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Abstract 

 

Quantitative finance focuses on the mathematical models used to price securities 

and measure risk. In recent years, it has become a challenging aspect in today’s 

world of valuable and better investment. This bachelor thesis makes use of long 

short-term memory models using historical prices to predict stock prices from three 

different stock indexes in order to use them in conjunction with the Markowitz 

model to create efficient portfolios. Various metrics have been considered to 

compare the performance of portfolios created using stock prices predicted and 

the Markowitz model with those that only used the Markowitz model and the 

performance of exchange-traded funds that mirror each stock index. 

 

Keywords: prediction model; Long Short-Term Memory (LSTM); stock price 

prediction; neural networks; Markowitz 
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Resumen 

 

Las finanzas cuantitativas se centran en los modelos matemáticos utilizados para 

fijar el precio de los valores y medir el riesgo. En los últimos años, se han 

convertido en una parte crucial a la hora de escoger mejores inversiones. Este 

trabajo de fin de grado hace uso de redes de gran memoria de corto plazo 

utilizando precios históricos para predecir los precios de las acciones de tres 

índices bursátiles diferentes con el fin de utilizarlos junto con el modelo de 

Markowitz para crear carteras eficientes. Se han considerado varias métricas para 

comparar el rendimiento de las carteras creadas utilizando los precios de las 

acciones predichas y el modelo de Markowitz con las que sólo utilizaron el modelo 

de Markowitz y también, con fondos indexados que reflejan cada índice bursátil. 

 

Palabras clave: modelo de predicción; Long Short-Term Memory (LSTM); 

predicción de valores bursátiles; redes neuronales; modelo de Markowitz 
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  Resum 

 

Les finances quantitatives se centren en els models matemàtics utilitzats per a fixar el 

preu dels valors i mesurar el risc. En els últims anys, s'han convertit en una part crucial 

a l'hora de triar millors inversions. Este treball de fi de grau fa ús de xarxes de gran 

memòria de curt termini utilitzant preus històrics per a predir els preus de les accions de 

tres índexs borsaris diferents a fi d'utilitzar-los junt amb el model de Markowitz per a 

crear carteres eficients. S'han considerat diverses mètriques per a comparar el 

rendiment de les carteres creades utilitzant els preus de les accions predites i el model 

de Markowitz amb les que només van utilitzar el model de Markowitz i també, amb fons 

indexats que reflectixen cada índex borsari. 

 

Paraules clau: model de predicció; Long Short-Term Memory (LSTM); 

predicció de valors borsairs; xarxes neuronals; model de Markowitz 
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1. Introduction 

 

Business intelligence solutions are frequently used by smart investors and traders to 

gather, process, analyze, and report business data for informed business decisions. 

Modern business intelligence solutions are built on machine learning, which has helped 

traders and investors make trustworthy, risk-aware judgments. Investors utilize business 

intelligence systems capable of identifying long-term variations in the retrospective data 

to reduce investment risk caused by stock market uncertainty. In particular, the financial 

time series can be accurately predicted using innovative Long Short-Term Memory 

(LSTM) technology. 

 

This bachelor thesis consists in the creation of an optimized stock portfolio using stock 

prices prediction in an attempt to outperform the original Markowitz model (Markowitz, 

1952) and a passive management approach. To do so, the Markowitz modern portfolio 

theory has been used to create optimal portfolios and, it has been enhanced with new 

information, the predicted prices of each stock.  

 

Stocks from three different indexes, Deutscher Aktien Index (Chen J. , 2022), Standard 

and Poor’s (The Editors of Encyclopedia Britannica, 2022) and Dow Jones Industrial 

Average (Ganti, 2022) have been used to create optimal portfolios. For each index, a 

different portfolio has been created for each trimester, quarter, semester and year 

starting from 2007 until 2020 included. Also, for each timeframe and index, two different 

portfolios have been created, one using the original Markowitz model and, another one 

using the Markowitz model with the predicted prices of each stock for the next timeframe. 

In order to predict stock prices, a long short-term memory recurring neural network 

(Hochreiter & Schmidhuber, 1997) has been used. 

 

This approach enables the possibility of comparing returns between the Markowitz model 

with and without stock predicted prices, as well as the comparison with other exchange-

traded funds (ETFs) that mirror the established index, in order to know if using this 

strategy is better, or not, than a classic approach (using a simple Markowitz model 

without including predicted prices) or a passive management approach. This comparison 

has been done after running a simulation where an “investor” buys and sells all stocks 
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each timeframe (depending on the portfolios being used, trimester, quarter, semester or 

year) all through 2007-2020 to adhere to the changes of each portfolio, in order to 

calculate the return, after taking into account all costs and profits that carry the buying 

and selling of stocks.  

 

 

 

 

1.1 Objectives 

 

In an attempt to achieve the objective of this thesis, create an optimized portfolio of 

stocks using stock value prediction in an effort to outperform the original Markowitz 

model and a passive management approach, the following steps have been followed: 

1. Three stock indexes have been used: Deutscher Aktien Index (Chen J. , 2022), 

Standard and Poor’s (The Editors of Encyclopedia Britannica, 2022) and Dow 

Jones Industrial Average (Ganti, 2022). The purpose of this is to get all stocks 

that have been part of these indexes since 2005 so, the window is big enough to 

make enough comparisons on the analysis stage (in terms of the amount of years 

of data, 2005-2020 and, in terms of number of stocks). Plus, using indexes will 

enable the possibility of comparing the results with an exchange-traded fund 

(ETF) that mimics the corresponding index, which will show if this solution is 

better than the average performance of each index. 

2. Data extraction: Collect all past prices of all stocks to be analyzed. All companies 

that are part, as of 12/15/2021, of the S&P500, DJI and DAX30 and up to 2005. 

In addition, the price of 30-year US and German bonds for the same years have 

also been extracted, which have been used as the risk-free rates when applying 

the Sharpe ratio. 

3. Data normalization and cleaning: After the data had been collected, the data has 

been normalized and cleaned, to ensure that there are no anomalies in the data, 

so that the models can be successfully trained. 

4. Generate efficient stock portfolios: For each of the three indexes, efficient 

portfolios have been generated using the Markowitz model (Markowitz, 1952) for 

each trimester/quarter/semester/year between 2007-2020. Four different 

timeframes have been used to compare more models and discuss the best 

possible solution. Take into account the start year is 2007 as, as it will be 

discussed later, certain prediction models need more than one year of past stock 
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prices to predict the next prices. Also, a different portfolio will be created for every 

timeframe starting from 2007 until 2020. For instance, in the case of an annual 

timeframe, a portfolio will be created for the period 2007-2008, another for 2008-

2009, and so on until the period 2019-2020. 

5. Apply a neural network model (LSTM) to predict stock prices: Using the data of 

stock prices collected, the model predicts the stock price of each stock for the 

next trimester, quarter, semester and year. Different models have been used, for 

instance, using the last month, semester or year historical prices to predict the 

next trimester, quarter, semester and year prices. An example is, given the 2006 

stock prices of NIKE, predict the prices for the next semester, from 01-01-2007 

until 01-07-2007. All models have been described fully in the ‘Price prediction 

models’ section. 

6. Generate efficient stock portfolios using the predicted prices: After predicting the 

stock prices, repeat step 4 but now, making use of the predicted prices to create 

the portfolios. A different portfolio has been generated for each model. 

7. Compare results: Once the portfolios have been generated with and without the 

predicted prices, the performance of each portfolio has been compared. To do 

so, a simulation has been done for each portfolio, which emulates the cost of an 

investor of buying/selling the stocks each trimester/quarter/semester/year, 

depending on the model used to generate each portfolio, to take into account the 

changes there are with each portfolio between timeframes. This simulation is 

later explained in detail in the Analysis section. 

 

 

1.2 Motivation 

 

The purpose of this chapter is to showcase the motivational factors that pushed me to 

complete this bachelor’s thesis. 

 

• Explore neural network possibilities in the stock market. In recent years, 

quantitative finance has been gaining traction due to its positive results in the 

stock market, in many times outperforming classic qualitative approaches. Plus, 

the advancement in computer power has enabled the possibility of applying 

advanced artificial intelligence algorithm’s which were previously impossible to 

do so in such volatile scenarios, where quickness is crucial. 
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• Where finance and computer science cross. My passion in finance and computer 

science originally pushed me to pursue the double degree in computer science 

and business administration and management. Now, I wanted to mix both to use 

the knowledge acquired during the double degree in a single project, taking 

advantage of the synergy. 

• Learn about machine learning. Due to not being able to select the computation 

branch in my computer science degree, my machine learning knowledge was 

very limited. I wanted to learn more about machine learning, as it is currently a 

hot topic that is revolutionizing many sectors, if not all. 

 

These points describe why the project was carried out and indicate the beginning of the 

project's objectives. 

 

 

 

1.3 Outline of the thesis 

 

This bachelor thesis is divided into five main chapters: 

• Chapter 1 – Introduction: Introduces the thesis with a short summary, the 

motivation behind it as well as its objectives. 

• Chapter 2 – State of the Art: Overview of the current machine learning techniques 

applied to carry out a quantitative analysis of the stock market.  

• Chapter 3 – Methodology: Explains in detail all the methods used in order to 

complete this thesis and why they were chosen. From the portfolio optimization 

model to the method used to predict stock prices and the results comparison 

criteria. 

• Chapter 4 – Solution Development: Describes the workflow followed to achieve 

the objective of the thesis. It first showcases a high-level solution, followed by a 

detailed explanation of each step. Data extraction, generate optimal portfolios 

and price prediction models. 

• Chapter 5 – Analysis: Presents the metrics and results of the investigation. 

• Chapter 6 – Conclusion: Showcases the conclusions of the thesis. 
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2. State of the Art 

 

2.1 History of the use of machine learning in Finance and 

Economics 

 

Modern machine learning techniques have been slow to take hold in finance and 

economics. Nonetheless, the academics and practitioners in these fields were critical in 

creating the foundation for what we now call machine learning. Mathematics has been 

used in social and economic studies since the seventeenth century. Then, primarily in 

German universities, a teaching style arose that focused on the precise presentation of 

data in relation to public management. In the mid-eighteenth century, Gottfried 

Achenwall gave a lecture in this style, coining the term statistics (Meitzen, 1891). We 

saw a burst of economic statistics by the 19th century, some of which gave rise to 

statistical learning approaches. Then, at the turn of the twentieth century (Kuznets, 

1941), French mathematician Louis Bachelier published Theory of Speculation, which is 

widely regarded as the first scientific work on mathematical finance (Bachelier, 1900). 

 

"It will soon be possible for portfolio managers and financial analysts to operate a high-

speed computer with the ease of the desk calculator," said Joseph Gal in the Financial 

Analyst Journal in 1966 (Gal, 1966). Machine learning code has been simplified to the 

point that you can develop a machine learning option pricing model that is close to state-

of-the-art with free internet computing resources in less than ten lines of code. This 

recalls the 1970s, when Black-Scholes option values (Black & Scholes, 1973) could be 

quickly calculated on a pocket calculator not long after the Chicago Board Options 

Exchange was established. 

