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Abstract—Wound rotor induction motors are used in a certain 

number of industrial applications due to their interesting 

advantages, such as the possibility of inserting external rheostats 

in series with the rotor winding to enhance the torque 

characteristics under starting and to decrease the high inrush 

currents. However, the more complex structure of the rotor 

winding, compared to cage induction motors, is a source for 

potential maintenance problems. In this regard, several anomalies 

can lead to the occurrence of asymmetries in the rotor winding 

that may yield terrible repercussions for the machine’s integrity. 

Therefore, monitoring the levels of asymmetry in the rotor 

winding is of paramount importance to ensure the correct 

operation of the motor. This work proposes the use of Bicoherence 

of the stray flux signal, as an indicator to obtain an automatic 

classification of the rotor winding condition. For this, the Fuzzy C-

Means machine learning algorithm is used, which starts with the 

Bicoherence calculation and generates the different clusters for 

grouping and classification, according to the level of winding 

asymmetry. In addition, an analysis regarding the influence of the 

flux sensor position on the automatic classification and the failure 

detection is carried out. The results are highly satisfactory and 

prove the potential of the method for its future incorporation in 

autonomous condition monitoring systems that can be 

satisfactorily applied to determine the health of these machines. 

 
Index Terms—Fault Diagnosis, Asymmetries, Bicoherence, 

Fuzzy C-Means. 

I. INTRODUCTION 

ound rotor induction motors (WRIM) are typically 

employed in large power industrial applications (above 

1,000 hp) due to their interesting advantages: on the one hand, 

their rotor winding, based on a set of short-circuited coils, can 

be accessed externally, a fact that enables the measurement of 

rotor currents, which can be useful for diagnostic purposes. On 
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the other hand, this winding structure enables the insertion of 

external resistors which modify the speed-torque characteristic 

of the machine, yielding higher starting torques while 

maintaining a low value of inrush current [1]. These advantages 

make them an ideal option for applications involving ball and 

sag mills, cranes, pumps, fans and blowers, chippers, hoists and 

conveyors, among others [1]. 

   In spite of these advantages, they are much less widespread 

compared to cage induction motors since, among other facts, 

their more complex rotor winding structure causes notable 

maintenance problems. As reported in [2], damages in the rotor 

winding may appear in the end region due to centrifugal forces 

on the crossovers and connections of the winding causing shorts 

between turns. On the other hand, it is also common to find 

asymmetries in the three-phase rotor winding caused by a 

diversity of reasons: uneven contacts between slip rings and 

brushes caused by incorrect tightening or uneven wearing, high 

resistance connections between phase coils, unbalances in the 

external resistors…[2]. A field example of this common failure 

was reported in [3], where a rotor asymmetry in a 12P, 3.3kV, 

1,500 kW WRIM driving a ball mill was detected. After a 
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thorough investigation, the asymmetry was attributed to a 

defective contact between the slip ring and brushes of one rotor 

phase, which caused abnormal heat dissipations (a temperature 

difference of 30ºC versus the rest of phases) that could have led 

to a catastrophic failure if it had remained undetected. Fig. 1 

shows some pictures of this field case [3]. In spite that the 

likelihood of rotor asymmetries is higher in WRIM compared 

to cage IM, there are fewer works addressed to these machines. 

Despite this, several interesting approaches to detect rotor 

winding asymmetries in WRIM have been proposed in the 

recent literature [3]-[7]; this proves the interest of this type of 

machines and the relevance of developing reliable methods to 

determine the condition of the rotor winding.   

This paper is focused on the use of the study of the stray flux 

under starting with the aim of detecting rotor asymmetries in 

WRIM. The study of the stray flux has recently drawn a 

renewed attention from many researchers and companies of the 

electric motors condition monitoring area due to the interesting 

advantages of the technique compared to other methods: 

simplicity, low cost, non-invasive nature and useful 

informational source for the discrimination between some faults 

(e.g. eccentricities/unbalances [4]) and for avoiding false 

indications (e.g. cooling axial ducts). In this regard, the analysis 

of stray flux signals has proven to provide much richer 

information than the analysis of other quantities, such as 

currents, which is the quantity that has been considered in most 

of past works dealing with WRIM [5]-[7]. On the other hand, 

despite the technique has still some issues to be solved such as 

the influence of sensor position on the results, it has also a huge 

potential derived, indeed, from this fact: combining the 

information from different sensor locations that capture 

different flux portions (axial and /or radial), it is possible to 

enhance the reliability of the diagnosis that can rely on multiple 

harmonics of different nature (axial and radial), as it has been 

proven in recent works [8]-[9].   

