt̄(+2j) ttbar pp→ g̃g̃ (1.8 TeV) gluino_05
pp→W±t(+2j) wtop pp→ g̃g̃ (2 TeV) gluino_06
pp→W± t̄(+2j) wtopbar pp→ g̃g̃ (2.2 TeV) gluino_07
pp→W+W−(+2j) ww pp→ t̃1 t̃1 (220 GeV), mx̃0

1
= 20 GeV stop_01

pp→ t + jets(+2j) single_top pp→ t̃1 t̃1 (300 GeV), mx̃0
1
= 100 GeV stop_02

pp→ t̄ + jets(+2j) single_topbar pp→ t̃1 t̃1 (400 GeV), mx̃0
1
= 100 GeV stop_03

pp→ γγ(+2j) 2gam pp→ t̃1 t̃1 (800 GeV), mx̃0
1
= 100 GeV stop_04

pp→W±γ(+2j) Wgam pp→ Z′ (2 TeV) Zp_01
pp→ ZW±(+2j) zw pp→ Z′ (2.5 TeV) Zp_02
pp→ Zγ(+2j) Zgam pp→ Z′ (3 TeV) Zp_03
pp→ ZZ(+2j) zz pp→ Z′ (3.5 TeV) Zp_04
pp→ h(+2j) single_higgs pp→ Z′ (4 TeV) Zp_05
pp→ tt̄γ(+1j) ttbarGam
pp→ tt̄Z ttbarZ
pp→ tt̄h(+1j) ttbarHiggs
pp→ γt(+2j) atop
pp→ tt̄W± ttbarW
pp→ γt̄(+2j) atopbar
pp→ Zt(+2j) ztop
pp→ Zt̄(+2j) ztopbar
pp→ tt̄tt̄ 4top
pp→ tt̄W+W− ttbarWW

Table 3.2. Generated SM and BSM signal processes with their identification.





CHAPTER 4

Proposed solution

Taking into account the current state of the art as discussed in chapter 2, and after de-
ciding and analyzing the dataset to work with, we propose a solution based in using a
Variational Autoencoder (VAE) to try to obtain relevant results while generating events.

The approach of using VAEs has been chosen due to the existence of less studies
choosing this model and deciding to use GANs instead, mostly due to the complexity of
the theoretical foundations of the former. Together with GANs and Flow models, VAEs
are the most popular and used kind of Deep Generative Models in the AI field, and we
believe that promising results can be obtained with this technique.

When we obtain a model that properly fits the data distribution of our dataset, this
will allow for more extensive searches for signals of Physics Beyond the Standard Model,
making it possible to confirm new theoretical models. A brief description of the theo-
retical concepts that define autoencoders and its evolution into the architecture of VAEs
follows.

4.1 Autoencoders

We define an autoencoder (AE) [21] as a class of Deep Neural Network composed by a
central hidden layer of lower dimension than the input layer, and a target space coin-
ciding with the input space. They can be trained to reconstruct the features of the input
data, with a bottleneck structure that prevents them from simply learning the identity
map. The dimension of the central layer is a critical variable, as it determines the amount
of compression of the features.

The AE architecture is therefore deconstructed into:

• An encoder part, which compresses the input data into the latent space.

• A decoder part, which uses information from the lower dimensional latent space to
extrapolate to the full input space.

This class of DNN has already been used in some High Energy Physics applications,
such as [22]. For instance, an AE trained extensively on SM data and reaching reasonably
low reconstruction errors could be used as an anomaly detection algorithm. When pre-
sented with new data, the model could tag anomalous events from their comparatively
higher reconstruction error.

11



12 Proposed solution

Figure 4.1. Scheme of the internal structure of a Variational Autoencoder. [23]

4.2 Variational Autoencoders

A Variational Autoencoder (VAE) [23, 21] can be defined as a class of autoencoder archi-
tecture whose encodings distribution is regularised during the training process to avoid
overfitting and to guarantee that its latent space has good properties, allowing to gener-
ate new data from arbitrary numbers. The term variational comes from the close relation
that exists between the regularisation and the variational inference method known in
statistics.

Similarly to a standard autoencoder, the architecture of a VAE (fig. 4.1) is composed
of both an encoder and a decoder. However, in this approach the output is equal to the
input, so the model is trained to minimise the reconstruction error between the encoded-
decoded data and the initial data.

In order to introduce some regularisation of the latent space, during the encoding-
decoding process a small modification is made: instead of encoding an input as a single
point, it is encoded as a distribution over the latent space. Here, the bottleneck layer is
generated by letting the encoder output two numbers per latent space dimension, which
generally represent a mean and standard deviation for a normal distribution. This way,
we ensure both a local (variance) and global (mean) regularisation of the latent space.

We can describe the training process as follows. First, the input is encoded as a dis-
tribution over the latent space. Then, a point from the latent space is sampled from that
distribution. After that, the sampled point is decoded and the reconstruction loss can be
computed. Finally, the error is backpropagated through the network.

The loss function that is minimised when training a VAE is composed of a recon-
struction term (on the final layer), that tends to improve the performance of the encoding-
decoding scheme, and a regularisation term (on the latent layer), that is proportional to the
Kullback-Leibler (KL) divergence and tends to regularise the organisation of the latent
space by making the distributions returned by the encoder close to a standard normal
distribution.

4.2.1. β-VAE

In some cases, assigning the same importance to both terms of the loss function does not
give proper results. In order to circumvent this problem, sometimes it is a good approach
to balance out the relative importance of the reconstruction term and the regularisation
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(KL-divergence) term. To do so, a term β is sometimes introduced as a hyperparameter
to control this relative importance. The loss function then becomes:

LVAE = (1− β)MSE + βKL (4.1)

The version of Variational Autoencoders using this form of the loss function are known
as β-VAE. We propose using this kind of model for generating accurate MC events during
our experimentation, as it is described in section 6.

4.2.2. α-VAE

In this work, we also present a new approach consisting of an alternative model of Vari-
ational Autoencoder. This version, that we call α-VAE, features some differences when
compared to the previously described β-VAE.

The main feature is that, after encoding the input in the usual way, and together with
a normal distribution with µ = 0 and σ = α, it adds Gaussian noise to the latent rep-
resentation of the input data. This effectively replaces the Kullback-Leibler divergence
layer.

We introduce this kind of model for generating events during our experimentation,
also describing our implementation details, in section 6.5.

4.3 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) [24] is a parametric probability density function rep-
resented as a weighted sum of Gaussian component densities. They are commonly used
as a parametric model of the probability distribution of continuous measurements or fea-
tures in unsupervised learning. The parameters are estimated from training data using
the Maximum A Posteriori (MAP) estimation from a well-trained prior model or the iter-
ative Expectation-Maximization (EM) algorithm.

In our case, we use a Bayesian Gaussian Mixture Model (BGMM), that implements a
variant of the GMM with variational inference algorithms. The implementation included
in Scikit-learn includes two types of prior for the weights distribution: a finite mixture
model with Dirichlet distribution, and an infinite mixture model with the Dirichlet Process.
In practice, the latter is approximated and uses a truncated distribution with a fixed max-
imum number of components. The number of components actually used almost always
depends on the data.

The relevant parameters considered here were the type of the weight concentration
prior explained before, the number of maximum components to use, and the type of
covariance parameters to use. Regarding this last aspect, there were four possible choices,
from which we focused on two of them:

• Full, where each component has its own general covariance matrix

• Diagonal, where each component has its own diagonal covariance matrix

• Tied, where all components share the same general covariance matrix

• Spherical, where each component has its own single variance
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After initially deciding to focus on the full and diagonal covariance matrix choices, in
the end only the first option was used due to noticing a high correlation in the different
variables.

It must also be noted that the number of components is strongly related with the train-
ing time, increasing noticeably when the number of components increased, and therefore
not allowing to perform as many experiments as it would be desirable due to time limi-
tations.



CHAPTER 5

Used technologies

After many years of study and development, today we can find a large number of li-
braries and tools that make developing models and testing different configurations in
the field of AI very straightforward.

During the development of this project, several software and hardware tools (fig. 5.1)
have been chosen to help building and training the designed models without requiring
to know all the theoretical foundations and low-level implementation details.

5.1 Software environment

Regarding the software environment, the system used during our work was Linux-based,
and every experiment was coded using Python. This language was chosen as it is the
most widely used language in the field with support from all major libraries.

5.1.1. Model definition and training

For our experimentation, Tensorflow and Keras were chosen as the libraries for model
definition and training, effectively defining a solid framework for running the whole
process. Together with both of these libraries, Scikit-learn was also used to include the
BGMM component into the architecture.

