
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería Industrial

Estudio y propuesta de mejoras del control de fuerza con el
robot colaborativo UR3

Trabajo Fin de Máster

Máster Universitario en Ingeniería Industrial

AUTOR/A: de Smedt , Jarne

Tutor/a: Zotovic Stanisic, Ranko

CURSO ACADÉMICO: 2021/2022

i

Table of Contents
Table of Contents ... i

Table of Figures ..ii

Table of Tables... iv

Table of Abbreviations ... v

1. Abstract ... 1

2. Planos .. 2

2.1. Project roadmap: ... 2

2.2. Methodology: .. 2

3. State of the art .. 4

3.1. Collaborative robot ... 5

3.2. Force control (in robotics) ... 7

3.3. Impedance control .. 10

3.4. Distributed control .. 13

3.5. Machining with robots .. 14

3.6. Kalman filter .. 16

3.7. Inner/outer loop control ... 18

4. Theoretical Analysis ... 19

4.1. Robot breakdown: clarifying robot jargon .. 19

4.2. Stiffness matrix and Jacobian of robot .. 22

4.3. Specifications of both UR3s ... 25

5. Practical experiments .. 28

5.1. Laboratory setup ... 28

5.2. UR3 setup .. 29

5.3. Preliminary experiments ... 34

5.3.1. UR – PC position communication [Appendix I – UR – PC communication] 34

5.3.2. Basic force control [Appendix II – Basic force control].. 36

5.3.3. Remote robot force reading [Appendix III – Remote robot force reading] 38

5.3.4. Remote control of UR3/UR3e [Appendix IV – Remote control] 39

5.3.5. Attempts direct sensor reading [Appendix V – Attempt direct sensor reading]........... 40

5.3.6. Force control with excel writing [Appendix VI – Force control with excel writing] 43

5.3.7. Adaptive force control [Appendix VII – Adaptive force control] 44

5.3.8. Trapezoidal Velocity Profile PD force control [Appendix VIII – Trapezoidal speed

trajectory] .. 46

5.4. Experimental setup for comparison UR3 and UR3e .. 50

ii

5.4.1. Experiment one: Sampling period in force control [Appendix IX – Sampling period

force control] ... 51

5.4.2. Experiment two: Multi-robot communication [Appendix X – Multi-robot

communication] .. 55

5.4.3. Experiment three: Communication time delay [Appendix XI – Communication time

delay] 58

5.4.4. Appendix XII – Force sensor connection] .. 59

5.5. Experimental setup for advanced control systems ... 62

5.5.1. Force filtering and control ... 62

Theoretical explanation ... 62

Appendix XIII – Force filtering and control] ... 68

5.5.2. Impedance control [Appendix XIV – Impedance control] ... 76

6. Results and conclusions ... 81

7. References ... 84

8. Appendix .. 88

Appendix I – UR – PC communication ... 88

Appendix II – Basic force control ... 88

Appendix III – Remote robot force reading ... 88

Appendix IV – Remote control .. 89

Appendix V – Attempt direct sensor reading .. 89

Appendix VI – Force control with excel writing... 90

Appendix VII – Adaptive force control .. 91

Appendix VIII – Trapezoidal speed trajectory ... 92

Appendix IX – Sampling period force control .. 93

Appendix X – Multi-robot communication .. 94

Appendix XI – Communication time delay .. 95

Appendix XII – Force sensor connection ... 96

Appendix XIII – Force filtering and control .. 97

Appendix XIV – Impedance control ... 102

Table of Figures
Figure 1: Overview of conducted experiments ... 2

Figure 2: Universal Robot Hand Guide function .. 6

Figure 3: Force control block diagram ... 8

Figure 4: UR robot in force control in z, other DOF are free ... 8

Figure 5: Impedance control mass-spring-damper system ... 11

Figure 6: Impedance control block diagram .. 11

Figure 7: Line network vs distributed control network topology .. 13

Figure 8: Visual representation of milling cutting forces .. 14

iii

Figure 9: Kalman filter block diagram ... 16

Figure 10: Inner/outer loop control block diagram... 18

Figure 11: UR3 collaborative robot ... 19

Figure 12: 1 DOF joints .. 19

Figure 13: Higher DOF joints ... 19

Figure 14: 6-DOF robot analysis per joint.. 20

Figure 15: Robot joint coordinates .. 21

Figure 16: Robot tool coordinates ... 21

Figure 17: Robot coordinate systems .. 21

Figure 18: UR singularities ... 23

Figure 19: UR elbow singularity ... 23

Figure 20: UR3 datasheet .. 25

Figure 21: UR3e datasheet .. 25

Figure 22: UR3 workspace ... 26

Figure 23: UR3e workspace ... 26

Figure 24: HEX sensor datasheet ... 26

Figure 25: Laboratory setup communication flow .. 28

Figure 26: UR3 start screen ... 29

Figure 27: UR3 'About' tab .. 29

Figure 28: Setup Robot - Mounting initialization .. 30

Figure 29: Setup Robot - Network settings ... 30

Figure 30: UR options in creating or loading a new program ... 30

Figure 31: UR demonstration 'Variables' tab .. 31

Figure 32: UR demonstration of simulation and 'Graphics' tab .. 31

Figure 33: TCP IP: Synchronization, synchronization acknowledgement and acknowledgement 34

Figure 34: UR3 F/T Control parameter options ... 36

Figure 35: Movements UR3 of basic Force control. .. 36

Figure 36: Remote robot force reading Python output .. 38

Figure 37: UR remote control output error display .. 39

Figure 38: OnRobot HEX F/T Sensor web display .. 40

Figure 39: OnRobot F/T Sensor web display HTML code for sensor reading .. 41

Figure 40: OnRobot F/T Sensor compute box request data format ... 41

Figure 41: Direct sensor reading - webscraping1 with Beautifulsoup .. 42

Figure 42: Direct sensor reading - webscraping2 with requests ... 42

Figure 43: Direct sensor reading - compute box direct communication error 42

Figure 44: Force control with excel writing Excel output of force values ... 43

Figure 45: Output graphs adaptive force control .. 45

Figure 46: Output graphs adaptive force control - stable ... 45

Figure 47: Trapezoidal velocity profile .. 48

Figure 48: Triangular speed profile ... 48

Figure 49: Trapezoidal velocity profile output graph .. 49

Figure 50: Trapezoidal velocity profile output graph - zoomed in - noise .. 49

Figure 51: URCap F/T Control configuration options .. 51

Figure 52: UR3e Force mode configuration options ... 51

Figure 53: Force samples UR3 vs UR3e ... 53

Figure 54: Touch samples UR3 vs UR3e .. 54

Figure 55: Multi-robot communication - setup with movements and box ... 55

Figure 56: Multi-robot communication - UR3 and UR3e MODBUS settings ... 55

https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099345
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099346
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099347
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099348
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099349
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099379
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099380

iv

Figure 57: Multi-robot communication - communication logic .. 56

Figure 58: Output time delay UR3 ... 58

Figure 59: Output time delay UR3e ... 58

Figure 60: Python code computer clockspeed test ... 59

Figure 61: Clock speed Windows 11 .. 60

Figure 62: Clock speed Windows 10 .. 60

Figure 63: Force sensor connection - encoded received data package .. 60

Figure 64: Force sensor connection - decoded and transformed data package 61

Figure 65: Output sensor compute box connection for force measurements 61

Figure 66: Multi rate PD with averaging filter – theoretical working in graph 64

Figure 67: Multi rate PD 2nd order filter – theoretical working in graph ... 64

Figure 68: Multi rate PD averaging vs 2nd order filter – theoretical in graph 65

Figure 69: Polynomial approximation - theoretical in graph .. 65

Figure 70: Kalman filter experiment working principle ... 67

Figure 71: Force filtering - proportional control graph ... 69

Figure 72: Force filtering - proportional derivative graph ... 70

Figure 73: Force filtering - PV control actions graph ... 70

Figure 74: Force filtering - PD with averaging graph ... 71

Figure 75: Force filtering - PD with 2nd order filter graph .. 72

Figure 76: Force filtering - polynomial approximation graph ... 72

Figure 77: Kalman filter - process noise covariance summary .. 73

Figure 78: Kalman filter - gaussian distribution example deviation of 1 ... 74

Figure 79: Impedance control - reference trajectory .. 76

Figure 80: Impedance control - block diagram.. 76

Figure 81: Impedance control - difference in active stiffness ... 78

Figure 82: Impedance control - y coordinate plotted over time ... 79

Figure 83: Impedance control - KJ of circular part .. 80

Table of Tables
Table 1: Jacobian matrix analysis .. 22

Table 2: Specifications of both UR3s ... 26

Table 3: URCaps accompanying OnRobot HEX F/T sensor .. 32

Table 4: Important specifications of UR robots... 32

Table 5: Most important used UR Script commands .. 32

Table 6: IP addresses of robots, compute box and computers ... 34

Table 7: Illustrative examples adaptive force control experiment ... 44

Table 8: Trapezoidal profile formulas.. 48

Table 9: Sampling period in force control output summary ... 53

Table 10: Force sensor connection - variables compute box connection ... 60

Table 11: Force filtering and control - outer loop control equations.. 68

Table 12: Force filtering - proportional control summary ... 68

Table 13: Force filtering - proportional derivative control summary .. 69

Table 14: proportional velocity control summary ... 70

Table 15: Force filtering - PD control with averaging summary .. 71

Table 16: Force filtering - PD control with 2nd order filter summary ... 71

Table 17: Force filtering - polynomial approximation summary ... 72

Table 18: Kalman filter - sensor noise covariance summary ... 73

v

Table 19: Impedance control - linear motion summary .. 77

Table 20: Impedance control - circular motion summary ... 79

Table 21: Conclusion - difference UR3 and UR3e force control .. 81

Table 22: Conclusion - force filtering and control of UR3 ... 81

Table 23: Conclusion - difference between F/T Control and self-programmed force control of UR3 .. 82

Table 24: Conclusion - impedance control line ... 82

Table 25: Conclusion - impedance control circle .. 83

Table 26: UR - PC communication Python and UR code ... 88

Table 27: Basic force control UR code ... 88

Table 28: Remote robot force reading Python and UR code .. 88

Table 29: Attempts remote control Python codes .. 89

Table 30: Attempts direct ssensor reading Python codes ... 90

Table 31: Force control with excel writing Python and UR code .. 90

Table 32: Adaptive force control Python and UR code ... 91

Table 33: Trapezoidal speed trajectory Python and UR code ... 92

Table 34: Sampling period force control Python and UR codes .. 94

Table 35: Multi-robot communication UR codes .. 94

Table 36: Communication time delay Python and UR codes .. 95

Table 37: Force sensor connection Python code .. 96

Table 38: Force filtering and control Python and UR codes .. 101

Table 39: Impedance control Python and UR code ... 103

Table of Abbreviations

DHCP: Dynamic Host Configuration Protocol .. 30

DOF: Degrees Of Freedom... 19, 23

EMG: Electromyography ... 12

PD: Proportional Derivative ... 9

PI: Proportional Integral .. 9

PID: Proportional Integral Derivative .. 62

ROI: Return On Investment ... 1

TCP : Tool Center Position ... 21

TCP IP: Transmission Control Protocol .. 28, 35

UDP: User Datagram Protocol .. passim

1

1. Abstract
Robots and automation have proven themselves to be valuable investments that have a good ROI.

When investigating the value of these tools it is important to know that apart from the ROI, they are

useful because they increase the flexibility of processes, it is possible to work autonomously, and the

repeatability is high. Robots and most of automation technology have the advantage to be usable in

different applications, but at the same time this imposes a challenge for them to be as effective as

specialized equipment. This is where research enters the picture.

This research on robots and more specifically collaborative robots is done within the scope of a

bigger project of professor and coordinator (Ranko Zotovic Stanisic). This big project serves as a

contribution to the field of robotics. For several years research on force control with robots has been

done, while adding new elements to it, with robots that are not specifically designed for this task and

to investigate how and if it is possible to compensate their shortcomings and use them accurately.

The main goal of this Master Thesis is to examine the force control of a collaborative robot. This is

very broad and allows to execute multiple different experiments with different goals to gather

information, even if the current experiment is not a continuation of the previous one.

The first big goal is to distinguish the difference between the UR3 and UR3e collaborative robot,

using force control tasks. The motion commands are programmed on the UR Teach Pendant module

and information is sent to a computer using a Python program. This is first done by communicating

with the robot and later directly with the force sensor.

In another experiment the two robots were to create a multi-robot communication program, where

the robots are able to communicate with each other and synchronize their movements to pick up a

box with force control.

The second goal is to do research and conduct experiments on inner/outer loop control of the robot

in force control applications. Since it is possible to establish a direct UDP connection between the

robot and the force sensor, it is possible to apply different controllers and filters and create an inner

loop motion control with an accompanying outer loop force control.

The third goal is on machining with robots, because this is part of the professor’s big project a few

students are working on this. It is my task to do research on robot machining and milling and, at the

end, compare my results and use my knowledge to evaluate these students’ outcomes.

A try on remote control of the robot was done but is yet to be solved.

Finally, an experimental setup is created to perform and evaluate the UR3’s impedance control,

where the interaction control of the robot is tested.

2

2. Planos

2.1. Project roadmap:
This master thesis was a complete project for me, I had learned about automation and servomotors,

so I am familiar with control loops, block diagrams and some of the principles, but I started off with

no knowledge of robotics. For this reason, an extensive literature study on robotics has been done,

as well as following two courses on the subject; ‘Robotics and mechanisms’ from my home university

in Belgium and ‘Mobile Robotics’ here at UPV.

Apart from robotics in general, knowledge about coding was needed. I had experience with Java and

a basic understanding of MATLAB, but Python was new to me.