Over recent years, the research has moved a step forward and 

it has been proven that the analysis of the stray flux under 

starting with suitable time-frequency transforms yields 

characteristic patterns caused by the transient evolutions of the 

fault components. These are very reliable evidences of the 

presence of those faults. This recent diagnosis approach has 

been applied with success to detect rotor damages and 

mechanical faults in cage induction motors [4], [8] and even 

some works have proven the suitability of this method to detect 

rotor asymmetries in WRIM [9]. In spite of these advances, the 

application of the stray-flux-based technique still relies on the 

user expertness to interpret the time-frequency maps and to 

identify the fault components’ evolutions; for instance, the 

method proposed in [9], though powerful, mainly relies on the 

qualitative interpretation of the time-frequency maps resulting 

from the application of the proposed tools. It does not include 

automatic classification algorithms for rotor winding 

asymmetry diagnosis, which would make the fault detection 

independent from the user expertise and which would facilitate 

the implementation of the methodology in portable condition 

monitoring devices or autonomous diagnosis systems.  

The present work is aimed to provide a solution to these 

pending issues by proposing the computation of the 

Bicoherence of the stray flux signals under motor starting for 

the detection of rotor winding asymmetries. In relation to the 

use of Bicoherence in faults diagnosis, different works have 

been carried out [10]-[12]; most of these rely on the use of the 

vibration signals and deal with other types of motors [13]. Other 

works, such as [14]-[16], use wavelet coherence to identify 

nonlinearities in dynamic systems. In [17], wavelet coherence 

is used for the identification of faults in electromechanical 

systems. Some of these works make use of current signals, in 

addition to vibration signals but none of them has proposed the 

utilization of stray flux signals. The approach presented in this 

paper for the automatic identification of asymmetries relies on 

the combination of high-order spectral analysis with an 

unsupervised learning technique as the fuzzy C-Mean algorithm 

which means an important improvement of the results presented 

in [18]. The results prove the potential of the method for the 

automatic fault identification and classification of rotor winding 

asymmetries in WRIM. Moreover, a study of the influence of 

the sensor position on the results is included in the paper. This 

study enables to objectively measure the similarity between the 

obtained results at certain flux sensor positions, which are well-

justified by the preponderance of certain flux components at 

those positions.   

II. THEORETICAL FOUNDATIONS: BICOHERENCE AND HIGHER 

ORDER SPECTRA 

The bispectrum is a higher resolution spectral technique that 

provides supplementary information about the amplitude and 

phase of the analyzed signal’s components; it provides 

information regarding specific interactions between the 

different frequency components of that signal. More 

specifically, the bispectrum informs about the nonlinear 

interactions in the process that generates a signal. This can be 

especially useful when analyzing transient stray flux signals 

with fault diagnosis purposes. The mathematical definition of 

the bispectrum is as follows: 

For a real discrete signal {𝑥(𝑛)}, 𝑛 = 0, ±1, ±2, ±3 …, the 

third order cumulant is given by (1) [19]. 

 

         𝐶3𝑥(𝜏1, 𝜏2) =
1

𝑁
∑ 𝑥(𝑛) ∙ 𝑥(𝑛 + 𝜏1) ∙ 𝑥(𝑛 + 𝜏2)𝑁2

𝑛=𝑁1   (1)          

 

   where 𝑁1 y 𝑁2are chosen in such a way that the summation 

involves only x(n) with 𝑛 ∈ [0, 𝑁 − 1], 𝑁  is the number of 

samples in the cumulant region to be evaluated. Likewise, the 

bispectrum is defined by the Fourier Transform of the third 

order cumulant, which is given by [20]: 

 

𝐵(𝑓1, 𝑓2) = ∑ ∑ 𝐶3𝑥(𝜏1, 𝜏2) ∙ 𝑒−2𝜋𝑓1𝜏1 ∙𝑁−1
𝜏2=−𝑁−1

𝑁−1
𝜏1=−𝑁−1

𝑒−2𝜋𝑓2𝜏2 =
1

𝑁2 𝑋(𝑓1, 𝑓2) ∙ 𝑋(𝑓1) ∙ 𝑋(𝑓2)                               (2) 

   where 𝑋(𝑓) is the Fourier Transform of the 

sequence {𝑥(𝑛)}𝑛=0
𝑁−1. 

