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Resum

Els vehicles aeris no tripulats (UAVs) estan cada vegada més disponibles i son més
capagos, utilitzant-se per a una gran varietat de proposits, com la vigilancia, la supervisié
d’entorns perillosos, el lliurament de carrega, 1’enregistrament, la cerca i rescat, i molts
més. El seguiment dels vehicles aeris no tripulats s’ha convertit en una tasca crucial
per a fer front a la creixent utilitzacié d’aquesta mena de vehicles per a plans malicio-
sos i delictius, aixi com per a amenaces i vulnerabilitats de seguretat. En aquest treball,
presentem dos enfocaments diferents per al seguiment d’'UAV, un basat en els amplia-
ment utilitzats Filtres de Kalman (KF) per a extraure informacié de mostres sorolloses
i I'altre basat en algorismes d’Aprenentatge Profund. El nostre objectiu és comparar el
rendiment d’aquestes dues tecniques contraposades, el model de caixa blanca de KF que
empra les equacions del model dinamic de 'UAV i un model de caixa negra implementat
amb xarxes neuronals. Per a I’avaluacié experimental, utilitzem un dataset proporcionat
per 'OTAN que conté una combinaci6é de dades de sensors de radar i de sensors de cerca
per radio direccié. Els resultats d’aqueixa avaluacié experimental mostren que tots dos
tipus de models considerats son capacos de proporcionar un bon rendiment per a aquest
problema especific. A més, es realitza un estudi comparatiu del seu rendiment per a
discernir les caracteristiques associades al comportament de cada model.

Paraules clau: Seguiment d’UAVs, Filtres de Kalman, Aprenentatge Profund, Xarxes
Neuronals

Resumen

Los vehiculos aéreos no tripulados (UAVs) estdn cada vez mas disponibles y son mds
capaces, utilizdndose para una gran variedad de propésitos, como la vigilancia, la super-
visién de entornos peligrosos, la entrega de carga, la grabacién, la bisqueda y rescate, y
muchos més. El seguimiento de los vehiculos aéreos no tripulados se ha convertido en
una tarea crucial para hacer frente a la creciente utilizacién de este tipo de vehiculos para
planes maliciosos y delictivos, asi como para amenazas y vulnerabilidades de seguridad.
En este trabajo, presentamos dos enfoques diferentes para el seguimiento de UAV, uno
basado en los ampliamente utilizados Filtros de Kalman (KF) para extraer informacién
de muestras ruidosas y el otro basado en algoritmos de Aprendizaje Profundo. Nuestro
objetivo es comparar el rendimiento de estas dos técnicas contrapuestas, el modelo de
caja blanca de KF que emplea las ecuaciones del modelo dindmico del UAV y un mode-
lo de caja negra implementado con redes neuronales. Para la evaluacién experimental,
utilizamos un dataset proporcionado por la OTAN que contiene una combinacién de da-
tos de sensores de radar y de sensores de busqueda por radio direccion. Los resultados
de esa evaluacién experimental muestran que ambos tipos de modelos considerados son
capaces de proporcionar un buen rendimiento para este problema especifico. Ademas,
se realiza un estudio comparativo de su rendimiento para discernir las caracteristicas
asociadas al comportamiento de cada modelo.

Palabras clave: Seguimiento de UAVs, Filtros de Kalman, Aprendizaje Profundo, Redes
Neuronales

Abstract

Unmanned Aerial Vehicles (UAVs) have become increasingly available and capable.
They are now used for a large variety of purposes, such as surveillance, monitoring
dangerous environments, cargo delivery, filming, search and rescue, and many more.



Tracking UAVs has become a crucial task to address the growing utilization of UAVs for
malicious and criminal schemes and security threats and vulnerabilities. In this work,
we present two different approaches for UAV tracking, one based on the widely used
Kalman Filters (KF) for extracting information from noisy samples and the other based
on Deep Learning algorithms. We aim to compare the performance of these two contrast-
ing techniques, the white-box model of KF that employs the dynamic model equations of
the UAV and a black-box model implemented with Neural Networks. For the experimen-
tal evaluation, we used a dataset provided by the NATO agency that contains a mixture
of data from radar and radio direction finding sensors. The results from that experimen-
tal evaluation show that both of the considered types of models are able to provide good
performance for this specific problem. Moreover, a comparative study of their perfor-
mance is carried out in order to discern the characteristics associated with the behavior
of each model.

Key words: UAV tracking, Kalman Filter, Deep Learning, Neural Networks
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CHAPTER 1
Introduction

This chapter serves as an introduction to the work described in the subsequent chapters
of this project. In that sense, Section 1.1 describes the main motivations behind the selec-
tion of the chosen topic. Then, the main objectives that we will try to fulfill throughout
this project are presented in Section 1.2. Finally, Section 1.3 details the structure of this
work.

1.1 Motivation

My first introduction to the topic of tracking UAVs was when Dr. Eva Onaindia de la Ri-
vaherrera, professor at the Department of Computer Systems and Computation (DSIC)
and my tutor for this project, proposed that I participate in this research field in the con-
text of the Beca de Colaboracién awarded to us by the Ministerio de Educacion y Formacién
Profesional for a project titled "Aprendizaje de modelos de comportamiento de Vehiculos
Aéreos no Tripulados (UAV)". This is a fellowship intended for university students to get
started to carry out research tasks in university departments.

The topic of tracking UAVs was of great appeal to me because of the increasingly
predominant presence of UAVs in many different contexts (videography, photography,
security, monitoring, etc.), and the associated necessity of being able to reliably track
their trajectory in order to guarantee their safety and proper behavior.

Moreover, the large amount of complexities associated with the tracking problem led
me to believe that this project would be both interesting and challenging, and that I could
learn a lot from its development.

During the initial stages of the project, when we searched for and analyzed the main
methods currently being employed to tackle this problem, we soon realized that we could
make a distinction between two different groups of approaches: Kalman Filter-based
models, and Deep Learning models. There are some striking differences between those
two approaches, so the fact that both of them were extensively utilized in the literature
motivated us to comparatively study their behavior for a specific dataset, seeking to de-
duce the main advantages and disadvantages associated with each model.

Furthermore, the contrast between the white-box and explainable nature of the Kalman
Filter and the black-box nature of the Deep Learning models also motivated this com-
parison as a way of determining the characteristics of the trade-off associated with the
explainability of a model and its performance.

1



2 Introduction

1.2 Objectives

The main objectives that this project intends to fulfill are the following;:

1. Identify the main techniques and approaches related to the task of tracking a UAV.

2. Study and analyze the sensor data contained in a publicly available dataset, and
prepare it for its usage by the models.

3. Investigate the theoretical characteristics and the performance of a linear Kalman
Filter model for the problem of tracking a UAV.

4. Investigate the theoretical characteristics and the performance of different Deep
Learning models for the problem of tracking a UAV.

5. Compare the performances of the considered Kalman Filter and Deep Learning
models, and extract conclusions about their behavior in this specific problem.

1.3 Organization of the document

This work is structured as follows.

First, in Chapter 2, we discuss the problem of tracking a UAV as well as the main
techniques and approaches that have previously been considered in order to address
that problem. In that sense, Section 2.1, details the main characteristics that need to be
considered when tackling the problem of tracking a UAV. Then, in Section 2.2 we show-
case some of the most relevant works related to this topic and explain the main ideas of
their proposed techniques and approaches.

Next, in Chapter 3, we present the data utilized in order to evaluate the performance
of the different models discussed in this work. In that sense, Section 3.1 details the con-
tents of the dataset we have considered. Then, in Section 3.2, we focus on describing the
parts of that dataset that we decided to select for this project, as well as the preprocess-
ing steps we followed in order to prepare that data for its usage by the different models
in consideration. Finally, Section 3.3 details the metrics we have considered in order to
evaluate the performance of the models.

The first model considered in this work is the Kalman Filter, which we discuss in
Chapter 4. In that chapter, we first provide a theoretical overview of the characteristics
and the behavior of this model in Section 4.1. Then, in Section 4.2, we specify the design
decisions we took in order to obtain an implementation of this model. Finally, in Sec-
tion 4.3, we show the results obtained after applying the error metrics to the predictions
generated by the Kalman Filter model.

Afterwards, we discuss the different Deep Learning models we have considered in
this project in Chapter 5. First, we provide a theoretical overview of the different models
in Section 5.1. Later, in Section 5.2, we explain the main design decisions regarding the
implementation of those models. Finally, in Section 5.3, we show the errors that resulted
from the generated predictions.

Then, a comparison of the performance of the Kalman Filter and Deep Learning mod-
els is presented in Chapter 6. First, in Section 6.1, we explore the differences in the errors
generated by the predictions of the different models. Later, Section 6.2 contains a detailed
study of the computation time required by the different models. Then, in Section 6.3, we
provide a final comparison of the main characteristics and performance of the studied
models.
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Finally, Chapter 7 summarizes the main conclusions that can be derived from the
work carried out in this project and specifies some future research directions that could
be followed in order to expand on this work.






CHAPTER 2
Related Work

This chapter is structured as follows. Section 2.1 defines the problem of tracking a UAV, as
well as the difficulties and benefits associated with developing approaches that address
this problem. Later, in Section 2.2, we showcase a series of works that present techniques
and approaches aimed at this problem of tracking a UAV.

2.1 Tracking of UAVs

In this section, we will explain the problem of tracking a UAV, the main difficulties asso-
ciated with it, why it is a problem of great relevance nowadays, and what benefits could
be obtained from the development of a reliable and accurate approach.

The problem of tracking a UAV consists in predicting its next state, taking into account
its previous states as reported by the data obtained from some sensors. The state of a UAV
may be defined, for instance, by its position at a given time.

The complexity of this problem mainly stems from the difficulty of obtaining accurate
reports of the position of the UAV from the sensors, which typically introduces a lot of
noise in the data report. The noise adds a great deal of difficulty to the process of defining
and training an accurate model capable of reliably predicting the position of the UAV. In
addition, there are other sources of noise that contribute to the complexity associated
with identifying the underlying dynamics of the UAV’s flight. Most of these additional
sources of noise are related to the weather, for instance, wind, rain, snow, etc.

Despite the difficulty of predicting the trajectory of a UAV, there is a lot of interest in
finding approaches that provide high accuracy in the prediction of the position of UAVs
during their flight. This interest mainly stems from the technological advances and the
proliferation of UAVs, which in turn give rise to security threats, vulnerabilities, as well
as their utilization in malicious or criminal schemes. Being able to reliably predict the
next position of a UAV during its flight would allow the development of air defense
systems that alleviate those potential issues. Other scenarios that would also benefit
from the development of such a system are related to the usage of UAVs in the context of
sustainable cities or in the context of enhancing the coverage of communication networks.
Moreover, there are many other application purposes for UAVs, such as environment
monitoring, agriculture, wildlife monitoring, photography;, etc.

Before delving into the most common techniques and approaches to the task of track-
ing a UAV, we will mention some of the main data sources that are currently utilized in
order to obtain readings of the movement of UAVs:

5



6 Related Work

* Radio Frequency (RF) Analyzers: This type of equipment consists of one or more
antennas that receive radio waves and a processor that analyzes the RF spectrum.
Its usage aims at detecting radio communication between a UAV and its controller.

* Acoustic Sensors: One or more microphones are utilized in order to detect the
sound made by a UAV in order to calculate its direction. Adding more sets of
microphones enables the approximated triangulation of the position of the UAV.

* Optical Sensors: Standard cameras and optical sensors that utilize infrared or ther-
mal imaging are some of the most commonly used equipment to detect UAVs.

* Radar: Another very common source of UAV data is radar sensors. This type of
sensor works by sending out a signal and receiving its reflection, being able then to
measure the direction and position of the UAV.

2.2 Techniques and approaches

In this section, we will describe the main ideas of several works that propose different
techniques and approaches related to our problem of tracking UAVs using radar sensor
data. In that sense, we found a scarcity of literature that considers exactly the problem of
tracking a UAV target. As a consequence, we identified two different categories of related
works. The first category reviews proposals related to the problem of tracking, including
some approaches that do not specifically consider UAVs but that propose an approach
of great similarity to the characteristics considered in this project. The second category
walks through some approaches that address different problems related to UAVs, such as
detection or classification, which are also related to the problem addressed in this project
because of their consideration of different characteristics of UAVs.

2.2.1. Tracking-related approaches

Firstly, we will describe a series of works that propose different techniques and ap-
proaches for the problem of tracking a target. We have mainly included works that con-
sider UAVs as the target. However, given that the literature on this particular topic is not
especially abundant, we also decided to include some works that consider other types of
vehicles as targets while still being related to the problem that concerns us regarding the
followed approach.

Neural network-based approaches have been used to model the trajectory of a small
UAYV without the need to know its control system or identify its aerodynamic parameters
[3]. Instead of collecting real trajectory data from flight tests, this work uses a mathe-
matical vehicle model to generate trajectory data that could be utilized for the training
and testing phases of the proposed neural network. The data is then used to train the
multilayered neural network model, which considers the state of the UAV and wind con-
ditions in order to make predictions. The results obtained when testing this model were
considered very promising by the author, since the trained neural network was shown to
be able to predict 4D trajectories accurately.