This is why the first experiments are not significant but mentionable in this master thesis, they

provide the base for further experiments and illustrate the progress made throughout this semester.

2.2. Methodology:
Do literature study and go to the lab. At first learn to use the robot, write in Python, and read sensor

values.

Figure 1: Overview of conducted experiments

Using the outcome of these experiments, the research from the literature study can serve as

comparison.

While progress was made in the laboratory, it was possible to create more advanced experiments

and the literature study gave inspiration for new experiments.

At the start, in the laboratory, I worked together with Raúl Alfonso Safont (Master in automation and

industrial informatics [DISA]) and Ricardo Ruiz Monsalve (Master in mechatronics engineering

[ETSID]) to advance more quickly. Especially when getting to know the robot, because this stage is

important for later but not valuable for the thesis or research.

During the project we all worked on our own research field and when we were in the lab together it

was possible for me to add or improve their code and vice versa. It was an individually challenging

Learn URScript

Communication
between PC and

robot

Remote control of
robot

Communication
time

measurements

Direct UDP
connection with

sensor

Force control

PD control

PV control

Multirate filter

Polynomial
approximation

Kalman filter

Robot - robot
communication

Specific Python
programs

Excel writing

Numpy arrays

Impedance
control

Learn basic
Python

Learn URScript
commands

3

assignment, with each pursuing their own objectives, but it was possible to refine programs together

or set up a foundation for more complicated tasks.

4

3. State of the art
State of the art can be defined as the current way of working, what is generally accepted as good

practice. It is worth mentioning what is possible right now and is known to be efficient with the

techniques and technologies used in this thesis. With this knowledge in mind, it is possible to start

exploring alternative ways or combining current methods to find a solution to the obstacles when

using force control with a collaborative robot.

Robots are needed in today’s industrial environment, for companies to be competitive they need to

innovate in order to maximize their efficiency. Today’s market can be identified by quickly changing

demands, needs, more customized products and a higher variety in general. This and because a lot of

companies are engaged in various industries and applications, adaptivity and flexibility are strived

for. If equipment such as robots is non-specialized it can easily be reconfigured and used in other

applications, if necessary, it even allows for planning and tool-switching, which increases the

flexibility all the more.

Robots are already used for low-impact tasks such as pick-and-place tasks, welding, packaging,

painting, … because of their flexibility and the low complexity in environmental interaction, but the

study of general robots in milling applications is new. This is because milling requires force control, to

compensate the external forces that occur while machining and requires position control, because

the tool needs to follow a desired trajectory. Specialized equipment is more often used for these

applications because of their increased stiffness and adaptive approach. Robot parameters are

improved through hardware modifications, resulting in a higher performance for the specific

application.

This is only a subdivision of the bigger scope in this research, force control is the main subject

tackled. Due to the complexity in interaction between workpiece and robot, the quickly changing

dynamics of the robots and low accuracy of the pre-designed force control mode, a margin of error

exists, and it is possible to explore solutions for this. Because a collaborative robot is investigated,

the human-robot interaction plays a role as well in the overall performance and leads to even more

complicated interactions with the environment.

The rising application of collaborative robots in the industry is a good sign, their advantages such as

flexibility, ease of use and allowance for intelligence are often outweighing their disadvantages,

being lower stiffness, affecting the accuracy, limited range and load. With research alternative

techniques and theories are explored in order to improve the robot’s functionalities and by doing so

expanding its application range. Research can help reach a point where companies can buy general,

modular equipment and use this for different tasks, specialized modules can be attached to keep the

production costs at a minimum, while maintaining and hopefully even improving the output and

increasing the efficiency.

5

3.1. Collaborative robot
Nowadays, in Industry 4.0, technology is used to increase company efficiency and productivity and

has led to a more competitive environment [33]. The use of automation and robots played a big part

in this new shift.

Collaborative robots (cobots) are the perfect example of this, they are robots that can work safely

together with people, though previously it was necessary to separate the robot and the worker to

provide a safe work environment.

Definition 1 (industrial robot)

Automatically controlled, reprogrammable multipurpose manipulator, programmable in three or

more axes, which can be either fixed in place or mobile for use in industrial applications.

(ISO 8373)

Definition 2 (collaborative robot)

Robot designed for direct interaction with a human within a defined collaborative workspace

(Definition 3).

(ISO 10218–2:2011)

Definition 3 (collaborative workspace)

Workspace within the safeguarded space where the robot and a human can

perform tasks simultaneously during production operation.

(ISO 10218–2:2011)

It is well known that automation and robots relieve workers from tedious, labour-intensive and

repetitive tasks and allows them to do more knowledge-based work such as creative, strategic and

changing tasks, because robots lack the imagination and ability to invent new, better practices.

But cobots should not only be used for repetitive tasks because their application range goes beyond

this. They have built in safety functions, which allows them to work side by side with human workers

and support them with physical work (increase strength, provide protection or support) as well as

cognitive (store a lot of information, monitor the worker’s condition to determine when work breaks

are necessary to increase productivity and recognize patterns)[5].

Cobots sense the proximity of a worker and adapt their speed and/or force accordingly.

This provides a more ergonomic workspace for the workers: their risk on injuries and overall stress

due to work with heavy loads is decreased. Humans are still a valid asset in processes because even

though cobots can provide unbiased decision-making, we are better at adapting, innovating and it is

up to us to make the final decisions with the available information. [33]

This leaves more room for personal development, business-oriented thinking and augments their

work experience.

When comparing a collaborative robot with an industrial robot it becomes clear that:

robots are used for high volume tasks with high repeatability and not a lot of variety while cobots are

flexible, compact, are better for low volumes with a lot of room for variety. They can be used for a

variety of tasks because they are easy to install and program thanks to their user-friendly software

and built-in teach-in method, where the developer can manually move the robot and store this

information. [50]

Both UR3 and UR3e mentioned in this paper are equipped with what is called a “kinesthetic

programming” tool. On the robot controller this function is called “Hand guide” and allows the end-

6

user to program the robot by replicating a shown movement. Figure 2: Universal Robot Hand Guide

function shows how the robot can be manipulated by hand, with a minimum amount of force.

Figure 2: Universal Robot Hand Guide function

This way a real collaboration between human and robot is possible, the user doesn’t have to do

complex programming and his or her creativity can enhance the process.

When the hand-guide function is enabled it’s possible to restrict movements and rotations in certain

directions, because the robot will generate a trajectory depending on what is shown by the user. The

only thing left to do is guide the robot trough the desired motion by leading the end-effector of the

robot.

This translates into the industry as an easy way to adapt according to a high variety in products,

without a high necessity for accuracy. Instead of reprogramming the robot multiple times per day or

week, the worker can easily demonstrate the movement or adjust the previous one without

disrupting the workflow for a long time.

7

3.2. Force control (in robotics)
There are three big types of robot handlings and the robot control is adapted accordingly.

First it is possible to have negligible interaction forces, the robot executes a movement with no or

nearly no external resistance. Here motion control suffices, when the position, velocity and

acceleration are controlled the task is executed properly.

In 1977 Donald T. Greenwood [14] constructed an equation [Equation 1: General robot control

formula] for robot control with gravity compensation g, acceleration-dependent term I(q) which is

the mass inertia matrix and velocity-dependent term 𝑓(𝑞, 𝑞̇) which is the moment equation. 𝜏 is the

actuator input.

𝐼(𝑞)𝑞̈ + 𝑓(𝑞, 𝑞̇) + 𝑔(𝑞) = 𝜏

Equation 1: General robot control formula

In case a certain force value should be applied the equation is as follows:

𝐼(𝑞)𝑞̈ + 𝑓(𝑞, 𝑞̇) + 𝑔(𝑞) + 𝐽𝑇(𝑞)𝐹 = 𝜏

Equation 2: Robot force control formula

The second type is where the interaction forces are not negligible, the robot encounters external

resistance of a higher magnitude, but the interaction between manipulator and the environment is

static. Here force control suffices, the robot is submitted to a normal force and executes a movement

as well. Similar to motion control, in force control it is possible to plan the trajectory of the force in

the application.

The difficult part about this control action is that a position control is necessary because the robot

needs to perform a motion, and at the same time the force against the workpiece needs to be

controlled. During the motion, the configuration of the robot changes and the stiffness of the robot

as well, resulting in difficult to predict motion errors.

An example is in application where an object needs to be picked up with a gripper, here the gripper

force should be kept between strict boundaries to prevent workpiece or robot tool damage while

handling the object.

As last type dynamic interaction occurs, this means that work is done on the environment. The best-

known applications of this are machining operations such as drilling, grinding, milling, … .

This is part of robot force control is further explained in [3.5 Machining with robots].

Another example is when assisting someone with an exoskeleton [54], force control is used to

enhance or diminish the occurring force on a joint. When lifting a heavy item, the force from the

person on the box needs to be enhanced and the counteracting force from the item on the person

needs to be diminished.

When a process requires an interaction from the manipulator with the environment, force control is

necessary and the feedback complexity increases. Applying force control causes added stress to the

robot in the form of internal reaction forces, which can lead to a reduction of its life span if not well

designed. Other consequences are or can be: offset in trajectory, unexpected variations in the

magnitude due to both tool wear and plastic deformation of workpiece and in the case of machining

applications, external lateral forces can occur.

All of previously mentioned by-products of force control lead to a difficult or inaccurate feedback

loop, leading to a reduction in accuracy and this is why research on this subject is necessary and will

8

help further advance automation technology and expands its applicability.

Figure 3: Force control block diagram

[35]

The difficult part about force control is that a position control is necessary because the robot needs

to perform a motion, and at the same time the force against the workpiece needs to be controlled.

This is part of robot force control is further explained in [3.5 Machining with robots].

Force control makes it possible to determine the execution force during an application. Similar to

motion planning, force planning is possible. The applied force has different possible configurations,

depending on the application it’s possible to apply normal or lateral forces and change their

magnitude according to the time, step in the action or other variables.

When the application is known, the different movements are known as well. For example, when a

robot needs to perform horizontal movement in the XY-plane, all the other degrees of freedom (Z

and the three degrees of rotations) can be used in force control and vice versa. The robot applies the

joint forces and torques in order to reach and maintain the desired cartesian force and/or torque

values at the end-effector.

Figure 4: UR robot in force control in z, other DOF are free

Another difficulty in robot force control is the big variety in methods. There is a general and safe

force control mode programmed on the cobot, which works but is not focused on performance. A

PID controller is used, with certain unknown internal parameters. Many applications are built-in and

perform the desired task, but when the importance of a certain task is high, the default control

method might not suffice. For this reason, different self-written programs with well-known or more

advanced control methods are explored and tested.

In [8] a DC motor is used to simulate a 1-DOF robot in force control, displaying different types and

degrees in complexity of force control. In [55] and in [53] the most common ways of applying force

Z (force control)

X
Y

Rx

Ry

Rz

9

control are mentioned and are further explained below [3.3 Impedance control and 3.7 Inner/outer

loop control].

The two big groups in force control methods are fundamental and advanced, where the first one

applies a relationship between position/velocity and force and the second one extends this with

adaptive control, robust control and/or learning methods. In this research paper the fundamental

force control methods are investigated.

• Explicit force control, where there is direct force feedback.

The force sensor measurements are used to calculate a force error and this is compensated

accordingly. The desired value is a constant programmed setpoint and the force control is

executed as a PI controller. As can be seen in [Equation 3: Force control with force feedback

formula]

𝑔(𝑞) + 𝐽𝑇(𝑞)(𝐹 + 𝐾𝑝𝐹𝑒 + 𝐾𝑖 ∫𝐹𝑒(𝑡)𝑑𝑡) = 𝜏

Equation 3: Force control with force feedback formula

PI allows the elimination of steady-state wrench error if there is a constant disturbance,

which can occur when for example the gravity compensation has an error. A derivative term

is not often used, because the lack of dynamics between the joint forces and torques and the

wrench at the end-effector does not support the use of a derivate term and force/torque

sensors are noise prone. Taking the derivative of noisy measurements only amplifies the

noise.

• Hybrid position/force control, where an inner/outer loop scheme is used. [3.7Inner/outer

loop control]

Information from the sensor and from the position are evaluated and controlled separately.

This way both the position and force are tracked simultaneously and there is one control

action for the position errors and one for the force errors. “Normally, the position control

law in Figure 3 consists of a PD action, and the force control law consists of a PI action. This is

because for the position control a faster response is more desirable, and for the force control

a smaller error is more preferable” [55]

• Impedance control, where the relation between velocity and force is applied and the

stiffness is controlled thanks to position feedback. [3.3Impedance control]

Impedance control is more of an interaction control, with as main parameter the stiffness.

10

3.3. Impedance control
To improve the robot control, whilst maintaining the safety level, more advanced interaction

methodologies are used. In proportional or proportional derivative control high gains are used to

help reach the desired value quickly and maintain it in a strict way, this would lead to high impact

forces (as can be seen from experiment [5.4.1 Experiment one: Sampling period in force control

 [Appendix IX – Sampling period force control]]), which is negative for both the robot and

the environment.

Impedance control can help overcome position errors and avoid large impact forces by programming

robots to modulate their motion according to force perceptions, because it generates a relationship

between the force and contact point instead of controlling the force directly [13].

As described by Hogan [16]: Manipulation requires mechanical interaction with an object or the

environment. It is not sufficient to only control the robot’s motion when it dynamically interacts with

its environment. Position, force and dynamic behaviour is controlled using impedance control.

When comparing impedance control to position control, the big difference is that the goal of position

control is to reach a reference point by following a path, while the goal of impedance is to control its

dynamic behaviour, the relationship between position (or velocity) and force. This means that in

position control the robot will execute the programmed motion, disregarding any external

disturbances since it does not take forces or torques into account. This will result in high impact

forces. In impedance control external forces are allowed, the robot acts as a spring, where the

movement is disrupted but once the external force is released it returns to complete the desired

movement. This is why impedance control is a form of interaction control.