TensorFlow [26] is a flexible and scalable software library for numerical computations
using data-flow graphs. This library and related tools enable users to efficiently program
and train neural network and other machine learning models and deploy them to pro-
duction. The core algorithms of this library are written in highly optimized C++ and
CUDA, a parallel computing platform and API created by NVIDIA. It has APIs available

Figure 5.1. Used software and hardware technologies diagram. [25]
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in several languages, being the Python implementation the most complete and stable one.
Other officially supported languages include JavaScript, C++, Java, Go, and Swift.

Keras [27] is a compact and easy-to-learn high-level Python library for deep learning
that runs on top of TensorFlow, which acts as the backend. It allows developers to focus
on the main concepts of deep learning, such as creating layers for neural networks, while
taking care of the internal details of tensors, their shapes, and their mathematical partic-
ularities. Keras allows running deep learning applications without interacting with the
relatively complex TensorFlow. There are two major kinds of framework: the sequential
API and the functional API. The sequential API is based on the idea of a sequence of
layers and is the most commonly found.

Scikit-learn [28] is a Python module integrating a wide range of state-of-the-art ma-
chine learning algorithms for medium-scale supervised and unsupervised problems. It
focuses on bringing machine learning to non-specialists using a general-purpose high-
level language. Emphasis is put on ease of use, performance, documentation, and API
consistency. It has minimal dependencies and its use is encouraged in both academic and
commercial settings. In this work, it was mainly used to implement Bayesian Gaussian
Mixture Models as a component of the different experimentation frameworks that we
designed.

5.1.2. Data representation

For determining the quality of the obtained results and for evaluating whether they reach
the desired objectives, a visual and easy to analyze data representation must be created.
To do so, several well-known libraries and software were also used in this work. Pre-
cisely, we used Matplotlib and Netron to display our data results and model architec-
tures, respectively.

Matplotlib [29] is a 2D plotting and imaging Python package aimed primarily at vi-
sualization of scientific, engineering, and financial data. It can be used from the Python
shell or scripts, or embedded in a GUI application. Many popular hardcopy outputs are
supported including JPEG, PNG, PostScript and SVG. Features include the creation of
multiple axes and figures per page, interactive navigation, many predefined line styles
and symbols, images, antialiasing, alpha blending, date and financial plots, W3C com-
pliant font management and FreeType2 support, legends and tables, pseudocolor plots,
mathematical text and more.

Netron is a multiplatform software designed to be a viewer for neural network, deep
learning and machine learning models that creates an easy-to-understand diagram rep-
resenting the distribution of layers of such model, allowing to identify its different parts
and showing basic information about every component. It also allows exporting the
model schemes into popular formats such as SVG or PNG.

5.2 Hardware infrastructure

The training and testing process of an AI model requires performing a high amount of
calculations of a particular type, and it usually needs to repeat experiments while trying
different configurations. Concerning hardware, GPUs are the most optimal device to
compute the required calculations, achieving a higher performance when compared with
CPUs.

Because of that, the hardware infrastructure devoted to this project consisted of a
server featuring 128 GB of DDR4 RAM memory and two high-performance NVIDIA
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Figure 5.2. NVIDIA TU104 graphics chip scheme. [30]

GeForce RTX 2080 graphics cards, that include the TU104 chip (figure 5.2) with several
machine learning specifically designed components, and feature 2944 CUDA cores each.

However, the server also had a high-performance CPU: the Intel Core i7-7800X, with 6
cores and 12 threads running at 4 GHz. This processor was crucial for training the BGMM
component of our models, that was not implemented with GPU processing support.

The availability of these computing resources was possible thanks to the infrastruc-
ture located at the Pattern Recognition and Human Language Technology (PRHLT) re-
search center, which belongs to the Universitat Politècnica de València.





CHAPTER 6

Experimentation

In this section we describe the development and experimentation that was carried out
following the proposed solution detailed in chapter 4 and using the technologies that
were described in chapter 5, analyzing the results of each experiment.

Before getting into details of the different approaches, we first specify some details
about the required data partitioning of our large dataset, and the preprocessing that was
applied following the observations of that analysis.

6.1 Data partitioning

The dataset used for all the experiments contains a large amount of data, with a total of
66.5 GB, as it was described in chapter 3. Although a plain text representation of the data
would fit into the system that we used, which contained 128 GB of main memory, the
internal representation required together with the applied preprocessing to train some of
the models made the data size too big for our machine. Moreover, it is always desirable
to perform some optimization in order to load in memory only the data that is useful at
every moment to the model and not the whole dataset.

Because of that, it was needed to develop a strategy to process this dataset by loading
small portions or batches of data, one at a time, using every file uniformly. To do so,
we created our own implementation of the Sequence1 class provided by the TensorFlow
library. This class allows their instantiated objects to be provided as the input and output
of Keras models, and provides the interface of the required functions to handle batch
processing appropriately.

The class has a variable representing the batch size2, another one defining the total
amount of batches, and it also includes every file opened (but not loaded in memory) to
extract events from it on demand. When the model requests a batch to be loaded, the
list of files is traversed as a circular array, obtaining 1 event from each file (fig. 6.1), and
therefore ensuring to load events from every file distributing them equally. Furthermore,
when the end of a file is reached it is also treated as a circular array of lines, and its internal
pointer returns to the beginning. In this way, we avoid to penalize processes with a
smaller amount of events.

In all our experiments, we used a batch size of 10000 events and 1000 batches in each
epoch3, meaning that VAEs received a total of 107 events per epoch.

1https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence
2Amount of events included in each batch.
3Hyperparameter that defines how many times the learning algorithm goes through the training dataset.
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Figure 6.1. Representation of the circular buffer of open files when creating a batch.

6.2 Data analysis and preprocessing

Before performing any experiment, the dataset was first analyzed to see if the different
variables followed any known distribution. After considering separately all kinds of
particles that can be found in the events (listed in table 3.1) it was then observed that,
among the four features that describe each particle, E and pT seemed to have the shape
of a log-normal distribution4 as it can be seen in figs. 6.2 and 6.3, and φ followed a
uniform distribution, while η did not seem to describe any known shape. Most of the
histograms that were generated during this data analysis process are available in annex
D.

Figure 6.2. Histogram of b-jet object parame-
ter E in the whole SM dataset.

Figure 6.3. Histogram of b-jet object parame-
ter E after applying log10 in the SM dataset.

Then, after carrying out the described analysis, the data was converted to a proper
format to be provided as input to our model, applying some transformations as a con-
sequence of the previously obtained information. First, it was decided that each event
would be described as a tensor composed of 20 objects with four features per object.

Apart from the object types described in table 3.1, the MET and METphi values were
included as a special type of object with E = MET and φ = METφ, leaving the other
values set to 0. After that, if an event consisted of k < 20 objects, the (20− k) remaining
objects were filled using a special mask object, with a special ID and all fields set to 0.

4Continuous probability distribution of a random variable whose logarithm is normally distributed.
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In each object, the features E and pT were converted into log10E and log10 pT, and
the symbol ID was represented using One-Hot Encoding5. The reason for this last choice
instead of a numerical constant was to avoid the algorithm to misinterpret that constant
as having some meaning apart from a simple identification of the object.

After applying these transformations, the final format of an event would be:

(0, 0, 0, 0, 0, 0, 0, 1, 0) (log10MET, 0, 0, METφ), MET/METφ special object
(x, x, x, x, x, x, x, x x) (log10E, log10 pT, η, φ), Particle object
(x, x, x, x, x, x, x, x x) (log10E, log10 pT, η, φ), Particle object
... ,
(0, 0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0) Mask special object

where there is a total of 20 objects, and the vectors filled with x characters represent
the One-Hot Encoding of the different objects present in each event. The result is a tensor
of dimension 20x9 containing object identification, and another one of dimension 20x4
containing object features. With the data already analyzed and converted to a format that
is ideal for our experiments, we can begin trying different configurations of our model.

6.3 Experiment I: Initial model

In our investigation to find the optimal model for generating events, we decided to focus
in using one kind of event from the Standard Model which had lots of event samples:
ttbar, and then to apply that model to other types of events. In this process, defined in
table 3.2, the proton collision produces two top quarks which decay to other particles.

The model that we first designed for generating the events features a β-VAE and a
BGMM as its main components. The whole process is divided in three steps, and is
followed by the evaluation part.

First, a Variational Autoencoder is trained for 100 epochs using all the events of the
ttbar dataset (fig. 6.5). This VAE has three sub-components, unlike the usual autoencoder
architectures. This design choice was made for convenience, in order to connect some
VAE components with the BGMM in further steps. Our implementation is structured as
follows (fig. 6.4):

• an encoder, which transforms the input data in the format described in section 6.2
into an encoded representation in the latent space, producing the logarithm of the
variance and mean vector for all latent space dimensions as outputs.