 

For finance, the efficiency market hypothesis and the adaptive markets hypothesis are 

two hypotheses that explain why we will never identify the underlying basic links in 

financial markets. Neither is inherently in contradiction with the other. Professional 

quantitative traders have been criticizing public researchers' faulty prediction models for 

years. They do, however, value new ideas that emerge from the field. Alfred Cowles, a 

well-known scholar in the field, published one of the first critical investigations on stock 
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market forecasting in the journal Econometrica (Cowles, Stock Market Forecasting, 

1944). In 1933, he compared the performance of 24 random portfolios with 24 financial 

publication portfolios during the period 1928-1932 and, the financial publications 

outperformed none except one (Cowles, 1933).  

 

He returned in 1944 to recognize that one strategy had outperformed the market by 

roughly two percentage points over a 40-year period, with largely constant performance 

across all sub-periods (Cowles, Stock Market Forecasting, 1944). This minor victory 

brought some solace to active managers involved in the argument. In a letter to 

colleagues two decades later, he stated that he believes that knowledge of financial 

patterns can assist to explain observed performance (Cowles, 1960), leaving the 

possibility of demonstrating the success of particular funds over time. 

 

Advanced machine learning approaches were initially applied in the industry in the mid-

to-late 1980s. This approach began when traders like Edward Thorp and Richard Dennis 

demonstrated great success by integrating technical and statistical trading strategies 

(Throp & Dennis, 2003). In 1986, labs like the Morgan Stanley ATP group were 

established, with experts like Nunzio Tartaglia at the helm. Adams, Harding, and Leuck 

founded Man AHL London a year later, in 1987. David Shaw chose to launch his own 

quantitative fund, DE Shaw & Co., two years after joining Morgan Stanley. In the same 

year, James Simons rebranded his firm Monemetrics to Renaissance Technologies to 

reflect its new quantitative focus, while Israel Englander started Millennium Management 

a few months later (Show, 2021). 

 

This explosion was no accident; we witnessed the spread of computers as a result of 

these methods languishing in old papers, ready to be employed. In 1981, IBM released 

the Personal Computer, which would go on to provide the foundation for the 

contemporary personal computer business (Fradkov, 2020). This advancement resulted 

in increased computer power, storage capacity, and data processing capability. It 

enabled the accumulation of massive datasets, which were then utilized by faster and 

more powerful computers to statistically search financial data for patterns that might be 

used to forecast trade signals. These companies had previously attempted and tested a 

lot of what we now call machine learning during this time period (Fradkov, 2020). In the 

late 1980s, ex-IBM employees and famous academics at Renaissance Technologies 

worked with neural networks, nonparametric kernel regressions, and dynamic 

programming methodologies (Show, 2021). 
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Since the 1960’s decade, expert or heuristic systems were used but, they have been 

slowly disappearing as their expectations did not meet reality and were also too 

complicated to use (Cesa, 2017). Researchers have used machine learning approaches 

such as reinforcement learning methodologies to construct end-to-end derivatives 

trading enterprises in recent years (Cesa, 2017). These algorithms might be used to 

simulate any derivatives portfolio. The agent is presented with a market and other 

limitations that real-world agents experience and is then asked to hedge a position using 

a set of accessible securities. As a result, we've moved to a world where rules are learnt 

automatically from data. Furthermore, if the business process can be replicated, data 

from the actual world may be captured and used to automate an action. Machine learning 

has extended the subset of commercially feasible programmed processes by simply 

learning from data. 

 

The ramifications of such developments, such as the automation of derivatives 

operations, might be enormous. Will these automated firms outperform exchange-traded 

funds in terms of hedging performance and hence proliferate? Analysts are still obliged 

to acquire an intuition for where their traditional models make erroneous assumptions, 

and they must establish a long list of tools and workarounds that might one day be 

rendered obsolete by well-implemented reinforcement learning tactics. 

 

However, automation isn't limited to end-to-end reinforcement learning models; there is 

a push to automate all prediction issues. AutoML, a new movement in automated 

machine learning, is gaining traction (Hutter, Thornton, & Hoos, 2014). For supervised 

learning, AutoML automates feature engineering, model selection, and hyperparameter 

optimization. 
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2.2 Evolution of techniques applied in the stock market 

 

The mathematical techniques applied in the stock market with the use of computers have 

evolved throughout the years, being the next methods the biggest breakthroughs. 

 
 

2.2.1 Instance-based methods 

 

Instance-based algorithms, also known as memory-based algorithms, are descended 

from the 1967 closest neighbor classifier (Cover & Hart, 1967). These algorithms learn 

from training samples and then apply what they've learned to new situations using a 

similarity score. This approach uses a lot of memory, but it adapts fast to new data and 

has a short prediction time. Each new point considers the previous labelled points that 

are the closest to it (the neighbors), and they vote on what the new point's label should 

be. 

 

Instance-based approaches have been difficult to gain traction in economics, partially 

due to the discipline's aversion to nonparametric models, and partly due to issues with 

tiny datasets. Researchers in the University of Akorn investigated which asset flow 

indicators better classify bond ratings in 1990. A linear discriminant analysis, closest 

neighbor, and probit analysis were used. In a paper titled Nonparametric and 

Semiparametric Methods for Economic Research, Miguel Delegado attempted to 

introduce the method in 1992, arguing that nonparametric models are useful even if only 

at an exploratory level because "... nonparametric models make no precise assumptions 

about functional form." Instead, the information is left to speak for itself" (Delgado, 1992).  

 

Both classification and regression may be done with instance-based learning. In recent 

years, instance-based learning has grown in popularity. In 1996, it was used to anticipate 

US interest rates (Barkoulas & Baum, 1996), in 1997, for FX prediction (Lisi, 1997), and 

in 1999 (Agnon, 1999), for commodities forecasting. The nearest neighbors aren't the 

only method-based instance method, of course. Support Vector Machines have also 

been a popular model, and Vladimir Vapkin published a workable stock prediction 

example within three years after it was invented in 1995 (Osuna, 1998). Learning Vector 

Quantization, Self-Organizing Map, and Locally Weighted Learning are a few other 

approaches worth mentioning. 
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The nonparametric regression model became particularly popular in quantitative hedge 

funds around this period. Rene Carmona of Renaissance Technologies first using them 

to simulate high-dimensional non-linear connections in 1987 (Show, 2021). Because the 

financial industry kept its cards close to its breast, the strategies took some time to reach 

financial scholars. Andrew Lo published one of the earliest kernel regression applications 

in finance in 2000 (Lo, 2000). This is late, considering that both Nadaraya (Nadaraya, 

1964) and Watson (Watson, 1964) provided the groundwork for kernel regression in 

1964. However, by 1987, we have seen kernel estimation used in the context of 

econometric models (Ullah, 1988). 

 

 

2.2.2 Tree-based methods 

 

A decision tree is just a decision tree that isn't connected to a regression or classification 

issue to monitor its learning, much like a logistic function is just a function without a 

classification problem (Show, 2021). In 1963, the first regression tree was created, which 

used an impurity metric to iteratively partition data into two groups (Loh, 2014). A 

decision tree is a type of classifier that divides data into groups recursively. Algorithms 

like information gain, chi-square, and Gini index are used to separate nodes (Quinlan, 

1986). 

 

The statistical origins of decision trees may be traced back to William Belson's 1959 

publication, in which he utilized a decision tree to match and forecast population samples 

(Belson, 1959). Since then, many techniques and strategies have been used to build and 

develop supervised tree models. They've gone through the AID (Morgan, 2012), ELISEE 

(Cellard, 1967), or CHAID (Kass, 1980) models. Decision trees have been utilized for a 

variety of purposes in recent decades, including assessing and predicting business 

performance (Delen, 2013), identifying fraud through financial statements (Chen S. , 

2016), predicting bankruptcy (Foroghi, 2011), and predicting the evolution of stock prices 

(Harries & Horn, 1995). 
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2.2.3 Clustering methods 

 

Clustering and dimension reduction are both multivariate approaches. Both strategies 

maximize various criteria to create a new feature space. Clustering aims to reduce the 

number of samples to a smaller number of patterns by looking for similarity among 

characteristics, whereas dimensionality seeks to eliminate superfluous columns from the 

data. They're called multivariate approaches since they both modify data using several 

characteristics (Khan & Bano, 2018). 

 

In 1969, W.D. Fisher demonstrated the use of clustering and aggregation in economics 

(Fisher., 1969). As published in a work by B.F. King in 1966 (King, 1966), industry 

clustering was one of the earliest advances of unsupervised learning into machine 

learning in finance. He uses factor analysis to describe the degree of cross-sectional 

dependency and build clusters of comparable enterprises based on the observed 

covariance matrix of a broad collection of monthly returns. 

 

With each researcher seeking to improve their clustering algorithm, the field exploded. 

In 1971, Cormack conducted a critical evaluation of the field and recommended that 

scholars begin doing comparison studies existing cluster techniques rather than just 

developing new ones (Cormack, 1971). Clustering has been successfully applied to 

portfolio management in recent years (Prado, 2016). 

 

 

2.2.4 Neural networks 

 

In the early 1990s, White sought to popularize neural nets in economics, but they did not 

result in significant performance increases at the time, and they did not become popular 

in economics (White, 1992). Before White, Kimoto & Asakawa authored an article to 

anticipate stock movements on the Tokyo Stock Exchange in 1990 (Kimoto & Asakawa, 

1990), following a lengthy gap since Felson's studies in the 1970s. As American 

researchers began to catch up with Japan, a swarm of neural network articles appeared. 

Unlike in previous years, finance did not provide any meaningful innovation. Instead, 

neural architecture innovation happened, leading to new financial applications, some of 

which are discussed next. 
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Many financial applications benefit greatly from neural networks. John Hopfield invented 

recurrent neural networks in 1982 to aid with financial time series forecasting (Hopfield, 

1982). A longer-memory solution called LSTM  (Hochreiter & Schmidhuber, 1997) was 

created a little more than a decade later. In finance and economics, the performance of 

this sort of neural network is frequently compared to that of ARIMA and other mechanical 

time series models. These models were not widely believed in until they were 

demonstrated to outperform traditional models in the M4 time series competition in 2018 

(Makridakis, 2018). By adding a logistic or sigmoid output function, these models may 

simply be converted for classification problems. 

 

 

 

2.3 Long short-term memory models and their potential 

 

As discussed in the previous section, long short-term memory (LSTM) networks 

(Hochreiter & Schmidhuber, 1997) have recently gained traction due to their positive 

results in predicting stock prices. In contrast with the original recurrent neural networks 

(RNNs) which only connect recent previous information and can’t connect information as 

the time gap grows, LSTMs are able to remember information over a long period of time, 

making them better suited for predicting stock prices.  

