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A B S T R A C T   

The development of new tools based on remote sensing data in agriculture contributes to cost reduction, 
increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a 
significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology 
to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original 
approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is 
developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In 
addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud 
metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct iden
tification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for 
crown diameter, stem diameter, and stem volume with coefficient of determination values (R2) equal to 0.95, 
0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m3 (21.55%), respectively. The 
models that gave the lowest R2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 
0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree 
canopies was observed. Results of this study generate valuable information, which can be applied for improving 
the management of walnut plantations.   

1. Introduction 

The development of advanced technological tools can help maximize 
efficiency and profitability in agriculture. The protection of the envi
ronment is a key element for guaranteeing the sustainability of this 
productive sector. Precision agriculture has emerged as a discipline that 
involves a management strategy based on collecting and analyzing data 
(nutrients, topography, water status, climate, growth, and production) 
at individual and local levels to study the inter and intra-field variability 
of crops (Joint Research Centre of the European Commission, 2014). 
This information supports management decisions that enable improved 
agricultural production. Extensive research has shown the potential of 
remote sensing in precision agriculture. Satellite images were used to 
estimate crop biomass (Marshall and Thenkabail, 2015; Zeng and Chen, 
2018); crop biophysical parameters (Xie et al., 2019); fertilization 
(Sripada et al., 2006; Tilling et al., 2007; Miao et al., 2009); water status 

(Moller et al., 2007; Bellvert et al., 2016; Gutiérrez et al., 2018); and 
weed management (Peña-Barragán et al., 2010; Sa et al., 2018). Most of 
these studies aimed to find relationships among agricultural parameters 
measured in field and vegetation reflectance using specific spectral 
bands collected in the optical-reflective and thermal domains. The 
strong contrast in reflectance for some spectral bands motivated the 
development of spectral indices for these applications (Sripada et al., 
2006). However, there is a limited understanding of how the different 
geometric parameters of fruit trees can improve management of fruit 
tree plantations. LiDAR technology has significant potential for esti
mating structure parameters (Moorthy et al., 2011; Hadas et al., 2017; 
Colaço et al., 2017), fruit detection (Gené-Mola et al., 2020) and pruning 
biomass (Estornell et al., 2015). 

LiDAR data can be collected by terrestrial and airborne sensors. 
Terrestrial laser scanners are usually stationed at specific positions, or 
can be mounted in ground-based vehicles. Airborne sensors can be 
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installed in planes, helicopters, drones, and even satellites such as in the 
ICESat-2 mission. When comparing these technologies, it is significant 
that terrestrial systems enable registering data in millimeter detail 
(Liang et al, 2016). However, commonly reported problems include the 
large amounts of data registered by these systems and canopy gaps 
(Hilker et al., 2012). Canopy gaps can be partially solved by using a 
larger number of positions, but this makes the technique less efficient 
(Trochta et al., 2013). Another option is to apply mobile systems (Gil 
et al., 2014), but these systems cannot always be used in irregular and 
reduced plantation spacing and in small agricultural plots. Airborne 
sensors can cover large areas and collect data on all the trees in plots and 
including trees that are very close together and therefore difficult to 
measure using other LIDAR systems. It is hypothesized that for leafless 
trees it is possible to register with more detail the interior parts of the 
canopies, and consequently, parameters such as crown height and crown 
volume could be estimated more accurately. This last parameter has a 
relevant potential for adjusting spray volume (Miranda-Fuentes et al., 
2016) and leaf area index (Arnó et al., 2013). Previous studies also re
ported the importance of canopy height for estimating crown and 
pruning biomass (Velázquez-Martí et al., 2014; Estornell et al., 2015). 
Given the above, it is worthwhile exploring the performance of airborne 
LiDAR systems for defining the central and lower canopy parts of leafless 
fruit trees. 