The encoder of this first model features a Flatten layer, followed by two blocks com-
posed by a Dense layer of 512 nodes and a ReLU activation function, all of it applied
to each of the two inputs separately. Then, both inputs are concatenated and two
blocks of a Dense layer with 512 nodes + a ReLU activation function are applied
after the concatenation. After that, a Dense layer of twice the latent dimensional-
ity (20x8) together with Batch Normalization is added to the model. Finally, we
put two Dense layers of as many nodes as the latent dimensionality to sample the
means and logarithms of the variance, providing the data that the next component
requires.

• a variator, that receives the outputs of the encoder and, together with a randomly
generated ε from a normal distribution with µ = 0 and σ = 1, calculates the
Kullback-Leibler divergence and outputs z, calculated as follows:

5A vector with as many values as the amount of different objects where, for each object, a 1 is placed in
the position in which that object ID belongs, leaving the others with 0.
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(a) Encoder

(b) Decoder

Figure 6.4. VAE architecture scheme for the initial model (variator omitted for simplicity).

z = (ε ∗ elog(σ2)∗0.5) + µ

The dimensions of the z tensor match the latent dimensionality. The variator com-
ponent is usually part of the encoder in most implementations.

• a decoder, that transforms the encoded data from the latent space back into its
original dimensions.

The decoder of this approach is composed by two blocks of a Dense layer of 512
nodes, followed by a ReLU activation layer. Then, the output is divided into the
particle type and particle layer tensors, with a Dense layer of 512 nodes in each +
a ReLU activation function, followed by another Dense layer with linear activation
of 20x9 = 180 and 20x4 = 80 nodes respectively, connected to a Reshape layer to
unflatten the data. In the case of the particle type, a final Softmax activation layer is
included.
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Figure 6.5. Training the β-VAE using events from type T.

Figure 6.6. Training one BGMM per event type using encodings from the β-VAE.

Our VAE used Categorical Crossentropy as the loss function for the particle type detec-
tion, and the Mean Squared Error for learning the different object features. See appendix
B for a detailed description of loss functions.

It must be noted that a variant of this VAE using Batch Normalization after some of
the Dense layers was also tested, but it was finally discarded due to the lack of improve-
ment in the results.

Second, the already trained encoder is detached from the rest of the VAE and its out-
put becomes the input of a Bayesian Gaussian Mixture Model (fig. 6.6) in form of 200K
generated encoded events. This BGMM is trained for a particular type of process, cre-
ating a model that is capable of generating valid encodings for that particular kind of
events.

Third, the output of each BGMM is connected to the rest of the previously trained VAE
(fig. 6.7), producing new event encodings that can be decoded into the desired events.

Once this procedure is defined, we can now test several VAE configurations and
tweak the parameters of the model to look for the optimal one.

Several tests were performed, combining different values of β with a varying number
of BGMM components γ, but always using a full covariance matrix for each component.
In particular, the following values for both variables were tested:

β ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.5}
γ ∈ {10, 50, 100}

Figure 6.7. Sampling from the BGMM of events of type T using the β-VAE.
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It must be noted that BGMMs took a considerably higher training time when com-
pared to the previous experiment, mainly due to the fact that the used libraries did not
allow to use the GPU hardware for this process.

6.3.1. Training results

Figure 6.8. Histogram of first jet object pa-
rameter E with ttbar events (β = 0.01, γ = 50).

Figure 6.9. Histogram of first jet object pa-
rameter φ with ttbar events (β = 0.01, γ = 50).

The results, in this case, showed similar distributions in most particles (see figure
6.8) when comparing the original data with simulated events. However, there were still
some differences that needed to be corrected, and, most importantly, data that followed
uniform distributions was represented with normal distributions (see figure 6.9) in the
simulation process.

A slight modification was considered: it consisted in taking particle feature values,
calculating statistics (mean and standard deviation) to normalize them, scaling particle
features before passing them as an input to the model, and then unscaling them after
obtaining the model output. However, this modification did not improve the results so it
was discarded.

All the results of this experiment for β = 0.01 and γ = 50 are available in appendix
E.1. With these results so far, we decided that a change in the model architecture was
required in order to allow the model to learn uniform distributions accurately, leading to
the following experiment.

6.4 Experiment II: Input subdivision

In the previous experiment, data was passed into the model using two inputs plus a third
one that represented a random normal distribution to add variability. Considering the
obtained results, we decided that it was needed to subdivide input data in more detail.

As we described in section 6.2, every event has two attributes: MET and METphi, repre-
senting the missing transverse energy, and we included them into the data as an special
type of particle, mixing it with the rest of particles that formed the event, and adding two
particle features with a fixed 0 value. Now, those attributes were no longer considered
as a particle and that information was included as a third data input, separated from the
rest of the event.

This implies that the maximum amount of particles that an event could have was
reduced to 19, and that the number of different types of particle was reduced to 8, so input
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(a) Encoder

(b) Decoder

Figure 6.10. VAE architecture scheme in experiment II (variator omitted for simplicity).

dimensions were adjusted accordingly. Now, the model had three data inputs together
with the random normal distribution that we mentioned previously.

With this modified architecture (represented in figure 6.10), several new experiments
were executed: first, some of them without using BGMMs, and then including that com-
ponent again. This decision was made because we noticed in experiment I that one of the
main needs here was to adjust properly to uniform distributions, an aspect that BGMMs
were not able to correct by themselves, and had no apparent reason to occur.

6.4.1. Without BGMMs

The results in this first stage of the experiment without using Bayesian Gaussian Mixture
Models provided some interesting simulations. Once again, different values of β were
tested, particularly β ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 1}, obtaining a wide variety of
results. The full result set can be seen in appendix E.2.1.
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Figure 6.11. Generating events with the β-VAE without using BGMMs.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.12. Histograms of MET event parameter in experiment II with different β values.

First of all, by separating MET and METphi into a different input we achieved an almost
perfect simulation regarding those event features for all tested values of β ≤ 0.7 (even
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in the uniform distribution that the METphi feature follows), as we can observe in figures
6.12 and 6.13.

Here, some small differences in the results (results get worse with β = 0.001 and then
better again with β = 0.01) could be due to the stochastic nature of the experiments, that
are executed using random sampling each time, and therefore repeating an experiment
twice with the same configuration could lead to slightly different results.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.13. Histograms of METphi event parameter in experiment II with different β values.

We can observe that, as the value of β increases, the MSE is almost removed from the
loss function, effectively rendering the decoder useless when it reaches 1.0, which proved
to be very ineffective.
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Regarding particle features, we noticed that values of β > 0.01 generated events that
contained particles with distributions that were notably worse than all of the previously
shown experiments. The result was drastically different for low values of β, where we
finally achieved a great result learning uniform distributions properly after several tries,
apart from a great adjustment to the rest of distributions.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.14. Histograms of first jet parameter E in experiment II with different β values.

Analyzing the E particle feature of the first jet, we can see a great fit of the data when
compared to the original MC events in the range of β ∈ [0.0; 0.01]. However, as β in-
creases, the values of the generated events focus on the central part of the Gaussian dis-
tribution. Finally, when β = 1.0, the values are too different from the original MC events
to be represented together.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.15. Histograms of first lepton parameter E in experiment II with different β values.

Observing the E particle feature of the first lepton, we can see a similar behaviour
to the one of the first jet: data fits properly when compared to the original MC events
if β ∈ [0.0; 0.01], but when it increases, the values of the generated events focus on the
central part of the Gaussian distribution, reaching a value where data is too different to
be represented together.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.16. Histograms of first jet parameter η in experiment II with different β values.

Here, in the η particle feature of the first jet, we can see a better fit in the range of
β ∈ [0.0; 0.01], and the results for β = 0.1 are not bad either. However, when β > 0.1,
the values of the generated events focus heavily on the central part of the Gaussian dis-
tribution. Finally, when β = 1.0, the values seem to describe two Gaussian distributions
mixed together, that do not match the original data distribution.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.17. Histograms of first lepton parameter η in experiment II with different β values.

The η particle feature of the first lepton achieves to model the original MC data in
the range of β ∈ [0.0; 0.1]. However, when β > 0.1, the values of the generated events
get worse drastically, focusing heavily on the central part of the Gaussian distribution.
Finally, when β = 1.0, the values seem to describe three Gaussian distributions mixed
together, that are very different from the original data distribution.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.18. Histograms of first jet parameter φ in experiment II with different β values.

The φ particle feature of the first jet is our first result with a uniform distribution in
the original MC data (known as ground truth). Analyzing the generated events, we can
see a great fit of the data that models the uniform distribution properly when compared
to the original MC events in the range of β ∈ [0.0; 0.01]. As β increases, the values of
the generated events first seem two normal distributions mixed together. Finally, when
β = 1.0, the values are a normal distribution that is not related with the original values
at all.

It is worth mentioning that φ and METphi data are present for validation purposes,
as they should resemble a uniform distribution for the results to be considered correct.
However, its physics meaning is not of high relevance.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.19. Histograms of first lepton parameter φ in experiment II with different β values.