Similarly, in [4], Deep Neural Network (DNN) and Convolutional Neural Network
(CNN) models are used in order to estimate the distance between an owned quadrotor
UAV and an intruder fixed-wing UAV in order to be able to assess the risk of a mid-air
collision. As a previous step to the application of those models, a vision-based object
detection method is also developed in order to provide the data to those models. The
proposed models are then trained using synthetic images from animation software and
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then validated considering both synthetic and real flight videos. The obtained results
show that the proposed scheme is able to successfully detect and estimate the distance
between the UAVs.

Another example of a work that proposes a neural network-based approach is [5],
where a stacked Bidirectional and Unidirectional Long Short-Term Memory (SBULSTM)
network is proposed in order to predict the position of the UAV during cruise operation.
In that sense, the defined model considers the four positions before the current time to
predict the position at the next time. The dataset used to evaluate the performance of
the proposed model consists of 25 UAV patrol flight paths collected by airborne sensors.
Taking into account the obtained results and the analysis carried out by the authors, the
proposed model is deemed to provide good performance, obtaining a high prediction
accuracy.

There are also other works that approximate the problem of tracking an autonomous
vehicle [6]. This latter work presents an LSTM model that allows autonomous vehicles to
predict the motion of surrounding vehicles on freeways taking into account their inter-
actions. The datasets considered for the experimental evaluation of the proposed model
are publicly available, and they contain real freeway traffic captured at 10 Hz over a pe-
riod of 45 minutes. Moreover, the proposed model is compared to other vehicle motion
prediction approaches. The results show that the proposed model outputs less prediction
error compared to other approaches.

Other interesting and somehow related works tackle the problem of efficiently pre-
dicting the non-linear and unknown motion of an obstacle in the path of a UAV in order
to avoid it [7]. In this sense, the proposal of this work is an efficient method to generate
the predictions considering the recent observations, using online training of an LSTM
neural network. Those predictions are then utilized to select a velocity that avoids collid-
ing with a given probability. Lastly, a statistical model is utilized in order to verify that
the actual motion of the obstacle remains within certain bounds with a given probability.

A different application of UAVs is considered in [8], where the scenario in question
consists of using a UAV to improve 5G communication coverage. In that scenario, the
UAV is affected by various circumstances (wind, time delay during the air communi-
cation, etc.) that result in the base stations producing inaccurate beamforming, which
generates an unnecessary capacity loss. This work then proposes a novel Recurrent Neu-
ral Network (RNN) based model in order to predict the communication location of the
UAV. This approach is then tested in various simulations, and the authors conclude that
the proposed RNN-based model is able to generate highly accurate predictions, which
can lead to more precise beamforming by the base stations, resulting in a more effective
and reliable communication system.

As can be observed in the previously shown works, the current state-of-the-art meth-
ods for UAV tracking are mostly neural network-based. However, there also exist other
approaches which exploit more traditional and conventional methods of providing re-
liable tracking, which in turn are more varied in terms of their underlying algorithms
as opposed to neural networks. Amongst these techniques, the Kalman Filter is a very
popular algorithm for tracking vehicles in noisy environments.

One such example of a more traditional approach to the task of UAV tracking is shown
in the proposal of [9], where the Uncertainty and Error-Aware Kalman Filter (UEAKF)
model is presented. This non-linear model is aimed at outperforming other existing mod-
els in the case of unknown and noisy environments. This work also discusses some of
the main disadvantages present in some of those other commonly used models, such as
the Kalman Filter (KF), the Unscented Kalman Filter (UKF), the Extended Kalman Filter
(EKF), the Particle Filter (PF), or the Diffusion Map Kalman (DMK) model. An analy-
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sis is then carried out in order to evaluate the performance of the proposed model and
to compare it with that obtained using PF-based and DMK-based models. The results
of that analysis show that the proposed UEAKF model is capable of providing a higher
accuracy in tracking UAVs compared to the other considered models.

Another work that deals with KF-based models for tracking UAVs is [10], where the
EKF, UKF, and Unbiased Converted-Measurement Kalman Filter (UCMKEF) are consid-
ered. This work then focuses on extending these algorithms in order to consider Earth-
Centered Earth-Fixed (ECEF) coordinates instead of East-North-Up (ENU) coordinates,
aiming at filtering out the random errors that occur when considering mobile radars,
which can cause filter performance degradation when using that coordinate system. A
performance evaluation is then carried out in order to compare the behavior of the algo-
rithms using each coordinate system. The results show that the proposed approach of
extending the KF-based algorithms when considering ECEF coordinates is able to guar-
antee the accuracy of the filtering process, being able to track the UAV effectively.

2.2.2. UAV-related approaches

We also identified some works that propose techniques for detecting or classifying UAVs.
These problems are related to the problem of tracking because they also consider different
characteristics of UAVs, as well as because of the data that is used to tackle such problems.

In that sense, the first work that we can mention is [11], where the problem is about
classifying drones utilizing radar signals. In order to approach this problem, the authors
propose applying Convolutional Neural Networks (CNNSs) to the Short-Time Fourier
Transform (STFT) spectrograms of simulated radar signals reflected from the drones.
Drones have various characteristics that may impact the spectrograms, such as the blade
length and the blade rotation rates. Data is collected under the X-band and the W-band
from various radar simulation scenarios and is then utilized in order to evaluate the per-
formance of the proposed model. The results show that the proposed approach is able to
provide an F1 score of 0.816 4= 0.011 while remaining robust to the drone blade pitch.

A similar problem is considered in [12], which addresses the scenario of classifying
UAYV and micro-UAVs and discriminating UAV tracks from non-UAV tracks. The reason
why this problem is of great importance is that the proliferation of UAVs has become a
threat to air defense systems, especially under different weather conditions such as rain
or snow, thus requiring the development of an approach that can alleviate this issue. This
work proposes various classification techniques that use kinematic and RF characteris-
tics of the targets and then tests them considering real data. The methods considered for
the classification problem are Linear Support Vector Machines, Gaussian Support Vec-
tor Machines, Convolutional Neural Networks (CNNs), and Softmax Classifier. More-
over, three different approaches are utilized in order to extract the features considered
by those models: user-defined features, Principal Component Analysis (PCA) features,
and autoencoder-extracted features. The results of the carried out analysis, using certain
combinations of those models and feature extraction approaches, show that the CNN
model provides the best performance. Moreover, the autoencoder-extracted features ap-
pear to perform better than user-defined and PCA features in the case of the Support
Vector Machines methods.

Moreover, [13] tries to address the problem of providing accurate and robust drone
detection by proposing a motion-based method called Multi-Scale Space Kinematic de-
tection method (MUSAK). This method is able to harness the motion patterns by extract-
ing 3D, pseudo 3D and 2D kinematic parameters and then considers three Gated Re-
current Units (GRU)-based detection branches for drone recognition. The performance
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evaluation of the proposed MUSAK model is carried out on a hybrid dataset consisting
of public datasets and self-collected data with motion labels. The obtained results and
the subsequent analysis show that the model is able to accomplish a higher performance
compared with previous state-of-the-art motion-based methods.






CHAPTER 3
UAV tracking dataset

In this chapter, we will first describe the dataset used in this project in Section 3.1. Then,
Section 3.2 specifies the parts of that dataset that we decided to select for this project,
as well as the preprocessing steps carried out to prepare the data for the experiments
described in the following chapters. Finally, in Section 3.3, we provide an overview of
the problem of tracking a UAV and an indication of the metrics we will use to measure
the performance of the proposed models.

3.1 NCIA Dataset

The dataset selected for this project was made publicly available in Kaggle (a crowd-
sourced platform where data scientists can train and solve challenges) [1] by the NATO
Communications and Information Agency (NCIA) for the International Conference on
Military Communication and Information Systems (ICMCIS) drone detection challenge
[14]. Throughout this project, we will refer to this dataset as the NCIA dataset since that
is the organization that provided the data.

The ICMCIS drone detection challenge arises from the interest of NATO in devel-
oping capabilities that can help protect people and equipment against the threat of the
misuse of UAVs. In particular, the goal of this challenge is to detect, classify and track
different UAVs as they fly within a defined area, utilizing data from radar and radio fre-
quency direction finding (RF DF) sensors. Hence, the competition aims to identify new
techniques focused on:

1. tracking the UAVs to show their location
2. indicating the type of object that has been detected (e.g. drone, bird)
3. indicating the type of UAV that has been observed (e.g. DJI Mavic Pro)

The evaluation of this competition considers the three aforementioned items while
giving particular weight to the drone tracking task, which is scored according to how
closely the results of the prediction algorithm match the true position of the UAV.

The work of this project focuses exclusively on the first task, i.e., on developing algo-
rithms for predicting the UAV position, and leaves the other two tasks as future work.

3.1.1. Sensors

As previously mentioned, the NCIA dataset includes data from various types of sensors.

11



12 UAV tracking dataset

On the one hand, we can find data from two different RF DF sensors, which are able
to provide classification and identification information about the UAV based on the RF
signature. These sensors are:

e Diana: it is located at a latitude of 51.519137 deg and a longitude of 5.857951 deg.
The antenna array of Diana is a linear combination of elements that is used to es-
timate range and bearing information about the target. However, it only reports
elements detected in a 180 deg sector. The information provided by Diana has a
high degree of uncertainty due to variations in the array antenna pattern.

* Venus: it is located at a latitude of 51.5192716 deg and a longitude of 5.8579155 deg.
Unlike Diana, Venus only reports bearing information about the target, which has
no ambiguity thanks to its usage of a circular array antenna.

On the other hand, we can find data from two different radar sensors, which provide
information about the position (latitude, longitude, altitude), bearing and range of the
detected UAVs. These sensors are:

¢ Alvira: it is located at a latitude of 51.52126391 deg and a longitude of 5.85862734
deg. Alvira is a 2D radar, but it is able to report an altitude value for the target.

* Arcus: it is located at a latitude of 51.52147 deg and a longitude of 5.87056833 deg.
Arcus is a 3D sensor, so it should provide a more accurate report of the altitude of
the UAV.

Sensor Site 2
“Alvira

Sensor Site 1
Diana

Venus

Figure 3.1: Sensor locations (figure taken from [1])

According to the description of the challenge [1], the measurements of the UAV were
carried out at a C-UAS test centre in the Netherlands. A map of this location is shown in
Figure 3.1, where the positions of the different sensors are marked. In this regard, we can
see that the two RF DF sensors, Diana and Venus, are located close to each other at the
centre of the flight zone (Sensor Site 1). The radar sensors are located at the edges of the
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flight zone: Alvira is located at Sensor Site 2, and Arcus is located at Sensor Site 3. All
sensors were deployed at an elevation of about 31m.

The orange lines depict the approximate length between two points. In that sense,
the line labeled as ~1500m indicates the length between the beginning of the flight zone
and Sensor Site 1. The length between Sensor Site 1 and the end of the flight zone is
approximately 1200m. Moreover, the distance between Sensor Site 1 and Sensor Site 2
is 250 meters, and the width of the flight zone is 400 meters. Additionally, the red mark
labeled as Pilot Site 1 shows the location from where the pilot controls the flight of the
UAV.

3.1.2. Scenarios

The dataset of the ICMCIS drone challenge includes two types of scenarios, the ones
using only one drone and others using two drones. Our work puts the focus exclusively
on the scenarios that feature a single drone with various flight patterns. This is referred
to as Scenario 1 and the corresponding sub-scenarios 1.1, 1.2, 1.3 and 1.4.

m [1.2] [ | 1 | [
O tHeight 0 "100m @ @ change
- 50 ~100m | , height
100 P . . 1 20-200
~1000m 150 D stopImin 1 ~150m ~1000m

4 4 ® ®
~1000m ~1000m ~1000m
¥ ® ® X
Figure 3.2: Scenario 1 flight missions (figure taken from [1])

Figure 3.2 shows the four sub-scenarios included in Scenario 1 of the NCIA dataset
and which are part of NATO's description for this challenge. In these figures, the colored
circles have the following meaning (from top to bottom):

. O starting position of the mission
. O stop points in the flight path of the UAV
J . location of the RF DF sensors (Sensor Site 1)

. ® end of the mission

As we can observe in Figure 3.2, there are some significant differences in the flight
paths followed by the UAVs in each of the described sub-scenarios:

¢ In Scenario 1.1, the UAV moves from its starting position towards the final position,
which is at an approximate distance of 2,000 meters. During its trajectory, the drone
varies the height at which it flies.
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¢ In Scenario 1.2, the UAV stops for one minute after it has traversed approximately
100 meters and then resumes its path towards the final position.

* In Scenario 1.3, the UAV first moves until stopping at a point 100 meters to the
left of the starting position, then it continues moving forward until stopping at a
point 100 meters to the right of the starting position, and finally it continues its
path towards the final position.

¢ In Scenario 1.4, the UAV moves from its starting position to the final position while
changing its altitude from 20 meters to 200 meters.