The bispectrum in spectral domain can be computed through 

the convolution theorem (X is the Fourier Transform and X* its 

conjugate): 
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         𝐵(𝑓1, 𝑓2) = 𝑋∗(𝑓1 + 𝑓2) · 𝑋(𝑓1) · 𝑋(𝑓2)                 (3) 

 

   in this work the use of the bispectrum absolute value of the 

stray flux signal is proposed. The discrete theoretical 

description is as follows: 

 

             (𝐵𝑥
𝑁(𝑓)) = |𝐵𝑥

𝑁(𝑓1, 𝑓2)|𝑖,∇𝑖 = 1, … , 𝑁                  (4) 

where N is the number of rows of the square matrix (NxN) 

obtained from the bispectrum. The obtained result in (4) is a 

NxN matrix that contains the frequency values of the amplitude 

bispectrum matrix of the analyzed stray flux signal. 

In practical terms, the bispectral representations included in 

this paper should be interpreted as follows: each point of the 

bispectrum represents the interactions between the frequency 

components given by its respective coordinates (f1, f2). In the 

plots included in this paper, the frequencies have been 

previously normalized versus the sampling rate (fs=5kHz), this 

is, 5 kHz is normalized to 1Hz, so the fundamental frequency 

of the stray flux signal, 50Hz, represents the frequency 0.01 in 

the domain of the bispectrum. Taking this into account, the 

point (0.01, 0.01) represents the interaction between the 

fundamental component and itself, when the bispectral analysis 

is carried out. Therefore, the traces appearing around that point 

represent interactions between the fundamental component and 

nearby components (as those amplified by the fault), as well as 

the mutual interactions between these latter components. The 

appearance of the bispectrum will be informative not only on 

the frequency content of the analyzed signal but also of the 

interactions between the respective components, which yields 

much more information. In this paper, the bispectral 

representations are depicted through contour plots that depict 

the lines connecting similar values (in this case, the local 

maxima), using the same color. 

A. Bicoherence and Fuzzy C-Means Algorithm 

Bicoherence can be interpreted as an automatic index that can 

be calculated from a single signal. It takes values between 0 and 

1, which makes it a convenient measure to quantify the degree 

of phase coupling in a signal. Then, the Bicoherence, according 

to equation (3), is defined as: 

 

         𝑏𝑖𝑐2(𝑓1, 𝑓2) =
|𝐵(𝑓1,𝑓2)|2

𝐸[|𝑋(𝑓1)·𝑋(𝑓2)|2]𝐸[|𝑋∗(𝑓1+𝑓2)|2]
    (5) 

 

where the numerator contains the square magnitude of the 

bispectrum in all segments of the time series and the 

denominator is the factor that normalizes the bispectrum. Then, 

0 ≤ 𝐵(𝑓1, 𝑓2) ≤ 1. The fuzzy C-Mean automatic classification 

algorithm is applied to the result of the above equation (5), 

which is defined as [21]: 

                     𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

2𝑁
𝑗=1

𝐷
𝑖=1                      (6) 

where 𝐷 is the number of data points, 𝑁 is the number of 

clusters, 𝑚 is the fuzzy partition matrix exponent, 𝑥𝑖 is the data 

points to evaluate, 𝑐𝑗 is the cluster center of the 𝑗 cluster and 

𝑢𝑖𝑗  is the degree of membership of the data points 𝑥𝑖 in the 

cluster. 

The goal of the algorithm is to minimize the function 

(equation (6)). After the first iteration, the estimation of 𝐽𝑚 gets 

smaller in value quantitatively, which means that the algorithm 

is approaching a decent split of the points associated with the 

ranking groups. 