Controlling the robot impedance is a way of controlling how the robot behaves when interacting with

the environment by defining its stiffness and damping. The control method is equivalent to

controlling a mass-spring-damper system. The three parameters are the mass, stiffness and damping,

with mass being the most complicated to implement and thus the least used. The stiffness is the

most important for safety and the damping is usually used to avoid oscillations.

A balance needs to be found for the stiffness, if the stiffness value is low, the resistance against

external forces is low, increasing the safety, but the mass will be more prone to oscillations, but a

damper can gradually reduce these to return to the initial position. This is why in robotics often a

high stiffness is desired; it assures a greater positional and force maintenance and accuracy. For

collaborative robots this also means high impact forces when encountering an obstacle, which can be

dangerous because these robots operate in unknown and fast-changing environments.

“Robots that physically interact with their surroundings, in order to accomplish some tasks or assist

humans in their activities, require to exploit contact forces in a safe and proficient manner.

Impedance control is considered as a prominent approach in robotics to avoid large impact forces

while operating in unstructured environments.” [1]

This applies to collaborative robots, these are designed to work together and interact with humans,

so safety is of a big importance [25 - 34]. The robot control forms a challenge because the robots

need to operate and interact within an unstructured, varying and, in case humans are near, sensitive

environment.

11

Figure 5: Impedance control mass-spring-damper system

Newton’s third law of motion:

𝐹(𝑡) = 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥

Equation 4: Newton's third law of motion

𝐹(𝑠) = 𝑚[𝑠2𝑋(𝑠) − 𝑠𝑥(0) − 𝑥̇(0)] + 𝑐[𝑠𝑋(𝑠) − 𝑥(0)] + 𝑘𝑋(𝑠)

𝐹(𝑠) = (𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝑋(𝑠) + (−𝑚𝑠 − 𝑐)𝑥(0) − 𝑚𝑥̇(0)

Equation 5: Laplace transform of Newton's third law of motion

Laplace transform gives

and we assume 𝑥(0) = 𝑥̇(0) = 0

𝐹(𝑠) = (𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝑋(𝑠)
𝐹

𝑋
= 𝑚𝑠2 + 𝑐𝑠 + 𝑘

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑍 =
𝐹

𝑉
= 𝑚𝑠 + 𝑐 +

𝑘

𝑠

Equation 6: Impedance equation mass-spring-damper

k is equivalent to Kp, the proportional constant for the position control and indirect stiffness control.

b is equivalent to Kd, the derivational constant reacting to the difference in velocity and damping the

system.

This impedance, as in Equation 6: Impedance equation mass-spring-damper is called the mechanical

impedance and represents the ratio of force output to motion input. It is controlled in experiment

[5.5.2Impedance control [Appendix XIV – Impedance control]] by adjusting the active

stiffness values of the robot joints.

Figure 6: Impedance control block diagram

The robot stiffness (K in Figure 6: Impedance control block diagram) consists of active and passive

stiffness, being programable and joint stiffness of the harmonic drives respectively.

F

12

The joint stiffness matrix is 𝐾𝜃 =

[

𝐾1 0 0
0 𝐾2 0
0 0 𝐾3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐾4 0 0
0 𝐾5 0
0 0 𝐾6]

 and 𝐾𝑥 = 𝐽−𝑇𝐾𝜃𝐽−

This joint stiffness is constant during motion tasks, but because of the transformation using the

Jacobian, the cartesian stiffness changes depending on the robot configuration.

The total robot stiffness is the cartesian or joint stiffness, plus the active stiffness introduced by the

controller.

The speedL command exists of

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

𝑣𝛼
𝑣𝛽

𝑣𝛾]

 with 𝑣𝑥 = 𝐾𝑝𝑥(𝑥𝑟𝑒𝑓 − 𝑥) + 𝐾𝑑𝑥(𝑥̇𝑟𝑒𝑓 − 𝑥̇) and similar for the

other velocities. The proportional gain of the control action is equivalent to the active stiffness and

the derivative gain to the damping.

The following study [21] about adaptive impedance control is a perfect example of what impedance

controlled is designed for. Powered exoskeletons to enhance or restore human’s muscular force and

endurance, in other words they cooperate with the human by assisting or supplementing its motion.

The robot system’s impedance model is designed by using an impedance algorithm. Because the

exoskeleton needs to match the operator’s kinematic and dynamic behaviour.

In [2] impedance is used for indirect force control and in parallel a direct force control method is

used for counteracting contact forces when interacting with a surface. It is confirmed that impedance

control finds its use in assisting humans and attain contact forces safely, as mentioned before. This

limits the needed safety measurements when employing a collaborative robot in the work

environment in a way that the robot can work in close proximity of humans and other robots,

extending the robot’s work range and using the most of its capabilities. EMG signals are used to

measure muscle response or electrical activity in response to a nerve's stimulation of the muscle,

allowing a stiffness estimation of the human’s arm when cooperating.

In [32] impedance control is used to measure interaction forces and compensate the robot

deformation and an adaptive material removal formula is set up for milling, this was shown to be

successful. A sensor-less force control method was proposed in 2014 [11] and worked well enough to

be applied in practical applications.

13

3.4. Distributed control
 “A distributed control system is a digital automated industrial control system that uses

geographically distributed control loops throughout a factory, machine or control area. Unlike a

centralized control system that operates all machines, a distributed control system allows each

section of a machine to have its own dedicated controller that runs the operation. It has several local

controllers located throughout the area that are connected by a high-speed communication network.

While each controller works autonomously, there is a central supervisory control run by an

operator.” [39]

The word distributed shows that in this control method, the network topology is not in a line, where

one component can only communicate with one other above or below in hierarchy but is distributed

amongst different controllers on different levels and the communication is of a more diverse and

complex pattern.

Figure 7: Line network vs distributed control network topology

Distributed control is increasing in importance [6] because the system fulfils the wish of flexibility by

allowing modularity; functionalities can be added, subtracted and substituted according to the

demand [22 - 37]. This is a big improvement over ordinary control systems because the innovation

rate in today’s industry is high, meaning that systems or at least the majority of their components

should be reusable. This gives a cost-effective solution to industries where processes change or have

to adapt at a fast rate. The ease of scalability this solution offers is a second advantage, because it’s

possible to integrate external controllers into the distributed system it is possible to expand or

reduce the system.

The industrial collaborative robot UR3 and the laboratory setup in general, used for this research

utilize distributed control because different machines are unified to share information and resources,

while still being able to work autonomously. The UR3 communicates with its force sensor, the PC and

the teach pendant while all of these components are controlled separately, thus maintaining the

control complexity at a minimum.

Making multiple task-specific controllers work together and share information is more reliable than

using one centralized controller for all the different modules. This also allows to work on different

levels, in this application the lower-level system can be the force value that’s controlled and one level

above that the motion controller verifies that the force control doesn’t cause trajectory errors. In

applications with multiple force controllers, it is possible to install a balance controller on the next

level, to even out all the force values and essentially monitor the lower-level controllers.

Line Distributed control

14

3.5. Machining with robots
The study of machining with robots is a new facet to the field of robotics. Most of the research

written on this is done with specialized equipment and does not go into detail on mathematical

equations to estimate force values, which is one of the main problems to be tackled; when

machining, a lot of forces occur and these need to be compensated to maintain the accuracy, but

without damaging the robot joints or tool due to the increased stress.

Specialized tools and robots are designed because machining operations require high stiffness to

assure the accuracy. A balance must be found between flexibility and robustness because the

machining tasks involve large reaction forces that can damage the tool, the robot or the

environment. Even if this does not damage the tool, it reduces the lifespan significantly. If the robot

robustness is increased, the flexibility decreases and this takes away one of the main advantages of

robot usage.

Machining with collaborative robots is a subject that is not yet strongly supported by research,

because these robots are designed to be flexible and machining with normal robots is yet to be

optimized for application. The occurring forces also highly depend on the used feed rate, removal

depth, material, … [24]

Research on the use of collaborative robots in machining should be pursued because of their big

application range and their flexibility.

But the research found on this topic shows how the rather simple task of maintaining a constant

force and compensating the tool deviation while machining imposes a lot of other difficulties.

Force compensation

Figure 8: Visual representation of milling cutting forces

ℎ𝑔𝑒𝑚 = 𝑓𝑧√
𝑎

𝑑

Equation 7: Average cut thickness milling

𝑐𝑜𝑠φ =

𝑑
2 − 𝑎

𝑑
2

Equation 8: Angle of impact milling

𝑧𝑖 =
𝜑

360°
∗ 𝑧

Equation 9: Amount of cutting teeth milling

15

𝐹𝑡 = 𝑘𝑐1,1 ∗ ℎ𝑔𝑒𝑚
(1−𝜖)

∗ 𝑏 ∗ 𝑧𝑖

Equation 10: Average tangential force in milling

The average tangential force [Equation 10: Average tangential force in milling] can be derived from

[Equation 7: Average cut thickness milling, Equation 8: Angle of impact milling and Equation 9:

Amount of cutting teeth milling]. In this final equation kc1,1 is the specific cutting force with a surface

area of 1x1mm², the next symbol is the average cutting thickness, which depends on the feed per

tooth, depth of cut and diameter of mill (resp. fz, a and d). The tangential force is directly

proportional to the width of the cut b and by multiplying this with the number of teeth that are

cutting 𝑧𝑖, this gives the full force. The number of teeth cutting depends on 𝜑, which is the angle of

impact.

When only few teeth cut at the same time, so zi and φ are small, the variations in forces are big. This

means that when the tool enters the material, at first the force fluctuations will be high.

These complex calculations show that real time data processing is necessary to have an accurate

force control when machining. These forces can be measured immediately but there will always be a

delay on the feedback and thus the compensation.

Tool path compensation

‘Linear interpolation of the workpiece coordinates is important for machining with industrial robots.

A tool motion linearly interpolated in joint coordinates becomes a fluctuating trajectory in the

workpiece coordinates’ [38], so we need to do the linear interpolation of the tool motion in the

workpiece coordinates.

The robot joint stiffness depends on the used configuration and because during a movement the

configuration changes, the stiffness values change as well. This causes more stable and more instable

robot poses and makes the path compensation more complicated.

This small literature study on machining with robots is done but is very limited in such a way that

after doing the literature study, it became clear that to properly implement force control for

automated machining, a more profound study should be done.

Analysis of material, implementation of simulations using different software packages to predict the

behaviour etc. CAD models, material models, virtual machining technologies for even more realistic

simulations and modelling. Virtual machining has been proven [10] to work for assembly.

Machine learning and AI could be implemented into the research to make the robot work in the most

efficient way imaginable, but this goes beyond this research because of the time and resource

limitation. By implementing this, some complex problems can be avoided or reduced in complexity.

16

3.6. Kalman filter
“The Kalman filter estimates a process by using a form of feedback control: the filter estimates the

process state at some time and then obtains feedback in the form of (noisy) measurements. As such,

the equations for the Kalman filter fall into two groups: time update equations and measurement

update equations.” [49]

Figure 9: Kalman filter block diagram

These two groups of equations form two phases in the process: the prediction phase and the

correction (or update in Figure 9: Kalman filter block diagram) phase.

Prediction phase:

𝑥𝑘+1
− = 𝐴𝑘𝑥̂𝑘

Equation 11: State prediction Kalman Filter

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

Equation 12: Covariance prediction Kalman Filter

The predictor estimates the next state 𝑥𝑘+1
− , using the state matrix Ak and previous state 𝑥𝑘, as well

as the covariance 𝑃𝑘+1
− , using the state matrix, previous covariance, transposed of the state matrix

and adding the process noise covariance Qk. This process noise covariance matrix reflects the

exactness of the model and the probability of disturbances.

 Correction phase:

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1

Equation 13: Kalman gain Kalman Filter

𝑥𝑘 = 𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘

−)

Equation 14: State correction Kalman Filter

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−

Equation 15: Covariance correction Kalman Filter

17

The corrector calculates the Kalman gain 𝐾𝑘, used as gain factor to determine the weigh on the

measurement error (𝑧𝑘 − 𝐻𝑘𝑥̂𝑘
−). The predicted covariance is used for this, in combination with the

measurement function 𝐻𝑘 and the sensor noise covariance Rk.

Next, the process is measured 𝑧𝑘 and used to compute the updated state estimate.

The last step is to calculate the updated error covariance estimate, out of the identity matrix I, the

calculated Kalman gain, the measurement function and the previous covariance.

In the way a Kalman filter is used later, in force control, x represents the state of the robot = [
𝐹
𝐹̇
]. The

force and force derivative. The equations mentioned below are used in this experiment and first

require some manipulation, so it’s easier to code. The initialized parameters and further calculations

are done below in [5.5.1Force filtering and control].

18

3.7. Inner/outer loop control
In most force control applications, a combination of position and force control is needed, a force is

applied, and its magnitude needs to be controlled, while executing a motion. The probability of a

motion error rises with a rising force value because the latter hinders the former.

Figure 10: Inner/outer loop control block diagram

[30]

Inner/outer loop control as presented in Figure 10: Inner/outer loop control block diagram acts as a

cascade control system where the force controller generates control references for the position

controller and this way both controllers work together to achieve the desired output (force).

The inner loop functions as a traditional feedback control system with a setpoint, a process variable,

and a controller (in this case a position controller) acting on a process (the robot) by means of an

actuator. The inner loop controls the variable directly and thus gives a quick response to errors,

before its magnitude expands and transmits throughout the system, resulting in a poor performance.

The outer loop does the same except that it uses the entire inner loop as its actuator, plus an extra

controller, being both the force controller and the position controller. It regulates the force variable

in an indirect fashion, which is why it operates at a lower frequency and needs sensor data

processing for the feedback. The outer loop’s indirect nature possibly affects the process in case of a

continuously rising error but has the advantage to not oscillate excessively when the error fluctuates

at a high rate.