Allometric equations to estimate aboveground biomass and stem 
volumes from deondrometric parameters measured in the field can be 
frequently found in forestry science (Schlaegel, 1984; Clark et al., 1986; 
Jenkins et al., 2004). However, little attention has been paid in agri
culture to developing models which quantify the total biomass of fruit 
trees and the fraction that can be extracted from pruning (Velázquez- 
Martí et al., 2011a and 2013). This is relevant for understanding the role 
of agricultural plantations in C02 sequestration and the significance of 
these agricultural wastes for biofuel production. To develop these 
studies with airborne LiDAR data it is crucial to develop the crown 
extraction algorithms commonly used in forestry, so that they can also 
be used successfully for deciduous trees (Hadas, 2015). A tree spatial 
database can be generated from these data that can be updated with field 
and remote sensing information. In addition, the location, size, and 
distribution of trees can be mapped to enable the optimal use of farm 
equipment and distribute resources such as fertilizers and herbicides. 
Some studies reported the use of LiDAR data in variable rate techniques 

for pesticide application (Walklate et al., 2002, Gil et al., 2014). 
This study aims to develop and adapt a methodology to extract 

crown trees of Juglans regia L. using airborne LiDAR data. This species 
was selected due the significant increase of this crop in Spain, expanding 
from 10,212 ha in 2010 to 15,204 ha in 2019 (Ministerio de Agricultura 
y Pesca, Alimentación y Medio Ambiente 2010 and 2019). In addition, 
this species can be planted for fruit production and also for obtaining 
crown and stem wood. The performance of airborne LiDAR data to es
timate structure parameters, i.e. total and crown heights, stem and 
crown diameters, and stem volume, under leafless conditions was 
analyzed, as well as the capability of this technology to register inter
mediate and low strata of the crowns. 

2. Materials and methods 

2.1. Study area 

The study was located in Viver, a municipality in an inland area of 
Castellon province (Eastern Spain) with a Mediterranean climate char
acterized by hot and dry summers (average temperature 22◦ C and 62 
mm of average total rainfall), and moderate winters (average tempera
ture 7◦ C and 120 mm of rainfall). Annual rainfall is 556 mm and it 
mainly falls in spring and autumn. The species under investigation was 
Juglans regia L. (Fig. 1) which is grown for nut production. The walnuts 
were located in a plot with an average elevation of 660 m a.s.l. and a 
slope of around 3%. The age of the trees was 28 years. The soil was 
calcareous and had a loamy-sand texture with an isopropyl-n-phenyl 
carbamate (IPC) of 35. It was a deep soil with little organic matter. 
The irrigation method was based on controlled deficit irrigation. The 
growth of walnut trees was considered very suitable for the age of the 
plantation considering that pruning was carefully eliminating unnec
essary wood to produce good aeration and a high photosynthetic 
efficiency. 

2.2. Materials 

This research was carried out in a plot with 192 walnut trees. LiDAR 
data used in this study belongs to the Aerial Orthophoto National Plan in 
Spain (PNOA; ceded by © IGN), with the following characteristics: flight 
date January 24 to 27, 2018; sensor: LM7800; average height: 3000 m a. 

Fig. 1. Representative walnut tree selected for this study with structure parameters close to the mean values.  
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s.l.; pulse rate: 266667 Hz; field of view (FOV) of LiDAR point collection: 
50◦; scanning frequency: 100 LxS; plane speed: 160 knots; data density 
in the study area 4 points∙m-2 on average. 

For a sample of n = 21 walnut tree structure parameters, i.e. total, 
crown and stem height, crown and stem diameter, and stem volume 
were obtained from direct field measurements (Table 1). Total height 
was measured with a pole measuring the maximum height of each tree 
from three observer points. To obtain stem height, the distance between 
ground and the first stem bifurcation was measured by tape. Crown 
height was obtained by calculating the difference between total and 
stem height. Stem diameter was measured with a diameter tape at a 
distance of 0.6 m from the ground, which was representative for a whole 
stem. Field measurements were performed during the same period as 
LiDAR campaigns. 

Moreover, an orthophotomap (Orthophoto 2017 CC BY 4.0 © Institut 
Cartogràfic Valencià, Generalitat) dated on July 5, 2020, with the pixel 
size of 0.25 m was used to measure four crown diameters from the 
north–south, east–west, northwest-southeast and northeast-southwest 
directions for each tree. An average of these four values was calcu
lated to obtain a crown diameter parameter for each walnut tree. In the 
orthophotomap, walnut trees were leafy, and crown shapes and corre
sponding diameters could be identified more accurately than when 
leafless. Crown growing differences between these two periods can be 
considered insignificant, since annual pruning was applied after the 
LiDAR flight. To determine stem volume, diameters were measured 
every 20 cm starting from the stem base until its top. Stem volumes for 
each tree were calculated as a sum of the volumes of conical frustums 
limited by measurement intervals. 