III. EXPERIMENTS 

In order to capture the stray flux data under starting, an 

experimental test bench was used (see Fig. 2). It was based on 

a 4P, 400V, 11kW WRIM that could operate under different 

load conditions. The WRIM was started by inserting a starting 

rheostat to decrease the starting currents (see blue element in 

Fig. 2). The rotor winding asymmetry was forced by inserting 

an additional external rheostat in series with one of the rotor 

phases (see yellow element in Fig.2). This additional rheostat 

enabled to insert up to ten levels of resistance (steps from 0.14 

Ω to 11.6 Ω), so that different rotor fault severities were 

obtained (in this work, only two asymmetry levels are shown: 

moderate asymmetry (added resistance Radd=1.6 RR with 

RR=rotor winding resistance) and severe asymmetry (added 

resistance Radd=1.9 RR) [3], [9]). Note that, since during the 

starting the starting rheostat was inserted, the effective value of 

the rotor phase resistance was higher than RR. Also, note that a 

certain level of eccentricity was measured in the machine, even 

at healthy condition of the rotor winding (Radd=0). Several 

startups were carried out. The stray flux data under starting was 

obtained by registering the emf waveforms induced in an 

external coil sensor with 1,000 turns and with an external 

diameter of 80mm and an internal diameter of 39mm. The 

sampling rate was 5 kHz.  The waveforms of the emf signals 

captured at each sensor position and after each tested rotor 

 

Fig. 2 Laboratory Test Bench. 
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winding condition are displayed in Fig,4. After capturing the 

emf waveforms, these were transferred to a computer, in which 

an algorithm enabling the application of the bispectrum was 

employed. 

 

Fig. 3.  Considered sensor positions for the experiments. 

 

 

 
 

Fig. 4.  Waveforms of emf signals for each sensor position and rotor winding 

condition.  
 

 

IV. RESULTS 

Figs. 5 to 13 show the contour plots corresponding to the 

bispectra of the stray flux signals captured under starting for the 

three different sensor positions A, B and C, respectively (see 

Fig.3) and for several levels of rotor winding asymmetry 

ranging from healthy to level 2 (severe asymmetry). For the 

calculation of both the bispectrum and the bicoherence (which 

will be shown later), 512 samples have been used for each 

position and for each winding condition. This number of 

samples is sufficient to identify the different levels of failure, as 

well as to classify the results. As observed in Figs 5 to 7 

(position A), the depth level in the contour plots increases as the 

level of asymmetry does, which reflects the appearance of new 

frequencies related to the fault (the fault components’ 

frequencies change under starting, adopting values between 0 

and the supply frequency). Note that, in healthy condition some 

traces are detected in the bispectra, which are caused by the 

certain eccentricity measured in the machine. However, the 

pattern is totally different from that at faulty condition. Figure 

7 shows that, when the level of severity is the highest, there is 

a maximization of the contours, which is illustrated through the 

appearance of new circles. These represent, under a spectral 

point of view, new frequencies with significant amplitudes that 

are yielded by the fault that cause new interactions between 

these components and between them and the fundamental. 

The same reasoning stands for position B, as shown in Figs. 

8 to 10.   Note that there are clear differences between the 

healthy and faulty bispectra at that sensor position. In healthy 

conditions, only the fundamental component and inherent 

eccentricity components. Note how the interactions are mainly 

located in the low frequency region, which is coherent with the 

expected location of the components amplified by eccentricities 

as suggested in recent works.  But in the case of rotor winding 

asymmetry, additional interactions can be observed. Note the 

clear amplification of the contour plots around the fundamental 

(coordinate 0.01, 0.01 and symmetrical) that reveal higher 

interactions between the fundamental and nearby components. 

Note also the appearance of new contours, as the fault increases, 

which reveal the interactions between new components present 

in the signal.  

All these interactions, reflected through the contour plots in 

the bispectra., yield characteristics signatures that can be 

automatically detected by intelligent algorithms to diagnose the 

fault.  

 

Fig. 5.  Bispectrum of stray-flux signals under starting for the sensor position 

A (Healthy rotor).  

 

 
Fig. 6.  Bispectrum of stray-flux signals under starting for the sensor position 

A (Rotor Asymmetry Level 1).  

Radial field

Pos. B
Pos. C

Pos. B

Pos. A

Axial field
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Fig. 7.  Bispectrum of stray-flux signals under starting for the sensor position 

A (Rotor Asymmetry Level 2).  

 

 

 
Fig. 8.  Bispectrum of stray-flux signals under starting for the sensor position 

B (Healthy rotor). 

 

  

The case of sensor at position C is especially evident, 

showing a progressive increment in these interactions between 

components as the rotor asymmetry increases, which can be 

directly observed in the plots. This is due to the fact that in this 

position, the f·(1-2·s) component is especially relevant, due to 

its radial nature, yielding more evident interactions compared 

to other positions. The results are shown in Figs. 11 to 13, 

respectively.  