The inner loop disturbances are less severe than the outer loop disturbances. Otherwise, the position

controller will be constantly correcting for disturbances to the robot motion and unable to apply

consistent corrective efforts to the force control.

This way of controlling shows its applications in tracking applications [9 - 26 - 52], because the outer

loop either tracks a position or a force value. In 2016 [30] used PI control to evaluate an inner/outer

loop force control and good results came from this.

19

4. Theoretical Analysis

4.1. Robot breakdown: clarifying robot jargon
The used robot in this Master Thesis is a 6-DOF, anthropomorphic, collaborative robot.

The robot exists of different mechanical parts, with different functionalities and properties.

The movements are possible thanks to joints in blue, the base, shoulder, elbow and the three wrists

in this case. Each of these joints move a link (grey bar/body/arm in between joints) and all higher

located joints.

Figure 11: UR3 collaborative robot

Joints can have 1 DOF, thus allowing one movement, shown in Figure 1: the Revolute, Prismatic and

Helical joints, or they have multiple DOF: Cylindrical, Universal or Spherical joints.

Figure 12: 1 DOF joints

Figure 13: Higher DOF joints

The robots made by Universal Robots are made of 6 revolute joints. They all have a fixed rotation axis

and do not allow translations of any kind.

A combination of the six different joint angles describes the robot configuration and if the robot

sweeps all possible configurations, it creates a volume called robot workspace.

Two calculations used by the robot are the forward and inverse kinematics of the robot, these serve

as methods to calculate the robot end-effector pose relative to reference frame from given joint

angles and the joint angles when the end-effector pose is given respectively.

20

The Denavit-Hartenberg formulas are used for this and follow out of a set of matrix calculations with

angles for each joint. In other words, the Denavit-Hartenberg representation divides the motion of

the kinematic chain of the robot in the relative motion between different links. As shown in the

picture below.

Figure 14: 6-DOF robot analysis per joint

Each relative displacement is described in the form of a matrix A, when multiplying consecutive

matrices from 0 to 3, we get the arm model and from 3 to 6 we get the wrist model.

First three values in each row are for orientation and the last value is for the position.

Arm model: 0A3=[

𝑐𝑜𝑠𝜃1𝑐𝑜𝑠(𝜃2 + 𝜃3) −𝑠𝑖𝑛𝜃1

𝑠𝑖𝑛𝜃1𝑐𝑜𝑠(𝜃2 + 𝜃3) 𝑐𝑜𝑠𝜃1

−𝑐𝑜𝑠𝜃1𝑠𝑖𝑛(𝜃2 + 𝜃3) 𝑎2𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

−𝑠𝑖𝑛𝜃1𝑠𝑖𝑛(𝜃2 + 𝜃3) 𝑎2𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛(𝜃2 + 𝜃3) 0
0 0

𝑐𝑜𝑠(𝜃2+𝜃3) 𝑑1 + 𝑎2𝑠𝑖𝑛𝜃2

0 1

]

Wrist model: 3A6=[

𝑐4𝑐5𝑐6 − 𝑠4𝑠6 −𝑐4𝑐5𝑠6 − 𝑠4𝑐6
𝑠4𝑐5𝑐6 + 𝑐4𝑠6 −𝑠4𝑐5𝑠6 + 𝑐4𝑐6

−𝑐4𝑠5 −𝑑6𝑐4𝑠5
−𝑠4𝑠5 −𝑑6𝑠4𝑠5

𝑠5𝑐6 −𝑠5𝑠6
0 0

𝑐5 𝑑4 + 𝑑6𝑐5
0 1

]

with c1=cosθ1 and s1=sinθ1

Full robot model = 0A3 x
3A6 = 0A6

Joint, tool and workpiece coordinates

The robot environment can be described using different coordinate systems, depending on the origin

and its unit vectors. They are called joint, tool and workpiece coordinates and illustrated in [Figure 15

- Figure 16 - Figure 17].

21

Joint coordinates

‘The angle-position and length of each axis of an articulate robot axes describes the orientation of

the TCP exactly. With the joint coordinate-system each robot axis can be moved particularly in

positive or negative sense rotation.’ [19]

The joint coordinates are a set of joint angles and are useful because no transformations are needed,

and the robot position and axes positions are easy to visualize.

Tool coordinates

When using tool-coordinates, we use the TCP, so we calibrate our TCP to the desired position and

from then on, we know exactly where our tool is located.

‘The following tasks are easier to program using the tool coordinate system:

• Turning the tool around the TCP (Tool Center Point)

• To maintain the speed at the TCP even with complex paths

• To push the tool in a certain direction’ [20]

Workpiece coordinates

‘The object coordinate system specifies how a workpiece is positioned in a fixture or workpiece

manipulator.’ [17]

If the workpiece is fixed during the whole process, or we know the movement of the fixture, this

coordinate system might be useful.

Figure 15: Robot joint coordinates Figure 16: Robot tool coordinates

Figure 17: Robot coordinate systems

22

4.2. Stiffness matrix and Jacobian of robot
Jacobian [7]

“The matrix which relates changes in joint parameter velocities to Cartesian velocities is called the

Jacobian Matrix. This is a time-varying, position dependent linear transform.”

The Jacobian consists of linear and rotational elements, defining the occurrence of these two

movements and using the rotation matrix in order to do so. Rotation matrices define the relative

rotation of coordinate frames.

Table 1: Jacobian matrix analysis

This is an important matrix because it is used in different control calculations, for example in the

Kalman filter and in controlling the end effector velocity by controlling the angular joint velocities.

The matrix is set up to calculate singularities in the robot. Where the determinant of the Jacobian is

equal to zero, a singularity occurs.

A singularity is when the robot is in a certain configuration and from then wants to move with a

linear velocity in cartesian space, but because of the configuration the joint velocities become

infinite. The robot then loses one or more degrees of freedom.

23

"A robot singularity is a configuration in which the robot end-effector becomes blocked in certain

directions." [4]

Wrist singularity: axes of joints 4 and 6 become parallel. θ5 = 0°, θ5 = ±180° or θ5 = ±360°.

Because the shoulder (1), elbow (2) and first wrist (3) move in the same plane, a singularity occurs

when we move the second wrist joint (4) to 0° or 180°. See picture below

 [47]

Elbow singularity: stretched out arm. Axes of joints 2,3 and 4 are in the same plane. θ3 = 0°

Shoulder singularity: intersection point of the axes of joints 5 and 6 lies in the plane passing through

the axes of joints 1 and 2.

Stiffness matrix

This is the matrix notation of the resistance against external forces. In this 6-DOF robot the stiffness

matrix is a 6x6 matrix. The robot joint stiffness shows the resistance of the joints against forces (both

internal and external) because a force in one direction does not only initiate a displacement in this

same direction, but a matrix notation is also desired for the robot stiffness. The values also differ in

different directions, which gives a multi-dimensional set of values.

Figure 19: UR elbow singularity

Figure 18: UR singularities

24

The stiffness matrix is not given by the manufacturer but can experimentally be approximated [40].

This is beyond the scope of this research, but it can be noted that the stiffness values are dynamic

and change depending on the robot configuration.

Stiffness control can either be passive or active [18]. In passive stiffness control the robot arm acts as

a spring, where the stiffness is pre-set and constant. This control is equivalent to feedback control

because first an action needs to take place before a control action is introduced. In active stiffness

control the spring constant is programmable trough force feedback. This is equivalent to feedforward

control because it adapts according to a possible following action, for example when following a

trajectory, the active stiffness depends on the next reference point.

To control the stiffness of the robot, the active stiffness values can be changed. The following

formulas demonstrate the relationship between the Jacobian and the stiffness control.

With τ being the joint torque matrix, K being the passive stiffness matrix of the robot and ∆𝑞 the

change in robot pose.

𝜏 = 𝐾𝜃∆𝑞

Equation 16: Stiffness - robot joint torque in function of stiffness and pose difference

∆𝑥 = 𝐽(𝑞)∆𝑞 ⇒ ∆𝑞 = 𝐽−1∆𝑥

Equation 17: Stiffness - cartesian position change in function of pose change

𝜏 = 𝐽𝑇𝐹 ⇔ 𝐽𝑇𝐹 = 𝐾𝜃𝐽−1∆𝑥 ⇔ 𝐹 = 𝐽−𝑇𝐾𝜃𝐽−1∆𝑥

Equation 18: Stiffness - torque in function of force

With 𝐾𝑥 = 𝐽−𝑇𝐾𝜃𝐽−1 ⇒ 𝐹 = 𝐾𝑥∆𝑥

Equation 19: Stiffness - force in function of cartesian position change

Equation 16: Stiffness - robot joint torque in function of stiffness and pose difference can be used for

the active stiffness as well, where the active stiffness matrix is a diagonal matrix with elements in the

range of 300-2000.

The total stiffness of the robot is the active plus the passive.

25

4.3. Specifications of both UR3s
Universal Robots is a company founded in Denmark and is now world’s largest manufacturer of

collaborative robots [50]. Their values of adaptability and reliability show in the cobot functions:

‘flexible to deploy, easy to program, fast to set up, budget-friendly and safe’. [42]

They have two product series: the normal UR (CB-series) and a newer UR e-Series. The number

behind the ‘UR’ stands for the payload capacity. The e-serie robots have the same payloads, except

for a new UR16e.

Experiments are a helpful tool to gather information about the differences between these robots, as

a verification tool datasheet are published by the manufacturers and summarized below.

Figure 20: UR3 datasheet
[41]

Figure 21: UR3e datasheet
[43]

Repeatability is +/- 0,1mm. Repeatability is 0,03mm.

No built-in force/torque sensor Has a built-in force/torque sensor

Size specifications

Footprint Ø128mm Footprint Ø128mm

Reach 500mm Reach 500mm

Weight 11kg Weight 11,2kg

26

Figure 22: UR3 workspace
[45]

Figure 23: UR3e workspace

[46]

F/T specifications: for UR3 HEX-E/H QC Sensor

Range 200N Range 30N

Resolution 0,2 for X-Y & 0,8 for Z Resolution 1N

Accuracy <2% so <4N Accuracy 3,5N

[44]
Figure 24: HEX sensor datasheet

Table 2: Specifications of both UR3s

27

Following the information from above, it can theoretically be concluded that:

• The UR3e is more precise, with a repeatability of 0,03mm instead of UR3’s 0,1mm

• Both robots have the same size, except for the three wrists. These have different proportions

resulting in a 2mm total height difference, but no difference in workspace reach

• The robot joint speeds are equal

• Because the UR3 has an external F/T sensor, this accuracy and resolution is better than the

UR3e’s

28

5. Practical experiments
Previous mentioned information is important to conduct experiments with both cobots. First the

most important information about the used components is given, then the first experiments that

were conducted to test functions and get to know the commands.

Finally, more advanced experiments are described, these are the ones that give results for the

research and combine multiple basic functions.

5.1. Laboratory setup
In the laboratory the following equipment is used in the experiments: a desktop computer with

Windows 10 (6), a Universal Robots UR3 CB-series robot (3), with corresponding Control box (2) and

with this Control box there comes a teach pendant (1). Because the CB-series do not contain an

internal f/t-sensor, a HEX-E QC sensor (4) with corresponding compute box (5) is attached.

This figure is for the UR3, for the UR3e the setup is similar except that there is no external sensor or

compute box.

Figure 25: Laboratory setup communication flow

Figure 25: Laboratory setup communication flow shows the hardware + software used in the

laboratory for the experiments. The data flow is displayed as well.

The compute box, control box and computer are connected to the same Local Area Network with

ethernet cables and communicate this way. For the communication between the PC and the robot

control box a TCP IP communication is set up because this is a connection-oriented protocol and

between the PC and the sensor compute box a UDP communication, which prioritizes speed over

connectivity.

The computer is equipped with Python, MATLAB and Excel. This component in the communication is

used to send requests and receive and process data, using Python. Excel files are created to store the

received data with any computed data, which can later be used in MATLAB for quick computations.

In the same Python program, the PC first sets up the UDP socket connection and is then able to send

requests to the compute box in order to set the data transmission parameters (read-out speed,

biasing, filtering) as well as the start signal to send sensor output data. In other words, another

responsibility of the PC is setting the communication parameters.

The robot controller box contains both digital and analog input and output sockets which can be used

for interfacing other components or system components itself. It receives data from both the Teach

29

Pendant in the form of motion and force commands and the robot in the form of position, speed and

force data. The control box transfers information to or reads information from the computer when

stated by the Teach Pendant.

The attached teach pendant is used to write the motion and force commands of the program to be

executed. The software installed is called PolyScope and allows the end user to write programs using

built-in UR Caps and visual representations of robot positions. The teach pendant allows a USB

connection to load and run programs.

“Compute box: A unit provided by OnRobot along with the sensor. It performs the calculations

needed to use the commands and applications implemented by OnRobot. It needs to be connected

to the sensor and the robot controller.” [31]

5.2. UR3 setup
Before being able to start conducting experiments and in order to work efficient and achieve good

results, the hardware setup of the robot is important. The basic and most important steps are

explained in this paragraph because this provides extra information on how difficulties or problems

during the laboratory sessions are tackled.

Figure 26: UR3 start screen

Figure 27: UR3 'About' tab

Start screen of UR3, when turning on the robot this screen appears and allows different actions.

‘Run Program’ is used to move the robot around and run a built program, when the program does

not require further changes, this gives a better overview of the variables.

‘Program Robot’ is used to create and browse through created programs and load these to the robot,

with the goal to change the code.

‘Setup Robot’ is the settings screen of the robot, internet, language, and even time settings are

changed here.