The φ particle feature of the first lepton also achieves a great fit of the data that models
the uniform distribution properly in the range of β ∈ [0.0; 0.01]. This time, as β increases,
the values of the generated events get worse faster than in the case of jets: they quickly
become many Gaussian distributions mixed together, and when β ≥ 0.5, the values are
again a Gaussian distribution.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.20. Histograms of first jet parameter pT in experiment II with different β values.

Analyzing the pT particle feature of the first jet, we can see that data fits properly
when compared to the original MC events when β ∈ [0.0; 0.01] (even though there is a
small shift to the left in the distribution). However, when it increases, the values of the
generated data that were in the right tail of the distribution seem to move to the central
part. Finally, data reaches values where it is too different to be represented together with
the original MC simulated events.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

(e) β = 0.5 (f) β = 1.0

Figure 6.21. Histograms of first lepton parameter pT in experiment II with different β values.

Finally, observing the pT particle feature of the first lepton, we see that from the lowest
β value, the values from the right and left tails of the ground truth events distribution are
located in the central part of the generated events distribution. This effect is more evident
as β increases, reaching a point where data is too different to be represented together.
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Considering the previous analysis, we conclude that in this case the weight assigned
to the Kullback-Leibler divergence in the loss function of our β-VAE must be significantly
lower when compared to the one of the MSE for the results to be acceptable.

Here, the decoder received as input the latent representation of encoded events and a
value ε, sampled from a normal distribution, to add variability and generate new events.
Another option was to provide the decoder with randomly generated values for the latent
representation instead of values from already existing (encoded) events. This last option
was discarded as it obtained very low quality results due to a lack of information given
to the decoder, even though this component was already trained.

6.4.2. With BGMMs

After analyzing the promising results obtained by the variant of this model without
Bayesian Gaussian Mixture Models, we decided to include that component again to check
whether the obtained results could improve further.

We used the same values of β than in the previous approach, and γ = 100 with
full covariance matrices. A comparison of the most relevant results is presented here.
However, the full result set can be seen in appendix E.2.2.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.22. Comparison of MET event parameter with and without BGMMs (γ = 100).

Observing the MET values of all the events, we can see that both the BGMM and non-
BGMM approaches model the data accurately (considering a certain margin of error).
Nevertheless, in the ratio histogram we see the non-BGMM model performing better.
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(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.23. Comparison of METphi event parameter with and without BGMMs (γ = 100).

When comparing the METphi values, here the result varies significantly, as the great fit
to the uniform distribution that was achieved in the previous non-BGMM model is lost.
The results when β = 0.0 still maintain a great ratio with respect to the original MC data.
However, as β increases, the previously obtained almost-uniform distribution turns into
several normal distributions mixed together.

(a) β = 0.0 (b) β = 0.001
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(c) β = 0.01 (d) β = 0.5

Figure 6.24. Comparison of first jet particle feature E with and without BGMMs (γ = 100).

The E particle feature of the first jet concentrates a few values of the right tail of
the original distribution in the central and left part, obtaining worse events than the non-
BGMM variant. When β > 0.01, the data groups in the middle of the original distribution.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.25. Comparison of first lepton particle feature E with and without BGMMs (γ = 100).

In the E particle feature of the first lepton we find a similar distribution in the BGMM
and non-BGMM variant when β ∈ [0.0; 0.001]. When β = 0.01, we obtain a more ’flat’
distribution when compared with the non-BGMM variant, that still does not adjust prop-
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erly to the ground truth data. When β > 0.01, the same centering effect that happened
with the first jet occurs.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.26. Comparison of first jet particle feature η with and without BGMMs (γ = 100).

Comparing the η particle feature of the first jet, we lose the great fit that we obtained
in the non-BGMM variant, resulting in a more spiky distribution that concentrates some
values from the tails of the ground truth distribution in the center of the generated events.
When β > 0.01, almost all values are in the two middle bars of the histogram, all grouped
without a clear distribution.

(a) β = 0.0 (b) β = 0.001
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(c) β = 0.01 (d) β = 0.5

Figure 6.27. Comparison of first lepton particle feature η with and without BGMMs (γ = 100).

The η particle feature of the first lepton behaves similarly than what was observed for
the first jet. Nevertheless, in this case when β ∈ [0.0; 0.001], the results are equivalent to
those obtained in the non-BGMM variant.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.28. Comparison of first jet particle feature φ with and without BGMMs (γ = 100).

Regarding the φ particle feature of the first jet, the accurate fit to the uniform dis-
tribution achieved in the previous non-BGMM model is also lost, resembling now to a
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normal distribution. This also happened (but more softly) in the METphi case. The effect
is present already in the smallest β values.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.29. Comparison of first lepton particle feature φ with and without BGMMs (γ = 100).

In the φ particle feature of the first lepton, we find a resemblant behaviour to that of
the same feature of the first jet. The difference is that now, when β > 0.01, the generated
events define a Gaussian distribution that is very dissimilar to the uniform distribution
of the original MC events.

(a) β = 0.0 (b) β = 0.001
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(a) β = 0.01 (b) β = 0.5

Figure 6.31. Comparison of first jet particle feature pT with and without BGMMs (γ = 100).

The pT particle feature of the first jet presents a similar distribution to the non-BGMM
variant in all cases: some of the data in the middle of the original distribution is in the
left tail of the generated events distribution when β ∈ [0.0; 0.01]. Finally, when β ≥ 0.5,
we notice some data in the right tail of the original distribution now in the central part of
the generated data.

(a) β = 0.0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.5

Figure 6.32. Comparison of first lepton particle feature pT with and without BGMMs (γ = 100).
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The pT particle feature of the first lepton behaves similar to the non-BGMM variant
when β ≤ 0.001. In β = 0.01, we notice a more similar distribution to the original data
than the one obtained in the non-BGMM model (with some values in the right tail of
the original distribution moved into the central part of the generated data distribution).
Finally, when β ≥ 0.5, the generated events define a distribution that is very different to
the original MC events.

All things considered, we conclude that with this model including the BGMM is not
beneficial and does not help correcting the inability to adjust to the uniform distributions:
a problem that was present in all the previous experiments and is resolved in the non-
BGMM variant. The reason for this could be the need to add more components (γ), but
additional experimentation regarding this topic was not possible due to a lack of time.

6.5 Experiment III: Introducing the α-VAE

For the last experiment, we used our alternative model of Variational Autoencoder de-
scribed in section 4.2.2: the α-VAE, first to generate events by itself, and then together
with a BGMM. The whole event generation process was again divided in different steps.

In both variants, first our new VAE model is trained focusing in only one kind of
event for 30 epochs (fig. 6.33), as we noticed that results did not change much when
reducing the number of epochs to that number. This α-VAE has three sub-components,
and features some differences when compared to the previously used β-VAE. This design
choice allows to connect some VAE components with the BGMM in further steps.

Figure 6.33. Training the α-VAE using one kind of event.

Our implementation takes as a starting point the one depicted in figure 6.10 with
some changes to the inputs and outputs of the components, and is structured as follows:

• an encoder, which transforms the input data in the format described in section
6.2 into an encoded representation in the latent space z, producing this encoded
representation as its unique output.

• a variator, that receives the output of the encoder and, together with a normal dis-
tribution with µ = 0 and σ = α, adds Gaussian noise to the latent representation
and outputs ẑ.

The dimensions of the ẑ tensor match the latent dimensionality z. The variator
component is usually part of the encoder in most implementations.

• a decoder, that transforms the encoded data from the latent space back into its
original dimensions. This component is identical to that of the β-VAE.

This VAE used Categorical Crossentropy as the loss function for the particle type detec-
tion, and the Mean Squared Error for learning the different object features (including MET
and METphi).
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Once the α-VAE is trained, each variant of the experiment follows a different proce-
dure. The selected values of α to run the experiments were α ∈ {0.1, 0.2, 0.3}.

6.5.1. Without BGMMs

Figure 6.34. Generating events with the α-VAE without using BGMMs.

In the non-BGMM variant, the already trained α-VAE is used to generate encodings of
events that are then altered with Gaussian noise and then decoded into newly generated
events, as depicted in figure 6.34. Here, we compare all the chosen α values for each event
and particle features, and the full result set can be seen in appendix E.3.1.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.35. Histograms of MET event parameter in experiment III with different α values.

First, examining the MET event feature we can observe a great fit for all values of α.
Here, the results get slightly better as α increases, contrary to what was previously the
case when using the β-VAE.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.36. Histograms of METphi event parameter in experiment III with different α values.

Observing the METphi event feature, the effect is similar to what happened before in
the MET feature. This almost perfect adjustment was obtained obtained by separating both
of these event features into a separate input layer.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.38. Histograms of first jet parameter E in experiment III with different α values.

Here, in the E particle feature of the first jet, the adjustment to the original MC data
distribution is also pretty accurate, with the exception of some data from the right tail of
the original distribution moving into the left tail of the generated one.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.39. Histograms of first lepton parameter E in experiment III with different α values.