3.1.3. Drones

Furthermore, it should be noted that the data contained in the scenarios defined in the
NCIA dataset was obtained by four different drones:

DJI MAVIC PRO

DJI MAVIC 2

DJI Phantom 4 Pro

Parrot DISCO

The first three drones are all multi-copter drones, meaning that they have multiple
propellers. Conversely, the Parrot DISCO drone has a fixed-wing airframe, and thus it has
different flight characteristics from the other drones.

In addition, it should be mentioned that all the sensor data included in the NCIA
dataset reflects readings of UAVs with a mass lower than 150 kg as, for instance, the
typical hobby drones.

3.2 Data used in this project

The data of this challenge is organized in two folders, named test and train. In this
project, we will only consider the data contained in the train folder since it contains
ground truth files that can be used to evaluate the performance of the implemented mod-
els. In that sense, the data of this folder consists of multiple CSV files organized according
to the scenario to which they belong. The file hierarchy of this folder can be observed in
Figure 3.3.

The CSV files contain the following information:

* Log files: they are the files whose name is a date and time followed by the version
(v2). These files provide the exact tracking information about the UAV, i.e., the
"true’ position and velocity (ground truth) of the UAV at any given time.

e Radar sensor data: this data is contained in the files named ALVIRA_scenario.csv
and ARCUS_scenario.csv. These files give the outputs from the radar sensors
which detected the UAV during its flight. They provide location information (lon-
gitude, latitude, and altitude) as well as the bearing and range detected.
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Scenario_1_1
2020-09-29_14-10-56_v2.csv
ALVIRA scenario.csv
ARCUS scenario.csv
DIANA scenario.csv

VENUS scenario.csv
Scenario_1 2

2020-09-29 15-55-18 v2.csv
ALVIRA scenario.csv

ARCUS scenario.csv

DIANA scenario.csv

VENUS scenario.csv
Scenario_1 3

2020-09-29 15-18-15 v2.csv

ALVIRA scenario.csv

ARCUS scenario.csv

DIANA scenario.csv

VENUS scenario.csv
Scenario_1 4

2020-09-29 15-43-48 v2.csv

ALVIRA scenario.csv

ARCUS scenario.csv

DIANA scenario.csv

VENUS scenario.csv

Figure 3.3: File hierarchy of the dataset

* Radio frequency direction finding sensor data: this data is contained in the files
named DIANA_scenario.csv and VENUS_scenario.csv. These files show the out-
puts from the RF DF sensors which detected the UAV during its flight. They pro-
vide classification information based on kinematic and radar reflectivity character-
istics, as well as identification data about the UAV based on the RF signature.

Given that this project aims to address the task of UAV tracking, we will only consider
the data provided by the log files and the radar sensors since the RF DF data is aimed at
the tasks of classification and identification of the UAV, which lie outside the scope to this
project. Therefore, we will not consider the information reported by the sensors Diana
and Venus.

Moreover, since we are not going to address the tasks of identification and classifi-
cation, we do not need to distinguish between the different types of drones described
previously. Instead we will use all the data corresponding to the different multi-copter
drones and focus on creating a model that is capable of tracking a generic multi-copter
UAV.

Next, we will describe the data of the log files and radar sensor in more detail, using
the files of the Scenario_1_1 folder as an example.

3.2.1. Ground truth data

The 2020-09-29_14-10-56_v2. csv file contains the ground truth of the flight of the UAV.
This file has multiple columns reporting various characteristics of the UAV during its
flight, such as the position (latitude, longitude, altitude), velocity, rotation (yaw, pitch,
roll), and datetime. For the design of our prediction models, we will use the datetime
and position columns, which are the variables that we can correlate to the data provided
by the sensors.

An example of the values contained in those columns is shown in Figure 3.4, where
we can see that the values of longitude and latitude remain the same while the altitude
increases, an indication that the drone is ascending vertically.
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datetime(utc) longitude latitude altitude(m)
0 2020-09-29 12:10:56.647 5.857978 51.519506 0.9
1 2020-09-29 12:10:56.727 5.857978 51.519506 il
2 2020-09-29 12:10:56.824 5.857978 51.519506 15
3 2020-09-29 12:10:56.928 5.857978 51.519506 1.8
4 2020-09-29 12:10:57.027 5.857978 51.519506 2.2

Figure 3.4: Example of values in the relevant columns of the ground truth file of Scenario 1.1

Ground Truth
Starting position
Final position
Alvira

Arcus

Diana

Venus

o0

51.524 4

51.522 1

51.5201

Latitude (deg)

51.518 1

51.516

T T T T T
5.850 5.855 5.860 5.865 5.870
Longitude (deg)

Figure 3.5: Position of the ground truth values and of the sensors in Scenario 1.1

As an illustration of the ground truth values of Scenario 1.1, Figure 3.5 shows the
longitude and latitude of each of the reported values as well as the location of the radar
sensors (Alvira and Arcus) and RF DF sensors (Diana and Venus). In addition, we have
also marked the starting and final position of the UAV.

As can be seen in Figure 3.5, the UAV starts its flight path right next to the position
of the RF DF sensors (Diana and Venus), and it starts moving towards the top right cor-
ner of the figure (starting position of the mission in Scenario 1.1 of Figure 3.2). Once it
reaches the end of the flight zone, the UAV turns around and moves towards the bottom
left corner of the figure (end of the mission in Scenario 1.1 of Figure 3.2). Finally, after
reaching the end of the mission, it turns around once more and flies back towards its
starting position, stopping very close to it (the flight back towards the starting position
completely overlaps the outbound flight in Figure 3.5).

3.2.2. Radar sensor data

The ALVIRA_scenario.csv file contains the data reported by the Alvira sensor. This file
has multiple columns with information relayed by the sensor for every timestamp and
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AlviraTracks_timestamp | AlviraTracksTrack_id AlviraTracksTrackPosition_Longitude =~ AlviraTracksTrackPosition_Altitude

2020-09-29T12:12:41.366Z

2020-09-29T12:12:42.6727
2020-09-29T12:12:43.9817
2020-09-20T12:12:45.2907

AlviraTracksTrack_Timestamp | AlviraTracksTrackPosition_Latitude

2020-09-20T12:12:46.5937 2020-09-29T12:12:46.1847 51.52186681 5.86344006 38.07901557
2020-09-29T12:12:47.9017 2020-09-29T12:12:47.4927 515217653 5.86305795 35.31305432
2020-09-29T12:12:49.2127 2020-09-29T12:12:48.8017 515216891 5.86265357 32.54736233
2020-09-29T12:12:50.518Z 2020-09-29T12:12:50.110Z 51.52164442 5.86226755 29.87256575
2020-09-29T12:12:51.824Z 2020-09-29T12:12:51.4227 51.52156176 5.86189204 27.31013013
2020-09-29T12:12:53.133Z 2020-09-29T12:12:52.742Z 51.52145887 5.8615593 2485500474
2020-09-29T12:12:54.439Z 2020-09-29T12:12:54.061Z 51.52135806 5.86122143 22.52833365
2020-09-29T12:12:55.751Z 2020-09-29T12:12:55.378Z 51.52126719 5.86090688 20.39758592
2020-09-29T12:12:57.057Z 2020-09-29T12:12:56.706Z 51.52116085 5.8605983 18.32012668
2020-09-29T12:12:58.362Z 2020-09-29T12:12:58.035Z 51.52106139 5.86028622 16.47125895
2020-09-29T12:12:59.675Z 2020-09-29T12:12:59.360Z 51.52098457 5.86000364 14.91077577
2020-09-29T12:13.00.979Z 2020-09-29T12:13:00.6802 51.52097381 5.85978599 13.36352968
2020-09-29T12:13.02.2857 2020-09-29T12:13:01.9817 51.52098107 5.85955998 11.90076452
2020-09-20T12:13:03.597Z 2020-09-29T12:13:03.2567 51.52109405 5.85940045 10.57324106
2020-09-20T12:13:04.9037 2020-09-29T12:13:03.2567 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:06.2077 2020-09-29T12:13:03.2567 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:07.5217 2020-09-29T12:13:03.2567 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:08.825Z 2020-09-29T12:13:03.256Z 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:10.132Z 2020-09-29T12:13:03.256Z 51.52100405 5.85940045 10.57324106
2020-09-29T12:13:11.435Z 2020-09-29T12:13:03.256Z 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:12.747Z 2020-09-29T12:13:03.256Z 51.52109405 5.85940045 10.57324106
2020-09-29T12:13:14.055Z 2020-09-29T12:13:03.256Z 51.52109405 5.85940045 10.57324106

2020-09-29T12:13:15.361Z
2020-09-29T12:13:16.666Z
2020-09-29T12:13:17.9772
2020-09-29T12:13:19.2917

Figure 3.6: Example of values in the relevant columns of the Alvira file of Scenario 1.1

some specific columns that have values only when this sensor detects a target, such as its
position (latitude, longitude, altitude), speed, azimuth, and elevation.

According to the challenge description [1], the columns whose name contains the
string "TracksTrack" are the ones that should be considered as the measurements reported
by the Alvira sensor. Taking this into account, we selected the columns describing the
timestamp and the location reported by the sensor.

An example of the values contained in those columns is shown below in Figure 3.6.
As it can be seen in such figure, the sensor only reports information when a target is
detected, and so there are gaps in the reported data.

The ARCUS_scenario.csv file contains the data reported by the Arcus sensor. This file
has similar columns to the file of Alvira, with the general columns relayed by the sensor
at every timestamp and the specific ones that have values only when the sensor detects a
target, such as its position (latitude, longitude, altitude), speed, azimuth, and elevation.

Just like with the Alvira sensor, here, the columns whose name contains the string
"TracksTrack" are the ones that should be considered as the measurements reported by the
sensor. Taking this into account, we again selected the columns describing the timestamp
and the location reported by the sensor.

An example of the values contained in those columns is shown below in Figure 3.7.
As it can be seen in that figure, similarly to Alvira, this sensor only reports data when a
target is detected, and so there are gaps in the reported data.

However, when comparing Figures 3.6 and 3.7 we can observe that the readings of
Arcus differ from those of Alvira in that they contain intermittent gaps. This is most
likely due to the fact that Arcus is a 3D radar sensor, and therefore it has the added
challenge of detecting the depth of targets. The complexity of that challenge, combined
with the fact that the resolution of the sensor diminishes with the distance to the detected
target, would thus be the reason for it to report sparse data.
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ArcusTracks_timestamp

2020-09-29T12:19:40.8947

2020-09-29T12:19:41.867Z

2020-09-29T12:19:42.744Z

2020-09-29T12:19:43.6957

2020-09-29T12:19:44.845Z

ArcusTracksTrack id | ArcusTracksTrack_Timestamp

2020-09-29T12:19:40.794Z

2020-09-29T12:19:41.876Z

2020-09-29T12:19:42.9827
2020-09-29T12:19:42.7927

2020-09-29T12:19:43.866Z

ArcusTracksTrackPosition_Latitude | ArcusTracksTrackPosition_Longitude = ArcusTracksTrackPosition_Altitude

51.52086049

51.52092982

51.52356664
51.52097685

51.52106163

5.85935387

5.85055274

5.86008838
5.85972473

5.85990605

34.27881427

3401702324

50.76398019
35.63920364

34.8876984

2020-09-29T12:19:43.973Z 51.52352557 5.85991266 52.41861509
2020-09-29T12:19:43.718Z 51.51848752 5.85519053 43.81886092
2020-09-29T12:19:44.913Z 51.52356702 5.85082124 67.49625173
2020-09-29T12:19:45.276Z 51.53228681 5.86630682 13156364242
2020-09-29T12:19:44.751Z 51.51845932 5.85513712 41.23469853

Figure 3.7: Example of values in the selected columns of the Arcus file of Scenario 1.1

3.2.3. Data preprocessing

In order to be able to harness the information of the NCIA dataset through the different
models that will be explained in the following sections, it was necessary to execute certain
preprocessing steps.

Firstly, we selected the columns directly concerning the task of trajectory tracking
(timestamps and location), as explained in the previous section. Moreover, since this
information is not available for every time step of the sensor records, we discarded the
empty rows for those columns.

Afterwards, we increased the values in the altitude column of the files containing data
from the sensors by 31 meters, which is the altitude at which the sensors are located. As
a result, we obtained the true altitude of the detected UAV and were able to compare it
to the one reported in the ground truth files.

Furthermore, since the datetime format of the sensor files and the ground truth files
are different, we converted the timestamp information of the sensors from the TZ format
to the UTC format of the ground truth in order to be able to draw comparisons of the
time instants between those files.

Allin all, Table 3.1 shows the number of data samples obtained from each source after
the described preprocessing steps. As it can be seen in the table, the Arcus sensor is the
one that provides the majority of the data samples, while Alvira contributes with a much
smaller percentage of samples. It should also be noted that the ground truth files provide
significantly fewer data values than the sensor data files.

Given that we want to consider all the data reported by the sensors to obtain the
predictions, in this project, we combined and sorted the data reported by both Alvira
and Arcus according to the timestamp values. We will refer to this combined data as
sensor data throughout this project.