 

A recent study compared the pros and cons of LSTM in time series prediction, specifically 

in stock price prediction. In this case, the criterion of the pros and cons of the model was 

the mean square error between predicted value and real value. The conclusion was 

LSTM “can be well used in stock price forecasting” (Jiang, Tang, Chen, Wang, & Huang, 

2019). Another paper published in 2020 researching forecasting stock prices with long 

short-term memory neural network and comparing its performance with a gated recurrent 

unit (GRU) neural network, showed the LSTM network had a better fitting degree and 

improved accuracy of the prediction results (Qiu, Wang Bin, & Zhou, 2020). A different 

study also compared the performance of an LSTM network and ARIMA model (a popular 

model used in time series prediction) in predicting stock prices and, results were very 

similar as the previous studies presented. In this case, “the empirical studies conducted 

and reported in this article show that deep learning-based algorithms such as LSTM 

outperform traditional-based algorithms such as ARIMA model. More specifically, the 

average reduction in error rates obtained by LSTM is between 84 - 87 percent when 

compared to ARIMA indicating the superiority of LSTM to ARIMA” (Siami-Namini & Siami 
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Namin, 2018). Another paper has been done to study the differences in performance 

between ARIMA and LSTM (Ding & Sun, 2022), showing similar results, as “the Root 

Mean Squared Error (RMSE) of LSTM model is lower than ARIMA, and the model based 

on deep learning method has stronger prediction ability on stock price index than 

traditional stock prediction model. This model is an effective stock prediction method.” 

 

After the research done its clear LSTM networks have great potential and are currently 

one of the most promising types of neural networks for stock price forecasting. This is 

the reason why it has been chosen to predict stock prices in this bachelor thesis. 
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3. Methodology 

 

 

3.1 Introduction 

 

In this section are going to be presented the methodologies used to achieve the 

objectives of this bachelor thesis. First, the Markowitz model (Markowitz, 1952), used for 

the creation of portfolios will be presented, as well as the Sharpe ratio, used to choose 

one of the optimal portfolios. Secondly, the prediction model used for price prediction, 

Long-Short Term Memory or LSTM model (Hochreiter & Schmidhuber, 1997),  followed 

by the method and the different criteria used to compare the results will be explained. 

 

 

 

3.2 Portfolio Optimization Model 

 

In order to create the optimal portfolio, Modern Portfolio Theory (Markowitz, 1952) has 

been applied. Harry M. Markowitz is credited with inventing new risk measurement 

techniques and their application to portfolio selection. He began with the concept of 

ordinary investors risk aversion and their desire to maximize expected return with the 

least amount of risk.  

 

As a result, the Markowitz model serves as a theoretical framework for analyzing risk 

and return, as well as their interrelationships. He calculated risk using statistical analysis 

and employed mathematical programming to choose assets in a portfolio in an efficient 

manner. The concept of efficient portfolios arose from his theory. This is a dual model in 

which the objective function can be set to minimize portfolio risk for a given level of return 

or to maximize portfolio return for a desired level of risk.  

 

Within a given amount of money or wealth, Markowitz created a number of portfolios 

based on investor risk and return preferences. Individual risk tolerance and asset 

preferences vary greatly. Individuals' financial resources, expenditures, and investment 
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needs differ. Given the preferences, the portfolio selection is a correct combination of 

securities rather than a simple pick of one or more stocks (Harrod, 1937). 

 

Investors examine two dimensions of investment: risk and reward. Depending on the 

assumptions, the predicted return may differ. The variation of the distribution around the 

mean, its range, and other factors are used to calculate the risk index, which are referred 

to as variance and covariance in statistical terminology. Markowitz is credited with 

defining risk and emphasizing the need of maximizing return with the least amount of 

risk. This led to the development of Modern Portfolio Theory, which emphasizes the risk-

reward tradeoff. If the investor wants a bigger return, he must be willing to take on more 

risk. However, he prefers a large return with a minimal risk, posing a tradeoff conundrum. 

 

The selection of securities in a portfolio of assets is important. A portfolio is a collection 

of assets or securities. Depending on his wealth, income, and tastes, each individual 

investor invests in a variety of assets. The classic portfolio theory holds that assets 

should be chosen based on their low risk, as assessed by their standard deviation from 

the mean of projected returns. The more the return variability, the higher the risk. 

 

In contrast to the Traditional Theory (Harrod, 1937), which states that standard deviation 

measures return variability and risk is indicated by variability, and that the best securities 

are those with lower variability, the modern Portfolio Theory emphasizes the need for 

return maximization through a combination of securities with lower total variability. 

 

Each investment has a different risk than the others, and by properly combining 

securities (diversification), one can achieve a combination in which the risk of one is 

partially or completely offset by the risk of the other. To put it another way, the variability 

of each security, as well as the covariance for their returns as expressed by their inter-

relationships, should be considered.  

 

Expected returns, variance of these returns, and covariance of the returns of the stocks 

within the portfolio are all factors to consider while choosing a portfolio, according to 

Modern Portfolio Theory. If a portfolio is predicted to generate the maximum return 

possible for the lowest risk or a given level of risk, it is considered to be efficient. 

By mixing several assets whose combined risk is lowest for a particular level of return 

for the same amount of investment that the investor is capable of, a set of efficient 

portfolios may be formed. As previously stated, Markowitz's hypothesis is founded on a 

variety of assumptions. These are: 
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1.  Investors are rational and act in a way that maximizes their utility for a given 

amount of money or revenue.  

2. Investors have unrestricted access to accurate and fair information about 

returns and risks.  

3.  Markets are efficient and swiftly and perfectly absorb information.  

4.  Investors are risk averse and want to reduce risk while increasing reward.  

5.  Expected returns and variance or standard deviation of these returns from the 

mean are used by investors to make judgments.  

6. For a given amount of risk, investors prefer higher returns than lower returns. 

 

Therefore, when an investor is looking for the greatest portfolio in terms of return-risk 

among the many options available, it must go through two processes. The first is to 

identify a collection of effective portfolios, creating the efficient frontier. The second step 

is to choose a specific portfolio from the efficient set, based on the investor's desired 

return, risk, or return-to-risk ratio preference.  

 

Getting now into the practical aspect of Markowitz, if we assume an infinite number of 

portfolios are created, the efficient frontier will be created (Figure 1). 

 

 

Figure 1: Efficient Frontier (Scherer, 2002) 

As Markowitz assumes the investor is rational, it would want a bigger return and a lower 

risk (investor is risk averse). The shaded area PVWP in Figure 1 represents all of the 

different securities in which an investor can invest, often referred to as the feasible 
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region. The most efficient portfolios are those that fall on the PQVW's edge. At risk level 

x2, for example, there are three portfolios: S, T, and U. Portfolio S is known as the 

efficient portfolio since it has the highest return, y2, when compared to portfolios T and 

U. For a given risk level, all portfolios that lie on the PQVW boundary are efficient 

portfolios. This concept is usually referred to as dominance. 

 

The Efficient Frontier is the border PQVW. All portfolios that fall below the Efficient 

Frontier are not good enough since the return for the risk would be lower. Portfolios to 

the right of the Efficient Frontier would not be suitable, as there is a higher risk associated 

with a given rate of return. Efficient Portfolios are all portfolios that fall within the PQVW 

border. The Efficient Frontier is the same for all investors, because they all desire the 

best potential return with the least amount of risk, and they are all risk averse. 

 

To plot each portfolio, the expected return and risk need to be calculated. These are 

calculated in the following manner, following the Modern Portfolio Theory by Markowitz 

(Markowitz, 1952): 

 

- Expected portfolio return: 𝐸(𝑅𝑝) = ∑ 𝑊𝑖 ∗ 𝐸(𝑅𝑖)𝑖         (3.1) 

 

Where,  

Wi = Weight of asset i 

Ri = Return of asset i  

Rp = Return of the portfolio 

 

- Risk of portfolio: 𝜎𝑝 = √∑ ∑ 𝑊𝑖 ∗ 𝑊𝑗 ∗ 𝜎𝑖𝑗𝑗𝑖         (3.2)  

 

Where, 

𝜎𝑖𝑗= Covariance between asset i and asset j 

Wi = Weight of asset i 

Wj = Weight of asset j 

 

Therefore, the risk of the portfolio is the standard deviation. 

 

Markowitz proposed a quadratic programming model to construct the efficient frontier, 

which can be formulated by minimizing risk subject to a set of constraints. Therefore, 

following its model, the objective function is to minimize the risk of the portfolio: 
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MIN 𝜎𝑝 = √∑ ∑ 𝑊𝑖 ∗ 𝑊𝑗 ∗ 𝜎𝑖𝑗𝑗𝑖         (3.3)   

 

Next are the constraints. The first one is the target expected return of the portfolio the 

investor wishes to achieve. 

 

𝐸(𝑅𝑝) = ∑ 𝑊𝑖 ∗ 𝐸(𝑅𝑖)

𝑖

       (3.4) 

 

The next constraint forces the sum of the weights to be equal to one, meaning the 

investor must invest everything in any of the stocks: 

 

∑ 𝑊𝑖 = 1

𝑖

       (3.5) 

 

Lastly, every weight must be greater than zero, meaning no short positions are permitted, 

only long.  

 

∀𝑊𝑖 ≥ 0        (3.6) 

 

One thing to note is, no constraint has been set on the minimum or maximum number of 

stocks that make up the portfolio. Plus, there’s no restriction on the minimum or 

maximum weight of each stock. 

 

After calculating the portfolios in the efficient frontier, one of these needs to be selected. 

For this bachelor’s thesis, the method chosen to resolve this problem has been the 

Sharpe Ratio (Sharpe, 1966).  

 

The Sharpe ratio is a formula that measures a portfolio's performance by taking into 

consideration the portfolio's return, the return of a risk-free asset, and the portfolio's 

standard deviation (risk). It indicates the additional portfolio return for a particular degree 

of risk. The Sharpe ratio of a portfolio determines its performance. The higher the Sharpe 

ratio, the better. The Sharpe ratio is maximized in only one portfolio (the tangency 

portfolio); portfolios below and above the tangency portfolio reduce the Sharpe ratio. 

When the Sharpe ratio is negative, it means that a risk-free asset would outperform the 

portfolio under consideration. 
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In this case, the risk-free rate has been assumed to be the 30-year bond rates offered. 

For instance, when creating portfolios for the window 2007-2008, the risk-free rate is the 

mean of all the 30-year bond rates offered during that time. In case of the S&P500 and 

DJI indexes, US bonds were used, whilst German bonds were used when calculating 

the optimal portfolio for the DAX30 index.   

 

To calculate the Sharpe ratio, the following formula is: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − Rf 

𝜎𝑝
       (3.7) 

 

Where, 

Rp = Expected portfolio return 

Rf = Risk-free rate 

𝜎𝑝 = Risk (or standard deviation) of portfolio 

 

This bachelor’s thesis uses the theory explained to construct optimal portfolios based on 

the last two-year historical prices of each asset in an index, in order to use the portfolios 

for the next trimester, quarter, semester or year. However, to achieve the highest return 

possible, a way to enhance the optimal portfolios created using the Modern Portfolio 

Theory (MPT) and the Sharpe ratio, is to predict future prices and include these in the 

Markowitz model at the time of creating the optimal portfolios. Therefore, the next 

subsection focuses on the method used to predict prices. 

 

 

3.3 Prices prediction 

 

As discussed in the previous sections, the goal is to predict stock prices for the next 

trimester, quarter, semester and year in order to be used in the Markowitz model in 

conjunction with the past prices. To achieve this, a Long Short Term Memory network 

(LSTM) will be used. 