Analyzing the E particle feature of the first lepton, we see that some data from the left
and right tails of the original distribution is concentrated in the middle of the generated
one. Despite that, the result is an acceptable fit that does not change as α increases.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.40. Histograms of first jet parameter η in experiment III with different α values.

The η particle feature of the first jet in this experiment features a very similar distri-
bution when compared to the ground truth data, only losing a few values from the middle
of the distribution. We notice that the ratio is always close to 1.0 and the effect of α is not
relevant once again.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.42. Histograms of first lepton parameter η in experiment III with different α values.

The η particle feature of the first lepton, however, shows a difference when the value
of α increases, improving the results a bit. Even though this change is noticeable in this
case, the results are great for all values of α.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.43. Histograms of first jet parameter φ in experiment III with different α values.

Analyzing the φ particle feature of the first jet, we observe that the model learns how
to adjust to the uniform distribution very accurately, only showing some differences in
the sides of the generated distribution. The ratio holds stable values around 1.0.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.44. Histograms of first lepton parameter φ in experiment III with different α values.

The φ particle feature of the first lepton has a very similar behaviour to the one of the
same feature of the first jet, and shows an accurate adjustment to the original data, also
having a uniform distribution.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.46. Histograms of first jet parameter pT in experiment III with different α values.

Observing the pT particle feature of the first jet, we see a small shift of the values
of the right tail to the left, that are probably represented in the left tail of the generated
values. The ratio is not as stable as some other features.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.47. Histograms of first lepton parameter pT in experiment III with different α values.

Regarding the pT particle feature of the first lepton, this time we see that for all values
of α, the values from the right and left tails of the original MC events distribution are
located in the central part of the generated events distribution.
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In general, the results using this approach were very accurate and showed that this
version of VAE has great potential when generating events from already existing ones.

6.5.2. With BGMMs

In the BGMM variant, the already trained encoder from the first step is detached from
the rest of the VAE and its output becomes the input of a Bayesian Gaussian Mixture
Model (fig. 6.48) in form of 200K generated latent representations. This BGMM is trained,
creating a model that is capable of generating valid encodings for simulated events.

Figure 6.48. Training the BGMM using the generated latent representations from the α-VAE.

Then, the output of the BGMM is connected to the rest of the previously trained VAE
(fig. 6.49), producing new event encodings that can be decoded into the desired events.

Figure 6.49. Sampling from the BGMM to generate events from the α-VAE.

When this procedure was properly defined, we tested several α-VAE configurations to
look for the optimal one. Many tests were performed, combining the previously specified
values of α with a different number of BGMM components γ ∈ {10, 20, 50, 100}, always
using a full covariance matrix for each component.

We noticed that for a number of components γ ≥ 20 the results are very similar so, for
the results to be easily comparable, we show here a comparison using only γ ∈ {10, 100}.
However, the full result set can be found in appendix E.3.2.

(a) α = 0.1 (b) α = 0.2
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(c) α = 0.3

Figure 6.50. Comparison of MET event parameter with (•, •) and without (•) BGMMs.

Comparing the MET values of all the events, we observe that both the BGMM and non-
BGMM approaches model the data accurately (with a certain margin of error). However,
in the ratio histogram we see the non-BGMM model being more stable.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.51. Comparison of METphi event parameter with (•, •) and without (•) BGMMs.

Observing the METphi values, here the result varies significantly, as the adjustment to
the uniform distribution that was achieved in the non-BGMM model is no longer present.
The data for all values of α turns into several normal distributions mixed together.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.52. Comparison of first jet parameter E with (•, •) and without (•) BGMMs.

In the E particle feature of the first jet, we see a few values of the right tail of the
original distribution grouped in the central and left part of the generated data, obtaining
worse events than the non-BGMM variant. When γ = 100, the distribution is more spiky
and concentrates more values in the middle part.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.54. Comparison of first lepton parameter E with (•, •) and without (•) BGMMs.

The E particle feature of the first lepton shows a similar distribution in both variants
when γ = 100. Nevertheless, when γ ≥ 20, we obtain a more ’flat’ distribution in the
BGMM variant, that still does not adjust properly to the original MC data.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.55. Comparison of first jet parameter η with (•, •) and without (•) BGMMs.

Analyzing the η particle feature of the first jet, we lose once again the accurate fit
obtained in the non-BGMM variant, resulting in a distribution that concentrates some
values from the tails of the ground truth distribution in the center of the generated events.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.56. Comparison of first lepton parameter η with (•, •) and without (•) BGMMs.

The η particle feature of the first lepton behaves similarly than the first jet, reaching a
better adjustment without using a BGMM and with a more stable ratio. However, in this
case when γ ≥ 20, the results are closer to those obtained in the non-BGMM variant.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.58. Comparison of first jet parameter φ with (•, •) and without (•) BGMMs.

Regarding the φ particle feature of the first jet, here the great fit to the original MC data
distribution that was achieved in the previous non-BGMM model is also lost, similarly
than what happened in the METphi case.

(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.59. Comparison of first lepton parameter φ with (•, •) and without (•) BGMMs.

In the φ particle feature of the first lepton, we find a resemblant behaviour when
compared to the first jet. The uniform distribution is also transformed into a normal one,
being the use of a BGMM the most probable reason of this effect.
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(a) α = 0.1 (b) α = 0.2

(c) α = 0.3

Figure 6.60. Comparison of first jet parameter pT with (•, •) and without (•) BGMMs.

Analyzing the pT particle feature of the first jet, we see that it presents a similar dis-
tribution to the non-BGMM model for most combinations of α and γ: some of the data in
the right tail of the original distribution is in the left tail of the generated events. Finally,
when α = 0.3 and γ = 10, we notice a more ’flat’ shape, concentrating some values from
the middle part of the MC events distribution.

(a) α = 0.1 (b) α = 0.2
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(a) α = 0.3

Figure 6.62. Comparison of first lepton parameter pT with (•, •) and without (•) BGMMs.

The pT particle feature of the first lepton behaves similar to the non-BGMM variant
when γ ≥ 20, describing a normal distribution that is very different from the original
MC events. In γ = 10, we notice a more similar distribution to the original data than the
one obtained in the non-BGMM model (with some values in the right tail of the original
distribution moved into the central/left part of the generated data distribution).

After analyzing all the results from this experiment, and considering its variants with
and without the use of Bayesian Gaussian Mixture Models, we can state that this compo-
nent affects negatively in the adjustment to uniform distributions, and generates events
with a slightly worse fit to the original data.

6.6 BSM event generation

In experiment I, we trained a model using the whole dataset of a particular kind of event,
obtaining some results that did not adjust properly to the original MC (ground truth)
data distributions, but we decided to try some variants with the objective of expanding
it further to other kinds of events once we found a model that was good enough. We
improved our model during experiments II and III, until obtaining a promising approach
that fitted the distributions of ttbar events very accurately.

To conclude our work, we decided to train the two models that obtained the best
results among all the executed experiments with a different type of event: stop_02, from
the Beyond the Standard Model event dataset (described in table 3.2). In this way, we
can see how well this models perform for any kind of event, and we see whether we can
generate BSM events that help proving if the theoretical foundations of these events can
be observed in practice or not.

The chosen models that we highlight here were the following ones:

• Experiment II on its non-BGMM variant using β = 0.001

• Experiment III on its non-BGMM variant using α = 0.2

Additional tests were run for experiment III using α ∈ {0.1, 0.3}. However, the results
were very similar to the version with α = 0.2 presented here, so they are not included
here for simplicity. Model variants with BGMMs were not tested due to lack of time,
as they take a very long time to train, and also because the results of these models in
previous experiments were not as good as its respective non-BGMM variants.
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(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.63. Comparison of event parameter MET using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.64. Comparison of event parameter METphi using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.65. Comparison of first jet parameter E using the trained models in the BSM dataset.
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(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.66. Comparison of first lepton parameter E using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.67. Comparison of first jet parameter η using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.68. Comparison of first lepton parameter η using the trained models in the BSM dataset.
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(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.69. Comparison of first jet parameter φ using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.70. Comparison of first lepton parameter φ using the trained models in the BSM dataset.

(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.71. Comparison of first jet parameter pT using the trained models in the BSM dataset.
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(a) β-VAE with β = 0.001 (b) α-VAE with α = 0.2

Figure 6.72. Comparison of first lepton parameter pT using the trained models in the BSM dataset.

In this final event generation results, we can observe very interesting results that rep-
resent in an accurate way the original MC data, except for the pT object feature in leptons,
that is shifted or presents a spiky distribution that does not adjust properly to the original
data. This could happen because there is a much higher probability of jets being present
in an event than the one of leptons, so the model has less information about leptons and
therefore their distribution is learnt in a less accurate way.