3.2.4. Algorithm for correspondence

At several points during the development of this project, we needed to establish a cor-
respondence between the ground truth samples with either the sensor data samples or
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Scenario Data source Number of samples
Ground Truth 7,979
Scenario 1.1 | Alvira 162
Arcus 16,965
Ground Truth 8,371
Scenario 1.2 | Alvira 253
Arcus 134,805
Ground Truth 4,729
Scenario 1.3 | Alvira 138
Arcus 43,891
Ground Truth 5,652
Scenario 1.4 | Alvira 270
Arcus 85,805

Table 3.1: Number of samples in each file of the dataset after preprocessing

the obtained predictions. This was the case, for instance, when computing the errors of
the prediction process. However, the significant difference in the number of samples in
the ground truth set and in the combined sensor data (and consequently in the obtained
predictions), as described in Table 3.1, made it difficult to establish such correspondence.

Therefore, we developed an algorithm that chronologically analyzes each ground
truth sample, and associates the i-th sample g; with the sensor data sample whose times-
tamp is closer to the timestamp of g; (also considering the sensor data in chronological
order). The algorithm works by calculating the absolute difference between the times-
tamp of a given g; and the timestamp of the j-th sensor data sample s;, which we will
refer to as d; ;. Then, it computes the absolute difference between the timestamp of g; and
the timestamp of the next sensor data sample s;,1, which we represent by d; ;1. If d; ;11
is smaller than d; j, then it means that s; is closer in time to the ground truth sample g;
than s;, and so s; can be discarded. We repeat this process for the next sensor data sam-
ple sj2, and so on. Conversely, if d; ;1 is larger than d; ;, we know that s; is the sensor
sample closest in time to the ground truth sample. In such a case, we associate g; with s;
and repeat the same process for the next ground truth sample g;;; from the sensor data
sample s; 1.

It should also be mentioned that if when considering a certain g; and s; it occurs that
s; is the last sensor data sample (in chronological order), and so we cannot compare g;
with any other samples, the algorithm by default associates the last sensor data sample
s to the ground truth sample g;. Therefore, the algorithm considers two different stop-
ping conditions, which are either when every ground truth sample matches a sensor data
sample or when we run out of sensor data samples.

3.3 Metrics for evaluating the tracking problem

As previously mentioned in Section 2.1, this project deals with the problem of tracking a
moving UAV during its flight. Different sources of data about the UAVs are mentioned
in such section, but according to the characteristics of the data contained in the NCIA
dataset, we will specifically be relying on the data reported by radar sensors.
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In that sense, we will develop models that are able to predict the state of the UAV at a
given time, considering the previous states of the UAV as reported by the radar sensors.
The state of the UAV will be defined by the three variables that describe its position
according to the data in consideration, i.e. longitude, latitude, and altitude.

In order to evaluate the performance of the different models that will be presented
later in the project, we will use various metrics to measure the errors of the prediction
process. Next, we will describe these metrics. We will denote the predicted value at
timestamp i by #;, the true value by y; and we will use N to represent the total number of
pairs of predicted and true values considered.

In this project, we will utilize the Mean Absolute Error (MAE), the Mean Squared Er-
ror (MSE), and the Normalized Root Mean Squared Error (NRMSE), defined respectively
as:

1 N
MAE = N Y19 — vil 3.1)
i=1
1 & )
MSE = Y @i —vi) (3.2)
i
1 N N
~ Lic1 (7 — vi)?
NRMSE — \/N ;(y yi) (3.3)

It should be noted that the previously described metrics will be computed indepen-
dently for each of the state variables of the problem, that is, for the longitude, latitude,
and altitude.

On the other hand, the challenge associated with the NCIA dataset [1] proposed a
custom metric in order to evaluate the submitted proposals. We will also consider this
metric, which is defined as:

NCIAMetric =

N
= % ) (pp : \/(x(lftt —lat)2 + a(lon — lon)2 + (alt — alt)2 + pc- |6 —c| + pi-|i — z|)
=1

Where:

¢ N is the number of rows in the solution submitted

* 2 = 100000 is the scaling factor of longitude and latitude degree
e lat, lon, alt are the predicted locations for a given timestamp

e lat, lon, alt are the ground truth locations for a given timestamp
¢ pp = 0.7 is the position penalty

* ¢, c are the predicted and ground truth classes. This modulo difference is 0 if the
class is correctly predicted and 1 otherwise. Since we aren’t performing the task of
classification, we will set this difference to 1 (wrong class).

¢ pc = 0.15is the classification penalty
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e 1, iare the predicted and ground truth identities. This modulo difference is 0 if the
identity is correctly predicted and 1 otherwise. Since we aren’t performing the task
of identification, we will set this difference to 1 (wrong identity).

e pi = 0.15 is the identification penalty
In order to determine how good our results are according to this metric, we will con-

sider as a reference the scores of the top four teams in the challenge [1] as evaluated by
the NCIAMetric:

Team 1: Paschalina Medentzidou_Submission_v2 = 9.325

Team 2: CERTH ITI Varlab Team_Submission_v4 = 10.589

Team 3: Horizon Team_Submission_v1= 10.447

Team 4: DSTL Team_Submission_v1 =22.101

It should be noted, however, that these are the accuracy results obtained by the partic-
ipant teams for the unknown testing sets that were run by the organization of the challenge,
and thus they are not directly comparable to those obtained throughout this project.






CHAPTER 4
Prediction model with Kalman Filters

The Kalman Filter is an algorithm for estimating the unknown variables of a dynamic
system based on a series of measurements reported by various sensors. The reason that
motivated us to use Kalman Filters for predicting the trajectory of a UAV is that they
allow modeling the parameters that define the learning of the underlying dynamics of
the system.

This chapter is structured as follows. Section 4.1 provides a theoretical overview of
Kalman Filters. Section 4.2 defines the way in which we formulated the problem and
how we designed the model in order to obtain experimental results. Finally, Section
4.3 shows the results (and the corresponding analysis) obtained by applying the linear
Kalman Filter model to the data obtained from the NCIA dataset [1].

4.1 An overview of linear Kalman Filters

This section is intended to provide an overview of the key design principles of Kalman
Filters. While the literature on this topic is very abundant, our intention is to discuss only
the main notions needed to design a Kalman Filter. For this purpose, our exposition is
based on an excellent tutorial on Kalman Filters written by the researcher Alex Becker
[2].

First of all, we should mention that in this project, we will only consider linear Kalman
Filters. There exist, however, some more complex versions of this algorithm that intro-
duce non-linearities in the process model and in the observation model, such as the Ex-
tended Kalman Filter or the Unscented Kalman Filter.

Our challenge is to track the trajectory of a UAV and provide accurate and precise es-
timations of the UAV position in terms of three hidden variables (longitude, latitude and
altitude) using the received measurements of the observed variables as reported by the
radar sensors (Alvira and Arcus). The sensor readings are characterized by the presence
of uncertainty due to miscalibration, the precision of the receiver clock, range degrada-
tion, etc. Consequently, the use of Kalman Filters is very appropriate as it is one of the
best algorithms to produce estimates of the hidden variables based on inaccurate and
uncertain measurements.

The behaviour of radar sensors when tracking a target consists in sending a beam
in the direction of the target (UAV) every t seconds and estimating the current target’s
position and velocity (and possibly acceleration). Moreover, utilizing that information,
the sensors predict the position of the target at the next track beam.

23



24 Prediction model with Kalman Filters

In that sense, the future position of the UAV can be predicted using the following
kinematic equation:

1
X = x9 + XoAt + E.X:Atz
where:

e xis the UAV’s position
* Xy is the initial position of the UAV

* Xp is the initial velocity of the UAV

% is the UAV’s acceleration

At is the time interval

Since we are working with three variables, we will have three kinematic equations,
one for each dimension (longitude, latitude, altitude). The vector [x,y,z,%,Y,2, %, 1, Z] is
called the system state and represents the target parameters (x is the longitude dimen-
sion, y is the latitude dimension, and z is the altitude dimension).

The three kinematic equations define the dynamic model, which describes the rela-
tionship between the current state (input) and the next target state (output). However, as
we said before, the uncertainty in the calibration, beam width, or return echo of the sen-
sors produces a measurement noise that introduces imperfections in the measurements
reported by the sensors in relation to the true state of the UAV.

Additionally, the motion of the UAV may not be perfectly aligned to the kinematic
equations of the dynamic model due to external factors such as atmospheric effects (wind,
air turbulence, etc.) or pilot maneuvers. The uncertainty that these factors introduce in
the dynamic model is called the process noise.

MEASURE @ INITIALIZE

Input:
System State
Initial Guess

Input:
Measured Value

Zn

i PREDICT
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Figure 4.1: Kalman Filter estimation algorithm (image taken from [2])

Figure 4.1 depicts the general behaviour of the Kalman Filter estimation algorithm. It
consists of a series of iterations aimed at two main operations:

1. calculate the current system state estimate £, , (£, denotes the estimate calculated
at time 7 of the system state at time n).

2. predict the future system state £,,.1 , using the dynamic model of the system (£,,+1 »
denotes the prediction computed at time 1 of the system state at time n + 1).
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In the initialization iteration, the algorithm uses the initial guess of the system state
%00 and predicts the next state £1. In the subsequent iterations, the input to the algo-
rithm is the measurements from the sensors (z, values in Step 1) and the predicted state
from the previous iteration that now becomes the previous estimate in the current itera-
tion. From these values, the algorithm estimates the current state using the state update
equation (Step 2) and predicts the next state using the prediction equation or state ex-
trapolation equation (Step 3). It should be mentioned as well that in Step 2, the Kalman
Gain, K;;, which is a factor in the state update equation, is dynamically computed for each
iteration of the filter.

As an example, in the first iteration the system receives the first measurement from
the sensors, z1, and the previous estimate, %1, and calculates the current estimate, %1,
and the prediction of the future state £; ;.

The key idea of the Kalman Filter algorithm is that it successively updates the system
state by adjusting the difference between the prediction done at time n — 1 of the system
state at time n and the measurement of the system at time 7.

4.1.1. Example: tracking an aircraft

In this section, we show an illustrative example in order to facilitate the understanding
of the Kalman Filter algorithm. For the sake of simplicity, and in order to keep the expla-
nation as straightforward as possible, we will adopt the following assumptions:

* two target parameters (position and velocity)
* constant velocity

* one dimension; i.e., we will assume only one variable to represent the true value
of the aircraft position (note that in our problem we use three variables: longitude,
latitude, altitude)

¢ the Kalman Gain factors in the state update equations («, §) will be constants in-
stead of being dynamically computed in each iteration

In the following section 4.2, we will relax these assumptions for more accurate mod-
eling of the UAV in the context of the problem that concerns us.

Since we are working in this example with two target parameters, we are going to
track the trajectory of the aircraft using an « — g filter. This is a type of filter very closely
related to the Kalman Filter, but the difference lies in considering manually selected and
static values for the factors of the state update equations. In that sense, in our case, the
filter will have an a parameter for the equation of the position and a § parameter for the
equation of the velocity.

Figure 4.2 graphically shows the problem of tracking an aircraft that we are trying to
solve with this approximated model. The main variables of the system are:

1. x,: the position to the aircraft at time 7.
2. x = v = dx/dt: the velocity is a derivative of the aircraft position.

3. At: the tracking time interval.

The dynamic model or state extrapolation equations of motion are:
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v
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Figure 4.2: Tracking an aircraft (image taken from [2])

* X,+1 = X, + Atx,: the position at the next iteration is equal to the position at the
current cycle plus the velocity of the target multiplied by the time interval

® X,11 = Xy: the velocity is constant
And the « — § update state equations are:

e The update state equation for the position is £, = £,,-1 + a(zy — £y —1): the
updating considers the difference between the prediction of x, at timen — 1 (£,,,,—1)
and the sensor measurement at time 7 (z,,).

* The update state equation for the velocity is X, = % n—1 + B((zn — Run_1)/At)

4.1.2. The uncertainty

In this subsection, we will intuitively analyze how the uncertainty is handled in the
Kalman Filter algorithm.

As it can be seen in the update state equations, the parameters « and 8 are the weights
given to the measurements reported by the sensors (z,,), while (1 — «) and (1 — B) are the
weights given to the estimates (i.e., £,,—1). This can be observed for instance in the
update state equation of the position:

J?n,n = Jen,nfl + D‘(Zn - fn,nfl) = J?n,nfl +azy — ‘Xﬁn,nfl = azp + (1 - ‘X)J?n,nfl

Therefore, since the values of the # and f parameters are manually selected, we
should take into account the uncertainty of the measurement and the uncertainty associ-
ated with the estimation process in order to select values that optimize the performance
of the algorithm.

In the case of the Kalman Filter, those factors are called Kalman Gain (K;,) (see the
blue box in Figure 4.1), and their value is within the interval [0,1]. Just like in the case
of the a-p filter, K, is the weight we give to the sensor measurement, while (1 — Kj,) is
the weight given to the estimate. When the uncertainty of the measurement is very large
and the estimate uncertainty is very small, K, is close to 0. In the opposite case, when K,
is close to 1, we are giving a large weight to the measurement and a small weight to the
estimate.
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The main characteristic of the Kalman Gain is that it is dynamically calculated at each
iteration of the filter taking into account the specified uncertainty associated with the
measurement process and the extrapolated uncertainty of the estimation process.