2.3. Methods 

2.3.1. Crown extraction 
An original approach for walnut tree identification and crown 

delineation from a point cloud was developed. The approach consists of 
several steps: i.e. point-cloud normalization and split; identification of 
local maxima on surface models; crown segmentation; and delineation. 
Open-source CloudCompare software was used for the first step only, 
and multiple Matlab scripts for the remaining processing were 
implemented. 

In the pre-processing step, point cloud was classified to ground and 
non-ground points using the CSF algorithm (Zhang et al., 2016). Ground 
points were used to create a digital terrain model (DTM) with a reso
lution of 1x1 m. Non-ground points were used to generate a normalized 
point cloud, by replacing absolute point heights with normalized heights 
Hnorm, i.e. normal distances from the generated DTM. 

In the next step, an alpha-shape algorithm (Edelsbrunner et al., 
1983) was applied to split the normalized point cloud into smaller areas. 
Alpha-shape is a generalization of the convex hull concept and uses 
Delaunay triangulation associated with a characteristic radius r. In this 
study, r was set to 0.7; points below a threshold height of 1.5 m were 
discarded; and areas smaller than 1 m2 were rejected. This step signifi
cantly improved the processing performance and computational times. 
Moreover, the alpha-shape already produced crown contours for trees 
with non-overlapping crowns (Hadas et al., 2019). However, over
lapping trees were aggregated into groups, which required further 

separation. 
To separate trees with overlapping crowns, a widely used method of 

treetop identification for conifers was adopted, which is based on an 
analysis of a smoothened raster. First, the normalized point cloud was 
clipped using areas identified in the previous step, and normalized 
heights were used to generate a digital surface model (DSM) of each area 
as a raster with a resolution of 3x3 m. The built-in Matlab function 
imregionalmax was used to identify local maxima on each DSM, which 
approximately represented treetops. It was assumed that a DSM smaller 
than 4x4 cells may contain a single local maximum, but there was no 
assumption on a local maxima number for a larger DSM. Treetops were 
further used as seed points for a k-means algorithm, which segmented 
the point cloud into clusters, which were considered as points reflected 
from individual trees. Each cluster was then delineated using alpha- 
shape algorithm again, to obtain preliminary crown contours for all 
trees. 

Height thresholding and alpha-shape algorithm itself left out points 
reflected from low and protruding branches. To correct such issues, 
crown contour polygons were iteratively enlarged by the nearest point. 
This procedure ended, when all non-aggregated points were further 
from the closest polygon than twice the r. The new polygons were 
considered as final crown contours determined for the entire study area 
and were visually compared with the orthophotomap. This layer was 
used to compute the area (ACLiDAR) and diameter (DCLiDAR) of the 
crowns. 

2.3.2. Structure parameters 
A sample of 21 walnut trees was selected in the study plot. A set of 

statistical parameters based on LiDAR point elevations within each 
extracted crown was calculated using the Cloudmetrics tool in FUSION 
software version 3.80 (McGaughey, 2014). The potential variables used 
for this study were: minimum, maximum, mean, median, standard de
viation, variance, coefficient of variation, interquartile distance, skew
ness, kurtosis, AAD (average absolute deviation), MADMedian (median 
of the absolute deviations from the overall median), L-moments (L1, L2, 
L3, L4), L-moment skewness, L-moment kurtosis, percentile values (1st, 
5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 
95th, 99th percentiles), canopy relief ratio ((mean - min) / (max – min)), 
generalized means for the 2nd and 3rd power (elev quadratic mean and 
elev cubic mean). Points with heights lower than 0.25 m were discarded 
so as to only consider vegetation points. In addition, the area and 
diameter of each crown were computed from a crown polygon layer 
extracted in the previous step from LiDAR data. This set of metrics was 
used to estimate total height (Ht), crown height (Hc), stem diameter 
(Ds), crown diameter (Dc) and stem volume (Vs) by applying stepwise 
regression (α = 0.05). A leave-one-out-cross-validation method was 
applied to analyze the performance of regression models. 