There are some cases in which the α-VAE obtains considerably better results than the
β-VAE, such as the first jet E particle feature. However, for most features, both models
perform similarly. Considering that the model has not been tweaked for this specific type
of event, the results are promising.



CHAPTER 7

Conclusions

After developing and experimenting with several approaches, we obtained many inter-
esting results in our work. Taking as a starting point some techniques used in recent
studies, we generated events from the Standard Model and Beyond the Standard Model
datasets in a more efficient way than traditional Monte Carlo methods.

We presented models using β-VAEs that performed better when using low β values
(β ≤ 0.01), and we also introduced our own variation of Variational Autoencoder: the
α-VAE, that showed the best results when using relatively high values of α (≈ 0.3).

Although the previous approaches obtained great results, there is still a need for
tweaking its internal architecture and parameters in order to refine the generation of
some particle features, that did not adjust to their original distributions as well as it
would have been desirable.

Moreover, when combining both of the previous approaches with an additional com-
ponent, known as Bayesian Gaussian Mixture Model, the results were not as good as the
ones obtained in previous variants.

Nevertheless, taking into account the initially defined objectives, we can conclude
that they were fulfilled, as we created a framework for event generation that improved
drastically the current traditional methods in terms of time and computational efficiency,
while keeping (with reasonable margins) their accuracy.

7.1 Future work

Because the topic presented here still has lots of possibilities to explore, and due to its
critical importance in the future, when it will be required to generate a huge amount of
events, we propose future work that could be done starting from what we created.

In the first place, it would help to create several metrics to quantify more accurately
the ability of a model to adjust to the original data, so that we can use them together with
histograms to evaluate potential new models.

In the second place, because we believe that BGMMs could have some potential to im-
prove our results, a greater number of components than the ones we have experimented
with could be tested, so that it can be either confirmed that the component is not suitable
for our task, or its results can improve and become even better than the current variants
that do not use BGMMs. However, this potential improvement must be evaluated taking
into account the required training time, which is higher than other model variants.

Finally, it would be interesting to expand our investigated techniques by including
other kinds of models in our research. Generative Adversarial Networks have been tested
before, but new implementations could improve current results. Flow models were re-
cently used in this field for similar objectives, so they could also be a research option.
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APPENDIX A

Activation functions

The elemental unit of neural networks are neurons themselves. In ANNs, like in the
human brain, there are connections between neurons, some stronger than others, and
pathways are established among them that can activate different brain functions. How-
ever, not all neurons are activated simultaneously: some are activated and others are
deactivated depending on the activity being performed. In the case of neural networks,
neurons are units that that perform a computation similar to the one described in A.1.

out = ∑(weight ∗ input) + bias (A.1)

Furthermore, the neuron’s output does not have to be a binary output that allows us
to easily determine whether the neuron is activated or not. Thus, to establish the rela-
tionship between the output values of a neuron and its activation state, we use activation
functions.

A.1 Linear

The simplest activation function is the linear one, also known as "no activation" (mul-
tiply by 1.0), where the activation is proportional to the input. The function leaves the
weighted sum of the input as it is, simply returning the value it was given.

A.2 Rectified Linear Unit

The rectified linear (ReLU) function is a piecewise linear function that will output the
input that it was given directly if it is positive, and otherwise it will output zero. It
has become the default activation function for many types of neural networks because
models that use it are easier to train and often achieve better results.

A comparison of this function against the basic linear one can be seen in figure A.1.

73



74 Activation functions

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Linear
ReLU

Figure A.1. Comparison between Linear and ReLU activation functions.

A.3 Softmax

The softmax activation function is widely used in classification tasks, as it transforms the
input values into a vector of probabilities with as many components as the number of
classes. Each component of the vector represents the probability of the sample belonging
to the class represented by that component.

This activation function is often used in the last layer of neurons of a network ded-
icated to classify the samples into several classes. The last layer has as many neurons
as classes and the softmax function transforms the output of the layer into a vector of
probabilities.



APPENDIX B

Loss functions

A loss function in the field of neural networks is a measure to quantify the difference
between the expected outcome and the outcome generated by the model. From this func-
tion, we can derive the gradients that will be used to update the weights of a model.

A machine learning model attempts to learn the probability distribution underlying
the given dataset, and evaluates the quality of the estimation at each step of the training
process using these kind of functions.

B.1 Categorical Crossentropy

Categorical Crossentropy is a loss function that is used in multi-class classification tasks
(i.e., tasks where an example can only belong to one out of many possible categories, and
the model must decide which one), such as the particle type classification in each event.

Formally, it is designed to quantify the difference between two probability distribu-
tions. It is recommended to combine it with a Softmax activation function (see A.3).

B.2 Mean Squared Error

The Mean Squared Error (MSE) loss function calculates how close a regression line is to
a set of points. To compute this distance, it takes the distances from the points to the
regression line (known as the “errors”) and squares them. The squaring is necessary to
remove any negative signs. It also gives more weight to larger differences. It is called the
mean squared error as it is the average of a set of errors.

In our case, this function is used to measure the error in the estimation of the different
object features of each event.

Figure B.1. Comparison of both loss functions used in the presented experiments. [31]
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APPENDIX C

Keras layers

As it was explained in section 5.1, Keras is one of the two main Python libraries that
was used to implement all the models of the performed experiments. In order to allow
us to focus on designing the models without having to consider all the implementation
details and potentially making mistakes on that side, this library already provides an
implementation for the most commonly used layers in ANN architectures.

C.1 Dense

Dense layers represent what are known as fully-connected layers. This kind of layer is
provided with the number of neurons (nodes) that it should have, and is characterized
by the fact that all neurons are connected to each of the neurons of the layer that follows
it.

C.2 BatchNormalization

Batch Normalization [32] applies a transformation that maintains the mean output close
to 0 and the output standard deviation close to 1. It must be noted that this layer works
differently during training and during inference.

During training, the layer normalizes its output using the mean and standard devi-
ation of the current batch of inputs. During inference, the layer normalizes its output
using a moving average of the mean and standard deviation of the batches it has seen
during training.

As such, the layer will only normalize its inputs during inference after having been
trained on data that has similar statistics as the inference data.

C.3 Flatten and Reshape

Sometimes it is convenient for the input to be a one-dimensional array, but the data is
not provided in such format. For that purpose, we can use the Flatten operation, that
converts the size of the data into a 1D array. Conversely, if the data in our model requires
to be converted to a multidimensional format at some point, the Reshape layer transforms
the data into the desired shape.
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In our case, the data is originally represented in a multidimensional format and we
use a Flatten layer to convert it into a 1D vector, then it goes through the model, and
finally we convert it back into the original format using the Reshape layer.



APPENDIX D

Data distributions

As part of the data analysis process (detailed in section 6.2) that was carried out before
beginning with the experimentation, the statistical distributions of the source data were
calculated. In this appendix we show the distributions of the different particle features
for both the SM and BSM datasets.

D.1 Standard model
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Figure D.1. Data distributions per object type and feature in the whole SM dataset.
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D.2 Beyond the Standard Model
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Figure D.2. Data distributions per object type and feature in the whole BSM dataset.



APPENDIX E

Full experiment results

In this appendix we show all the results of most of the experiments that were carried
out as a result of this work. Some of them have already been commented in previous
chapters.

In some histograms we can see some particle features with an irregular shape that
does not fit any known probability distribution. This is due to the lack of presence of
some particle types in certain kinds of events (e.g., in ttbar events, some experiments
generate events that do not have two leptons).

Other histograms show only the original events (in gray), without showing any sim-
ulated values (in red). Although this situation could mean that there are no simulated
events for that configuration, it actually represents that values for the simulated events
are too different when compared to original MC events, so they are not shown when
plotted using original events as a base.

E.1 Experiment I

Figure E.1. Event MET and METphi distributions in experiment II (β = 0.01, γ = 50).
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Figure E.2. First jet particle feature distributions in experiment II (β = 0.01, γ = 50).

Figure E.3. First lepton particle feature distributions in experiment II (β = 0.01, γ = 50).
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Figure E.4. Second jet particle feature distributions in experiment II (β = 0.01, γ = 50).

Figure E.5. Second lepton particle feature distributions in experiment II (β = 0.01, γ = 50).
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E.2 Experiment II

E.2.1. Without BGMMs

β = 0.0

Figure E.6. Event MET and METphi distributions in experiment II (β = 0.0).

Figure E.7. First jet particle feature distributions in experiment II (β = 0.0).
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Figure E.8. First lepton particle feature distributions in experiment II (β = 0.0).

Figure E.9. Second jet particle feature distributions in experiment II (β = 0.0).
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Figure E.10. Second lepton particle feature distributions in experiment II (β = 0.0).

β = 0.001

Figure E.11. Event MET and METphi distributions in experiment II (β = 0.001).
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Figure E.12. First jet particle feature distributions in experiment II (β = 0.001).