Therefore, besides the input measurement values, the Kalman Filter algorithm re-
quires a parameter that represents the measurement uncertainty. The value of this pa-
rameter is typically provided by the equipment vendor or by the results of the equipment
calibration, which in the case of the radar measurement will depend on the beam width,
clock stability, etc. The standard notation for the measurement uncertainty or measure-
ment noise is the letter v (or matrix R).

Moreover, the Kalman Filter also requires an initial value for the estimate’s uncer-
tainty, which will then be updated in the different iterations of the algorithm. This esti-
mation uncertainty is typically represented by the letter p (or matrix P, which is typically
called Covariance Matrix).

We also need to take into account that there are uncertainties associated with the dy-
namic model of the system. For instance, we assumed a constant velocity in the example
presented in section 4.1.1; however, it is likely this is not the case due to possible aircraft
maneuvers. The uncertainty of the dynamic model of the system is referred to as process
noise. The standard notation for the process noise is by the letter g (or matrix Q, also
called Predictor Covariance Equation).

4.2 Problem formulation with a linear Kalman Filter

In this project, we used the Python library FilterPy [15] to define the linear Kalman
Filter model. This library implements various types of Bayesian Filters, and it is geared
towards a pedagogical purpose, not sacrificing clarity over speed.

Firstly, it should be noted that we are tracking in three dimensions, as that is the
dimensionality of the reported data by the sensors, and so we will have three observed
variables x, y, and z, which respectively correspond to the longitude, latitude, and alti-
tude. This means that the measurements that the filter will receive can be represented
as:

z = [x y Z}T 4.1)

In order to implement a Kalman Filter, the first design decision that we had to make
was the selection of the state variables. After analyzing the trajectory and the data of
the ground truth, it became obvious that neither the velocity nor the acceleration were
constant, as there were changes in the velocity of the UAV and also in the rate of the
change of its velocity. This can be observed, for instance, in Figure 4.3, where we can see
a plot of the velocity in each dimension for every sample in the ground truth of Scenario
1.1. We are considering that velocityX is the velocity that corresponds to the longitude,
velocityY corresponds to the latitude, and velocityZ corresponds to the altitude.

We can see in Figure 4.3 that in every dimension the value of the velocity changes
in a non-uniform way, having periods when it does not change at all, or it does so very
slightly, and other periods when we can see a peak or a valley corresponding to a sudden
increase and decrease of the velocity in that dimension. It should be mentioned that these
sudden changes mainly occur for the longitude (velocityX) and latitude (velocityY), since,
as expected, there are not too many sudden acceleration or deceleration moments related
to the altitude (velocityZ) of the UAV.
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Figure 4.3: Velocity in each dimension for every sample in the ground truth of Scenario 1.1

Allin all, these irregular patterns led us to believe that neither the velocity, nor its rate
of change (acceleration) can be considered constant when modelling the behaviour of the
UAV in this project.

There have also been mentions in the literature that refer to the non-constant accel-
eration that UAVs present in their flight as reported by on-board accelerometers. Such
information can, for instance, be found in [16].

Taking into account these considerations, we assume a model of non-constant accel-
eration dynamics and define the state vector of the Kalman Filter as a 12-dimensional
feature vector:

T
x:xyzfcy'zxyz"fc'y'é'} (4.2)
where we can find the following components:

* x,v,z: the observed variables (longitude, latitude, altitude)
* x,1,2: the velocity of the three observed variables

* #,1j,Z: the acceleration of the three observed variables

Once the important design decision of selecting the state variables is made, we are
ready to use the FilterPy [15] library to construct an object class KalmanFilter by speci-
fying the dimensionality of the state vector and of the measurement data the process will
have.
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The KalmanFilter object will have default values assigned to the different matrices
that define the behaviour of the filter. However, it is recommended to assign these ma-
trices values according to the specific task at hand in order to obtain the best possible
performance.

In that sense, taking into account the specified state vector, we first defined the State
Transition Function F according to Newtonian kinematics of third order, as implemented
by the kinematic_kf function contained in the FilterPy [15] library. Thus, the state
equations that define the dynamic model are the following:
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x"=1-x4+0-y+0-z+At-x+ 0-y+ 0-z+iAt SX 4 0-%+ 0-z+§At S X+ 0-y+ 0-
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An important decision related to these equations is the value of the timestep At. The
problem we faced in that regard is that the value should be constant, but the data pro-
vided by the sensors do not have a constant timestep value. In the end, we decided to
consider the combined data from both radar sensors and compute the difference between
every two consecutive timestamps. Afterwards, we calculated the average of those val-
ues in order to obtain an approximate value for the timestep At.

Next, we used the Q_continuous_white_noise function of the library to define the
Process Noise Matrix Q according to the Discretized Continuous White Noise Model.
In order to refine this implementation, we decided to explore multiple values of the
spectral_density parameter of that function, settling for a value of 5¢=7, which we
observed provided the best performance.

Afterwards, we defined the Observation Matrix H as follows:

10000000O0O0O0O0
H=(01000000O0O0O0O0 (4.3)
001000O0O0O0O0TO 0O

The reason for this definition is derived from the usage of this matrix, which is defined
by the equation z = Hx. Thus, the purpose of this matrix is to transform the state vector
into a measurement vector. Given that in our specific case there is no need for any type
of scaling factor to be applied when performing that conversion, we decided to use the
default value of one in the diagonal.

n;
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Later, we modeled the noise of the sensors by assigning a value to the Measurement
Noise Matrix R, which is defined as follows:

2

02 00y 0:0%
R = |00y Uyz 020y (4.4)

ox0z  0y0. 07

As previously mentioned, the value of sensor noise is typically provided by the manu-
facturer. However, in this case, we do not have access to such value, so we approximated
it by comparing the data reported by the sensors and the ground truth of the UAV’s
flight. To this end, we executed the algorithm presented in Section 3.2.4 for calculating
the correspondence between the ground truth data and the data reported by the sensors.

After creating the correspondence, we computed the absolute difference between the
two sets of values and then we used the cov function of the Numpy library in order to
compute the matrix R.

Finally, we specified the initial conditions for the filter. To this end, we set the initial
state to the position of the Alvira sensor, since it is the first sensor to detect the drone and
it does so when the UAV is close to its position. We decided to set the rest of the state
variables to zero, as we don’t have any information about their values. Thus, the initial
state would be:

T
xo = |5.85862734 51.52126391 31 0 0 0 0 0 0 0 O O (4.5)

As part of this definition of the initial conditions of the tracking task, we decided to
initialize the covariance matrix P with the identity matrix, since we did not have any
reason to modify that default value.

4.3 Results

In order to evaluate the performance of this model, we decided to consider the first sce-
nario (Scenario 1.1) as the training set and then use the remaining scenarios (Scenario 1.2,
Scenario 1.3, and Scenario 1.4) as the testing sets. The reason for this decision was the fact
that Scenario 1.1 is the simplest scenario according to Figure 3.2. Thus, we considered it
would work better as a baseline and that it would be easier to deduce the behavior of the
UAV in relation to the sensor data from it.

In the context of the linear Kalman Filter model, we considered the training process
to consist of using the data of Scenario 1.1 to compute the values of the matrices and
parameters that depend on the input measurement data (R and At) so that we can use
those computed values when evaluating the remaining scenarios.

After the training phase, we moved on to a testing phase in which we ran the Kalman
Filter algorithm for every scenario (Scenario 1.1, Scenario 1.2, Scenario 1.3, and Scenario
1.4), considering all the values reported by the sensors in each particular scenario.

We chose this methodology for testing because we believed that it would more closely
resemble the application of this algorithm in an online scenario in which all the incom-
ing data should be considered since we cannot make any a priori filtering of the values
reported by the sensors.
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Scenario | Coordinate | MAE MSE NRMSE NCIAMetric‘ Time\

Longitude | 0.00919 0.00012 0.00188
Scenario 1.1 Latitude 0.00361 0.00002 0.00009 15.12216 1.31s

Altitude | 20.62431 | 650.73599 | 0.39937
Longitude | 0.01279 0.00026 0.00275
Scenario 1.2 Latitude 0.00475 0.00004 0.00012 15.39332 10.42s

Altitude | 20.56227 | 664.49864 | 0.37514
Longitude | 0.00902 0.00013 0.00192
Scenario 1.3 | Latitude 0.00361 0.00002 0.00009 18.80884 3.30s

Altitude | 26.04831 | 883.81749 | 0.65799
Longitude | 0.01202 0.00021 0.00248
Scenario 1.4 | Latitude 0.00304 0.00002 0.00008 20.85696 6.38s
Altitude | 28.57824 | 1223.03196 | 0.55660

Table 4.1: Results Kalman Filter

However, as a result of this decision, we obtained many more predictions than the
number of ground truth values we had in order to evaluate the prediction process. The
way we addressed this issue was to apply once again the algorithm for finding a corre-
spondence between the predictions and the ground truth according to their timestamps
as defined in Section 3.2.4.

It should be noted that for the training phase, and in particular for the computation of
the R matrix, the algorithm shown in 3.2.4 defines a correspondence between the ground
truth data and the sensor data of Scenario 1.1, whereas for the testing phase of Scenario
1.1 the correspondence is between the ground truth of Scenario 1.1 and the predictions.
There is an important distinction between those two correspondences because the times-
tamps of the predictions are different from the timestamps of the sensor data. The reason
for this is that the prediction process generates a prediction for every At timestep accord-
ing to the dynamic model, which therefore differs from the irregular timestep found in
the timestamps of the sensor data. Thus, this difference between the temporal correspon-
dence in the training set and the testing set of Scenario 1.1 would likely explain that some
of the error metrics in Table 4.1 return higher values for Scenario 1.1 than for the other
scenarios.

Finally, according to the described evaluation strategy, the results obtained with the
linear Kalman Filter model are shown in Table 4.1. The first observation that we can make
about these results is that while the errors for the latitude and longitude are quite low for
all the scenarios, the altitude has a significantly larger error across all metrics. This may
be explained by the lack of precision that the radar sensors have when measuring that
dimension, as mentioned previously. As for the NCIAMetric, we can observe that the
errors obtained are very similar to those reported by the third and fourth teams in the
competition, as mentioned previously.

Moreover, Table 4.1 shows the time required for the initialization of the model and
the prediction in each scenario. It should be mentioned that the value of these reported
times is dominated by the prediction process, since the initialization of the model is of
the order of 0.01 seconds.

As for the computation times, we also measured the time required for training (com-
puting R and At), which was 2.14 seconds.
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All'in all, we believe that the linear Kalman Filter model using a combination of data
from the two radar sensors is able to generate a good approximation of the trajectory of
the UAV, producing a low error in all the studied scenarios.



CHAPTER 5
Prediction model with Deep Learning

Deep Learning is a subfield of Machine Learning that puts the focus on algorithms in-
spired by the structure and behaviour of the brain, called artificial neural networks. The
reason that motivated us to use Deep Learning models for predicting the trajectory of
a UAV is that they are a black-box approach that contrasts with the previously consid-
ered white-box and transparent approach of the Kalman Filter algorithm. In this context,
Deep Learning learns to approximate the hidden function that governs the behaviour of
the UAV instead of requiring us to directly model the parameters that define the learning
of the underlying dynamics of the system.

This chapter is structured as follows. Section 5.1 provides a theoretical overview of
the Deep Learning models considered in this project. Section 5.2 defines the way in which
we formulated the problem and how we designed the models in order to obtain exper-
imental results. Finally, Section 5.3 shows the results (and the corresponding analysis)
obtained by applying the Deep Learning models to the data obtained from the NCIA
dataset [1].

5.1 Theoretical overview of Neural Network-based architectures

In this project, we decided to focus on two different Deep Learning models: FeedForward
Neural Networks (FFNN) and Long Short-Term Memory (LSTM).

On the one hand, we considered the FFNN model because it is the simplest Deep
Learning model and yet capable of approximating very complex functions. Our intuition
is that the FFNN model could show good performance as well as not require a very
complex and costly process for its implementation and training.

On the other hand, Recurrent Neural Networks (RNNs) in general are especially
suited for working with the type of sequential data we handle in this project, and LSTM,
in particular, is a commonly adopted model, since it avoids the long-term dependency
problem present in vanilla RNNs.

5.1.1. FeedForward Neural Networks

FeedForward Neural Networks (FFNN) are artificial neural networks in which the con-
nections between the nodes do not form a cycle. These models receive the name feedfor-
ward because the information is only processed in the forward direction, moving from
one layer to the next one.

The simplest form of a FFNN is the single-layer Perceptron. This model computes
a weighted sum of the values in the input layer and produces an activated value (typi-

33
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Hidden layer

Input layer Output layer

Figure 5.1: Diagram of a FFNN

cally 1) when the sum is above a certain threshold (typically 0) and a deactivated value
(typically -1) otherwise.