These figures reveal that there are qualitative differences 

between the bispectra for different sensor positions. However, 

there are individual identifiable common features that allow the 

discrimination between healthy and winding asymmetry cases 

for all sensor positions. 

 

 

 
Fig. 9.  Bispectrum of stray-flux signals under starting for the sensor position 

B (Rotor Asymmetry Level 1). 

 

 
Fig. 10.  Bispectrum of stray-flux signals under starting for the sensor position 
B (Rotor Asymmetry Level 2). 

 

 

 
Fig. 11.  Bispectrum of stray-flux signals under starting for the sensor position 
C (Healthy rotor). 
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Fig. 12.  Bispectrum of stray-flux signals under starting for the sensor position 

C (Rotor Asymmetry Level 1). 

 

 
Fig. 13.  Bispectrum of stray-flux signals under starting for the sensor position 

C (Rotor Asymmetry Level 2). 

 

A. Clustering based on Fuzzy C-Mean of Bicoherence  

 

The bispectrum provides information about the spectral 

content of the stray flux signals as well as of the different levels 

of failure according to the depth level of the contours. Based on 

this, in a real application, it is convenient to have algorithms 

that automatically determine the state of the motor according to 

its spectral content. 

As the fault severity increases, new frequencies with random 

phases are generated in the transient stray flux signal; these may 

be coupled or not. To quantify this dispersion, the use of the 

Bicoherence is proposed; moreover, the Fuzzy C-Means 

unsupervised classification algorithm is employed to perform 

the automatic classification. Figs. 14 to 22 illustrate this 

process, by showing the cluster assignments and centroids for 

the different fault levels and for the three sensor positions. The 

peaks appearing in these graphs give an idea of the frequency 

concentration based on the identified groups raising from the 

respective bispectra. Therefore, they are a measure of the 

frequency dispersion for each case. 

 
Fig. 14.  Cluster Assignments and Centroids for Position A (Healthy rotor). 

 

 

 

 
Fig. 15.  Cluster Assignments and Centroids for Position A (Rotor Asymmetry 

Level 1). 
 

 

 

 
Fig. 16.  Cluster Assignments and Centroids for Position A (Rotor Asymmetry 
Level 2). 
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Fig. 17.  Cluster Assignments and Centroids for Position B (Healthy rotor) 

 

 

 

 
Fig. 18.  Cluster Assignments and Centroids for Position B (Rotor Asymmetry 
Level 1). 

 

 

 
Fig. 19.  Cluster Assignments and Centroids for Position B (Rotor Asymmetry 

Level 2). 

 
Fig. 20.  Cluster Assignments and Centroids for Position C (Healthy rotor). 

 

 

 
 

 
Fig. 21.  Cluster Assignments and Centroids for Position C (Rotor Asymmetry 

Level 1). 

 

 

 
Fig. 22.  Cluster Assignments and Centroids for Position C (Rotor Asymmetry 

Level 2). 
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Figs. 14 to 16 show that, for the sensor position A, the blue 

pattern decreases as the fault severity increases (see differences 

between rotor asymmetry cases and healthy condition). On the 

other hand, the red pattern shows an inconsistent trend for this 

position: it shows two peaks for the healthy case, one for the 

fault severity 1 and, again, two peaks for the fault severity 2. 

This erratic trend may be due to the fact that, at that sensor 

position, the main fault components are the axial ones (e.g. s·f) 

and they are also present in healthy condition due to inherent 

eccentricity in the machine. This, together with the reduced 

amplitude of the captured stray flux signals at that position 

(which yields a low signal to noise ratio) causes this 

inconsistency in the results. 

On the contrary, at position B and C the cluster assignment 

and classification results are more consistent. Figs. 17 to 19 

(position B) show that a single peak pattern appears for the 

healthy case, whereas two-peak patterns raise for the different 

rotor winding asymmetry conditions. At position C (Figs. 20 to 

22), a multiple peak red pattern appears for the faulty cases, 

showing clear differences with the single-peak pattern of the 

healthy case. Moreover, the blue pattern also increases its 

amplitude. The results for these positions are attributed to the 

higher differences yielded by the amplification of the radial 

components, such as f·(1-2·s)) which evolves under starting 

across the whole frequency band below the fundamental.  