This method is appropriate for small datasets according to the sci
entific literature (Brovelli et al., 2008; Cheng et al., 2017) and it pro
vides an unbiased estimate of the true error expected for independent 
data (Moore et al., 2001; Hastie et al., 2001; Varma and Simon, 2006). 
The determination coefficient R2, absolute root mean square error 
(RMSE), and relative RMSE (RMSE%), calculated by dividing the abso
lute RMSE with the mean value for each parameter calculated from field 
data, were computed for the regression models and compared to the 
parameters obtained from the cross-validation technique. Scatter plots 
with a regression fit line were obtained for each parameter. 

3. Results 

3.1. Crown extraction 

After applying the alpha-shape algorithm, multiple trees merged 
together, especially in the central part of the test area (Fig. 2a). This was 
expected due to the overlapping crowns of walnut trees. In the next step, 
204 local maxima were found (Fig. 2b) on the generated 3x3 m DSM, 

Table 1 
Statistics of walnut parameters: total height (Ht); crown diameter (Dc); crown 
height (Hc); stem diameter (Ds); stem height (Hs); and stem volume (Vs); 
standard deviation (SD), minimum value (Min), maximum value (Max).  

Statistic Ht (m) Dc (m) Hc (m) Ds (m) Hs (m) Vs (m3) 

Mean 6.76 7.54 5.71 0.25 1.05 0.075 
SD 1.51 1.98 1.52 0.06 0.17 0.039 
Min 4.60 4.24 3.53 0.14 0.73 0.025 
Max 9.25 10.63 8.33 0.34 1.38 0.160  
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and the corresponding clusters were obtained with a k-means algorithm. 
Ten clusters at the south-eastern edges of the test region and one cluster 
on the far west were disregarded from further analysis, as they did not 
represent walnut trees. Among 193 final crown contours (Fig. 2c) there 
were 178 correctly delineated crowns. There were three crown contours 
which still aggregated to two trees each, constituting omission errors. 
Another four trees were divided into two contours each, thus generating 
commission errors. Finally, there was a single tree, whose contour was 
far too large at the cost of reduced crown contours for the three neigh
boring trees. All 21 test trees were in the group of correctly determined 
trees. 

3.2. Structure parameters 

The most accurate fit was obtained for crown diameter (Dc) with 

values of R2, RMSE, and RMSE% equal to 0.95, 0.43 m, 5.70%, 
respectively (Table 2). This stepwise model included only one variable, 
crown diameter (DCLiDAR), that was calculated from crown polygons. 
Appropriate models were also obtained for stem parameters, i.e. volume 
and diameter, with R2 equal to 0.83 and 0.87, respectively. In these 
models, one variable was also selected: crown area derived from LiDAR 
data (ACLiDAR) and crown diameter (DCLiDAR), respectively. For total (Ht) 
and crown height (Hc) less accurate results were found. R2, RMSE and 
RMSE% for Ht were 0.69 m, 0.84 m, and 12.43%, respectively. For Hc, 
these values were 0.70 m, 0.83 m and 14.54%, respectively. Underes
timation of total height for each walnut tree was detected for most of the 
test trees (Fig. 3). Mean difference among total height measured in the 
field and maximum elevation derived from LiDAR data for each tree was 
0.41 m. This result indicated that airborne LiDAR system under
estimated tree heights. In this figure, an overestimation of the minimum 

Fig. 2. Results of tree crown delineation approach at various stages: (a) normalized point cloud split with alpha-shape algorithm; (b) seed points for k-means al
gorithm detected on DSM rasters; (c) final crown contours and test trees with a orthophotomap in the background. 
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height registered by LiDAR data was also observed (a mean difference of 
− 0.51 m compared to field measurements). 

Validation of the results was based on the comparison of RMSE and 
R2 values of regression models and cross validation techniques. Similar 
values of RMSE - RMSEcv and R2 - R2

cv were found for each parameter 
(Table 2). In addition, a linear relationship close to the 1:1 line was 
observed among field data and cross validation predicted values for each 
parameter (Fig. 4). 