The property known as the delta rule allows to compare the outputs of the model
with the intended values, therefore allowing the network to adjust its weights through a
training process toward producing more accurate output values. The learning process of
the network is then an implementation of a form of gradient descent.

Even though the single-layer Perceptron is a very interesting model, it has the limita-
tion of only learning linearly separable patterns.

When trying to approximate more complex functions, we need to consider models
of greater complexity. In particular, the Multi-layer Perceptron (also called Feedforward
Neural Networks) has at least three layers, each containing a variable number of nodes:
input layer, hidden layer (one or more), and output layer. This model is represented in
Figure 5.1.

Except for the input nodes, at least one node in the other layers must have a non-linear
activation function because otherwise, the model would compute a linear function, being
then equivalent to the single-layer Perceptron. Moreover, a Multi-layer Perceptron is
trained using a process called backpropagation, in which the weights of the network are
adjusted according to the comparison of the outputs and the intended values according
to some error function in an application of gradient descent.

5.1.2. Long Short Term Memory

Long Short-Term Memory (LSTM) networks are an advanced version of RNNs, and as
such, they present a similar structure. LSTM networks consist of multiple layers just like
a vanilla FeedForward Neural Network, but with the important difference of containing
recurrent units in its hidden layer. These units allow the processing of sequential data by
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recurrently passing a hidden state from a previous time step and combining it with the
input of the current one.

In particular, LSTM networks were designed as a way to overcome the long-term de-
pendency problem present in RNN due to the vanishing gradient problem. This problem
occurs when training artificial neural networks with gradient-based learning methods
and backpropagation. When using these types of methods, the weights of the network
are updated at each training iteration proportionally to the partial derivative of the error
function with respect to the current weight.

In some cases, it can occur that the gradient will be vanishingly small, and thus it
would prevent the weight from changing value. This can sometimes result in an in-
terruption of the network’s training process. LSTM networks address this problem by
incorporating a cell state whose information is controlled by three gates:

1. Forget gate: This gate decides which bits of the cell state should be maintained
taking into account the previous hidden state and the new input data.

2. Input gate: This gate aims to determine what new information should be added to
the cell state given the previous hidden state and the new input data.

3. Output gate: This gate decides the new hidden state by considering the newly
updated cell state, the previous hidden state, and the new input data.

The diagram of Figure 5.2 shows the structure of an LSTM cell, including the three
mentioned gates as well as the different operations and functions that are applied to the
data:

e =1 is the previous cell state

e 1!~V is the previous hidden state
e x{ is the new input data

e (! is the new cell state

e ") is the new hidden state

* o represents the sigmoid function

¢ Tanh represents the hyperbolic tangent function
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* + represents the pointwise addition

* X represents the pointwise product

, and the colors identify the components of the gates according to the following cor-
respondence:

¢ [I: Forget gate
e [: Input gate

¢ [J: Output gate

5.2 Problem formulation with Deep Learning models

In this project, we used the Python library Keras to define both the FFNN and the LSTM
models. This library is a high-level API that allows for a more comfortable and easy-
to-use experience when interacting with backend neural network computation libraries,
such as Tensorflow or Theano. We opted for working with Tensorflow, as it is the most
commonly used and well-known option.

In order to implement the LSTM network with Keras, we defined a Sequential
model with three layers: input layer, LSTM layer, and output layer. The input layer
serves as a way to provide the input data to the LSTM layer, and the output layer is in
charge of transforming the output of the LSTM layer into the expected output of the net-
work. Similarly, in the case of the FFNN, we also defined a Sequential model with three
layers, but replaced the LSTM layer with a Dense layer.

The input for both models is the data reported by the sensors, which consists of the
values of the three observed variables: longitude, latitude, and altitude. Similarly, we
want the network to provide three values at each time step, corresponding to the same
three coordinates, which will serve as the prediction of the network. Therefore, both the
input and the output layers will consist of three units.

In order to optimize the performance of both the LSTM and the FFNN model, we
decided to explore multiple values for various hyperparameters of the models. The first
hyperparameter we studied was the number of units of the Dense and LSTM layer,
which is a positive number that defines the dimensionality of the output space of the
layer. In this project, we decided to consider the values {10,20,30,40}.

We also studied the performance of the models for different activation functions of
the LSTM and Dense layer. In particular, we tested the ReLU activation function and the
tanh function (hyperbolic tangent function). After running some initial experiments, we
observed that the tanh function clearly outperformed ReLU, so we decided to use the
tanh activation function.

Also, we analyzed different optimizers and different values for their learning rate.
Specifically, we considered the Adam and Stochastic Gradient Descent (SGD) optimizers
and the values {0.01,0.05,0.1,0.5} for the learning rate.

Furthermore, we also decided to explore some hyperparameters related to the train-
ing process, such as the number of epochs and the batch size. In that sense, we considered
the values {100,200,500,700} for the number of epochs, and the values {1,8,16,32, 64},
for the batch size.
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Hyperparameter ‘ Value ‘

Units 20
Optimizer SGD
Learning rate 0.1
Epochs 500
Batch size 32

Table 5.1: Optimal combination of values for the hyperparameters of the FENN model

Hyperparameter ‘ Value ‘

Units 30
Optimizer SGD
Learning rate 0.1
Epochs 500
Batch size 16

Table 5.2: Optimal combination of values for the hyperparameters of the LSTM model

Another important consideration is the loss function of the model. In our case, we
decided to utilize the Mean Square Error, since it is one of the metrics we are considering
to analyze the performance of the models.

In order to determine the best combination of hyperparameters that optimizes the
performance of these models, we ran a GridSearch process using cross-validation. For
this process, we utilized the GridSearchCV class of the scikit-1learn Python library. Af-
ter specifying the parameter grid using the previously mentioned values for each of the
considered hyperparameters, we ran the GridSearch process using 3-fold cross-validation
for estimating the performance of each combination of values. The data provided to the
GridSearch process is the result of applying the correspondence algorithm shown in Sec-
tion 3.2.4 that matches the ground truth and the sensor data of Scenario 1.1.

The resulting optimal combinations of values of the hyperparameters for the FENN
and LSTM models are respectively shown in Tables 5.1 and 5.2.

It should be mentioned, however, that both the number of epochs and, more specifi-
cally, the batch size have a very significant impact on the computation time required for
training the network. It is then important to take into account that even though the val-
ues we have selected are the ones that empirically provide the best performance, they are
not the ones that guarantee the fastest training process. In this sense, selecting a lower
number of epochs or a higher value for the batch size would drastically decrease the time
required for training, but a trade-off would occur insofar as the errors would be higher.

This particular trade-off situation would require careful consideration in the case of
applications of this model in an environment that has strict time requirements for train-
ing the models. However, for this project we decided to limit the scope of this analysis
to determining the model with the lowest errors, since we are not subject to time require-
ments.
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Scenario | Coordinate | MAE MSE | NRMSE | NCIAMetric \ Time\

Longitude | 0.00409 0.00002 0.00077
Scenario 1.1 | Latitude 0.00148 0.00000 0.00003 8.96771 1.22s

Altitude 12.14222 | 357.95352 | 0.31746
Longitude | 0.00980 0.00094 0.00524
Scenario 1.2 Latitude 0.00788 0.13029 0.00701 5.13965 8.63s

Altitude 3.79385 | 50.78177 | 0.10365
Longitude | 0.00612 0.00005 0.00124
Scenario 1.3 | Latitude 0.00264 0.00001 0.00006 16.60933 2.47s

Altitude | 23.15924 | 549.25490 | 0.51871
Longitude | 0.00693 0.00253 0.00859
Scenario 1.4 | Latitude 0.01061 0.38062 0.01198 13.48905 4.98s
Altitude 15.98248 | 308.30760 | 0.27946

Table 5.3: Results FFNN

5.3 Results

In order to obtain the results of applying the error metrics to the previously explained
FFNN and LSTM models, we followed a similar strategy to the one exposed in the Results
section of the Kalman Filters chapter.

We used the data of Scenario 1.1 to train the network and then tested the resulting
model in all the scenarios. The reason for choosing Scenario 1.1 for training is because it
is the simplest one in terms of the trajectory followed by the UAV. In turn, we expect that
generalizing a prediction mode will be easier from this scenario.

The training process of the FFNN and LSTM models requires a labeled training set;
that is, for each input value, we must associate the expected output value. However,
as said before, there are many more sensor data samples than the number of ground
truth data in the log files. For this reason, once again, we applied the algorithm defined
in Section 3.2.4 to establish a correspondence between the sensor data and ground truth
data of Scenario 1.1 according to the timestamp of the samples. As a result of this process,
for each input data of the combined sensor data, we obtained the corresponding label as
provided by the ground truth data.

After the training phase, we obtained the FFNN and LSTM models that will be used
in the prediction of each scenario. In order to carry out the prediction process, we fed
all the sensor data values of each scenario to the model, receiving the corresponding
predictions as the output of the network. Afterwards, we apply once more the algorithm
shown in Section 3.2.4 in order to match the predictions with the corresponding ground
truth values so as to compute the error.

The resulting values for the error metrics of FENN and LSTM are shown respectively
in Figure 5.3 and Figure 5.4.

The first observation about these results is that the errors for the latitude and lon-
gitude are again quite low for all the scenarios, whereas the altitude has a significantly
larger error across all metrics. This may be explained by the lack of precision that the
radar sensors when measuring the altitude dimension, as mentioned previously. As for
the NCIAMetric, we can observe that the errors obtained are very similar to those re-
ported by the top three teams in the competition. Furthermore, we can see that according
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Scenario | Coordinate | MAE MSE | NRMSE | NCIAMetric \ Time\

Longitude | 0.00401 0.00002 0.00076
Scenario 1.1 Latitude 0.00146 0.00000 0.00003 9.68119 1.43s

Altitude 13.26497 | 313.83150 | 0.29725
Longitude | 0.00945 0.00042 0.00349
Scenario 1.2 Latitude 0.00470 0.00639 0.00155 5.77129 7.37s

Altitude 6.41131 | 62.39446 | 0.11489
Longitude | 0.00584 0.00005 0.00118
Scenario 1.3 | Latitude 0.00255 0.00001 0.00006 14.47623 2.18s

Altitude | 20.10275 | 417.02477 | 0.45198
Longitude | 0.00629 0.00084 0.00496
Scenario 1.4 | Latitude 0.00467 0.03209 0.00348 11.76167 4.44s
Altitude 15.32373 | 283.21770 | 0.26785

Table 5.4: Results LSTM

to the NCIAMetric, the FFNN model performs better in Scenario 1.1 and Scenario 1.2,
while LSTM performs better in Scenario 1.3 and Scenario 1.4.

Tables 5.3 and 5.4 also show the time required for the prediction in each scenario. We
can see that the fastest model is dependent on the scenario. Nevertheless, the reported
times of both the FFNN and the LSTM models are very close in all scenarios, so there is
no significant difference in that regard. However, the training time required by the FFNN
model was 164.06 seconds, while the time required by LSTM was 438.99 seconds. We can
thus conclude that the simpler FENN model required almost a third of the time of LSTM
to be trained.

All in all, we believe that both the FFNN and LSTM are able to generate a good ap-
proximation of the trajectory of the UAV, producing a low error in all the studied scenar-
ios.

Finally, we would like to draw the reader’s attention to the high error values of Sce-
nario 1.1 compared to those of Scenario 1.2. Here the potential mismatch between the
temporal correspondence in the training set and the testing set of Scenario 1.1 is deep-
ened further than in the case of the Kalman Filter algorithm. This situation reveals that
when the training data distribution is not a faithful representation of the test data distri-
bution, Neural Network-based models are affected to a greater extent than a non-neural
model.






CHAPTER 6
Performance comparison

In this chapter, we will compare the performance of the Kalman Filter algorithm and the
Deep Learning models explained in Chapters 4 and 5, respectively.

With the aim to provide a comprehensive analysis of the behaviour of these models,
we will first compare the errors obtained with the different models in Section 6.1 and
then compare the time required by the training and prediction phases of the models in
Section 6.2. Finally, Section 6.3 contains the conclusions we derived from the previous
comparison and analysis of both the errors and the computation time of the models.

6.1 Error comparison

In this analysis, we will only consider the NRMSE and NCIAMetric metrics to compare
the performance of the different models. The reason for not including MAE and MSE in
this analysis is because NRMSE expresses similar information to these two metrics, and
besides, NRMSE is easier to interpret (values between 0 and 1). As for NCIAMetric, it
provides additional information since it integrates the errors of all dimensions (longitude,
latitude, and altitude).