‘About’ gives more information about the robot.

The first step to be taken is ‘Setup Robot’ and then ‘Initialize Robot’, to configure the mounting of

the robot to the real one. When programming the robot, the mounting will be set as the default view

and an accompanying coordinate system is created accordingly.

It is possible to move the robot manually using digital arrow keys, so a logical mounting should be

30

chosen depending on the relative position of the manipulator to the robot.

Figure 28: Setup Robot - Mounting initialization

The next thing to do in ‘Setup Robot’ is connect the robot to the Ethernet network by assigning it an

IP address. DHCP automatically provides an IP address, while the static option gives the possibility to

choose yourself.

Figure 29: Setup Robot - Network settings

Now the robot is ready to be programmed.

Figure 30: UR options in creating or loading a new program

There is the opportunity to load a program, from a USB or from the internal storage of the teach

pendant or create a new program.

Programs are written in a node structure, to make the steps visualizable and when running the code,

the active step is highlighted. New code is added in the ‘Structure’ tab on the top right of the screen

31

and the parameters of the code can be adjusted in the current visible tab ‘Command’.

Universal Robot provides prebuilt commands in the form of UR Caps, that can be downloaded and

only require variables to complete them.

“UR Capabilities or URCaps are hardware and/or software extensions for the Universal Robot system.

The purpose of URCaps is to seamlessly extend any Universal Robot with customized functionality.

Using the URCap Software Platform, a URCap developer can define customized installation screens

and program nodes for the end user. These can, for example, encapsulate complex new robot

programming concepts, or provide friendly hardware configuration interfaces” [29]. This finds it

purpose when extending the cobot’s functionalities with a camera or a force torque sensor.

During the program it is useful to store data, this is done using variables. Different data types such as

lists, strings and numbers can be stored this way and are available for calculations further down the

program tree and monitoring in the following screen [Figure 31: UR demonstration 'Variables' tab].

The UR program also allows to set waypoints and save these under a name, to be reused later.

Figure 31: UR demonstration 'Variables' tab

Before any program with movements is run, the robot moves to the first set position. When re-

running the program to test its functions, it can be time consuming to move the robot back and

forth. A given solution is to not use the real robot and simulate the experiment using the button in

the bottom left corner. The movements of the robot can be tracked in the ‘Graphics’ tab of the

program.

Figure 32: UR demonstration of simulation and 'Graphics' tab

32

Because both UR3 and UR3e use the same software, the programs written on the UR3 can be read

and executed by the UR3e and vice versa, except when using the URCap F/T ‘Control’, this one is

stored under the name of ‘Force mode’ on the UR3e. This is because the UR3e has an internal force

torque sensor and the UR3 has an external one, compatible with the following URCaps.

F/T Center F/T Fix and rotate

F/T Control F/T Guard

F/T Insert box F/T Move

F/T Route F/T Insert part

F/T Search F/T Stacking

F/T Waypoint F/T Zero

F/T Set load
Table 3: URCaps accompanying OnRobot HEX F/T sensor

Important specifications of UR and sensor

 UR3 UR3e

Update frequency (control period) 125Hz (8ms) 500Hz (2ms)

Force resolution in Z-direction 0,8N 1N

Repeatability 0,1mm 0,03mm
Table 4: Important specifications of UR robots

The accuracy of the sensor compute box is limited to one decimal due to internal filtering when

operating at a frequency up to 500Hz. Higher decimals are possible when receiving data at a lower

frequency. [31]

UR Script commands

moveJ(q, a, v, t, r) linear movement in joint-space to position q,
with time as priority

moveL(pose, a, v, t, r) linear movement in joint-space to pose, with
time as priority

moveC(pose_via, pose_to, a, v, r, mode)

circular movement in tool-space.

moveP(pose, a, v, r) blend circular in tool-space and move linear in
tool space to pose

pose_trans() transform the current pose to set a new origin

socket_open(address, port) set up TCP/IP ethernet communication socket
with host IP address and port number.

socket_read_ascii_float(number) reads a number of ascii formatted floats from
the socket

get_actual_tcp_pose() returns current tool pose (X, Y, Z, Rx, Ry, Rz)

get_actual_tcp_speed() returns current TCP speed (X, Y, Z, Rx, Ry, Rz)

speedL(speed_vector, a, t, a_rot)

linear movement in cartesian space with
acceleration a and then constant speed vector

force_mode(taskframe, selectionvector,
wrench, type, limits)

taskframe is the current tool pose,
selectionvector and type combine for the force
control direction ([0,0,1,0,0,0] and 2 for Fz).
Wrench sets the magnitudes and limits are the
speed values.

Table 5: Most important used UR Script commands

33

Gathered knowledge/study of topics

• Use of UR Caps and other commands on teach pendant

• MODBUS communication on Teach Pendant

• Python socket communication

• Python Excel writing

• Python web scraping

• Python NumPy

• Python UDP communication with compute box

• Python data transformations

• Kalman filter

• Impedance control

34

5.3. Preliminary experiments
Getting to know the basic robot and Python commands.

 UR3 (CB) UR3e Compute box PC

IP addresses until
11/04:

158.42.206.10 158.42.206.89 158.42.206.1 158.42.206.7

IP addresses after
11/04:

192.168.1.132 192.168.1.133 192.168.1.98 192.168.1.103

Personal laptop IP 192.168.1.102
Table 6: IP addresses of robots, compute box and computers

It is important to state the way different commands and functions work, in every application it is

important to test the basic functions separately before trying complex tasks. This way it is possible to

verify the accuracy and even feasibility of the application, possible system faults, shortcomings and

calibration errors are identified this way and considered when using these same commands in next

experiments.

Especially when working in a real environment and when you are new to the subject it is

recommended to test the hardware and software functionality. As research the UR Script manual

served its purpose [48] to know the different commands and their required parameters.

5.3.1. UR – PC position communication [Appendix I – UR – PC communication]
Goal

In the pursuit of robot remote control using the computer, this experiment is set up with the goal of

connecting the robot to the computer and transferring data between the components.

In this particular experiment the goal is for the robot to send its tool center point position to the

computer and for the computer to send the next position coordinates to the robot. This is read out

and the robot executes the movement.

Theory

TCP IP socket communication.

TCP stands for Transmission Control Protocol and is an IP protocol where first a connection is set up

between the two components using the host’s IP address and a specific port number. The connection

is set up with a three-way-handshaking and only after this is executed, data transfer is possible.

Figure 33: TCP IP: Synchronization, synchronization acknowledgement and acknowledgement

Since TCP is connection oriented, it provides a reliable connection, and the data delivery is in-order. If

by mistake data is sent to another port, this gives an error because the connection is refused.

In Python a TCP socket connection is classified as a stream socket and coded: socket.SOCK_STREAM

35

Setup

This experiment is executed on the UR3, a socket TCP IP communication is set up with the PC and a

Python program is written. The robot stores its start position in a variable and sends this to the

computer. The computer is used to send a waypoint in cartesian coordinates, the Teach Pendant

reads this, stores it in a variable and moves to this waypoint. Next, the robot measures its position

and moves 250mm in the z-direction, after which it measures its position again and moves 250mm in

the negative z-direction. To finish it returns to the initial position.

Results

This eliminates programming every waypoint on the Teach Pendant, because it is easier to change

the Python code and have a compact execution code on the Teach Pendant. The downside of this is

that knowledge is needed about the used coordinate system, due to the robot workspace limitations.

After doing more experiments this method can be seen as inefficient, because the teach pendant

allows for more than relative movements. It can be made possible to repeat the first steps, where

the computer sends coordinates to the robot and the robot moves towards this point, to do the

other movements as well and thus eliminating coordinate calculations.

Another simplification would be to save each received value as a different value, making it easier to

move back to a certain point.

36

5.3.2. Basic force control [Appendix II – Basic force control]
Goal

To test out the force control function of the robot, this experiment is set up. This is not state-of-the

art but vital to check all functions. The goal is to move the robot to the surface and for it to maintain

a certain value while executing a horizontal movement.

Theory

With the UR3’s external sensor it is possible to load URCaps onto the Teach Pendant and expand the

prebuilt commands for easy integration of the sensor module.

F/T Control allows different force control configurations.

Figure 34: UR3 F/T Control parameter options

Setup

The robot moves its tool with moveJ to a safe distance from the table, making this motion harmless

so speed and trajectory do not have to be controlled. From this position, MoveL is used to have a

controlled vertical trajectory until a vertical force of 2N is measured, meaning the robot touches the

surface. Using F/T Control and F/T move it is possible to control the applied force along a set of

waypoints, a direction or a predefined absolute or relative route. The motion back is the same: first

MoverL to a safe distance and then MoverJ to the initial position.

Figure 35: Movements UR3 of basic Force control.

37

The first and last movement are not in a straight line because these are executed with joint movements, while the other

vertical ones are executed in cartesian space. The force control movement path in this experiment is the arc on the green

surface.

Results

The robot successfully executes this movement and in the ‘variables’ tab it is possible to monitor the

output values, being Fx, Fy, Fz, Tx, Ty, Tz and F3D.

38

5.3.3. Remote robot force reading [Appendix III – Remote robot force reading]
Goal

The goal is to connect the computer to the robot, in order to send and receive force data. This allows

for displaying results and monitoring the process, because it is possible to keep a data record.

Setup

On the Teach Pendant a port is opened to establish a socket communication, using the following

command with the computer IP and a chosen port socket_open(“158.42.206.7”,30000). The

connection is realized by the computer via Python, where a socket.bind command is used with its

own IP address and the same port as used by the Teach Pendant.

The robot moves the tool towards the surface and executes a force control movement. In parallel it

updates and sends a variable every 8ms, containing the Fx, Fy and Fz values as a String.

The computer receives this, decodes this byte array and then splits it into a list of three Strings.

Finally, it prints them with their label and is able to convert them into floats for calculations.

Results

This provides quantitative feedback for the force control application. This program sets up the base

for calculations, data storage and further evaluation of processes, because data transmission

between two components is possible. This is an example of distributed control.

The output looks like this:

Figure 36: Remote robot force reading Python output

The data “b’p…” is the actual received, encoded data from the robot. This is then decoded and split

into the desired Fx, Fy and Fz values, which are displayed in the next line.

39

5.3.4. Remote control of UR3/UR3e [Appendix IV – Remote control]
Goal

The goal is to set up a connection between computer and robot, to make communication possible

without the Teach Pendant.

Setup

By writing full commands in byte form and sending these to the robot, it should be possible to

control the robot.

In order to create a TCP socket communication with the robot, the socket needs to be opened and

this has to be written on the Teach Pendant.

Results

This was unsuccessful on both UR3 and UR3e. After further research it was noted to remove the

Teach Pendant from the control box in order to make this work. This was not tested, because there

was still no guarantee.

Figure 37: UR remote control output error display

40

5.3.5. Attempts direct sensor reading [Appendix V – Attempt direct sensor

reading]
Goal

To improve the force control of the robot it would be useful to gather information at a higher rate

than the robot can, this gives a buffer for calculations and the opportunity to diminish noise and data

irregularities. Different experiments were set up to create a direct connection with the sensor,

without the use of the Teach Pendant.

The first one is reading the webpage of the sensor, where the data is available for monitoring. When

typing the IP address of the compute box, a website is visible with the live values. The goal is to

extract data from this webpage and display it on the computer.

The second one is by creating a connection with the compute box. A TCP connection is set up and

data requests are sent for the compute box to react to.

Theory

Web scraping is the process of extracting content and data from a website. The HTML code is

extracted, and this content can be used elsewhere. It is used by search engines as Google, price

comparison sites and more.

First the webpage is visited, and its URL address is used, then by inspecting the page the HTML

structure becomes visible and allows to locate where in the structure the data to be extracted is

located. When all of this is known, a Python program can be written to move through the structure

and extract and store the HTML data.

Finally, another attempt was by manually assigning the compute box as the listener in the

connection. In the code a TCP client is assigned and a server, so it should be possible to set the

compute box of the sensor as the server.

Setup

Web scraping:

The first step is to find the website and expect its HTML code to find the data to be extracted.

For this experiment this is the sensor compute box IP address, but the old one: 158.42.206.

Figure 38: OnRobot HEX F/T Sensor web display

41

After selecting the sensor, the force data is visible, and it is possible to see where the data is stored in

the HTML code.

Figure 39: OnRobot F/T Sensor web display HTML code for sensor reading

The next and last step is to write the Python code using the BeautifulSoup and requests package and

run it to display and store the extracted data.

Compute box connection:

In its manual [Figure below] it is said to be possible to read data via a TCP connection on port 49151.

Requests should be sent to the robot in the form of bytes.

Figure 40: OnRobot F/T Sensor compute box request data format

Results

Web scraping:

The experiment was successful in the way that HTML structure is extracted and available, but the

results were unsuccessful because the force data is not shared in the HTML code of the website. A

private, secured connection is set up and thus unavailable for the Python program to access this

information.

Compute box connection:

The failure of this experiment is possibly due to a poor data byte conversion or socket setup.

42

Figure 41: Direct sensor reading - webscraping1 with Beautifulsoup

Figure 42: Direct sensor reading - webscraping2 with requests

Figure 43: Direct sensor reading - compute box direct communication error

43

5.3.6. Force control with excel writing [Appendix VI – Force control with excel

writing]
Goal

Gathering and displaying force data on the computer is great for verifying the output and checking it

on program errors. If the extracted data needs in-depth analyzation or further calculations, it is more

useful to store it in an excel file. The goal here is to create a Python program that creates an excel file

and writes data into it.

Setup

First communication is opened, the robot moves to the table with MoveJ, then force mode is started,

with a vertical force of 5N. MoveL is used to make a horizontal movement on the table.

In the subtask of the UR Script the speed values are retrieved; an array with the first three values

being the cartesian speeds, then the other three are angular velocities. (Universal Robots).