4. Discussion 

4.1. Crown extraction 

Crowns were delineated with a high success rate of 92.7%, although 
the average density of the point cloud was relatively low when 
compared with other recent studies (Wan Mohd Jaafar et al. 2018; 
Hadas et al. 2019). This was achieved for deciduous trees, for which the 
task is more challenging due to the non-conical shape of the crowns 
(Hadas 2015). The high success rate can be explained by the fact that 
walnut crowns were artificially shaped by regular pruning, so that the 
top parts of crowns were separated from each other. Some delineation 

errors occurred for the highest trees with overlapping crowns. We 
attribute this to the inability of the local maxima search algorithm to 
identify treetops correctly in such a challenging condition. Because it is 
critical for k-means algorithms to provide either the number of expected 
clusters (trees) or seed point (tree top locations), the identification of 
treetops is a critical step. Although definition of DTM resolution, or its 
smoothing window, directly affects treetop identification (Morsdorf 
et al. 2003; Zhao and Popescu 2007), k-means remains a popular 
approach (Gupta et al. 2010; Dalponte et al., 2015). Recently, a density- 
based spatial clustering of applications with noise (DBSCAN) algorithm 
is receiving more attention in LiDAR data segmentation (Ferrara et al. 
2018, Wang et al, 2019). This non-parametric algorithm could be 
considered as an alternative for k-means and eliminates the DTM anal
ysis, producing a segmentation accuracy of 87% (Wang et al. 2020). 

4.2. Structure parameters 

The results indicate that walnut parameters were estimated accu
rately from airborne LiDAR data acquired during leafless conditions. For 
stem parameters, it is important to note that accurate models were ob
tained for estimating stem volume and diameter. Although LiDAR 
technology cannot register stem parameters directly, 2D crown variables 
(crown diameter and crown area) derived from LiDAR data showed a 
high explanatory power for predicting stem parameters. For stem 
diameter, the reported results are in line with previous studies on agri
cultural tree species, e.g. Olea europaea L. and Prunus dulcis Miller 
(López-Cortés et al., 2019; Gandia-Ventura, 2020). For these studies, R2 

values were 0.84 and 0.82, respectively, being crown area and crown 
diameter derived from LiDAR data the most significant variables. For 
forest species, strong relationships were also found for stem parameters 
considering crown area and crown perimeter (Popescu, 2007; Shrestha 
and Wynne, 2012). The results obtained in the present study confirm the 
capability of airborne LiDAR data to estimate stem parameters for fruit 
trees. Previous research reported the importance of these variables to 
predict pruning biomass (Velázquez-Martí et al., 2011a; Sajdak et al., 
2014). To our knowledge, no studies estimating the stem volume of fruit 
trees by airborne LiDAR data have been made. However, results ob
tained in this study reveal the significance of crown area parameters 
when estimating this parameter for the Juglans regia L. species. A bio
physical and proportional relationship between crown area and stem 
volume was found. 

Other studies reported the relevance of stem volume for estimating 
crown biomass in almond, olive, and orange trees (Fernández-Puritach 

Table 2 
Regression models developed for each parameter using LiDAR data variables.  

Parameter Model R2 RMSE RMSE 
(%) 

R2
cv RMSEcv 

Ds [m] Ds = − 0.0136 +
0.034 ⋅ DCLiDAR 

0.87 0.02 m 9.35 0.86 0.02 m 

Dc [m] Dc = − 0.93 +
1.12 ⋅ DCLiDAR 

0.95 0.43 m 5.70 0.95 0.44 m 

Ht [m] Ht = − 1.01 +
1.22 ⋅ ElevMax 

0.69 0.84 m 12.43 0.67 0.85 m 

Hc [m] Hc = − 2.10 +
1.23 ⋅ ElevMax 

0.70 0.83 m 14.54 0.67 0.85 m 

Vs [m3] Vs = − 0.0015 +
0.0017 ⋅ ACLiDAR 

0.83 0.016 
m3 

21.55 0.81 0.017 
m3 

The estimated walnut parameters were: stem diameter (Ds); crown diameter 
(Dc); total height (Ht); crown height (Hc); stem volume (Vs). Independent var
iables derived from LiDAR data within each tree were: crown diameter derived 
from LiDAR data (DCLiDAR); maximum elevation (Elevmax); crown area derived 
from tree extraction algorithm applied using LiDAR data (ACLiDAR); determina
tion coefficient for each model (R2); root mean square error (RMSE); RMSE 
percentage compared to average field values for each parameter (RMSE %); 
cross validation determination coefficient (R2

cv); cross validation root mean 
square error (RMSEcv). 