 

LSTMs are a type of Recurring Neural Network (RNN) (Rumelhart, Hinton, & Williams, 

1986) that can learn long-term dependencies. Hochreiter & Schmidhuber introduced 

them (Hochreiter & Schmidhuber, 1997), and numerous individuals developed and 
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popularized them in subsequent work. They are currently frequently utilized and function 

exceptionally effectively on a wide range of situations, specially predicting time series. 

 

LSTMs are specifically developed to prevent the problem of long-term dependency. They 

don't have to work hard to remember knowledge for lengthy periods of time; they are 

designed to excel on this area.  

 

All recurrent neural networks are made up of a series of repeated neural network 

modules. This repeating module in ordinary RNNs will have a relatively simple structure, 

such as a single tanh layer, as illustrated in figure 2. 

  

 

Figure 2: Repeating module in a standard RNN containing a single layer (Olah, 2016) 

 

LSTMs have a chain-like structure as wells, but the repeating module is different. Instead 

of a single neural network layer, there are four, each of which interacts in a unique way. 

 

 

Figure 3: Repeating module in an LSTM contains four interacting layers (Olah, 2016) 
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Each line in figure 3 transmits a full vector from one node's output to the inputs of others. 

The pink circles denote pointwise operations, such as vector addition, and the yellow 

boxes denote learnt neural network layers. Concatenation occurs when lines merge, 

whereas forking occurs when a line's content is replicated and the copies are sent to 

various locations. 

 

The cell state, the horizontal line going across the top of figure 3, is the key to LSTMs. It 

can be seen clearer in figure 4.  

 

The condition of the cell is similar to that of a conveyor belt. With only a few linear 

interactions, it flows straight down the whole chain. It's incredibly easy for data to just 

travel over it unaltered. 

 

Figure 4: LSTM module (Olah, 2016) 

The LSTM may delete or add information to the cell state, which is carefully controlled 

by structures called gates.  

Gates are a mechanism to selectively allow information to pass through. A sigmoid 

neural net layer plus a pointwise multiplication operation makes them up (see figure 5). 

 

 

Figure 5: Sigmoid layer (Olah, 2016) 

The sigmoid layer produces integers ranging from zero to one, indicating how much of 

each component should be allowed to pass. Zero means none goes through, whilst one 

let’s everything through. Three of these gates are present in an LSTM to safeguard and 

govern the cell state. 
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3.3.1 Step-by-step LSTM walkthrough 

 

The first stage in an LSTM model is to select which information from the cell state will be 

discarded. The "forget gate layer," a sigmoid layer, makes this judgment. Looking at 

Figure 6, it examines the values in ht-1 and xt and returns a number between 0 and 1 for 

each number in cell state Ct-1. A 1 stands for "totally keep", whereas 0 stands for the 

opposite. 

 

Figure 6: “Forget gate layer”, a sigmoid layer (Olah, 2016) 

 

The next stage as seen in Figure 7 is to figure out what additional data we'll be stored in 

the cell state. There are two components to this. The "input gate layer," a sigmoid layer, 

chooses which values we'll be updated first. A tanh layer then generates a vector of new 

candidate values, Ct, that might be added to the state. Both will be combined in the 

following step to make a state update. 

 

 

Figure 7: Input gate layer (Olah, 2016) 

 

Following on Figure 8, it's now time to switch from Ct-1 to Ct. It is already known what to 

do because of the previous stages; now all that’s necessary is follow through. 
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The previous state is multiplied by ft, forgetting the items previously agreed to ignore. 

Then it*Ct is added to the equation. This is the new set of candidate values, scaled by 

how much each state value was updated. 

 

 

Figure 8: Update cell states in LSTM module (Olah, 2016) 

Finally, as seen in Figure 9, the output must be chosen. The cell state will be the basis 

for this output, but it will be filtered. To begin, a sigmoid layer runs to determine which 

bits of the cell state will be output. The cell state is then passed through tanh (to force 

the values to be between -1 and 1) and multiplied by the sigmoid gate output, resulting 

in only the sections wanted to output. 

 

Figure 9: Output sigmoid layer (Olah, 2016) 

 

All in all, a certain amount of historical prices is the input of the LSTM network which, will 

output another certain amount of predicted prices. For the purpose of this bachelor’s 

thesis, several models with different amounts of input historical prices and future output 

prices have been implemented, to compare which model works best. The specifics will 

be discussed in the Analysis section of this bachelor’s thesis.  

 

One thing to note is, the predictions made by the LSTM model will always have some 

level of error. Therefore, as these errors will be used as data for the construction of 
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portfolios using the Markowitz model, different measures of error should be considered 

to analyze how they affect the behavior of the constructed portfolios. Therefore, the next 

subsection addresses this issue by presenting several error measurements that have 

been used. 

 

 

3.3.2 Error measurements for predicted prices 

 

In order to measure the error in prediction models, many different measures exist. In this 

case, three different error measures have been used to calculate the error of each 

prediction model. These are: 

 

1. Mean absolute error (MAE) 

The mean absolute error (MAE) is a statistic that measures the difference in errors 

between paired observations describing the same phenomena (Sammut & Webb, 2011). 

Comparisons of predicted against observed or subsequent time versus starting time are 

examples of Y versus X. The MAE is determined as follows: 

 

𝑀𝐴𝐸 =  
∑ |𝑌𝑖 − 𝑋𝑖|𝑛

𝑖=1

𝑛
       (3.8) 

       

Where, 

Yi = Predicted value 

Xi = True value 

n = Size of vector 

 

2. Mean absolute percentage error (MAPE) 

In statistics, the mean absolute percentage error (MAPE) is a measure of a forecasting 

method's prediction accuracy (Khen, 2000). The accuracy is commonly expressed as a 

ratio calculated as: 

𝑀𝐴𝑃𝐸 =   
100%

𝑛
∑ |

𝑋𝑖 − 𝑌𝑖

𝑋𝑖
|

𝑛

𝑖=1

      (3.9) 

Where, 

Xi = Actual value 

Yi = Forecast value 

n = Size of vector 
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3. Root-mean-square error (RMSE) 

The root-mean-square error (RMSE) is a commonly used measure of the variations 

between predicted and observed values (sample or population values) by a model or 

estimator. The square root of the second sample moment of the discrepancies between 

predicted and observed values, or the quadratic mean of these differences, is 

represented by the RMSE. When the computations are performed over the data sample 

that was used for estimate, these deviations are referred to as residuals, and when they 

are computed out-of-sample, they are referred to as errors (or prediction errors). The 

RMSE combines the magnitudes of prediction errors for different data points into a single 

measure of predictive capacity. Because RMSE is scale-dependent, it is used to 

evaluate forecasting errors of different models for a single dataset rather than across 

datasets (Shekhar, Xiong, & Zhou, 2017). 

The following formula is used to calculate the RMSE: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖 − 𝑋𝑖)2𝑛

𝑡=1

𝑛
       (3.10) 

Where, 

Xi = Actual value 

Yi = Forecast value 

n = Size of vector 

 

 

3.4 Results comparison criteria 

 

Once the optimal portfolios have been created using Markowitz with and without the 

predicted prices, as well as for each prediction model implemented, it is time to compare 

the results. 
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1. Logarithmic return 

To do so, the return of each portfolio has been calculated. This has been calculated as 

its logarithmic return (Miskolczi, 2017). 

 

𝑅𝑝 = ∑ ln (
𝑃𝑡𝑖

𝑃𝑡−1 𝑖
) ∗ 𝑊𝑖

𝑖
      (3.11) 

Where, 

Wi = Weight of stock i 

Pt = Price at end date of stock i 

Pt-1 = Price at start date of stock i 

Being start and end date the first and last day respectively of the period the portfolio is 

used for.  

 

2. Mean return 

Once the return of each portfolio is calculated, the mean return of a forecast model can 

be calculated, which is the mean of all portfolios returns produced by the specific model 

being calculated. For instance, if for the period 2007-2008 a model has a return of 10% 

and during the period 2008-2009 the same model has a return of 20%, and so on until 

2019-2020, the mean return of the model will be the mean of all those returns. Therefore, 

the mean return of a model is: 

 

𝑅𝑚 =
∑ 𝑅𝑝

𝑛
𝑖=1

𝑛
      (3.12) 

Where, 

n = Number of periods 

Rp = Return of portfolio 

 

3. Mean risk 

Also, the mean risk of the model can be calculated in a similar way: 

 

𝜎𝑚 =
𝜎𝑝

𝑛
         (3.13) 

Where, 

n = Number of periods 

𝜎𝑝 = Risk of portfolio 
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4. Costs 

However, the return of a model doesn’t consider commissions of selling and buying 

stocks, as well as the cost of opening a trading account and maintaining it. Due to its 

limited ability to express the true profit a person could’ve achieved using each model, 

the profit has to take into account the costs of using a broker. In this case the selected 

broker has been Interactive Brokers (InteractiveBrokers LLC, 2021), which has the 

following costs: 

 

Annual maintenance cost = Cost of maintaining trading account annually of 91$ 

(InteractiveBrokers LLC, 2021) 

Transaction fee = Cost of buying/selling stocks of 0.05% per transaction (includes the 

market fees) 

 

5. Total values 

To apply all costs described a simulation for each model has been done, where an 

imaginary investor invests 100.000€ to start with. This means, for each period, the 

current total portfolio value and cost of the portfolio has been calculated as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒𝑡 =  ∑
𝑃𝑡

𝑃𝑡−1
∗ 𝑊𝑖 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒𝑡−1         (3.14)

𝑖
 

Where, 

Pt = Price at end date of stock i 

Pt-1 = Price at start date of stock i 

Wi = Weight in current portfolio of stock i 

Total Portfolio Valuet-1 = Total Portfolio Value of the previous period (or initial investment 

if calculating revenue for the first period) 

 

Then, the total cost per period is calculated as follows: 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
  

+ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 ∗  𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒𝑡−1 

+ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 ∗  𝑡𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒𝑡              (3.15) 

 

Known both, the current profit per period calculation is: 

 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑚𝑒𝑛𝑡      (3.16) 
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The profit an investor would have achieved is therefore the profit calculated for the last 

period. This value will be used to compare each model between each other, to decide 

what could be the best possible strategy for an investor in the future. One thing to note 

is, the profit calculated also includes the initial investment. 

Lastly, in order to compare the return between models with different timeframes, returns 

have to be annualized.  

 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 =  𝑅𝑚 ∗ 𝑁         (3.17) 

 

Where, 

Rm = Return of the model 

N = Number of periods in a year of the timeframe used in the specific model. 

 

For instance, if a model uses a year as it’s timeframe, N will be equal to one. However, 

if the timeframe used is a trimester, N will be equal to 4. 
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4. Solution Development 

 

4.1 Introduction 

 

The purpose of this section is to fully explain the process followed to achieve the 

objectives of this thesis. Firstly, a short high-level introduction of the process will be 

showcased. Then, everything regarding the data used will be discussed: source, 

download method used and cleaning and structuring of the data.  

Next, it’ll be explained how the Markowitz model (Markowitz, 1952) was applied on this 

case to calculate the efficient portfolios. After, all the different models used to predict 

prices will be discussed, breaking them down into sub-groups in order to compare their 

performance. Therefore, lastly, a detailed analysis of each model used will be done to 

compare the performance achieved between them, in terms of errors and other 

parameters in the prediction of prices and, the final performance, measured by the profit 

achieved after using each model.  