   All in all, these results prove a higher consistency of the 

results at sensor positions B and C that is justified on the 

irruption of multiple frequencies below the fundamental due to 

the evolution of the radial components, that are mostly captured 

at those positions. 

   In Section V, a study is carried out to determine how the 

sensor position influences the obtained results. The study is 

based on the analysis of the level of similarity and correlation 

between their respective results. To this end, the Pearson 

correlation coefficient, the squared magnitude coherence and 

the Wavelet coherence of each of the signals are used. 

B. Comparison with other clustering methods 

To illustrate the performance of the Fuzzy C-Means method, 

a comparative study with other clustering method is performed 

in this Section. The comparison is carried out in terms of 

execution time and error rate calculation. Other variants of  

fuzzy means algorithms are considered, namely: 

➢ Classic Fuzzy C-Means (FCM) 

➢ General Type 2 FCM algorithm (GT2-FCM) [22] 

➢ Interval T2 Fuzzy C-means (IT2-FCM) [23] 

➢ Possibilistic C-Means (PCM) [24]  

Since the algorithm and its variants are parametric need to 

know a priori the number of clusters implicit in the data. In this 

case the experiment was carry on with three cluster. 

Fig. 23 and Table I show that the execution time for the 

classical variant of Fuzzy C-Means algorithm is the best. On the 

other hand, Table I reveals that the Possibilistic C-Means 

variants has the best success rate, although all approaches yield 

quite similar results. This justifies the use of Fuzzy C-Means 

since the classification performance is similar to that of other 

approaches while the execution time is much better.  

 
Fig. 23 CPU time comparison between every variants of Fuzzy Means 
Algorithm 

 

 
Table I. Comparative analysis between different clustering methods 

 

 

V. MEAN SQUARE COHERENCE: INFLUENCE OF THE SENSOR 

POSITION  

The discrepancies between the obtained results at each sensor 

position (especially between position A and positions B-C) are 

mainly attributed to the differences between the features of the 

respective stray-flux signals measured at each position. The 

main reason for existence of these differences relies, as 

explained in the paper, in the different nature of the components 

that are amplified by the fault at each considered position (axial 

at position A, radial at position C and, combined (axial + radial) 

at position B).  This section is aimed to provide objective 

indicators of these differences between the stray-flux signals at 

different positions in three different dimensions, namely: time, 

frequency and time-frequency. To this end, the Pearson 

correlation coefficient, the squared magnitude coherence and 

the Wavelet coherence are respectively used. 

The squared magnitude coherence can be estimated as a 

quantification measure of the relationship between two vectors; 

it is a function of the power spectral density 𝑃𝑥𝑥(𝑓) and 𝑃𝑦𝑦(𝑓), 

and the cross power spectral density  𝑃𝑥𝑦(𝑓), of  𝑥 and  𝑦, 

respectively [25].  

 

                        𝐶𝑥𝑦(𝑓) =
𝑃𝑥𝑦(𝑓)

𝑃𝑥𝑥(𝑓)∙𝑃𝑦𝑦(𝑓)
                          (7) 

 

Algorithm Error 

Sample 

Count 

Success 

Rate 

Execution 

Time 

Fuzzy C-Means 17  88.66 % 0.001414 

General Type 

2(FCM) 

16 89.33 % 0.110677 

interval T2 (FCM) 17 88.66% 0.036101 

Possibilistic C-

Means 

14 90.66% 0.021295 
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Since the coherence measures the relationship at the level of 

each frequency point in two vectors, the output 𝐶𝑥𝑦(𝑓) is a 

vector that contains the existing correlation values at each 

frequency point for each pair  𝑥, 𝑦 . In this case, each pair 

corresponds to each sensor position A, B and C, respectively, 

taken two by two. Table II shows the obtained results using the 

Pearson correlation coefficient and the Mean Coherence. 

 

 
TABLE II. PEARSON CORRELATION AND MEAN COHERENCE BETWEEN EACH 

SENSOR POSITION (A,B AND C) IN THE HEALTHY STATE 

PAIRS 

POSITIONS 
PEARSON 

CORRELATION 
MEAN  

COHERENCE 

A-B 0.0575 0.2115 

A-C 0.0210 0.2895 

B-C -0.7950 0.3675 

 

 

The results of Table II show that there is a little relation, 

under a temporal point of view, between the stray flux signal 

measured at position A and those measured at positions B and 

C (note the reduced values of Pearson correlation coefficient), 

all of them corresponding to a healthy rotor condition. On the 

contrary, there is a high similarity between the signals captured 

at positions B and C (the Pearson coefficient yields a value of -

0.7950). 