The movement on the table is in the negative Y-direction, so when the norm of the y-speed value is

bigger than 20mm/s (0.02) the force control movement has started and thus the vertical force has

been applied to the table. This is the ideal condition to start sampling force data.

A trigger signal “var_start_send” with value 1 is send at this point in time. This is read by the

computer and the robot. For the robot this is the start signal to send force values and for the

computer to read messages received from the robot, print them, and store them in an Excel file as

well.

In the Python program, an excel file is created using ‘XlsxWriter’, a workbook is opened and given a

name, which will be the document name, within this workbook a worksheet is created, where the

data will be written onto. worksheet.write(a,b,c) allows to write data c to row a and column b, this

way the first row in the file contains the data titles, being time, Fx, Fy and Fz.

Every 8ms the computer receives the force values and calculates the elapsed time, and this is

repeated during 2 seconds. Depending on the application it is possible to choose for how long

samples are read and stored.

This application is used in further applications to store and evaluate data efficiently.

Results

This base code can be used to story any kind of information from the Python program to an Excel file.

Information can be saved, transferred, and manipulated to create graphs and compare different

experiments.

The output of this program is as expected, an excel file is created under a given name, with on each

row the total elapsed time, force in X, force in Y and force in Z.

Figure 44: Force control with excel writing Excel output of force values

44

5.3.7. Adaptive force control [Appendix VII – Adaptive force control]
Goal

The robot force control action contains a lot of noise, and this causes oscillations in the force control

action. By applying direct sensor reading, noise is filtered out trough averaging or a second order

filter and from this value a new calculated value is send to the robot as reference force value.

Any constant offset due to disturbances will be filtered out, as well as periods where the force value

differs from the reference, especially if the force varies at a slow rate.

Theory

The idea behind this experiment is described with examples in the table below.

Every 8ms the robot updates its force control value to 𝐹𝑟𝑒𝑓 and 𝐹𝑟𝑒𝑓1is the true desired force value

(5N in this case).

Setup

The computer is connected to the Teach Pendant with a TCP IP connection and to the sensor

compute box with a UDP IP connection, initialized in the Python code.

The robot moves towards the surface and once contact is made, force control is applied, and the tool

is moved in one direction over a fixed distance. In parallel of this process, every update period of

8ms, the teach pendant reads and stores the received value from the socket connection as a variable

‘f_correction’. Force mode is activated and chooses the type of force control and its magnitude. For

the magnitude of the force ‘f_correction’ is used, updating the force setpoint every 8ms.

The computer reads sensor force data every 2ms and every 8ms computations are done and a

compensated value is sent to the teach pendant.

Results

Output of the program can be found in [Figure 45: Output graphs adaptive force control].

The multirate filter with averaging and without compensation has the highest peak force and reaches

a steady state just after 4seconds, while with compensation this is reduced to just under 3 seconds.

Step 𝐹𝑟𝑒𝑓 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓:
𝐹𝑟𝑒𝑓1 − 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒

Compensated:
𝐹𝑟𝑒𝑓 + 𝑒𝑓

1 5 4 1 6

2 6 5.2 -0.2 5.8

3 5.8 5.05 -0.05 5.75

…

Step 𝐹𝑟𝑒𝑓 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓:
𝐹𝑟𝑒𝑓1 − 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒

Compensated:
𝐹𝑟𝑒𝑓 + 𝑒𝑓

1 5 6 -1 4

2 4 4.8 0.2 4.2

3 4.2 5.05 -0.05 4.15

…

Table 7: Illustrative examples adaptive force control experiment

45

The second order multirate filter is overall better, the compensation gets the force control to steady

state in under 3 seconds.

Figure 45: Output graphs adaptive force control

Overall, this method works poorly. The desired value is set to 5N, and this is only reached after 4

seconds. It is better to use a proportional control, that reacts to the force error with an added gain,

instead of this experiment which is similar to proportional control but with a gain of 1.

Once the desired value of 5N is reached, the output value is stable when compensation is active.

Figure 46: Output graphs adaptive force control - stable

46

5.3.8. Trapezoidal Velocity Profile PD force control [Appendix VIII – Trapezoidal

speed trajectory]
Goal

For the inner loop control of the force control and filtering experiments, motion control is

demanded. Therefore, a trapezoidal velocity profile generator is used because it is one of the most

common ones and because the limited acceleration and velocity gives it a more stable output than

the built-in trajectory generators.

Outer loop control is also applied in this experiment, in the form of a PD controller, reacting every

8ms on the vertical force measured by the sensor. But the main goal of this experiment is making the

trapezoidal velocity profile, proportional derivative control is handled in [5.5 Experimental setup for

advanced control]

Theory

A trapezoidal speed trajectory generator works in three phases, first there is a phase with constant

acceleration, then constant velocity and the final phase is constant deceleration.

When all parameters are known (max acceleration, velocity, and distance to travel), it is possible to

calculate the formulas in [Table 8: Trapezoidal profile formulas]. These formulas follow from basic

physics formulas for motion.

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎 =
𝑑𝑣

𝑑𝑡

Equation 20: Acceleration in terms of velocity and time

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣 =
𝑑𝑠

𝑑𝑡

Equation 21: Velocity in terms of distance and time

Out of equation 1 and 2, the inverse formulas can be calculated:

𝑣 = ∫𝑎 𝑑𝑡 = 𝑎𝑡

Equation 22: Velocity in terms of acceleration and time

𝑠 = ∫𝑣 𝑑𝑡 = ∫𝑎 ∗ 𝑡 𝑑𝑡 =
𝑎 ∗ 𝑡2

2

Equation 23: Distance in terms of acceleration and time

Rewriting equation 3 gives

𝑡 =
𝑣

𝑎

Equation 24: Time in terms of velocity and acceleration

and by combining equation 4 and 5, this gives

𝑠 =
𝑣2

2𝑎

Equation 25: Distance covered during the acceleration phase

47

The integral in equation 4 is equivalent to saying that the distance is proportional to the surface

under the velocity profile and because the profile is symmetrical, the distance covered during the

deceleration phase is equal to the one during the acceleration phase.

When the velocity is constant, the distance covered during this time period can be calculated with

following formula

𝑠 = ∫ 𝑣𝑑𝑡
𝑡2

𝑡1

= 𝑣(𝑡2 − 𝑡1)

Equation 26: Distance covered during constant velocity phase

which makes it able to calculate the time with constant velocity 𝑡2 =
𝑠

𝑣
+ 𝑡1 and 𝑡1 follows out of

equation 5.

𝑡2 =
𝑠

𝑣
+

𝑣

𝑎

Equation 27: Equation for time at constant velocity

The total time can be calculated and is equal to 𝑡𝑡𝑜𝑡 = 2 ∗ 𝑡1 + 𝑡2.

If the covered distance during the acceleration is bigger than or equal to half of the total, there is

insufficient time for the constant velocity phase. Instead, a triangular profile is generated, only

containing an acceleration and a deceleration phase.

𝑠𝑡𝑜𝑡 = 2 ∗ 𝑠1 = 𝑎 ∗ 𝑡1
2

Equation 28: Equation for total covered distance

Which gives the acceleration time, which is half of the total time. 𝑡𝑡𝑜𝑡 = 2 ∗ 𝑡1

𝑡1 = √
𝑠

𝑎

Equation 29: Equation for acceleration time

48

Figure 47: Trapezoidal velocity profile

Figure 48: Triangular speed profile

[23]

Trapezoidal Constant acceleration Constant velocity Triangular

s 𝑎 ∗ 𝑡1
2

2

 𝑜𝑟
𝑣2

2𝑎

𝑣 ∗ (𝑡2 − 𝑡1) 𝑎 ∗ 𝑡1
2

2

v 𝑎 ∗ 𝑡1 v 𝑎 ∗ 𝑡1

a a 0 a

time 𝑡1 =
𝑣

𝑎
 𝑡2 =

𝑠

𝑣
+

𝑣

𝑎
 𝑡1 = √

𝑠

𝑎

Table 8: Trapezoidal profile formulas

Setup

The Teach Pendant’s UR Script is used to program the speed trajectory generator and the motion

commands, while the computer provides visual feedback on the process. Output data is sent to the

computer, which stores the data in excel and allows me to plot graphs and make calculations in order

to evaluate the results.

The velocity and acceleration are chosen as constants and the distance is calculated from the

coordinates of the waypoint. The formulas from table [8] are implemented to calculate the

acceleration and constant velocity time.

The robot descends to the surface, once contact is made the trapezoidal is activated by

implementing a constant acceleration with a given maximum velocity. Command ‘speedL’ allows to

give the desired speed values, to be reached with a certain acceleration and when the speed is

reached it maintains this value.

49

To program the deceleration phase, the same command is used but with speed values set to zero

and a negative acceleration.

During this whole process proportional derivative controller is implemented with a fixed reference

value of 5N and the robot updating the proportional and derivative action every 8ms, depending on

the value measured by the sensor.

Results

There is a clear acceleration and deceleration phase. The speed in this case is set to 30mm/s and the

acceleration to 50mm/s, giving an acceleration time of 0.6 seconds. This checks out with the output.

It is also visible that during the acceleration the position behaves parabolic and during the

deceleration hyperbolic, due to the double integration.

Noise exists on the control action due to process noise and the combination in vertical (force control)

and horizontal (position control) movement.

Figure 49: Trapezoidal velocity profile output graph

Figure 50: Trapezoidal velocity profile output graph - zoomed in - noise

50

5.4. Experimental setup for comparison UR3 and UR3e
The experiments mentioned above are limited in complexity and application range but are necessary

to get used to the individual functions before combining them.

To further define the differences between the UR3 and UR3e collaborative robots, more advanced

experiments are set up. Table 4: Important specifications of UR robots gives reference values to

evaluate the success of the experiments or the difference between theory and practice.

Both robots force controls are compared on impact force and on force maintenance using the built-in

force control command, if these robots are used for these tasks, it is importance to evaluate to what

degree the accuracy is and what the magnitude of the oscillations on the variable is. If the actual

reached value deviates strongly from the setpoint or if the oscillations are significant, this would

mean other force control methods should be applied or the robot is not suited for delicate

operations, where the force value should be followed in a strict manner.

Because both robots are similar in size, it should be possible to make them collaborate. When

handling big objects or performing difficult tasks it can be useful for efficiency purposes or even

feasibility of the process to let two or more robots work together. To avoid collisions and the need to

control both robots separately, they communicate via a MODBUS protocol. If the experiment gives

odd results, this could mean there are (internal or external) differences in the two robots that

weren’t considered or documented.

Differences in communication time of both robots are evaluated, as a verification of the datasheet

values (8ms for UR3 and 2ms for UR3e) and in another experiment, a solution has been found to

avoid the slow communication time of the UR3 and receive values from the sensor every 2ms.

51

5.4.1. Experiment one: Sampling period in force control [Appendix IX – Sampling

period force control]
Goal

The goal of this experiment is to evaluate the performance of the UR3 and UR3e’s force control

functions. This is done by letting them execute the same force control movement and gathering their

force values along the way. The goal is to maintain a vertical force of 5N, while performing a

horizontal linear movement.

The accuracy of both should be similar, with the UR3 being more accurate with a resolution of 0.8N,

while the UR3e has a resolution of 1N. The deviation and the time until the force value is constant

are evaluated as well.

Theory

Since the UR3e has an update period of 2ms and the UR3 one of 8ms, it is fairer to evaluate both on

the same sample rate. If more values are measured, more values will be closer to the desired one

thus bringing the average value closer to this and manipulating the variance.

Figure 51: URCap F/T Control configuration options

There are different kinds of ‘Force mode’, but for this application Simple or Frame are the most

convenient.

Simple Frame Point Motion

Along z-axis of the
selected feature

All six degrees of
freedom available

y-axis points from robot
TCP to the origin of the
selected feature, so x-
and z-axis change as the
position of the robot
TCP changes

Task frame (for force
control) changes with
the direction of the TCP
movement

Figure 52: UR3e Force mode configuration options

52

Setup

The computer is connected to the robot (either UR3 or UR3e, but one at a time) with a TCP IP socket

connection. Motion and force control commands are written on the Teach Pendant, while the

computer receives, stores, and does calculations with data from the robot.

The robot start pose has the base at 0°, the other joints are set to start the tool at X=-450mm, then

the tool is moved vertically towards the table until it touches and after that, the robot executes a

unidirectional force control movement of 150mm in the positive X-direction.

The cartesian velocity is set to 25mm/s.

For the UR3, the force control is executed using ‘F/T Control’ and then the motion command, where

a waypoint is set. The UR3e does not support this script, here ‘Force mode’ has to be introduced.

Force mode Frame is used in this experiment, this allows to set the force value in one of the six

degrees of freedom and the z-axis in this mode is static.

The Fz force on both robots is set at -5N.

The UR3e needs to update the force values ‘manually’, by coding. In parallel of the main force control

program a subprogram is created and executed in loops, where a variable named ‘force_torque’ is

initialized, holding the get_tcp_force() return values, being all the current forces and torques: Fx, Fy,

Fz, Tx, Ty, Tz.

The rest of the program differs depending on the sample type: force or touch.

Force:

This sample is one of 3 seconds and starts whenever the velocity in the x-direction is greater than

20mm/s, because this is meant to be the stable part of the force control. In parallel of the main

program the TCP speed is measured and once the value of the speed in the x-direction exceeds

0,02m/s or 20mm/s the robot sends a start signal to the PC and starts sending output variables.

Because the control cycle time of the UR3e robot is 2ms, while the one of the UR3 is 8ms, the ‘Wait’

command in the Loop of the parallel program is once set to 0.002 and once to 0.008 in the UR3e UR

program.

This is to verify if, even with the same sampling frequency, the UR3e is more accurate than the UR3.