Figures 6.1 and 6.2 show the NRMSE of the longitude and latitude for each scenario
according to the results obtained from the testing process of each model. We will ana-
lyze both of those figures simultaneously because we can observe very similar patterns,
although slightly accentuated in the case of the latitude. In that sense, we can observe
two different patterns in those figures, one present in Scenario 1.1 and Scenario 1.3 and a
different one present in Scenario 1.2 and Scenario 1.4. On the one hand, Scenarios 1.1 and
1.3 show that both of the Deep Learning models have similar errors and that they outper-
form the Kalman Filter algorithm. On the other hand, Scenarios 1.2 and 1.4 show that the
Kalman Filter outperforms the Deep Learning models, and also that FFNN has a higher
error than LSTM. However, it should be mentioned that even though the difference in
the errors may appear significant, the errors reported in those figures are all extremely
low, as can be observed from the values shown on the y-axis. Thus, all the models pro-
vide extremely good predictions for both the longitude and the latitude dimensions of
the UAV flight. Another observation we can make about these figures is that the Kalman
Filter provides a more robust performance across all scenarios, while the Deep Learning
models have both very low or very high errors depending on the scenario.

Figure 6.3 shows the NRMSE of the altitude for each scenario according to the re-
sults obtained from the testing process of the models. We can observe that the error of
the Kalman Filter is higher than the error of the Deep Learning models in all scenarios.
Moreover, FENN and LSTM have similar errors, but it should be mentioned that LSTM

41



42 Performance comparison

Model
Emm Kalman Filter
. FFNN
0.008 - . LSTM

0.006 A

NRMSE

0.004 A

0.002 A

0.000 -

Scenario_1_1 Scenario_1_2 Scenario_1_3 Scenario_1_4
Scenario

Figure 6.1: NRMSE of the longitude for each scenario resulting from the testing process of each

model
Model
0.012- mmm Kalman Filter
. FFNN
. LSTM
0.010 A
0.008 A
w
w
g
= 0.006 A
0.004
0.002 A
0.000 - u
Scenario_1_1 Scenario_1_2 Scenario_1_3 Scenario_1_4
Scenario

Figure 6.2: NRMSE of the latitude for each scenario resulting from the testing process of each
model



6.2 Computation time comparison 43

Model
Bl Kalman Filter
= FFNN
Bl LSTM

0.6 -

0.5 A

0.4 A

NRMSE

0.3

0.2

0.1

0.0-

Scenario_1_1 Scenario_1_2 Scenario_1_3 Scenario_1_4
Scenario

Figure 6.3: NRMSE of the altitude for each scenario resulting from the testing process of each
model

slightly outperforms FFNN in all scenarios except for Scenario 1.2. Another observation
is that conversely to the longitude and latitude errors, in this case, the errors are all quite
high (close to 1) in all the scenarios and for all the models. This illustrates the intrinsic
difficulty in predicting the altitude dimension of the UAV flight, which, as we previously
mentioned, is probably due to the lack of precision of the radar sensors when measuring
such dimension.

Lastly, Figure 6.4 shows the error obtained from the NCIAMetric metric for each sce-
nario according to the results obtained from the testing process of the models. We can
observe that, once again, the Kalman Filter is the model that generates the highest error
in all the scenarios. Moreover, we can see that FFNN outperforms LSTM in Scenarios 1.1
and 1.2, whereas LSTM provides a lower error for Scenarios 1.3 and 1.4. Another obser-
vation that we can make about this figure is that all of the reported errors are lower or
equal to the errors reported by the top four teams in the competition [1]. Nevertheless,
we should recall again that the competition used unknown tests for assessing the per-
formance of the proposed solutions and thus, the errors we obtained are not completely
comparable to those reported in the competition.

6.2 Computation time comparison

After analyzing the performance of the models according to their errors in the testing,
we will now focus on comparing the time required by the models in the training and
prediction phases.

Figure 6.5 shows the time each model required for training. As we can see, the
Kalman Filter needs a considerably lower amount of time to be trained compared to the
Deep Learning models. This difference is due to the fact that the Kalman Filter does not



44 Performance comparison

Model
Emm Kalman Filter
. FFNN
B LSTM

20.0 A

NCIAMetric

Scenario_1_1 Scenario_1_2 Scenario_1_3 Scenario_1_4
Scenario
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need to learn the parameters of the model, since we manually specify their values. Con-
sequently, we considered the training phase of the Kalman Filter to only consist of the
computation of the R matrix and the time step At, which are both very straightforward
and quick-to-make calculations. Conversely, the Deep Learning models do need to learn
the parameters of the models according to the training data, and this process requires
much more time. Moreover, FFNN requires much lower time than LSTM because it is a
much simpler model, and thus there are far fewer parameters that need to be optimized
in the training phase.

Figure 6.6 shows the time each model required for generating the predictions in the
testing process of each scenario. We can observe that the Kalman Filter is the model that
requires more time to generate the predictions in all scenarios except for Scenario 1.1.
Conversely, LSTM requires less time to generate the predictions in all scenarios except for
Scenario 1.1. It should also be mentioned that Scenario 1.2 is the most time-consuming
in all models because it contains the largest amount of sensor data samples, and so more
time is required in order to process them and generate the corresponding predictions.

6.3 Concluding remarks

After comparing and analyzing the previously discussed errors and computation times,
we aim to draw some general conclusions about the overall performance and behaviour
of the models.

Firstly, we will point out some of the main differences between the Kalman Filter and
the Deep Learning models in order to properly frame the subsequent comparison. One
first important difference lies in that the Kalman Filter algorithm approximates a linear
model, whereas the Deep Learning models are capable of approximating a non-linear
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model. This means that the Deep Learning models are more flexible for accurately ap-
proximating certain irregular patterns in the data. Another difference is that we manually
specified the values of the model parameters in the Kalman Filter algorithm, while the
Deep Learning models learn the optimal values of the parameters of the model according
to the training data. This difference has two main consequences. The first one is that the
behaviour of the Kalman Filter model is easier to understand and explain. The second
one is that the values of the parameters of the Deep Learning models have been opti-
mized through the training process, while this cannot be guaranteed in the Kalman Filter
approach.

The main observation we can make about the obtained results is that all of the models
are able to provide a very good approximation for the longitude and latitude of the UAV,
and that the main source of error for all the models is the altitude dimension.

On the one hand, as we can see in the errors of the Deep Learning models, there
is a highly intrinsic difficulty in predicting that dimension even when using a non-linear
model. That difficulty may be partly alleviated using more complex Deep Learning mod-
els, but the results do not show a clear way in which the current models may be improved
due to the black-box nature of these models.

On the other hand, the higher errors obtained with the Kalman Filter lead us to con-
clude that both the chosen dynamic model and the specified values for the parameters
may have room for improvement. In particular, we believe that the approach we followed
to approximate the Measurement Noise Matrix R may not be able to completely capture
the noise present in the altitude dimension of the data reported by the sensors. In this
sense, having access to the sensor noise reported by the manufacturer or to a more pre-
cise noise approximation might have led to better results. In addition, even though the
non-constant acceleration dynamic model seems to properly approximate the behavior
of the UAV, other alternatives might make better adjustments to its behaviour. We believe
this avenue could also be explored in order to seek an improvement in the performance
of the Kalman Filter model.

All in all, the main conclusion that we can draw from this analysis is that while the
Deep Learning models are able to produce more accurate predictions, the more explain-
able nature of the Kalman Filter model allows us to find easier interpretations of the
UAV behaviour and thus of the different approaches that could be investigated in order
to improve its performance.



CHAPTER 7
Conclusions

This chapter serves as a conclusion to the previously described work that was carried
out for this project. In that sense, we will first analyze whether we were able to fulfill all
the objectives we proposed for this project in Section 7.1. Then, Section 7.2 describes the
most relevant relations between the work carried out in this project and the courses of the
Bachelor’s Degree in Informatics Engineering. Finally, Section 7.3 specifies some of the
main research directions that could be explored in order to expand the work presented
in this project.

7.1 Fulfilment of the project’s objectives

We believe that, as a consequence of all the work presented in this project, we were able
to fulfill all the objectives outlined at its start in Chapter 1. In that sense, in the following
list, we specify the part of this project in which we fulfilled each of those objectives.

1. We were able to identify the main techniques and approaches related to the task of
tracking a UAV, which we described in Chapter 2.

2. In Chapter 3, we studied and analyzed the sensor data contained in the publicly
available dataset NCIA dataset, and we carried out the necessary preprocessing
steps in order to prepare the data for its usage by the models.

3. Later, in Chapter 4, we presented the main theoretical characteristics of a linear
Kalman Filter model, and we studied its performance for the problem of tracking a
UAV.

4. Then, in Chapter 5, we exposed some of the main theoretical characteristics of the
Deep Learning models we considered, and we analyzed their performance for the
problem of tracking a UAV.

5. Finally, in Chapter 6, we performed a detailed comparison of the performance of
the considered Kalman Filter and Deep Learning models, and we extracted some
conclusions about their behavior in this specific problem.

7.2 Relation with courses of the Bachelor's Degree

The knowledge and skills acquired in many of the different courses in the Bachelor’s
Degree in Informatics Engineering have been very helpful for developing this project.
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Several courses related to Mathematics, such as Algebra, Discrete Mathematics, Statis-
tics, and Mathematical Analysis, were extremely useful when exploring and understanding
the behaviour of the Kalman Filter model.

Moreover, the courses related to Artificial Intelligence, and particularly to Machine
Learning, were instrumental in understanding and applying the Deep Learning models.

Furthermore, other courses such as Information storage and retrieval systems and Algo-
rithmics were useful insofar as the usage of the programming language Python in their
practical sessions allowed for familiarity with the usage of the language in the context of
a project prior to the implementations that were necessary for this work.

7.3 Future research

Due to the extensive and complex nature of the problem of tracking UAVs, our work
may be expanded in many different ways. In particular, we have identified three main
directions that could be followed in future research:

e Data considered:

- Different types of UAVs have different flight characteristics, and thus the best
model to track them may differ.

— Consider scenarios containing multiple UAVs. As described in Chapter 3, the
NCIA dataset contains several scenarios where multiple UAVs flew simulta-
neously. Developing a prediction model for those scenarios has the additional
complexity of having to discern what part of the data reported by the sensors
corresponds to each UAV.

e Additional tasks:

— The dataset utilized in this project contained data of a UAV obtained in a con-
trolled flight zone. However, in a real-life scenario, the target detected by a
sensor may not necessarily be a UAV (it could be a bird, for instance). For that
reason, it may be interesting to develop a method that is capable of classifying
the detected target into UAV and non-UAV categories before performing the
tracking.

- Similarly, the behavior of different models of UAVs may not be identical, and
thus it could be interesting to explore ways in which to incorporate an identi-
fication method so as to provide more accurate tracking performance for each
specific model of UAV detected by the sensors.

¢ Complexity of the models:

— The considered linear Kalman Filter model is one of the most robust methods
for tracking a target. However, there exist many variants that attempt to im-
prove its performance by introducing the capacity to model non-linearities in
the data. Some of these are the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF). The additional performance that these models
may provide comes at a price, however, since their parameters are generally
harder to define and their behavior is less stable.

- In this project, we considered the FFNN and LSTM Deep Learning models,
since they are quite straightforward to define and they provide good perfor-
mance in this particular problem. Nonetheless, it may be interesting to explore
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other Deep Learning models, such as the Attention Mechanism, in order to
observe whether their additional complexity is translated into better perfor-
mance.






Bibliography

[1] Community Prediction Competition. Drone identification and tracking. https:
//www.kaggle.com/c/icmcis-drone-tracking/. Accessed: 2022-04-20.

[2] Alex Becker. Kalman Filter Tutorial. https://www.kalmanfilter.net/default.
aspx. Accessed: 2022-06-17.

[3] Min Xue. UAV Trajectory Modeling Using Neural Networks. In 17th AIAA Aviation
Technology, Integration, and Operations Conference, 06 2017.

[4] Ying-Chih Lai and Zong-Ying Huang. Detection of a Moving UAV Based on Deep
Learning-Based Distance Estimation. Remote Sensing, 12(18), 2020. URL: https:
//www.mdpi.com/2072-4292/12/18/3035, doi:10.3390/rs12183035.

[5] Peng Shu, Chengbin Chen, Baihe Chen, Kaixiong Su, Sifan Chen, Hairong Liu, and
Fuchun Huang. Trajectory prediction of UAV Based on LSTM. In 2021 2nd Inter-
national Conference on Big Data Artificial Intelligence Software Engineering (ICBASE),
pages 448-451, 2021. doi:10.1109/ICBASE53849.2021.00089.

[6] Nachiket Deo and Mohan Trivedi. Multi-Modal Trajectory Prediction of Surround-
ing Vehicles with Maneuver based LSTMs. In 2018 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 1179-1184, 06 2018. doi:10.1109/IVS.2018.8500493.

[7] Vince Kurtz and Hai Lin. Toward Verifiable Real-Time Obstacle Motion Prediction
for Dynamic Collision Avoidance. 2019 American Control Conference (ACC), pages
2633-2638, 2019.

[8] Ke Xiao, Jianyu Zhao, Yunhua He, and Shui Yu. Trajectory prediction of uav in smart
city using recurrent neural networks. In ICC 2019 - 2019 IEEE International Conference
on Communications (ICC), pages 1-6, 2019. doi:10.1109/ICC.2019.8761110.