Figure E.13. First lepton particle feature distributions in experiment II (β = 0.001).
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Figure E.14. Second jet particle feature distributions in experiment II (β = 0.001).

Figure E.15. Second lepton particle feature distributions in experiment II (β = 0.001).
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β = 0.01

Figure E.16. Event MET and METphi distributions in experiment II (β = 0.01).

Figure E.17. First jet particle feature distributions in experiment II (β = 0.01).
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Figure E.18. First lepton particle feature distributions in experiment II (β = 0.01).

Figure E.19. Second jet particle feature distributions in experiment II (β = 0.01).
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Figure E.20. Second lepton particle feature distributions in experiment II (β = 0.01).

β = 0.1

Figure E.21. Event MET and METphi distributions in experiment II (β = 0.1).
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Figure E.22. First jet particle feature distributions in experiment II (β = 0.1).

Figure E.23. First lepton particle feature distributions in experiment II (β = 0.1).
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Figure E.24. Second jet particle feature distributions in experiment II (β = 0.1).

Figure E.25. Second lepton particle feature distributions in experiment II (β = 0.1).
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β = 0.2

Figure E.26. Event MET and METphi distributions in experiment II (β = 0.2).

Figure E.27. First jet particle feature distributions in experiment II (β = 0.2).
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Figure E.28. First lepton particle feature distributions in experiment II (β = 0.2).

Figure E.29. Second jet particle feature distributions in experiment II (β = 0.2).
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Figure E.30. Second lepton particle feature distributions in experiment II (β = 0.2).

β = 0.5

Figure E.31. Event MET and METphi distributions in experiment II (β = 0.5).
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Figure E.32. First jet particle feature distributions in experiment II (β = 0.5).

Figure E.33. First lepton particle feature distributions in experiment II (β = 0.5).



108 Full experiment results

Figure E.34. Second jet particle feature distributions in experiment II (β = 0.5).

Figure E.35. Second lepton particle feature distributions in experiment II (β = 0.5).
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β = 0.7

Figure E.36. Event MET and METphi distributions in experiment II (β = 0.7).

Figure E.37. First jet particle feature distributions in experiment II (β = 0.7).
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Figure E.38. First lepton particle feature distributions in experiment II (β = 0.7).

Figure E.39. Second jet particle feature distributions in experiment II (β = 0.7).
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No second leptons were present in the simulated events using β = 0.7.

β = 1.0

Figure E.40. Event MET and METphi distributions in experiment II (β = 1.0).

Figure E.41. First jet particle feature distributions in experiment II (β = 1.0).
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Figure E.42. First lepton particle feature distributions in experiment II (β = 1.0).

Figure E.43. Second jet particle feature distributions in experiment II (β = 1.0).
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Figure E.44. Second lepton particle feature distributions in experiment II (β = 1.0).

E.2.2. With BGMMs

β = 0.0, γ = 100

Figure E.45. Event MET and METphi distributions using a BGMM in experiment II (β = 0.0).
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Figure E.46. First jet particle feature distributions using a BGMM in experiment II (β = 0.0).

Figure E.47. First lepton particle feature distributions using a BGMM in experiment II (β = 0.0).
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Figure E.48. Second jet particle feature distributions using a BGMM in experiment II (β = 0.0).

Figure E.49. Second lepton particle feature distributions using a BGMM in experiment II (β = 0.0).
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β = 0.001, γ = 100

Figure E.50. Event MET and METphi distributions using a BGMM in experiment II (β = 0.001).

Figure E.51. First jet particle feature distributions using a BGMM in experiment II (β = 0.001).
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Figure E.52. First lepton particle feature using a BGMM in experiment II (β = 0.001).

Figure E.53. Second jet particle feature distributions using a BGMM in experiment II (β = 0.001).
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Figure E.54. Second lepton particle feature using a BGMM in experiment II (β = 0.001).

β = 0.01, γ = 100

Figure E.55. Event MET and METphi distributions using a BGMM in experiment II (β = 0.01).
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Figure E.56. First jet particle feature distributions using a BGMM in experiment II (β = 0.01).

Figure E.57. First lepton particle feature distributions using a BGMM in experiment II (β = 0.01).
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Figure E.58. Second jet particle feature distributions using a BGMM in experiment II (β = 0.01).

Figure E.59. Second lepton particle feature using a BGMM in experiment II (β = 0.01).



E.2 Experiment II 121

β = 0.1, γ = 100

Figure E.60. Event MET and METphi distributions using a BGMM in experiment II (β = 0.1).

Figure E.61. First jet particle feature distributions using a BGMM in experiment II (β = 0.1).
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Figure E.62. First lepton particle feature distributions using a BGMM in experiment II (β = 0.1).

Figure E.63. Second jet particle feature distributions using a BGMM in experiment II (β = 0.1).
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Figure E.64. Second lepton particle feature distributions using BGMM in experiment II (β = 0.1).

β = 0.2, γ = 100

Figure E.65. Event MET and METphi distributions using a BGMM in experiment II (β = 0.2).
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Figure E.66. First jet particle feature distributions using a BGMM in experiment II (β = 0.2).

Figure E.67. First lepton particle feature distributions using a BGMM in experiment II (β = 0.2).
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Figure E.68. Second jet particle feature distributions using a BGMM in experiment II (β = 0.2).

Figure E.69. Second lepton particle feature distributions using BGMM in experiment II (β = 0.2).
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β = 0.5, γ = 100

Figure E.70. Event MET and METphi distributions using a BGMM in experiment II (β = 0.5).

Figure E.71. First jet particle feature distributions using a BGMM in experiment II (β = 0.5).
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Figure E.72. First lepton particle feature distributions using a BGMM in experiment II (β = 0.5).

Figure E.73. Second jet particle feature distributions using a BGMM in experiment II (β = 0.5).
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Figure E.74. Second lepton particle feature distributions using BGMM in experiment II (β = 0.5).

β = 0.7, γ = 100

Figure E.75. Event MET and METphi distributions using a BGMM in experiment II (β = 0.7).
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Figure E.76. First jet particle feature distributions using a BGMM in experiment II (β = 0.7).

Figure E.77. First lepton particle feature distributions using a BGMM in experiment II (β = 0.7).
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Figure E.78. Second jet particle feature distributions using a BGMM in experiment II (β = 0.7).

No second leptons were present in the simulated events using β = 0.7.

β = 1.0, γ = 100

Figure E.79. Event MET and METphi distributions using a BGMM in experiment II (β = 1.0).
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Figure E.80. First jet particle feature distributions using a BGMM in experiment II (β = 1.0).

Figure E.81. First lepton particle feature distributions using a BGMM in experiment II (β = 1.0).
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Figure E.82. Second jet particle feature distributions using a BGMM in experiment II (β = 1.0).

No second leptons were present in the simulated events using β = 1.0.

E.3 Experiment III

E.3.1. Without BGMMs

α = 0.1

Figure E.83. Event MET and METphi distributions in experiment III (α = 0.1).
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Figure E.84. First jet particle feature distributions in experiment III (α = 0.1).

Figure E.85. First lepton particle feature distributions in experiment III (α = 0.1).
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Figure E.86. Second jet particle feature distributions in experiment III (α = 0.1).

Figure E.87. Second lepton particle feature distributions in experiment III (α = 0.1).
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α = 0.2

Figure E.88. Event MET and METphi distributions in experiment III (α = 0.2).

Figure E.89. First jet particle feature distributions in experiment III (α = 0.2).
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Figure E.90. First lepton particle feature distributions in experiment III (α = 0.2).

Figure E.91. Second jet particle feature distributions in experiment III (α = 0.2).
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Figure E.92. Second lepton particle feature distributions in experiment III (α = 0.2).

α = 0.3

Figure E.93. Event MET and METphi distributions in experiment III (α = 0.3).
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Figure E.94. First jet particle feature distributions in experiment III (α = 0.3).

Figure E.95. First lepton particle feature distributions in experiment III (α = 0.3).
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Figure E.96. Second jet particle feature distributions in experiment III (α = 0.3).

Figure E.97. Second lepton particle feature distributions in experiment III (α = 0.3).
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E.3.2. With BGMMs

α = 0.1, γ = 10

Figure E.98. Event MET and METphi distributions using a BGMM (α = 0.1, γ = 10).

Figure E.99. First jet particle feature distributions using a BGMM (α = 0.1, γ = 10).
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Figure E.100. First lepton particle feature distributions using a BGMM (α = 0.1, γ = 10).

Figure E.101. Second jet particle feature distributions using a BGMM (α = 0.1, γ = 10).
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Figure E.102. Second lepton particle feature distributions using BGMM (α = 0.1, γ = 10).

α = 0.1, γ = 20

Figure E.103. Event MET and METphi distributions using a BGMM (α = 0.1, γ = 20).
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Figure E.104. First jet particle feature distributions using a BGMM (α = 0.1, γ = 20).