Touch:

This sample starts when the robot tool descends and continuous to measure the whole force control

movement. In order to check how quickly the force control stabilizes, the start signal is immediately

sent to the computer. This gives a sample where the impact force and the force control are

measured together.

In the Python program, an excel file is created and the different force values are vertically printed

next to each other. As soon as the start signal from the robot is received, a timer to end the data

gathering and Excel writing starts and for each data exchange the communication time is measured

and returned to the Excel file. For sample ‘force’ the timer is set to 3seconds, while in ‘touch’ this is

set to 10seconds.

53

Results

 UR3 UR3e

Force Slow (8ms) Slow (8ms) Fast (2ms)

Average [N] 5.095 4.996 5.005

Deviation [N] 0.633 0.301 0.263

Touch

Average [N] 4.977 4.994 4.998

Deviation [N] 0.513 0.217 0.221

Peak [N] 10.537 11.093 11.399

Settling time [ms] 399.87 255.91 247.92
Table 9: Sampling period in force control output summary

Settling time is the time difference between the start of the first force peak and the steady-state

(+/- 1N).

It can be concluded that the UR3e approaches the required force value more than the UR3. As

expected, the higher rate gives better result, but the standard deviation doesn’t improve

significantly. When the UR3 and UR3e send data at the same rate, the UR3e has a deviation half the

size of the UR’s.

The UR3 needs more time to get into a steady state, even though its force peak is lower.

The only downsides of the UR3e are the oscillations at a higher frequency than with the UR3 and the

slightly higher force peak when touching the surface.

Results are visualized in [Figure 53 - Figure 54] and when evaluating the results from Table 9:

Sampling period in force control output summary, it can be seen that the average value alone might

not give the best representation of the force control, since symmetrical oscillations are ignored. The

deviation on the other hand does not evaluate around what value the oscillations occur.

Figure 53: Force samples UR3 vs UR3e

54

Figure 54: Touch samples UR3 vs UR3e

55

5.4.2. Experiment two: Multi-robot communication [Appendix X – Multi-robot

communication]
Goal

Collaborative robots are widely used in areas where humans can benefit from assistance, to make

their work-environment safer and tackle more varying tasks.

In line with distributed control [3.4], an experiment is set up to further explore this topic. Different

machines and controllers are connected within the same network for data-transfer, and it is possible

to set up a client-server connection between the computer and the robots, in this experiment is an

attempt to set up a client-server connection between the two robots.

The goal of this specific experiment is to simulate how two collaborative robots (UR3 and UR3e) can

cooperate in order to pick up a box in between the two of them, using force control. It is a

simulation, so there is no physical object present and the two robots communicate via a MODBUS

TCP connection between the two of them. In this communication mode, the computer is eliminated.

Theory

Theory of MODBUS communication:

“Modbus is a serial communication protocol developed by Modicon published by Modicon® in 1979

for use with its programmable logic controllers (PLCs). In simple terms, it is a method used for

transmitting information over serial lines between electronic devices. The device requesting the

information is called the Modbus Master and the devices supplying information are Modbus Slaves”

[28]

On the Teach Pendant it is possible to use the IP address of a device and set is as a MODBUS client.

Signals are created, which can be setup as register input/output or digital input/output, contains

addresses and a name can be assigned to them. This is the data the client can access and monitor.

Some register addresses contain internal data such as robot positions, joint angles or self-written

data, but all of these variables can from then on be read-out. [3]

Setup

Figure 55: Multi-robot communication - setup with movements and box

Figure 56: Multi-robot communication - UR3 and UR3e MODBUS settings

56

Modbus allows to setup registers which are data pathways between the two devices. When a

register on one device is set to a certain value, it can be read by the other device.

Each of the robots sets the other as client using its IP address, this way a two-way communication is

possible. The master sends the waypoint data and the slave receives it.

Figure 57: Multi-robot communication - communication logic

Movements are synchronized by executing a handshake, containing the next waypoint: the master

sends the data to the slave using ‘write_port_register(‘slave_address’, ‘data’), this is received and

read out by the slave and confirmed by sending data back to the master.

The slave can either move to the waypoint coordinates, but this only works if the two robots use the

same coordinate system, or, in case of any offsets, it is better if the slave uses the waypoint data as a

relative movement from the current position. Once the waypoint is reached, another handshake is

executed.

First the two robots start at a save position and then quickly move towards the box with moveJ, but

still at a safe distance from the box. For a correct contact the robots then move linear (in tool-space)

towards the box until contact is made (measure force normal to tool).

From this position force control is applied, to verify that the contact force is big enough to pick up

the box and yet not too big to damage the object.

After the required movement, the box is put down and then first moveL is executed to move the

robot to a safe distance before the two robots execute a next task.

Results

The two robots were able to work together and perform a task at a slow speed in order to evaluate

the accuracy. Because both robots can be given speed parameters in cartesian coordinates or in joint

velocities, assuring that they operate the same way is no problem. Both robots nearly have the same

dimensions and even if these were different, using cartesian speeds eliminates this problem.

57

This experiment has a few pauses, so it is visible when synchronization or mirroring might occur,

which was not the case after a few improvements.

This sets the foundation for a setup where multiple robots can work together at a higher speed, on

more complicated tasks that require more than one robot. Extending the program with anterior and

or posterior tasks makes it possible to simulate a full process as it will be used in the industry.

Another advantage of this arises when one robot’s performance is improved using control

techniques. Instead of having to copy the whole code for the other robot, the output variables can be

transmitted using the MODBUS communication and the two robots perform at the same level.

58

5.4.3. Experiment three: Communication time delay [Appendix XI –

Communication time delay]
Goal

When looking for improvement in control it is important to find where improvement is possible. Out

of the manufacturer’s datasheet different properties are available, but first experimentational

validation of these is needed to find their state in current setup.

With this in mind, this experiment is created to validate the communication delay between the robot

and the computer when sending data using TCP IP connection. For the UR3 this should be around

8ms and for the UR3e 2ms.

Setup

The same experiment is executed twice, once by creating a connection with the UR3 and once with

the UR3e. The Python and Teach Pendant code are the same for both.

A socket communication is established with the computer as the host and as soon as the connection

is established the Teach Pendant creates an empty variable and repeats a loop where it reads the

communication socket, once this value is different from zero it sends an integer to the computer.

The computer creates an empty variable as well, to store the returned data. Going through the cycle

50 times, it sends data to the Teach Pendant, starts a timer, checks for the return value and once this

is received the timer is stopped. The time difference is calculated and printed onto the screen.

Results

This experiment was successful, the results were as given by the manufacturers. The time delay for

the UR3 was 8ms and for the UR3e 2ms. Validating this, ways can be found to diminish the effect on

delay on the robot’s overall and especially force control performance.

Output of the Python program can be found in [Figure 58 - Figure 59].

UR3

Figure 58: Output time delay UR3

UR3e

Figure 59: Output time delay UR3e

59

Experiment four: Force sensor connection [Table 36: Communication time delay Python and UR codes

5.4.4. Appendix XII – Force sensor connection]
Goal

After the verification of the communication time, different experiments were conducted in order to

receive force values from the robot at a higher frequency than the control cycle of the robot.

The experiment was unsuccessful using previous setup in [5.3.5Attempts direct sensor reading

 [Appendix V – Attempt direct sensor reading]], until a direct connection with the compute

box of the force sensor was set up, which is done in this experiment. The goal is to read sensor values

quicker than the robot, so at a significantly higher rate than every 8ms, using a UDP connection.

Theory

In Python a UDP socket connection is classified as a datagram type socket and coded:

socket.SOCK_DGRAM. No handshaking is required so it a connection-less protocol, meaning it can

only send data and not receive data, which is a big difference with the TCP protocol and thus limits its

applicability. In this case, where a sensor is read out this forms no limitation.

UDP has the advantage to be fast, since it’s connection-less, it does not require package

acknowledgement and can establish a continuous packet stream.

Setup

A UDP connection is set up between the computer and the compute box of the UR HEX sensor. UDP

is used because of its higher speed (up to 500Hz) [31] in comparison to TCP.

At first this setup gave either 0 as time value or 15ms, because the used ‘time.time()’ command has a

poor resolution of 15ms.

[https://www.webucator.com/article/python-clocks-explained/]

Using time.time_ns(), the time is given in nanoseconds and thus at a higher resolution. Then it still

did not work on my computer, but it did on the PC in the laboratory and on other people’s computer.

After some research I found out the reason is the Windows version. In Windows 11 (my PC) the timer

resolution is 15,6ms [12], while in Windows 10 the default timer resolution is 1ms.

This issue was tested using following code:

Figure 60: Python code computer clockspeed test

The sleep time of 0,1ms is too short to be measured by both computers, so it gives the smallest

measurable time. As can be seen in the output:

60

for my PC

Figure 61: Clock speed Windows 11

for the lab PC

Figure 62: Clock speed Windows 10

In this setup only the computer is used and has an IP address of 192.168.1.103. The sensor compute

box has an IP address of 192.168.1.98 and UDP requests are sent to port 49152, in the data form of

unsigned integers (UINT). UINT32 is an unsigned integer with a size of 32bits and the same for

UINT16. [31]

Three requests are sent to the compute box before being able to read data. The first one is

‘request_biasing’, the second one ‘request_speed’ and the third and last one is ‘request_send’. Their

structure and action are described below.

Variable UINT16 Header UINT16 Command UINT32 Data

request_speed must be 0x1234 0x0082 set read-out speed 0x0002 time in milliseconds

encoded: 18 52 0 130 0 0 0 2

request_send must be 0x1234 0x0002 start sending output 0x0001 amount of samples

encoded: 18 52 0 2 0 0 0 1

request_biasing must be 0x1234 0x0042 set software bias 0x0255 set or 0x0000 reset

encoded: 18 52 0 66 0 0 2 85
Table 10: Force sensor connection - variables compute box connection

These values are sent by converting the original input into a hexadecimal number format and then

appending them into one NumPy array. NumPy has the advantage to be quick and use less data than

normal Python arrays.

During the infinite while-loop the elapsed time is measured between the request sending and

message receiving.

The received data package has a structure of 36 bytes:

Figure 63: Force sensor connection - encoded received data package

and needs to be split into nine UINT32 data with the following values: HS_sequence (sequence

number of current UDP record) – FT_sequence (Compute Box internal sample counter) – Status

(needs to be 0) – Fx – Fy – Fz – Tx – Ty – Tz with Fx, Fy and Fz in 10000N and Tx, Ty and Tz in

100000N/m.

The data splitting and converting is done using Python’s struct module:

Recibido=struct.unpack(‘IIIIIIIII’, receivePacket), ‘IIIIIIIII’ which is nine times ‘I’, returning nine

unsigned integers with a size of 4 and thus splitting the 36 bytes perfectly into the nine required

variables.

These variables are stored in a Python variable and can be split into the desired status values, force

61

values or torque values.

Figure 64: Force sensor connection - decoded and transformed data package

The received values are not zero even though there are no forces applied to the sensor. This can

easily be solved by setting a software bias with command ‘0x0042’ and data ‘255’, this way the

current values are set to be zero and accurate measurements can be made.

In order to stop the UDP package sending, another request can be sent, or the socket connection can

be closed using s.close(). In this experiment the data sending only stops when the Python program is

stopped.

Results

This is special because this makes it possible to read sensor values quicker (every 2ms) than the

control cycle of the robot (8ms).

Figure 65: Output sensor compute box connection for force measurements

62

5.5. Experimental setup for advanced control systems

5.5.1. Force filtering and control
After the successful experiment for reading the sensor every 2ms in [0 Experiment four: Force sensor

connection] it’s possible to exploit the possibilities of this.

The read-out rate of the PC is 4x faster than the robot’s update frequency of 125Hz, which gives the

opportunity to get four measurements within one robot control period and do calculations. For this

practice six different options are available listed below:

Theoretical explanation

To apply force control with the industrial robot, sensing is needed. It is known that in all applications

uncertainties exist on the process, due to a lack in resolution, suboptimal process conditions or

uncalculated parameters and furthermore, the inaccuracy increases due to sensor noise. Sensor

noise is random variations of output, unrelated to variations in input and occurs because of the

wiring or external noise in the sensor’s environment.

To further support the theory of the multi rate filters and polynomial approximation, they are first

applied on sensor data without any form of control action or feedback to the robot, only to see what

the adjusted output could look like and in the part ‘practical’ experiments they are tested out with a

control action.

All the control and filter formulas are written in Python, the motion and force control actions are

written on the Teach Pendant.

The real practical experiments where the filters and controllers are applied are summarized in

[Practical experiments [Table 37: Force sensor connection Python code

Appendix XIII – Force filtering and control]], the transferred data is subject to different calculations

and the output (hopefully) gives a result with less oscillations and thus higher accuracy.

a) PD control

Proportional Derivative control is a combination of feedback and feedforward control because it uses

the current error and the derivative of the error. If the error in steady state does not have to be

compensated, PD can be used, because it lacks the integral term of the PID controller.

The PD controller looks at the sensor data and compares this to a reference value. The proportional

action reaction is directly proportional to the difference between measured and reference value,

meaning it increases with increasing error and the other way around, while the derivative reaction is

proportional to the difference in force value, if the force error is constant, the derivate action is equal

to zero.

The derivative action responds poorly to noise because it varies quickly.

It’s the most basic controller, with simple inputs and a single output.

𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇)

Equation 30: PD control

with

𝐹̇ =
𝐹 − 𝐹𝑧

−1

8𝑚𝑠

Equation 31: Force derivative

63

Because the force change rate can be high in force control applications, the derivative output will be

high as well and in this case oscillations and peaks will occur in the control action, significantly

decreasing the control performance and potentially damaging the workpiece and/or robot.