 

After the analysis, the conclusions extracted out of it will be outlined. 

 

 

 

4.2 High-level solution 

 

In an effort to achieve the objective of this thesis, create an optimized portfolio of stocks 

using stock value prediction, the following steps have been followed: 

1. Three stock indexes have been used: Deutscher Aktien Index (Chen J. , 2022), 

Standard and Poor’s (The Editors of Encyclopedia Britannica, 2022) and Dow 

Jones Industrial Average (Ganti, 2022). The purpose of this is to get all stocks 

that have been part of these indexes since 2005 so, the window is big enough to 

make enough comparisons on the analysis stage (in terms of the amount of years 

of data, 2005-2020 and, in terms of number of stocks). Plus, using indexes will 

enable the possibility of comparing the results with their exchange-traded fund 
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(ETF) that mimics the corresponding index, which will show if this solution is 

better than the average performance of each index. 

2. Data extraction: Collect all past prices of all stocks to be analyzed. All companies 

that are part, as of 12/15/2021, of the S&P500, DJI and DAX30 and up to 2005. 

In addition, the price of 30-year US and German bonds for the same years have 

also been extracted, which have been used as the risk-free rates when applying 

the Sharpe ratio. 

3. Data normalization and cleaning: After the data had been collected, the data has 

been normalized and cleaned, to ensure that there are no anomalies in the data, 

so that the models can be successfully trained. 

4. Generate efficient stock portfolios: For each of the three indexes, efficient 

portfolios have been generated using the Markowitz model (Markowitz, 1952) for 

each trimester/quarter/semester/year between 2007-2020. Four different 

timeframes have been used to compare more models and discuss the best 

possible solution. Take into account the start year is 2007 as, as it will be 

discussed later, certain prediction models need more than one year of past stock 

prices to predict the next prices. Also, a different portfolio will be created for every 

timeframe starting from 2007 until 2020. For instance, in the case of an annual 

timeframe, a portfolio will be created for the period 2007-2008, another for 2008-

2009, and so on until the period 2019-2020. 

5. Apply a neural network model (LSTM) to predict stock prices: Using the data of 

stock prices collected, the model predicts the stock price of each stock for the 

next trimester, quarter, semester and year. Different models have been used, for 

instance, using the last month, semester or year historical prices to predict the 

next trimester, quarter, semester and year prices. An example is, given the 2006 

stock prices of NIKE, predict the prices for the next semester, from 01-01-2007 

until 01-07-2007. All models have been described fully in the ‘Price prediction 

models’ section. 

6. Generate efficient stock portfolios using the predicted prices: After predicting the 

stock prices, repeat step 4 but now, making use of the predicted prices to create 

the portfolios. A different portfolio has been generated for each model. 

7. Compare results: Once the portfolios have been generated with and without the 

predicted prices, the performance of each portfolio has been compared. To do 

so, a simulation has been done for each portfolio, which emulates the cost of an 

investor of buying/selling the stocks each trimester/quarter/semester/year, 

depending on the model used to generate each portfolio, to take into account the 
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changes there are with each portfolio between timeframes. This simulation is 

later explained in detail in the Analysis section. 

 

 

4.3 Data 

 

In order to complete this thesis, a big amount of data has been collected for different 

purposes.  

 

To start with, as discussed before, the stocks that have been part of three different 

indexes (S&P500, DJI and DAX30) from 2005-2020 have been used. To extract the 

name of all these stocks, a scraping method has been used.  

For S&P500, the table in Wikipedia (Wikipedia, 2021a) about the index containing all 

companies in the index as of 2021-12-01 was scraped with a python script. 

The same process was repeated to retrieve the DAX30 (Wikipedia, 2021b) and DJI 

(Wikipedia, 2021c) stock names. 

 

Next are the prices of the US and German 30-year bond rates used in the calculation of 

the Sharpe ratio (Sharpe, 1966) as the risk-free rate of the S&P500 and DJI stocks and, 

DAX30 stocks respectively. The US 30-year bond rates between 2005-2020 have been 

collected from the US Treasury web site (U.S. DEPARTMENT OF THE TREASURY, 

2022) and, downloaded in .csv format. On the other hand, the German 30-year bond 

rates have been extracted from Investing.com (Investing.com, 2022) and, downloaded 

in the same way as the US bond rates, a .csv file. 

 

Now continuing with the stocks used, after collecting all the names of all the stocks, the 

closing prices of each day from 2005-2020 (both included) of all of them are needed. To 

get all, a public Python API was used. Specifically, the standard and most used API to 

do so was used, yfinance (PyPi, 2022). Getting more into detail, the method “download” 

was utilized: 

 

data = yf.download(symbols_list, start="2005-01-01")['Close'] 

 

This function returns a list in the form: 
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Table 1: Stock prices list form Source 

 Stock 1 Stock 2 Stock 3 … 

Date Closing Price Closing Price Closing Price … 

Date Closing Price Closing Price Closing Price … 

… … … … … 

 

After downloading all the necessary data, it is necessary to normalize and clean it. To 

do so, all the prices stored of each stock for each index were saved in an excel (one 

excel file for each index) using the same format as returned by the yfinance API. For the 

purpose of manipulating the data efficiently, the tool PowerBI (Microsoft, 2022) was 

used.  

To assure only stocks with prices between 2005-2020 were included, all stocks without 

a closing price between these dates were eliminated. As a result, after the cleaning and 

normalization of the data, there were this many stocks on each index: 

- DAX: 23 stocks 

- DJI: 28 stocks 

- S&P500: 409 

For reference, this means there are 23 stocks in the DAX index at the moment which 

were already trading in the stock market in 2005. 

 

Now all the data needed is normalized, it is ready to be used to generate the efficient 

portfolios using the Markowitz model (Markowitz, 1952), the optimal portfolio using the 

Sharpe ratio (Sharpe, 1966) and in the prediction of price models. All steps to apply the 

mentioned models are explained next. 
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4.4 Generate optimal portfolio 

 

Once all prices are available, the return of each stock can be calculated, so 

(Investing.com, 2022) it is now possible to create the optimal portfolios based on the 

Markowitz model (and the Sharpe ratio (as explained before in subsection 3.2). 

Therefore, for each timeframe (trimester/quarter/semester/annual) between 2007-2020 

an optimal portfolio needs to be generated (for now, not including any predicted prices). 

 

To apply both methods, Markowitz and Sharpe ratio, the following steps were followed 

using Python: 

1. Firstly, the covariance matrix is calculated to understand how assets interact 

between each other (parameter ij in the Markowitz model) during the specific 

timeframe for which the portfolio is being calculated for. 

2. Next, the expected return of each asset is calculated as the percentage change 

between each period, where the length of the period will depend on the timeframe 

being calculated. 

3. Once both previous steps are done, the most work intensive step is next, creating 

the efficient frontier. To do so, a loop is runs 10000 times and, in each iteration, 

the loop considers different weights for assets and calculates the return and 

volatility of a particular portfolio combination. 

4. Lastly, after the efficient frontier has been generated, one of the portfolios needs 

to be selected. In order to select the optimal portfolio, the Sharpe ratio is used, 

as discussed before. 

 

An example of an efficient frontier generated can be seen below (Figure 10). More 

specifically, it is the efficient frontier generated for the DAX30 index in the period 2005-

2007. The green star indicates the portfolio selected by the Sharpe ratio, whilst the red 

star indicates the portfolio with the minimum volatility. 



 

 44 

 

Figure 10: Efficient Frontier DAX30 

 

This process is repeated for all timeframes (trimester, quarter, semester and annual) 

between 2007-2020, taking into account the prices of two years prior the specific 

timeframe. For instance, for the first trimester period (01/01/2007 – 01/04/2007) for the 

index DAX30, all prices between 01/01/2005 – 01/01/2007 will be taken into account to 

generate the portfolios. For the next trimester period, 01/04/2007 – 01/07/2007, all prices 

between 01/04/2005 – 01/04/2007 are considered. 

 

As a result, all optimal portfolios for each timeframe and period are created. This are 

stored in an excel file in the following form: 

 

Table 2: Optimal portfolios form 

Date Stock 1 Stock 2 … Expected 

return 

Volatility 

Date 1 – 

Date 2 

Weight stock 

1 

Weight stock 

2 

… Expected 

return of 

portfolio 

Volatility 

of 

portfolio 

Date 2 – 

Date 3 

Weight stock 

1 

Weight stock 

2 

… … … 
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… … … … … … 

 

Now all optimal portfolios have been calculated for every timeframe and period, it is time 

to create them using the predicted prices. But first, the prediction of the stock prices 

needs to be done. 

 

 

 

4.5 Price prediction models 

 

As discussed in the Methodology section, a Long-Short Term Memory (LSTM) neural 

network is used due to their known excellence in predicting time series given past values.  

 

To achieve the best possible outcome, a series of models with certain modifications 

between them have been tested to compare the results between them, to find the optimal 

predictive model which provides the highest return. 

 

The models have been divided first in two sections: 

 

1. Automatic recurrence models: In this case, the number of output values of the 

LSTM network will exactly be the number of future prices wanted. For instance, 

if the number of future prices is all the prices of the next year, 250 prices, only 

one LSTM will be used with the number of outputs equal to 250. This means, 

when the LSTM is calculating the output 100 for example, it’ll have to use 

automatically the previously predicted values [1-99] by itself. 

2. Manual recurrence models: On the other hand, when using manual recurrence 

and wanting to predict the next 250 prices, the LSTM network will be set to only 

predict the next 30 prices at a time. Once the LSTM network returns the 30 prices, 

all these prices returned will then be used as input of another LSTM network, 

hence the naming ‘manual recurrence’. This process will be repeated until all the 

250 future prices are predicted. 

 

The advantage of using a manual recurrence approach is the LSTM network won’t be 

overcharged with weights, increasing its efficiency. Therefore, distinguishing between 

these two types of models will enable us to check not if only the manual recurrence is 



 

 46 

more efficient but, if it’s also more effective than the automatic recurrence or, if the 

improvement in efficiency forces a decrease in effectiveness.  

 

Apart from the type of recurrence, models have also been divided between the number 

of input prices or, in other words, the number of past prices considered by the model: 

 

1. 63 past prices (trimester) 

2. 125 past prices (semester) 

3. 250 past prices (annual) 

 

And lastly, similarly to the number of input values, the number of output values also 

varies (the number of predicted prices): 

 

1. 63 future prices (trimester) 

2. 84 future prices (quarter) 

3. 125 future prices (semester) 

4. 250 future prices (annual) 

 

Combining all, there are a total of 24 different models, but the four more models have to 

be added, one for each timeframe which don’t use predicted prices, making a total of 28 

models. All are analyzed in the Analysis section to figure out the optimal model 

considering different parameters.  

 

After the prediction of the prices, optimal portfolios need to be created with the use of 

the predicted prices. To do so, the same process described in the previous section 

‘Generate optimal portfolio’ must be ran but now, considering the predicted prices. 

Therefore, other than considering the last two-year prices, the next future trimester, 

quarter, semester or year prices (depending on the timeframe being calculated) need to 

be considered when applying the Markowitz model. 