[9] Mohammed Al-Absi, Rui Fu, Kihwan Kim, Young-Sil Lee, Ahmed Al-Absi, and
Sanggon Lee. Tracking Unmanned Aerial Vehicles Based on the Kalman Filter Con-
sidering Uncertainty and Error Aware. Electronics, 10:3067, 12 2021.

[10] Yuan Wei, Tao Hong, and Michel Kadoch. Improved Kalman Filter Variants for UAV
Tracking with Radar Motion Models. Electronics, 9:768, 05 2020.

[11] Divy Raval, Emily Hunter, Sinclair Hudson, Anthony Damini, and Bhashyam Balaji.
Convolutional Neural Networks for Classification of Drones Using Radars. Drones,
5(4),2021. URL: https://www.mdpi.com/2504-446X/5/4/149.

[12] Duygu Yumu, Tevfik Sarikaya, M. Efe, Gokhan Soysal, and Thiagalingam Kirubara-
jan. Track Based UAV Classification Using Surveillance Radars. 02 2020.

[13] Sunxiangyu Liu, Guitao Li, Yafeng Zhan, and Peng Gao. Musak: A multi-scale space
kinematic method for drone detection. Remote Sensing, 14(6):1434, 2022.

51


https://www.kaggle.com/c/icmcis-drone-tracking/
https://www.kaggle.com/c/icmcis-drone-tracking/
https://www.kalmanfilter.net/default.aspx
https://www.kalmanfilter.net/default.aspx
https://www.mdpi.com/2072-4292/12/18/3035
https://www.mdpi.com/2072-4292/12/18/3035
https://doi.org/10.3390/rs12183035
https://doi.org/10.1109/ICBASE53849.2021.00089
https://doi.org/10.1109/IVS.2018.8500493
https://doi.org/10.1109/ICC.2019.8761110
https://www.mdpi.com/2504-446X/5/4/149

52 BIBLIOGRAPHY

[14] International Conference on Military Communications and Information Systems.
ICMCIS Data Challenge. https://www.icmcis.eu/challenge/, Accessed: 2022-04-
20.

[15] Roger R. Labbe. FilterPy. https://filterpy.readthedocs.io/en/latest/index.
html#, Accessed: 2022-06-01.

[16] Viviano S Medeiros, Renno ED Vale, Yuri C Gouveia, Wellton T Souza, and Alisson V
Brito. An independent control system for testing and analysis of uavs in indoor en-
vironments. In 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics
Symposium (LARS/SBR), pages 55-60. IEEE, 2016.

[17] United Nations Development Programme. What are the Sustainable Development
Goals? https://www.undp.org/sustainable-development-goals. Accessed:

2022-06-20.

[18] Airobotics. Automated Drone Applications for Industrial Purposes. https://wuw.
airoboticsdrones.com/applications/. Accessed: 2022-06-20.

[19] Jon Walker. Industrial Uses of Drones 5 Current Business Application. https://
emerj.com/ai-sector-overviews/industrial-uses-of-drones-applications/.

Accessed: 2022-06-20.

[20] Acciona. Drones, the great ally of sustainability. https:
//www.activesustainability.com/sustainable-development/
drones-the-great-ally-of-sustainability/?_adin=02021864894. Accessed:
2022-06-20.

[21] Moayad Aloqaily, Ouns Bouachir, Ismaeel Al Ridhawi, and Anthony Tzes. An adap-
tive UAV positioning model for sustainable smart transportation. Sustainable Cities
and Society, 78:103617, 2022.

[22] UNICEF Office of Innovation. Drones: Addressing transport, connectivity and bet-
ter emergency preparedness. https://www.unicef.org/innovation/drones. Ac-
cessed: 2022-06-20.

[23] Andrew Brown. Drones vs mosquitoes: Fighting malaria in Malawi. https://wuw.
unicef.org/stories/drones-vs-mosquitoes-fighting-malaria-malawi. Ac-

cessed: 2022-06-20.

[24] Beth Jackson. Drones in Renewable Energy: The Future is here. https://coptrz.
com/drones-in-renewable-energy-the-future-is-here/. Accessed: 2022-06-20.

[25] DJI Enterprise. Saving the Planet, One Renewable Energy Drone In-
spection at a Time. https://enterprise-insights.dji.com/blog/
renewable-energy-inspection-drones. Accessed: 2022-06-20.

[26] TRT World. Explained: The drones that work for peace. https://www.trtworld.
com/magazine/explained-the-drones-that-work-for-peace-49463. Accessed:

2022-06-20.

[27] United Nations Peacekeeping. FEATURE: Does drone technol-
ogy hold promise for the UN? https://peacekeeping.un.org/en/
feature-does-drone-technology-hold-promise-un. Accessed: 2022-06-20.


https://www.icmcis.eu/challenge/
https://filterpy.readthedocs.io/en/latest/index.html#
https://filterpy.readthedocs.io/en/latest/index.html#
https://www.undp.org/sustainable-development-goals
https://www.airoboticsdrones.com/applications/
https://www.airoboticsdrones.com/applications/
https://emerj.com/ai-sector-overviews/industrial-uses-of-drones-applications/
https://emerj.com/ai-sector-overviews/industrial-uses-of-drones-applications/
https://www.activesustainability.com/sustainable-development/drones-the-great-ally-of-sustainability/?_adin=02021864894
https://www.activesustainability.com/sustainable-development/drones-the-great-ally-of-sustainability/?_adin=02021864894
https://www.activesustainability.com/sustainable-development/drones-the-great-ally-of-sustainability/?_adin=02021864894
https://www.unicef.org/innovation/drones
https://www.unicef.org/stories/drones-vs-mosquitoes-fighting-malaria-malawi
https://www.unicef.org/stories/drones-vs-mosquitoes-fighting-malaria-malawi
https://coptrz.com/drones-in-renewable-energy-the-future-is-here/
https://coptrz.com/drones-in-renewable-energy-the-future-is-here/
https://enterprise-insights.dji.com/blog/renewable-energy-inspection-drones
https://enterprise-insights.dji.com/blog/renewable-energy-inspection-drones
https://www.trtworld.com/magazine/explained-the-drones-that-work-for-peace-49463
https://www.trtworld.com/magazine/explained-the-drones-that-work-for-peace-49463
https://peacekeeping.un.org/en/feature-does-drone-technology-hold-promise-un
https://peacekeeping.un.org/en/feature-does-drone-technology-hold-promise-un

BIBLIOGRAPHY 53

[28] Paul Armstrong. How drones help the environ-
ment and  tackle climate  change. https://www.verizon.
com/about/our-company/fourth-industrial-revolution/

how-drones-help-environment-and-tackle-climate-change. Accessed: 2022-
06-20.

[29] Connected Places Catapult. Drone Technology, directly and indi-
rectly, combatting climate change. https://cp.catapult.org.uk/news/

drone-technology-directly-and-indirectly-combatting-climate-change/.
Accessed: 2022-06-20.

[30] Zhongyu Sun, Xiaonian Wang, Zhihui Wang, Long Yang, Yichun Xie, and Yuhui
Huang. UAVs as remote sensing platforms in plant ecology: review of applications
and challenges. Journal of Plant Ecology, 14(6):1003-1023, 2021.

[31] Susana Baena, Doreen S Boyd, and Justin Moat. UAVs in pursuit of plant
conservation-Real world experiences. Ecological informatics, 47:2-9, 2018.


https://www.verizon.com/about/our-company/fourth-industrial-revolution/how-drones-help-environment-and-tackle-climate-change
https://www.verizon.com/about/our-company/fourth-industrial-revolution/how-drones-help-environment-and-tackle-climate-change
https://www.verizon.com/about/our-company/fourth-industrial-revolution/how-drones-help-environment-and-tackle-climate-change
https://cp.catapult.org.uk/news/drone-technology-directly-and-indirectly-combatting-climate-change/
https://cp.catapult.org.uk/news/drone-technology-directly-and-indirectly-combatting-climate-change/




APPENDIX A

Sustainable Development Goals

Degree to which the work is related to the Sustainable Development Goals (SDGs):

UNIVERSITAT
POLITECNICA
DE VALENCIA

%‘V etsinf

S\ 17

and

4nd

Sustainable Development Goals High | Medium | Low Not
applicable

Goal 1. No Poverty. X

Goal 2. Zero Hunger. X

Goal 3. Good Health and Well-being. X

Goal 4. Quality Education. X

Goal 5. Gender Equality. X

Goal 6. Clean Water and Sanitation. X

Goal 7. Affordable and Clean Energy. X

Goal 8. Decent Work and Economic Growth. X

Goal 9. Industry, Innovation and Infrastructure. X

Goal 10. Reduced Inequalities. X

Goal 11. Sustainable Cities and Communities. X

Goal 12. Responsible Consumption and Production. X

Goal 13. Climate Action. X

Goal 14. Life Below Water. X

Goal 15. Life on Land. X

Goal 16. Peace, Justice and Strong Institutions. X

Goal 17. Partnerships for the goals. X
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Reflection on the relationship of the TFG/TFM with the SDGs and with the most related
SDG(s):

The 17 Sustainable Development Goals (SDGs) were adopted by the General Assembly
of the United Nations in 2015, and they are intended to act as a layout to achieve a better
and more sustainable world for all by 2030.

We have considered the main purpose behind each of those goals, as described in [17],
and we have analyzed which of them are most related to the work presented in this
project.

Our conclusion was that the development of accurate and reliable models to track a UAYV,
which we explored in this work, would have as a consequence the possibility of more
deeply integrating the usage of UAVs in a larger amount of sectors, many of which are
represented in various of the aforementioned SDGs.

In that sense, we believe that this work is most related to the following goals:

* Goal 9. Industry, Innovation and Infrastructure: The usage of UAVs has become
increasingly common in several different industries, becoming a driving force for
innovation. For instance, [18] showcases some ways in which UAVs can create op-
portunities for the development of more efficient processes in different industries,
such as mining, sea ports, oil and gas. Similarly, [19] mentions five different indus-
trial uses of UAVs: monitoring of agriculture crops, development and maintenance
of infrastructures, using a drone to bring Internet access to remote areas, inspection
and surveillance of construction projects, and inventory of warehouse items.

* Goal 11. Sustainable Cities and Communities: Nowadays, there are a lot of pro-
posals and research works that focus on how UAVs can play a crucial role in the
creation of new ways of managing smart and sustainable cities. As an example,
[20] explains some of the possibilities that the usage of UAVs would enable. For in-
stance, they could be utilized for monitoring the air quality of cities or for obtaining
images of the site of an incident, thus avoiding the pollution derived from the usage
of a different vehicle. Moreover, [21] proposes a solution for automatically adapt-
ing the position of a UAV in order for it to be able to support a smart transportation
system by improving the communication coverage of vehicular nodes.

Other goals with which this project is strongly related are the following ones:

* Goal 3. Good Health and Well-being: This is another very important goal to which
the usage of UAVs can contribute. For example, in [22] a wide range of applications
of UAVs in the context of facing humanitarian challenges. Some of those appli-
cations are the delivery of vaccines, improving the connectivity of hard-to-reach
communities, and obtaining aerial images in order to better respond to emergen-
cies. Another interesting case of using UAVs in the context of trying to improve
and guarantee good health is presented in [23]. That article describes an innovative
approach for the surveillance of populations of mosquitoes in order to control the
spread of malaria.

* Goal 7. Affordable and Clean Energy: UAVs also have the potential to enable
great innovations in the field of renewable energies. For instance, [24] describes
several ways in which UAVs can be utilized in the solar, wind, and wave power
industries. Furthermore, [25] provides additional insights about the inclusion of
UAVs in those same renewable energy industries, and it adds information about
the potential usage of UAVs for the inspection of hazardous areas in nuclear power
plants.
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* Goal 16. Peace, Justice and Strong Institutions: Lastly, this is another impor-
tant goal to which the usage of UAVs would greatly contribute. In [26], different
ways in which UAVs can be utilized for peace and humanitarian operations are de-
scribed. For instance, UAVs could work as a way of providing or guaranteeing safe
transportation of life support supplies or as a way of investigating areas of conflict.
Moreover, [27] describes other applications of UAVs in this context. For example,
they could be used in order to provide Internet access to refugee camps or schools,
and to perform other many different humanitarian tasks.

Finally, there are some other goals which also have a lower, but still considerable relation
to this project:

* Goal 13. Climate Action: UAVs have many different applications that could help
alleviate the effects of climate change. Various of those applications are described
in [28]. For instance, the ability of UAVs to access remote areas allows researchers
to understand how weather patterns are affecting rainforest trees, mountain air
and underwater ecosystems. Moreover, other important applications are shown in
[29]. Among them, UAVs can contribute to combating climate change by providing
cheaper and more effective ways to document, monitor, prevent and tackle it.

* Goal 15. Life on Land: There are various applications of UAVs that have been
proposed in order to protect plant and animal life on land. For instance, [30] de-
scribes one of these applications, in which UAVs could be used in order to carry
out plant ecology research. Furthermore, other applications are mentioned in [31],
such as plant conservation applications or applications for mapping, quantifying
and monitoring plant species.
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