Regarding the relationship of the spectral content, the 

hypothesis that positions B and C are related is strengthened, 

since a coherence value of 0.3675 is obtained, while the 

positions A-B and A-C are related in a lesser extent.  

To show in detail the behavior of each frequency and phase 

and illustrate a classification by groups, which allows to 

identify a spectral pattern that justifies the automatic 

classification groups evaluated and obtained in each series, the 

wavelet squared magnitude coherence is used. Unlike the 

coherence based on the Fourier transform (see (7)), the Wavelet 

coherence is based on the Wavelet Transform and is used to 

evaluate a time-frequency analysis between the variables. Figs. 

24 to 26 show the obtained results. 

 

 
Fig. 24.  Time-frequency Analysis based on Wavelet coherence, for Position A-

B (Healthy rotor).    

 
Fig. 25.  Time-frequency Analysis based on Wavelet coherence, for Position A-

C (Healthy rotor).   

 

 
Fig. 26.  Time-frequency Analysis based on Wavelet coherence, for Position B-

C (Healthy rotor).   
 

The cone of influence (dashed white line) indicates where 

edge effects occur in the consistency data. Due to edge effects, 

less credit is given to the areas of apparent high coherence that 

are outside the cone of influence or overlapping it. 

The phase arrows (in black) represent the lead / lag phase 

relationships between the two data series, this is, it indicates if, 

in addition to coinciding in frequency, they also coincide in 

phase. 

The pattern for positions A-B and A-C respectively is similar 

between the sample interval 100 to 400, but opposite in phase, 

which influences the classification. 

The relationship that exists between position B and C 

respectively is significant in frequency and with the same 

phase. Hence, the classification patterns obtained for positions 

B and C respectively are similar and identify the faults in an 

appreciable way. 

In conclusion, the following aspects are derived from the 

analysis carried out in this section: 

- As shown in Table II, the correlation coefficient (that 

accounts for the similarity between temporal waveforms of the 

stray-flux) and the mean coherence (that accounts for the 
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similarity between spectral components) show a much higher 

similarity between B and C and a much more reduced similarity 

between these positions and position A (probably due to the 

higher presence of the radial components on the measured flux 

portion of the two first positions). 

- The wavelet coherence, that is used to measure the 

similarities between the respective time-frequency maps, also 

reveals high similarities between positions B-C and much lower 

with respect position A, which is in agreement with the previous 

considerations. 

All the previous facts serve to explain the different behaviors 

of the previous bispectra and, more specifically, the different 

patterns at position A versus those reached at positions B and 

C. 

VI. CONCLUSION 

In the present work, an algorithm for the automatic 

classification of rotor winding asymmetries in WRIM is 

proposed. It is based on the use of the Bicoherence of the stray 

flux signals under starting. Moreover, a method for 

unsupervised classification based on fuzzy logic is presented. 

For each analyzed sensor position, notable differences are 

found between healthy and faulty condition, reflected through 

common patterns appearing in the bispectra and that yield clear 

differences in the subsequent cluster assignments for healthy 

and faulty conditions. These facts prove the validity of the 

methods for identifying and classifying the asymmetries. 

The performance of the proposed Fuzzy C-Means approach 

performance is compared to those of other methods. The 

comparison shows a much shorter computational time of the 

proposed approach that enables maintaining the classification 

accuracy of other methods.   

In addition, an analysis about the influence of the sensor 

position in the fault detection process is carried out. It studies 

the correspondence and similarity of the measurements 

regardless of the position where the measurement is taken. 

It is possible to identify that two of the three relative positions 

used in the experiments (B&C) present common characteristics; 

this was derived from the time-frequency analyses based on the 

coherence and the correlation coefficient. The obtained results 

confirm that the position of the sensor has a strong influence on 

clearly detecting the asymmetry, being B and C more suitable 

for automatic fault classification purposes.  

Future works will deep in the discrimination between 

eccentricities and rotor asymmetries in WRIM, forcing more 

severe eccentricity levels and analyzing in detail the different 

repercussions that each fault has on the stray-flux spectrum 

plots.  
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