Fig. 3. Scatterplot of crown LiDAR data of a representative tree that is close the average difference in total height and crown height between field and LiDAR data. 
Bold line represents distance from ground to the first stem bifurcation measured in the field. Dotted line represents the maximum height measured in the field. 
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et al., 2013; Velázquez-Martí et al., 2014). Unlike forestry, fruit tree 
biomass is concentrated mainly in the crowns (Velázquez-Martí et al., 
2014). Allometric equations to estimate timber volume or above ground 
biomass from simple field measurements are defined in forestry 
(Schlaegel, 1984; Clark et al., 1986; Jenkins et al., 2004). In reviewing 
the literature, several studies estimated these parameters from LiDAR 
data (Shrestha and Wynne, 2012; Kankare et al., 2014; Hauglin et al., 
2014). However, further research is required in agriculture to obtain 
regression models that enable quantifying tree biomass and the fraction 
that can be removed in management tasks such as pruning. The results 
reported in this study encourage further research in this topic to 
compute the total biomass of fruit trees. 

A strong correlation was found for crown diameter measured in field 
and derived from LiDAR data. For its computation, it was needed, firstly, 
to develop and adapt an algorithm to extract crown trees from LiDAR 
data. An aspect worth considering is that the density of points classified 
as vegetation (height >0.25 m) was approximately 2.5 points∙m− 2. This 
result showed that approximately 60% of the original 3D point cloud 
within each crown tree corresponded to hits on branches. The rest of the 
LiDAR points were classified as ground points. These findings suggest 
that crown architecture of walnut trees can be defined accurately by 
airborne LiDAR data in leafless conditions. In addition, a better 

performance for this technique is expected for representing the central 
and lower parts of canopies – as will be discussed for tree height analysis. 
Previous studies reported that olive trees with a mean crown diameter of 
4.01 m were defined accurately using a density of 4 points∙m− 2 (Hadas 
et al., 2017). For Platanus hispanica, a crown layer was also extracted 
using 0.7∙points m− 2 in urban environments, with crown diameter 
values ranged from 4.1 m to 11 m in leafy conditions (Estornell et al., 
2018). However, no literature was found on how point density can affect 
the structure parameters of leafless fruit trees. Several studies reported 
the relevance of crown diameter for estimating crown biomass in olive 
trees (Velázquez-Martí et al., 2014) and pruning biomass in olive and 
almond trees (Velázquez-Martí et al., 2011a; Velázquez-Martí et al., 
2011b). Crown area, which was also computed in this study from LiDAR 
data, showed a significant relevance for estimating pruning biomass in 
olive trees (Estornell et al., 2015) and the biomass of conifers and 
broadleaf trees (Shrestha and Wynne, 2012). 

Out of the analyzed parameters, total and crown height were esti
mated with less accuracy. A general underestimation for total height was 
detected. These results were in line with previous studies on fruit trees 
and confirm that airborne LiDAR systems underestimate the top canopy 
of olive and almond trees (Estornell et al., 2015; Gandia-Ventura, 2020). 
This underestimation was widely proven in forestry studies (Lefsky 

Fig. 4. Scatterplot for each field and cross-validation predicted parameter.  
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et al., 2002; Gaveau and Hill, 2003; Yu et al., 2004; Hill and Thomson, 
2005; Hopkinson et al., 2005; Streutker and Glenn, 2006; Bork and Su, 
2007). This effect could be explained by considering that to obtain a 
return, it is necessary to exceed a threshold in the backscattered laser 
energy in the discretization process of the signal. In other words, a 
deeper area of canopy is needed for the energy beam to be reflected, and 
as a consequence, the return is generated in a lower part of the tree. 
However, underestimations could vary when considering several fac
tors. Hirata (2004) reported that differences in tree height estimation 
were affected by point density. This result was also in line with another 
study in which olive tree heights were compared using two sets of LiDAR 
data (0.5 points/m2, and greater than 3.5 points/m2) obtaining a bias of 
− 1.48 m, and − 0.72 m, respectively (n = 25) (Hadas and Estornell, 
2016). Other studies reported that small footprint sizes generate more 
accurate results than large footprints (Hirata, 2004; Andersen et al., 
2006). In the latter case, although the beam of energy is distributed over 
a larger area, a lower signal-to-noise ratio can be produced in small 
terminal features of some canopies, and this generates an insufficient 
returning signal. Another disadvantage of large footprints is that a 
mixture of reflections from the targets within the path of the laser beam 
can be generated (Andersen et al., 2006). 