Figure E.105. First lepton particle feature distributions using a BGMM (α = 0.1, γ = 20).
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Figure E.106. Second jet particle feature distributions using a BGMM (α = 0.1, γ = 20).

Figure E.107. Second lepton particle feature distributions using BGMM (α = 0.1, γ = 20).
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α = 0.1, γ = 50

Figure E.108. Event MET and METphi distributions using a BGMM (α = 0.1, γ = 50).

Figure E.109. First jet particle feature distributions using a BGMM (α = 0.1, γ = 50).
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Figure E.110. First lepton particle feature distributions using a BGMM (α = 0.1, γ = 50).

Figure E.111. Second jet particle feature distributions using a BGMM (α = 0.1, γ = 50).
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Figure E.112. Second lepton particle feature distributions using BGMM (α = 0.1, γ = 50).

α = 0.1, γ = 100

Figure E.113. Event MET and METphi distributions using a BGMM (α = 0.1, γ = 100).
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Figure E.114. First jet particle feature distributions using a BGMM (α = 0.1, γ = 100).

Figure E.115. First lepton particle feature distributions using a BGMM (α = 0.1, γ = 100).
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Figure E.116. Second jet particle feature distributions using a BGMM (α = 0.1, γ = 100).

Figure E.117. Second lepton particle feature distributions using BGMM (α = 0.1, γ = 100).
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α = 0.2, γ = 10

Figure E.118. Event MET and METphi distributions using a BGMM (α = 0.2, γ = 10).

Figure E.119. First jet particle feature distributions using a BGMM (α = 0.2, γ = 10).
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Figure E.120. First lepton particle feature distributions using a BGMM (α = 0.2, γ = 10).

Figure E.121. Second jet particle feature distributions using a BGMM (α = 0.2, γ = 10).
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Figure E.122. Second lepton particle feature distributions using BGMM (α = 0.2, γ = 10).

α = 0.2, γ = 20

Figure E.123. Event MET and METphi distributions using a BGMM (α = 0.2, γ = 20).
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Figure E.124. First jet particle feature distributions using a BGMM (α = 0.2, γ = 20).

Figure E.125. First lepton particle feature distributions using a BGMM (α = 0.2, γ = 20).
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Figure E.126. Second jet particle feature distributions using a BGMM (α = 0.2, γ = 20).

Figure E.127. Second lepton particle feature distributions using BGMM (α = 0.2, γ = 20).
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α = 0.2, γ = 50

Figure E.128. Event MET and METphi distributions using a BGMM (α = 0.2, γ = 50).

Figure E.129. First jet particle feature distributions using a BGMM (α = 0.2, γ = 50).
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Figure E.130. First lepton particle feature distributions using a BGMM (α = 0.2, γ = 50).

Figure E.131. Second jet particle feature distributions using a BGMM (α = 0.2, γ = 50).
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Figure E.132. Second lepton particle feature distributions using BGMM (α = 0.2, γ = 50).

α = 0.2, γ = 100

Figure E.133. Event MET and METphi distributions using a BGMM (α = 0.2, γ = 100).
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Figure E.134. First jet particle feature distributions using a BGMM (α = 0.2, γ = 100).

Figure E.135. First lepton particle feature distributions using a BGMM (α = 0.2, γ = 100).
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Figure E.136. Second jet particle feature distributions using a BGMM (α = 0.2, γ = 100).

Figure E.137. Second lepton particle feature distributions using BGMM (α = 0.2, γ = 100).
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α = 0.3, γ = 10

Figure E.138. Event MET and METphi distributions using a BGMM (α = 0.3, γ = 10).

Figure E.139. First jet particle feature distributions using a BGMM (α = 0.3, γ = 10).
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Figure E.140. First lepton particle feature distributions using a BGMM (α = 0.3, γ = 10).

Figure E.141. Second jet particle feature distributions using a BGMM (α = 0.3, γ = 10).
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Figure E.142. Second lepton particle feature distributions using BGMM (α = 0.3, γ = 10).

α = 0.3, γ = 20

Figure E.143. Event MET and METphi distributions using a BGMM (α = 0.3, γ = 20).
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Figure E.144. First jet particle feature distributions using a BGMM (α = 0.3, γ = 20).

Figure E.145. First lepton particle feature distributions using a BGMM (α = 0.3, γ = 20).
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Figure E.146. Second jet particle feature distributions using a BGMM (α = 0.3, γ = 20).

Figure E.147. Second lepton particle feature distributions using BGMM (α = 0.3, γ = 20).
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α = 0.3, γ = 50

Figure E.148. Event MET and METphi distributions using a BGMM (α = 0.3, γ = 50).

Figure E.149. First jet particle feature distributions using a BGMM (α = 0.3, γ = 50).
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Figure E.150. First lepton particle feature distributions using a BGMM (α = 0.3, γ = 50).

Figure E.151. Second jet particle feature distributions using a BGMM (α = 0.3, γ = 50).
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Figure E.152. Second lepton particle feature distributions using BGMM (α = 0.3, γ = 50).

α = 0.3, γ = 100

Figure E.153. Event MET and METphi distributions using a BGMM (α = 0.3, γ = 100).
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Figure E.154. First jet particle feature distributions using a BGMM (α = 0.3, γ = 100).

Figure E.155. First lepton particle feature distributions using a BGMM (α = 0.3, γ = 100).
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Figure E.156. Second jet particle feature distributions using a BGMM (α = 0.3, γ = 100).

Figure E.157. Second lepton particle feature distributions using BGMM (α = 0.3, γ = 100).





APPENDIX F

Sustainable Development Goals

In this appendix we discuss the degree of relationship of our work with the Sustainable
Development Goals (SDG), established by the United Nations.

Sustainable Development Goals High Medium Low Unrelated

SDG 1. No poverty. X
SDG 2. Zero hunger. X
SDG 3. Good health and well-being. X
SDG 4. Quality education. X
SDG 5. Gender equality. X
SDG 6. Clean water and sanitation. X
SDG 7. Affordable and clean energy. X
SDG 8. Decent work and economic growth. X
SDG 9. Industry, innovation and infrastructure. X
SDG 10. Reduced inequalities. X
SDG 11. Sustainable cities and communities. X
SDG 12. Responsible consumption and production. X
SDG 13. Climate action. X
SDG 14. Life below water. X
SDG 15. Life on land. X
SDG 16. Peace, justice and strong institutions. X
SDG 17. Partnerships for the goals. X
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Discussion on the relationship of this work with the selected SDGs

From the previously mentioned Sustainable Development Goals, this work is mainly
related to four of them.

In the first place, it presents a broad relationship with the objective of Climate action,
as one of the main objectives of this work consisted in achieving the fastest way of gener-
ating physics events when compared to traditional methods while keeping the accuracy
of those events as high as possible. By completing this objective, we managed to reduce
the amount of energy consumption used in computing time since the required computers
for the task of generating events will be on for a lower amount of time. This reduction
will be even more beneficial in the future, when a huge number of events will need to be
generated, and the energy saving will be substantial.

In the second place, it is also related to the objective of Affordable and clean energy
because, even considering that it consumes a high amount of energy, CERN obtains the
required electricity mainly from France, where the 88% of energy production is carbon-
free. Moreover, CERN has decided that by 2024, its direct greenhouse emissions will be
reduced by 28% by replacing fluorinated gases with carbon dioxide1, which has several
thousand times lower global-warming potential. Moreover, the reduction in terms of
energy consumption obtained by our models when compared to current methods has
also a great impact as it helps saving more energy.

In the third place, it keeps a certain relationship with the objective of Industry, inno-
vation and infrastructure by contributing to the potential confirmation of new physics
models. This could lead to a revolution in some processes that are used today in the in-
dustry, reaching in this way a high innovation degree thanks to the experiments that are
executed in the ATLAS detector located at CERN, and that our work helps to develop in
a more efficient way.

Finally, in the fourth place, it presents some relationship with the objective of Partner-
ships for the goals, as this work is the result of a collaboration with the Instituto de Física
Corpuscular (Centro Mixto CSIC-Universitat de València), having as its mission to combine
the experiments that are executed in the investigation field of High Energy Physics with
the capacity of simulating data in an accurate and efficient way of the field of Artificial
Intelligence to reach the previously mentioned objectives.

We believe that this project is not widely related to the rest of the SDGs, as it con-
sists of a low-level investigation of physics aspects whose discoveries could lead to new
applications that could contribute to the other objectives in the future.

Therefore, we conclude that the project is committed in different ways to the SDGs
established in 2015 by the United Nations in the 2030 Agenda for Sustainable Develop-
ment. These goals define a great opportunity for all of us to begin a new journey that
allows to improve the quality of life, while maintaining awareness of the impact of any
project during its implementation.

1https://cerncourier.com/a/cern-publishes-first-environmental-report/
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