 

One thing to note is, every one of the 24 models has predicted different prices so, a file 

containing the optimal portfolios for each period has to be created in the same way as 

shown in Table 2.   
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4.5.1 Toolkit 

 

In order to create, train and apply all models, a Python toolkit has been used. Specifically, 

the toolkit used has been Keras (Chollet, 2015), which is a Python-based deep learning 

API that runs on the TensorFlow machine learning platform. It was created with the goal 

of allowing for quick experimentation. Keras is defined with three words: 

1. Simple - but not simplistic. Keras relieves developer cognitive load, allowing more 

focus on the most important aspects of the problem. 

2. Flexible – Adopts the principle of progressive disclosure complexity. Simple 

processes should be quick and easy, whereas arbitrarily advanced workflows 

should be feasible via a clear path 

3. Powerful. Keras provides industry-leading performance and scalability, and it is 

utilized by NASA, YouTube, and Waymo, among others. 
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5. Analysis 

 

In this section, several analyses are presented, with the aim of showcasing: 

1. Difference in mean return and absolute profit between portfolios built using each 

model and portfolios without the use of predicted prices 

2. The performance of each model applied to predict stock prices, measured by 

their error and time to be trained. 

3. Difference in mean return between each index exchange-traded funds and the 

portfolios built using predicted prices. 

 

 

5.1 Portfolio performance analysis 

 

In order to measure the performance of each portfolio four different measures will be 

used: 

1. The average annualized return of the portfolio from 2007-2020 (formula 3.17)  

2. The mean risk of the portfolios created by the model (formula 3.13) 

3. The total portfolio value at the end of 2020 (formula 3.14) 

4. The total cost of following the changes in the portfolio the model proposes each 

time a timeframe is over (formula 3.15) 

5. The final profit also from 2007-2020 (formula 3.16), which assumes an ‘investor’ 

has invested 100.000€ to start with.  

 

All measures are explained in detail in section three, methodology.  

 

On another note, ‘A-R’ and ‘M-R’ in the following figures represent automatic and manual 

recurrence respectively. Also, the numbers 30, 125 and 250 represent the number of 

input data used to train each model. Annual, semester, quarter and trimester indicate the 

timeframe predicted by each model. All these are explained in detail in subsection 4.5. 

 

In addition, before getting into detail, in order to refresh the different models that are 

going to be analyzed, the following graph has been done (figure 11): 
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Figure 11: All models and how they are split 
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As seen in figure 11 and as explained in subsection 4.5, models are differentiated on 

several parameters. First, they differ based on whether they use predicted prices or not. 

After this, models that make use of predicted prices split into two different categories 

again those that use automatic recurrence and those that use manual recurrence. Then, 

they are broken down depending on the size of the input (30, 125 or 250 past prices). 

Lastly, irrespective of the use of predicted prices, models are split up based on the size 

of the window (timeframe). 

 

 

5.1.1 S&P 

 

To start with, the mean return achieved by all models by building portfolios with only S&P 

stocks will be analyzed.  

 

 

Figure 12: Annualized return of all models with S&P stocks 

 
As seen in figure 12, there is a difference, although not much, between the returns from 

automatic (A-R) and manual (M-R) recurrence. Automatic recurrence models offered 

greater returns in general than manual recurrence models, which makes sense taking 
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into account the difference in prediction error they offer, as it was showcased in the 

previous subsection.  

 

In addition, regarding the input size, a small trend exists where, the higher the input size, 

the higher the return. Considering the little difference that exists in terms of prediction 

error between them, it was expected this would be the case.  

 

On the other hand, the timeframe did make a noticeable difference being trimester the 

best timeframe in terms of return in all type of models. 

 

Lastly, regardless of the type of recurrence or input size, models that made use of the 

predicted prices to build their portfolios outperformed those that didn’t, by as much as 

1% increase in return.  

 

A different parameter that can be used to measure the efficiency of each model is its risk 

(formula 3.13). This is shown in the following graph (figure 13). 

 

 

Figure 13: Risk of all models with S&P stocks 
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Similarly to the annualized return analysis, manual recurrence (M-R) has a worse 

performance as, in this case, all of its models have a greater risk than those that used 

automatic recurrence.  

 

Then, regarding the input size and in contrast with the annualized return analysis, the 

greater the input size the greater the risk. Therefore, a priori, the smaller the input size 

the better in terms of risk.  

 

On the other hand, regarding the timeframe, no clear pattern exists. 

 

Lastly, regarding the use of predicted prices, most of the models that used automatic 

recurrence did outperform the risk of those models that didn’t use predicted prices. Due 

to this, in the case they obtained a greater annualized return and a lower risk, some 

models would have dominated the models that didn’t use predicted prices. To give a 

clear view of the models that did dominate, the next table has been created (table 3). 
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Table 3: Annualized return and risk of all models with S&P stocks 

     

Annualized 
Return Risk 

S&P 
With 
Prediction A-R input 30 annual 0.07783467 0.1523261 

       semester 0.038793024 0.1694183 

       quarter 0.023924125 0.1798151 

       trimester 0.019767161 0.1830173 

     
input 
125 annual 0.077350471 0.1632004 

       semester 0.037648508 0.1763213 

       quarter 0.024465887 0.1834743 

       trimester 0.01958507 0.1868375 

     
input 
250 annual 0.079607249 0.1689503 

       semester 0.036580752 0.1830743 

       quarter 0.024994306 0.1897103 

       trimester 0.020367186 0.1914629 

   M-R input 30 annual 0.069606884 0.1908478 

       semester 0.036938019 0.1877874 

       quarter 0.023439029 0.1863838 

       trimester 0.019891529 0.1865941 

     
input 
125 annual 0.072228158 0.2074429 

       semester 0.03763088 0.1985469 

       quarter 0.023633472 0.1936397 

       trimester 0.019922058 0.1868596 

     
input 
250 annual 0.075007367 0.2062864 

       semester 0.037657623 0.2053097 

       quarter 0.024245492 0.2015347 

       trimester 0.020144702 0.2001865 

 No Prediction     annual 0.072242166 0.1836608 

       semester 0.035454903 0.1878943 

       quarter 0.023793822 0.189245 

       trimester 0.018656331 0.1901934 

 

All models in bold in table 3 represent those that obtained a greater annualized return 

and a lower risk (domination) compared to the model that didn’t use predicted prices and 

used the same timeframe. For instance, the first model shown which used predicted 

prices, automatic recurrence, an input size of 30 and an annual timeframe, is compared 

with the model that didn’t use predicted prices and used an annual timeframe 

(timeframes must coincide). 
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As previously presented, automatic recurrence models had a better performance in both 

return and risk against manual recurrence models, which is reflected in table 3 (most 

models in bold are those that used automatic recurrence). Moreover, nearly all that used 

automatic recurrence are in bold, which shows a clear advantage against the models 

that didn’t use predicted prices. 

 

Now, jumping to the next measure, the next graph (figure 14) shows the total portfolio 

value (formula 3.13) achieved by every model.  

 

 

Figure 14: Total portfolio value of all models with S&P stocks 

 

The patterns that occurred in the returns (figure 12) repeat in the case of the total portfolio 

values. It increases if automatic recurrence is used, a small increase exists as input size 

increases and the portfolio value is the highest when trimester is used as the timeframe. 

Plus, there is a positive difference of about 15.000€ between using and not using 

predicted prices. 

 

Next, regarding the costs (formula 3.14), the results are shown in the following graph 

(figure 15). 
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Figure 15: Cost of all models with S&P stocks 

 
Figure 15 shows how costs increase as the timeframe decreases, due to the costs of 

buying and selling stocks in order to stick to the changes in the portfolio. Therefore, as 

there are more trimesters than quarters in a year, more quarters than semesters, and so 

on, the costs quickly add up. This results in an absolute difference of about 

1500€ between timeframes (or roughly a 30% increase in costs). Therefore, in terms of 

cost, the preferred timeframe is annual, which contradicts with trimester achieving the 

highest annualized return.  

 

To see the optimum model, the next graph (figure 16) showing the profit (formula 3.15) 

achieved by each model will be analyzed. 
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Figure 16: Profit of all models with S&P stocks 

 
As it was just discussed, the trimester timeframe gained the highest return and total 

portfolio value but also the highest cost. This is all reflected in figure 16, as sometimes 

the annual timeframe earned the highest profit and in others, trimester did, even though 

it had the highest cost. However, it can be assured either annual or trimester always 

outperform a timeframe of a quarter or a semester. 

 

Regarding recurrence, automatic recurrence outperformed manual recurrence as in 

previous measures. Input size made a small difference, increasing profit as input size 

increased, but not by a significant amount.  

 

Lastly, all models which made use of predicted prices outperformed the equivalent 

models (in terms of the timeframe used) that didn’t, by as much as 13.000€ or 13.4% 

increase in profit.  
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5.1.2 DAX 

 

After the results of the S&P portfolios, it’s the DAX portfolios created by the models turn. 

As in the S&P subsection, the first measure is the annualized return (formula 3.16) 

achieved by each model with the portfolios created for each timeframe between 2007-

2020. 

 

 

Figure 17: Annualized return of all models with DAX stocks 

 

As seen in figure 17, there is a difference, although not much, between the returns from 

automatic (A-R) and manual (M-R) recurrence. Automatic recurrence models offered 

greater returns in general than manual recurrence models, which makes sense taking 

into account the difference in prediction error they offer, as it was showcased in the 

previous subsection.  

 

In addition, regarding the input size, no trend can be extracted from the figure 17. The 

same occurs for the timeframe, none clearly outperformed others.  

 

Lastly, regardless of the type of recurrence or input size, models that made use of the 

predicted prices to build their portfolios outperformed those that didn’t, by as much as 

1.5% increase in return.  
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A different parameter that can be used to measure the efficiency of each model is its risk 

(formula 3.13). This is shown in the following graph (figure 13). 

 

 

Figure 18: Risk of all models with DAX stocks 

 

Similarly to the annualized return analysis, manual recurrence (M-R) has a worse 

performance as, in this case, all of its models have a greater risk than those that used 

automatic recurrence.  

 

Then, regarding the input size and in contrast with the annualized return analysis, the 

greater the input size the greater the risk. Therefore, the smaller the input size the better 

in terms of risk. In addition, regarding the timeframe, no clear pattern exists. 