Underestimation of tree height is also dependent on tree species due 
to differences in crown forms (Yu et al., 2004; Andersen et al. 2006). 
Narrow crowns are more likely to be missed (Andersen et al., 2006). In 
this study, Douglas fir heights were estimated with less accuracy than 
ponderosa pines. In this context, a lower probability of registering the 
treetop locations of leafless trees is expected, although this also depends 
on other factors such as the tree size. DTM accuracy is another factor to 
be considered when evaluating tree height estimations (Leckie et al., 
2003; Gatziolis et al., 2010). Nevertheless, this factor is not considered 
relevant in agricultural environments as the terrain slope is gentle and 
gaps among trees can be observed due the applied plantation frame
work. Values of RMSE of around 1 m were found for height forest trees 
with average heights around 15–20 m (Kwak et al., 2007; Popescu and 
Zhao, 2008). In contrast, fruit trees are shorter than forest trees as their 
heights are managed to facilitate agricultural practices (harvesting and 
the application of pesticides). In our study the average height of the trees 
was 6.8 m and the RMSE value was 0.84 m. In relative terms, the un
derestimation of fruit trees from LiDAR data was more significant than 
for forest trees. For canopy height, an expected overestimation (− 0.51) 
of this height was detected. However, these differences were lower than 
those reported for olive trees, i.e. − 1.18 m (Estornell et al., 2015). 
Previous studies reported that little information is registered for the 
central and lowest parts of canopies for olive trees (Estornell et al., 
2015), beech (Van der Zande et al., 2006), and leafy Platanus hispanica 
(Estornell et al., 2018), and this generates poor results for the canopy 
height parameter. In contrast, as can be observed in Fig. 3, that there is a 
regular distribution of points throughout the canopy with some points 
close to the lowest strata of the canopy. 

These results suggest that a leafless 3D canopy can be defined 
properly using airborne LiDAR data. A good estimation of crown height 
is needed since this parameter was significant for estimating crown and 
pruning biomass (Velázquez-Martí et al., 2014; Estornell et al., 2015). 
Nevertheless, according to the main statistics in Table 1, the walnut trees 
in our study can be considered medium-large in size (28 years). 
Although the set of trees sampled can be appropriate for estimating the 
structural parameters of the plot, the results should be interpreted with 
caution as the trees in our study did not include small-medium trees. 

5. Conclusions 

Leafless tree crowns of Juglans regia L. were extracted successfully 
from airborne LiDAR data. This was achieved using an original approach 
which combines alpha-shape algorithm, identification of local maxima 
on DSM and k-means algorithm. Moreover, structural parameters such 
as diameter, volume stem, and crown diameter were estimated 

accurately from these data. A higher density of points distributed in the 
intermediate and lower stratums of walnut trees was observed when 
compared to other evergreen agriculture species such as olive trees. 
Collecting LiDAR data under leafless conditions, far from being a 
drawback, enabled a more accurate determination of the crown mini
mum height and therefore crown height. The results of this study could 
be applied to improve monitoring and management of agriculture 
plantations such as walnut trees. A spatial database of trees for a plot can 
be generated including structure parameter information and other 
management data (pesticides and pruning) that could be estimated from 
LiDAR structure parameters and this would enable the monitoring and 
analysis of changes. In addition, the results of this study could be applied 
to estimate total biomass of this species. To do this, it is crucial to 
develop models that enable estimations to be made from structure pa
rameters, which can be accurately derived from airborne LiDAR data. 
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Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., 
Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., 2016. 
Terrestrial laser scanning in forest inventories. ISPRS-J. Photogramm. Remote Sens. 
115, 63–77. https://doi.org/10.1016/j.isprsjprs.2016.01.006. 
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Velázquez-Martí, B., López Cortés, I., Salazar-Hernández, D.M., Callejón-Ferre, A.J., 
2013. Prediction and evaluation of biomass obtained from citrus trees pruning. 
J. Food Agric. Environ. 11 (3–4), 1485–1491. 
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