 

Lastly, regarding the use of predicted prices, most of the models that used automatic 

recurrence did outperform the risk of those models that didn’t use predicted prices. Due 

to this, in the case they obtained a greater annualized return and a lower risk, some 

models would have dominated the models that didn’t use predicted prices. To give a 

clear view of the models that did dominate, the next table has been created (table 4). 
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Table 4: Annualized return and risk of all models with DAX stocks 

     

Annualized 
Return Risk 

DAX30 
With 
Prediction A-R input 30 annual 0.049092265 0.1697505 

       semester 0.02313339 0.1838946 

       quarter 0.016337986 0.197107 

       trimester 0.011747539 0.1947242 

     
input 
125 annual 0.041389103 0.1838216 

       semester 0.019332702 0.2020818 

       quarter 0.015569626 0.2013507 

       trimester 0.009435447 0.2040891 

     
input 
250 annual 0.044122489 0.2143149 

       semester 0.026035915 0.2315566 

       quarter 0.014636457 0.2064211 

       trimester 0.012990501 0.2170274 

   M-R input 30 annual 0.029676903 0.350883 

       semester 0.022881851 0.235261 

       quarter 0.011537603 0.2232184 

       trimester 0.010311101 0.2320448 

     
input 
125 annual 0.039606215 0.3324145 

       semester 0.017672658 0.2751982 

       quarter 0.011181158 0.2640484 

       trimester 0.011423367 0.2474878 

     
input 
250 annual 0.034870859 0.4630704 

       semester 0.015671156 0.3051829 

       quarter 0.013125764 0.2825801 

       trimester 0.01039036 0.2618276 

 No Prediction     annual 0.042906429 0.2006217 

       semester 0.017274021 0.2002615 

       quarter 0.00922284 0.2033291 

       trimester 0.008749687 0.2041693 

 

 

All models in bold in table 4 represent those that obtained a greater annualized return 

and a lower risk (domination) compared to the model that didn’t use predicted prices and 

used the same timeframe. 
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As previously presented, automatic recurrence models had a better performance in both 

return and risk against manual recurrence models, which is reflected in table 4 (all 

models in bold are those that used automatic recurrence). Moreover, most that used 

automatic recurrence are in bold, which shows a clear advantage against the models 

that didn’t use predicted prices. 

 

Now, jumping to the next measure, the next graph (figure 19) shows the total portfolio 

value (formula 3.13) achieved by every model.  

 

 

Figure 19: Total portfolio value of all models with DAX stocks 

 

The patterns that occurred in the returns (figure 17) repeat in the case of the total portfolio 

values. It increases if automatic recurrence is used and there is no significant difference 

between input sizes as well as for the timeframe used. Plus, there is a positive difference, 

between using and not using predicted prices. 

 

Next, regarding the costs (formula 3.14), the results are shown in the following graph 

(figure 20). 
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Figure 20: Cost of all models with DAX stocks 

 
Figure 20 shows how costs increase as the timeframe decreases, due to the costs of 

buying and selling stocks in order to stick to the changes in the portfolio. Therefore, as 

there are more trimesters than quarters per year, more quarters than semesters, and so 

on, the costs quickly add up. This results in an absolute difference of about 

1500€ between timeframes (or roughly a 20-30% increase in costs). Therefore, in terms 

of cost, the preferred timeframe is annual.  

 

The next graph (figure 21) to be analyzed is the profit (formula 3.15) achieved by each 

model. 
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Figure 21: Profit of all models with DAX stocks 

 

As it was previously analyzed, automatic recurrence outperforms manual recurrence as 

in previous measures, whilst all other variables made no difference. 

 

Lastly, all models which made use of predicted prices outperformed the equivalent 

models (in terms of the timeframe used) that didn’t, by as much as 25.000€ or 50% 

increase in profit.  

  

 

5.1.3 DJI 

 

Lastly, the analysis of the performance achieved by the different portfolios created by 

the models from DJI index stocks is presented. 

 

As in the previous subsections, the first measure is the annualized return (formula 3.16) 

achieved by each model with the portfolios created for each timeframe between 2007-

2020. 
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Figure 22: Annualized return of all models with DJI stocks 

 

Similarly to S&P and DAX returns, as seen in figure 22, there is a difference between the 

returns from automatic and manual recurrence. Automatic recurrence models offered 

greater returns in general than manual recurrence models. In addition, regarding the 

input size, no clear trend exists. On the other hand, the timeframe did make a noticeable 

difference being the trimester timeframe usually the best in terms of annualized return, 

with a difference of nearly 2% against the other timeframes while keeping all other 

variables constant (input and recurrence).  

 

Lastly, regardless of the type of recurrence or input size, models that made use of the 

predicted prices to build their portfolios outperformed those that didn’t, although for as 

much as 2% increase in return in equivalent models (equivalent timeframes). 

 

A different parameter that can be used to measure the efficiency of each model is its risk 

(formula 3.13). This is shown in the following graph (figure 23). 
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Figure 23: Risk of all models with DJI stocks 

 

Similarly to the annualized return analysis, manual recurrence (M-R) has a worse 

performance as, in this case, all its models have a greater risk than those that used 

automatic recurrence.  

 

Then, regarding the input size and in contrast with the annualized return analysis, the 

greater the input size the greater the risk. Therefore, the smaller the input size the better 

in terms of risk. In addition, regarding the timeframe, no clear pattern exists. 

 

Lastly, regarding the use of predicted prices, most of the models that used automatic 

recurrence did outperform the risk of those models that didn’t use predicted prices. Due 

to this, in the case they obtained a greater annualized return and a lower risk, some 

models would have dominated the models that didn’t use predicted prices. To give a 

clear view of the models that did dominate, the next table has been created (table 5). 
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Table 5: Annualized return and risk of all models with DJI stocks 

     

Annualized 
Return Risk 

DJI 
With 
Prediction A-R input 30 annual 0.088568197 0.1461364 

       semester 0.042722509 0.1564152 

       quarter 0.029312635 0.1613124 

       trimester 0.021711505 0.165261 

     
input 
125 annual 0.086240621 0.1754588 

       semester 0.043536973 0.1682106 

       quarter 0.029302315 0.175214 

       trimester 0.021879221 0.1736699 

     
input 
250 annual 0.089586331 0.1605535 

       semester 0.043769301 0.1830803 

       quarter 0.026798772 0.1911061 

       trimester 0.023307422 0.1901311 

   M-R input 30 annual 0.081970852 0.3641321 

       semester 0.038943894 0.193862 

       quarter 0.030358712 0.193942 

       trimester 0.022415924 0.1948734 

     
input 
125 annual 0.084949704 0.3607711 

       semester 0.036678935 0.2750653 

       quarter 0.028347541 0.2279211 

       trimester 0.021428676 0.2139558 

     
input 
250 annual 0.078546344 0.5044427 

       semester 0.043775319 0.3033572 

       quarter 0.02654207 0.2501537 

       trimester 0.02449506 0.2445389 

 No Prediction     annual 0.080857806 0.1663081 

       semester 0.037811364 0.1705075 

       quarter 0.023639636 0.174344 

       trimester 0.019643074 0.1756817 

 

 

All models in bold in table 5 represent those that obtained a greater annualized return 

and a lower risk (domination) compared to the model that didn’t use predicted prices and 

used the same timeframe. 

 

As previously presented, automatic recurrence models had a better performance in both 

return and risk against manual recurrence models, which is reflected in table 5 (all 
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models in bold are those that used automatic recurrence). Moreover, most that used 

automatic recurrence are in bold, which shows a clear advantage against the models 

that didn’t use predicted prices. 

 

Now, jumping to the next measure, the next graph (figure 24) shows the total portfolio 

value (formula 3.13) achieved by every model.  

 

  

Figure 24: Total portfolio value of all models with DJI stocks 

 

The patterns that occurred in the annualized returns (figure 22) repeat in the case of the 

total portfolio values. It increases if automatic recurrence is used, there is no significant 

difference between input sizes and the portfolio value is usually the highest when using 

trimester as the timeframe. Plus, there is a positive noticeable difference between using 

and not using predicted prices. 

 

Next, regarding the costs (formula 3.14), the results are shown in the following graph 

(figure 25). 
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Figure 25: Cost of all models with DJI stocks 

 
Figure 25 shows how costs increase as the timeframe decreases, due to the costs of 

buying and selling stocks in order to stick to the changes in the portfolio. There is an 

absolute difference of about 1500€ between timeframes (or roughly a 20-30% increase 

in costs). Therefore, in terms of cost, the preferred timeframe is annual, which contradicts 

with trimester achieving the highest annualized return.  

 

To see the optimum model, the next graph (figure 26) showing the profit (formula 3.15) 

achieved by each model will be analyzed. 
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Figure 26: Profit of all models with DJI stocks 

 
As it was just discussed, the trimester timeframe gained the highest return and total 

portfolio value but also the highest cost. This is all reflected in figure 18, as the timeframe 

with the highest profit varies, there is no clear outperformer.  

 

Regarding recurrence, automatic recurrence outperformed manual recurrence as in 

previous measures. Input size made a small difference, increasing profit as input size 

increased, but not by a significant amount.  

 

Lastly, all models which made use of predicted prices outperformed the equivalent 

models (in terms of the timeframe used) that didn’t, by as much as 25.000€ or 23.8% 

increase in profit.  

 

 

5.1.4 Cross evaluation 

 

Now all three indexes have been analyzed, we can see some patterns between all of 

them. 

 

Starting with the timeframe, it is clear the larger the timeframe, the lower the costs (due 

to less portfolio changes). However, the timeframe that usually gained the highest 
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annualized return is trimester, but not by much. As a result, no timeframe outperformed 

others in the amount of profit achieved. However, if costs could be reduced, this might 

change, and the trimester timeframe might be able to outperform the others.  

 

Then, regarding the recurrence, automatic recurrence models outperformed manual 

recurrence in all three indexes, as it achieved a higher profit in all, due to the significant 

difference in the error when predicting prices, as it was analyzed in subsection 5.1.1. 

Moreover, most automatic recurrence models dominated the models that did not use 

predicted prices (higher annualized return and lower risk). 

 

The input size didn’t make a significant difference between models, although a small 

trend was seen when analyzing the results of the DAX index where, the higher the input 

size, the higher the return. But again, this is not enough to assume more input data 

equals a higher return, total portfolio value or profit. 

 

Lastly, models that made use of predicted prices improved their performance in all three 

indexes. As previously shown, the profit difference was a maximum of 13.4% for S&P, 

50% for DAX and 23.8% for DJI, when comparing equal models in terms of the timeframe 

used. Therefore, it can be concluded predicted prices had a big positive impact on the 

performance of the models when used to construct portfolios using the Markowitz 

approach, not only in terms of profit, but in absolute performance, as many times models 

that did use predicted prices dominated those that didn’t. 

 

 

 

5.2 Stock price prediction models analysis 

 

In order to analyze the performance of each model used to predict stock prices, both 

error of predictions and time to train the model will be considered. One thing to note is, 

the results of this subsection are not differentiated between indexes. This means, when 

calculating the error of a model, all predictions made for each index are considered. 

The same for time, it is the total time to train and execute the model to predict values 

for all three indexes. 
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5.2.1 Error 

 
To start with, error will be analyzed. As discussed in section three, methodology, three 

different error measures were used. Their results are presented next. 

 

1. Mean absolute error (MAE) 

 

 

 

Figure 27: MAE of all models 

 

As seen in Figure 27, automatic recurrence models have a smaller MAE than manual 

recurrence models.  

 

Also, the higher the number of input data used to train, the higher the MAE in general, 

which could at first be counter intuitive but, the greater the amount of input data, the 

least the relation there’ll be with the next timeframe. However, the relation between 

less input data equals less error will only be true until a certain amount of input data, 

although no tests were carried out with less input data than thirty.  

 

Lastly, another trend can be appreciated with the timeframe predicted. The greater the 

timeframe is, the greater the MAE is in general, as expected. 
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2. Mean absolute percentage error (MAPE) 

 

 

 

Figure 28: MAPE of all models 

 

In the case of MAPE, as seen in figure 28, the same conclusions can be extracted as 

for MAE (figure 27). Automatic recurrence models have a smaller MAE than manual 

recurrence models. Also, the higher the number of input data used to train, the higher  

the MAE in general. Lastly, another trend can be appreciated with the timeframe 

predicted. The greater the timeframe is, the greater the MAE is in general. 
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3. Root-mean-square error (RMSE) 

 

 

 

Figure 29: RSME of all models 

 

In the case of RSME (figure 29), the same trends repeat as in MAE (figure 27) and MAPE 

(figure 28). However, in this case the difference between manual and automatic 

recurrence is more drastic. 
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5.2.2 Time 

 

Another indicator used in order to differentiate between models is time taken to train and 

make predictions. The next graph (figure 30) shows the time taken in hours to train and 

execute each model. 

 

 

 

Figure 30: Time taken to train and execute their predictions 

 

As seen in figure 30, no significant difference exists between manual and automatic 

recurrence in time to train and execute the models. However, a trend does exist for input 

data and the timeframe predicted. In the case of the size of the input data, the more input 

data, the higher the time to train the model. This seems intuitive as the model needs to 

consider more datapoints. On the other hand, as the timeframe increases, the time 

decreases.  

 

 

To sum up, even though manual recurrence was included because it was thought the 

time to train would decrease, it was not the case. Plus, given the error drastically 

decreases using all three measures (MAE, MAPE and RSME), it can be concluded 
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automatic recurrence is preferred. In the case of the amount of input data, the error 

increases the more input data there is, as well as the time to train. This means the optimal 

input data, based on our results, is thirty. Lastly, regarding the timeframe predicted, the 

error of the predictions increases as the timeframe increases but, the time taken to train 

and execute decreases. Therefore, depending on what’s valued the highest, error or 

time, a timeframe or another is preferred, but a cost of opportunity will always exist.  

 

However, the performance of the models doesn’t reduce to error and time. Now, the most 

important indicators of the portfolios created by each model are analyzed, their average 

return between 2007-2020 and their profit. 

 

 

 

5.3 Portfolios against index exchange-traded funds 

 

After the different models have been compared between each other, it is time to compare 

them with the annualized return of each index as, this type of investment could be easily 

accessible for an investor by investing in an exchange-traded fund that mimics each 

index.  
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5.3.1 S&P 

 

During the 2007-2020 period, the S&P500 index achieved an annualized return of 8.58% 

(Webster, 2021). In order to compare this return with the annualized return of the models, 

the following graph (figure 31) has been done. 

 

 

Figure 31: Annualized return achieved by models using S&P stocks and the S&P index during 2007-2020 

 

As seen in figure 31, the S&P index achieved a higher return than what the models were 

able to achieve. The best model, which timeframe is trimester, input is 250, used 

automatic recurrence and used predicted prices, was able to return 8.2%. Therefore, 

given the S&P index returned 8.58% during the same period, it beat the best model by 

0.38%. Even though it is not much, this means we can’t assure applying the model using 

predicted prices is better than buying an exchange-traded fund that mimics the S&P 

index. 
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Also, regarding the risk (formula 3.2, standard deviation in this case), the S&P index 

during the 2007-2020 had a risk associated of 15.9% (Curvo, 2022). This is reflected in 

the next graph (figure 32) to easily compare with the risk of the models created in this 

thesis. 

 

 

Figure 32: Risk achieved by models using S&P stocks and the S&P index during 2007-2020 

 

As seen in figure 32, the risk of the index is lower than all model’s risk. This means, the 

index dominated all models (higher return and lower risk), showing it was clearly 

superior. 
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5.3.2 DAX 

 

Moving on to DAX, it’s return during the period 2007-2020 was 7.46% (1stock1, 2020). 

Again, to compare with the annualized returns achieved by the models that only used 

DAX stocks, the following graph has been done (figure 33). 

 

Figure 33: Annualized return achieved by models using DAX stocks and the DAX index during 2007-2020 

 

As seen in figure 33, the DAX index achieved a much higher return than what the models 

were able to achieve. The best model, which timeframe is trimester, input is 250, used 

automatic recurrence and used predicted prices, was able to return 5.2%. Therefore, 

given the DAX index returned 7.46% during the same period, it beat the best model by 

2.26%. In this case, the difference is noticeable. 

 

Next, regarding the risk (formula 3.2, standard deviation in this case), the DAX index 

during the 2007-2020 had a risk associated of 20.11% (Morningstar, 2022). This is 

reflected in the next graph (figure 34) to easily compare with the risk of the models 

created in this thesis. 
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Figure 34: Risk achieved by models using DAX stocks and the DAX index during 2007-2020 

 

As seen in figure 34, the risk of the index is lower than most model’s risk and, for the 

ones that is not, the difference is not significant, whilst the return (figure 33) difference is 

significant. Therefore, it can be assumed the performance of the index is superior in this 

case too. 

 

 

 

5.3.3 DJI 

 

Lastly, regarding the DJI index, its return during the period 2007-2020 was 8.47% 

(1stock1, 2020). As with the previous indexes, to compare with the annualized returns 

achieved by the models that only used DJI stocks, the following graph has been done 

(figure 35). 
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Figure 35: Annualized return achieved by models using DJI stocks and the DJI index during 2007-2020 

 

As seen in figure 35, the DJI index achieved a lower return than what most models were 

able to achieve. The best model, which in this case has the timeframe is trimester, input 

250, used manual recurrence and used predicted prices, was able to return 9.8%. 

Therefore, given the DJI index returned 8.47% during the same period, the best model 

beat it’s performance by 1.33%, which is a significant amount. 

 

Regarding the models that did not use predicted prices, all their returns were lower than 

the DJI return. 

 

Next, regarding the risk (formula 3.2, standard deviation in this case), the DAX index 

during the 2007-2020 had a risk associated of 16.23% (Morningstar, 2022). This is 

reflected in the next graph (figure 36) to easily compare with the risk of the models 

created in this thesis. 
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Figure 36: Risk achieved by models using DAX stocks and the DAX index during 2007-2020 

 

As seen in figure 36, the risk of the index is similar to most model’s risk. Therefore, given 

its risk is similar but, its annualized return is less, the models would be a better choice in 

this case. 

 

 

5.3.4 Cross evaluation 

 

After analyzing all three indexes separately, some conclusions can be extracted. 

Regarding the performance of the models that did use predicted prices against that of 

the indexes, the return of the S&P index was a bit over the best model, but not a 

significant amount, although given the risk of the index was significantly less, it can be 

assumed it is a better choice. Then, regarding the DAX index, it clearly outperformed the 

best model in terms of annualized return, whilst risk was similar. Lastly, the return of the 

DJI index was clearly surpassed by the return of the best model, whilst their risk was 

similar. Therefore, to sum up, no assumption can be made saying the models were either 

inferior or superior to the indexes considering all three cases. 

 

However, one clear pattern does exist. All three indexes achieved a higher annualized 

return than the models that didn’t use predicted prices. Plus, the risk associated to the 

index was in general less than the models without predicted prices risk. This shows 
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applying the Markowitz model by itself to build the portfolios is not enough to outperform 

the indexes returns.  

 

All this indicates that, probably, the bottleneck that is keeping the models from 

outperforming the indexes might be using the Markowitz model to build the portfolios. 

Other more modern solutions to build portfolios could be explored in order to test this. 
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6. Conclusion 

 

In order to achieve the objective of this bachelor thesis, create an optimized portfolio of 

stocks using stock value prediction in an effort to outperform the original Markowitz 

model and a passive management approach, twenty-four different stock price predictive 

long short-term memory models have been created and used. These vary depending on 

the timeframe being predicted, the number of past prices considered to predict the next 

timeframe and the recurrence type. They have been applied to three different stock 

indexes, S&P, DJI and DAX to predict prices and then, used in the Markowitz model to 

create efficient portfolios for each timeframe.  

 

The portfolios created using predicted prices have been compared with the portfolios 

created using the Markowitz model without predicted prices and with the performance of 

each index exchange-traded fund, to compare with a passive management approach. 

 

First, regarding the comparation between portfolios created with and without predicted 

prices, as seen in the analysis section, portfolios that did use predicted prices improved 

their performance (measured in return) in all three indexes. Specifically, 13.4% more for 

S&P, 50% more for DAX and 23.8% more for DJI, an average of 29% increase in return. 

Therefore, it can be concluded predicted prices had a big positive impact on the 

performance of the models when used to construct portfolios using the Markowitz 

approach. 

 

Secondly, with respect to index exchange-traded funds, results were mixed. The return 

of the S&P index was slightly over the return of the portfolios created by the models that 

used predicted prices, although given the risk of the index was significantly less it can 

be assumed it is a better choice. Then, regarding the DAX index, it clearly outperformed 

the portfolios created in terms of annualized return, whilst risk was similar. Lastly, the 

return of the DJI index was clearly surpassed by the return of the portfolios created, 

whilst their risk was similar. Therefore, to sum up, no assumption can be made saying 

the portfolios created using predicted prices in conjunction with the Markowitz model 

were either inferior or superior to the indexes considering all three cases. However, one 

clear pattern does exist. All three indexes achieved a higher annualized return than the 
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models that didn’t use predicted prices. Plus, the risk associated to the index was in 

general less than the models without predicted prices risk. This shows applying the 

Markowitz model by itself to build the portfolios is not enough to outperform the indexes 

returns.  

 

All this indicates that, probably, the bottleneck that is keeping the models from 

outperforming the indexes might be using the Markowitz model to build the portfolios. 

Other more modern solutions to build portfolios could be explored in order to test this. 

 

All in all, these conclusions are limited to the three indexes used. Therefore, in order to 

improve the reliability, a higher amount as well as more diverse indexes could be 

considered, such as Asian indexes.   
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Appendices 

 
 

A.1 Sustainable Development Goals 

 

Degree to which the work is related to the Sustainable Development Goals (SDGs). 

 

Sustainable Development Goals Alto Medio Bajo No 

Proce

de 

SDG 1. No poverty.    x  

SDG 2. Zero hunger.    x  

SDG 3. Good health and well-being.    x  

SDG 4. Quality education.    x  

SDG 5. Gender equality.     x 

SDG 6. Clean water and sanitation.     x 

SDG 7. Affordable and clean energy.     x 

SDG 8. Decent work and economic growth.  x    

SDG 9. Industry, innovation and 

infrastructure.  

 x   

SDG 10. Reduced inequalities.    x  

SDG 11. Sustainable cities and communities.     x 

SDG 12. Responsible consumption and 

production.  

   x 

SDG 13. Climate action.     x 

SDG 14. Life below water.     x 

SDG 15. Life on land.     x 

SDG 16. Peace, justice and strong institutions.     x 

SDG 17. Partnerships for the goals.     x 
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This bachelor thesis relates to the sustainable development goal number 8, decent work 

and economic growth. This goal promotes sustained inclusive and sustainable growth, 

full and productive employment and decent work for all. Specifically, this goal relates to 

the objective of outperforming the current passive management approaches provided. If 

this objective is achieved, banks and other investment funds will be able to provide higher 

return portfolios, increasing the profits gained by clients. Furthermore, money will be 

invested in companies with a higher expected growth, enabling them to fulfill their 

expectations. This means, more job opportunities will arise, improving the life standards 

of living.  
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