An improvement is made from this controller that compensates last-mentioned problem and is called

the Proportional Velocity controller.

b) PV control

In Proportional Velocity control, the control system is equivalent to proportional control with velocity

feedback. A pure proportional control action does not eliminate the error in steady state and

therefore requires to be accompanied by a velocity feedback term. A second function of the velocity

term is to damp the system on peaks and oscillations.

𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) − 𝐾𝑣𝑥̇

Equation 32: PV control

Out of Equation 32: PV control can be derived that when the velocity is increased the control action

is reduced, which means that a speed increase tolerates a bigger force error because the

proportional control action is counteracted by the velocity control action. The reason behind this is

that it is harder to control the force in a fast-changing process, what results into oscillations and

drastic control actions when using a proportional or proportional derivative control system.

c) Multi rate PD with averaging

This filter is multi rate because instead of measuring every 8ms, the measurements are done

approximately every 2ms and out of these measurements, the average is calculated every 8ms, as

the estimated force value. This way the original data is decimated and is less prone to oscillations

and noise. Multi rate filtering is proven to be useful in control applications [15 - 27 - 51].

In this experiment the elapsed time period is measured, to verify the possibility of measuring four

times and if not three values are used for the force estimation.

This technique filters out a big part of the sensor noise, because these occur in the form of

oscillations, but process noise in the form of surface irregularities along the motion are not

accurately filtered out.

𝐹̂ =
1

4
(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4)

Equation 33: Multi rate PD average

64

Figure 66: Multi rate PD with averaging filter – theoretical working in graph

d) Multi rate PD 2nd order filter

An averaging method gives every measured value the same weight, meaning most recent values are

as significant as the least ones. For control purposes it makes more sense to give more importance to

the latest measurement and less to the oldest, because approximately 6ms passed in between those

two measurements.

The proposed solution is a second order filter, that gives a fixed coefficient to every force value.

𝐹̂ = 0.1𝐹1 + 0.2𝐹2 + 0.3𝐹3 + 0.4𝐹4

Equation 34: Multi rate PD 2nd order filter

For example.

Sum of the coefficients has to be one because it’s a variant of the averaging method and the result

would otherwise be that the estimated value is too big (sum bigger than 1) or too small (sum smaller

than 1).

It can be seen in Figure 67 that this method follows the real data very well, while ignoring local peaks

and fluctuating at a lower frequency. Because of the chosen coefficients it gives more importance to

the most recent measurement.

Figure 67: Multi rate PD 2nd order filter – theoretical working in graph

65

Figure 68: Multi rate PD averaging vs 2nd order filter – theoretical in graph

Both averaging and second order filter ignore the force peaks, with the averaging method giving the

best result on this aspect of the force control. This is because the importance here is equal for every

measurement, while the 2nd order will still try to follow the last given value more. If this last value is a

peak, the resulting force value will be one as well.

e) Polynomial approximation

Polynomial interpolation is a way of representing a data set as a polynomial function. A curve is fitted

in the given data set, and this results in a continuous function with smooth transitions between

values. Python can calculate the coefficients itself using numpy.polyfit().

𝐹(𝑡) = 𝑎0𝑡
3 + 𝑎1𝑡

2 + 𝑎2𝑡 + 𝑎3

Equation 35: Polynomial approximation

The blue curve gives the real and red the fitted data.

Figure 69: Polynomial approximation - theoretical in graph

66

f) Kalman filter

The Kalman filter is used in an experiment to measure the sensor noise, in a static setup and later in a

force control application. In both of these the setpoint is static, allowing mathematical simplifications

to the model because the desired derivative term becomes zero.

As described in [3.6 Kalman filter], this filtering method exists of a prediction and a correction phase.

Starting with the matrices from, the steps taken to find the final formulas are mentioned in this

paragraph.

𝐻𝑘 = [1 0]

𝐹 = [1 0] [
𝐹
𝐹̇
]

𝐼 = [
1 0
0 1

]

𝐴𝑘 = [
1 𝑇𝑚

0 0
] with Tm = 0.002, representing the sample period of 2 milliseconds.

Prediction phase:

𝑥𝑘+1
− = 𝐴𝑘𝑥𝑘 = [

1 𝑇𝑚

0 1
] ∗ [

𝐹
𝐹̇
] = [

1 0.002
0 1

] ∗ [
𝑥1

𝑥2
] = [

𝑥1 + 0.002𝑥̂2

𝑥2
]

Equation 36: Kalman filter - prediction of robot state

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

 = [
1 𝑇𝑚

0 1
] ∗ [

𝑝11 𝑝12

𝑝21 𝑝22
] ∗ [

1 0
𝑇𝑚 1

] + 𝑄𝑘

 = [
𝑝11 + 𝑝21 ∗ 𝑇𝑚 𝑝12 + 𝑝22 ∗ 𝑇𝑚

𝑝21 𝑝22
] ∗ [

1 0
𝑇𝑚 1

] + 𝑄𝑘

 = [
𝑝11 + 𝑝21 ∗ 𝑇𝑚 + 𝑇𝑚 ∗ (𝑝12 + 𝑝22 ∗ 𝑇𝑚) 𝑝12 + 𝑝22 ∗ 𝑇𝑚

𝑝21 + 𝑝22 ∗ 𝑇𝑚 𝑝22
] + 𝑄𝑘

 = [
𝑝11 + 𝑝21 ∗ 𝑇𝑚 + 𝑇𝑚 ∗ (𝑝12 + 𝑝22 ∗ 𝑇𝑚) 𝑝12 + 𝑝22 ∗ 𝑇𝑚

𝑝21 + 𝑝22 ∗ 𝑇𝑚 𝑝22 + 𝑄𝑘
]

Equation 37: Kalman filter - prediction of covariance matrix

 Correction phase:

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 = [
𝑝11 𝑝12

𝑝21 𝑝22
] ∗ [

1
0
] ∗ ([1 0] ∗ [

𝑝11 𝑝12

𝑝21 𝑝22
] ∗ [

1
0
] + 𝑅𝑘)

−1

 = [
𝑝11

𝑝21
] ∗ ([𝑝11] + 𝑅𝑘)−1

 = [
𝑝11(𝑝11 + 𝑅𝑘)
𝑝21(𝑝11 + 𝑅𝑘)

]

Equation 38: Kalman filter - correction Kalman gain

𝑥𝑘 = 𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘

−)

 = [
𝑥1

𝑥2
] + [

𝑘1

𝑘2
] ∗ (𝐹 − [1 0] ∗ [

𝑥1

𝑥2
])

 = [
𝑥1 + 𝑘1(𝐹 − 𝑥1)
𝑥2 + 𝑘2(𝐹 − 𝑥1)

]

Equation 39: Kalman filter - correction of robot state

67

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−

 = ([
1 0
0 1

] − [
𝑘1

𝑘2
] ∗ [1 0]) ∗ [

𝑝11 𝑝12

𝑝21 𝑝22
]

 = ([
1 0
0 1

] − [
𝑘1 0
𝑘2 0

]) ∗ [
𝑝11 𝑝12

𝑝21 𝑝22
]

 = [
𝑝11(1 − 𝑘1) 𝑝12(1 − 𝑘1)

𝑝11(−𝑘2) + 𝑝21 𝑝12(−𝑘2) + 𝑝22
]

Equation 40: Kalman filter - correction of covariance matrix

The initial value of 𝑃𝑘 = [
1 0
0 1

]

Resulting in the final formulas.

Figure 70: Kalman filter experiment working principle

It would also be possible to create a continuous Kalman filter, instead of a discrete one. Then a

continuous covariance matrix of the process is needed. Over a big time period, the covariance should

be higher than over a small period. This can be seen in the following formulas received from

Professor Antonio Sala.

)(*)(

)(0

)()(
)

0
exp(

23

3

21

kk

T

k

kk

kT

T

THTHWd

TH

THTH
T

A

WWA
M

=









=







−
=

68

Practical experiments [Table 37: Force sensor connection Python code

Appendix XIII – Force filtering and control]

Each experiment is conducted multiple times to eliminate the factor of unexpected events and they

are conducted using 5N, given the maximum workload of 30N. All the movements are executed with

inner/outer loop control and the tool follows a trapezoidal trajectory.

The inner loop control is provided by the trapezoidal velocity profile generator, the motion is

executed with a limited acceleration and velocity, as an attempt to give more stable output. If the

maximum velocity is too high for the acceleration or the distance too short, a triangular velocity

profile is generated instead.

The outer loop control is provided by the different filters and controllers mentioned in [Table 11:

Force filtering and control - outer loop control equations].

Experiment one to five is dynamic, during the force control a movement is executed in a fixed

direction. The tool is mounted on the robot and the gravity (tool weight) is compensated with a

calculated offset. From a given position the robot descends, until it touches the surface and from

then force mode is activated where the robot attempts to maintain a constant force value normal to

the surface, whilst executing a unidirectional movement with constant speed.

Experiment six, the one of the Kalman filter, is static and does not require force control.

The stable part of the experiment is taken from 1second to 7seconds because this is also the stable

part of the motion control.

𝐹̇ =
𝐹 − 𝐹𝑧

−1

8𝑚𝑠

Equation 41: Force filtering and control - force derivative formula

 Python Teach pendant

P / 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹)

PD / 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇)

PV / 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) − 𝐾𝑣𝑥̇

PD with averaging
𝐹̂ =

1

4
(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4) 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹̂) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇̂)

PD with filtering 𝐹̂ = 0.1𝐹1 + 0.2𝐹2 + 0.3𝐹3 + 0.4𝐹4 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹̂) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇̂)

Polynomial
approximation

𝐹̂(𝑡) = 𝑎0𝑡
3 + 𝑎1𝑡

2 + 𝑎2𝑡 + 𝑎3 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇)

Kalman filter Predictor & corrector 𝑢 = 𝐾𝑝(𝐹𝑟𝑒𝑓 − 𝐹) + 𝐾𝑑(𝐹̇𝑟𝑒𝑓 − 𝐹̇)
Table 11: Force filtering and control - outer loop control equations

a) Proportional control

𝐾𝑝 Mean Standard
deviation

Max Min #peaks <4N #peaks >6N

0.001 5.01603 0.573354 6.50391 3.20391 29 38

0.0005 5.03466 0.516616 6.75411 3.25411 13 29

0.002 7.18277 9.126594 48.0672 0.167187 271 237
Table 12: Force filtering - proportional control summary

Before using PD, a proportional controller is implemented to find a Kp value that fits the application.

The force error is estimated to be in the order of 1N, so the Kp should be in the order of 0.001 to

transform it into a speed value. A higher value generates high force peaks, followed by surface

contact loss, while a smaller value a lower frequency in peaks has but, because of its lower response,

69

the magnitude of it remains the same.

To give a reference to the amount of peaks, a total number of 750 data points are sampled.

Figure 71: Force filtering - proportional control graph

As expected, a high proportional gain gives more and higher peaks but it reaches the desired value

more closely (mean value closer to 5N).

b) PD control

In regular control systems, the derivative term provides a big improvement in terms of damping the

system, but as expected, when used on noisy data this results in a stability loss.

A 𝐾𝑝 value of 0.001 is chosen because this still gave oscillations and should have enough room for

improvement.

A big derivative gain creates instability in the process, but a small value (0.000005) leads to an

improvement in reaching the mean value. An increase in standard deviation occurs (0.65 instead of

0.573 in proportional control), leading to a significant number of extra peaks out of the +/- 1N range.

𝐾𝑝 𝐾𝑑 Mean Standard
deviation

Max Min #peaks
<4N

#peaks
>6N

0.001 0.00003 5.84112 7.406285 23.4514 0.048634 465 260

0.001 0.00001 5.006 0.743706 7.5791 2.8791 72 60

0.001 0.000005 4.99939 0.650689 7.08008 2.98008 53 44
Table 13: Force filtering - proportional derivative control summary

70

Figure 72: Force filtering - proportional derivative graph

c) PV control

𝐾𝑝 𝐾𝑣 Mean Standard
deviation

Max Min #peaks
<4N

#peaks
>6N

0.001 0.03 4.98685 1.078344 7.86035 2.06035 153 143

0.001 0.06 4.98049 1.005806 8.12695 2.32695 127 128

0.001 0.015 4.97951 1.026188 8.11133 1.81133 114 126
Table 14: proportional velocity control summary

Since the derivative control action of a noisy system augments the oscillations, an alternative way to

damp the system is by using the velocity used to control the force.

Even though the derivative action is chosen to be small, it has a big negative impact on the system’s

performance in force control.

Figure 73: Force filtering - PV control actions graph

71

d) PD with averaging

𝐾𝑝 𝐾𝑑 Mean Standard
deviation

Max Min #peaks
<4N

#peaks
>6N

0.001 0.00001 5.05705 0.746747 7.43652 2.83652 61 77

0.001 0.000005 5.1734 0.745065 8.08008 3.18008 48 88

0.001 0.00003 6.8276 9.379864 28.8176 0.017578 484 247
Table 15: Force filtering - PD control with averaging summary

This technique filters out a big part of the sensor noise, because these occur in the form of repetitive

oscillations, but process noise in the form of surface irregularities along the motion for example are

not accurately filtered out.

In theory it is a safe option to choose the average measured value as the true value, but sensor and

process noise does not behave regularly, so this assumption approaches the real value but still needs

verification. The accuracy is hard to evaluate but it is certain that the output is more stable because

of the averaging.

The estimated force follows the real one, but high-frequency fluctuations in the measured force are

ignored thus it maintains the desired value in a more constant manner. The filtered-out force is still

subject to peaks because of the dynamics of the executed movement, friction, surface irregularities

and internal feedback delay.

Figure 74: Force filtering - PD with averaging graph

e) PD with 2order filter

𝐾𝑝 𝐾𝑑 Mean Standard
deviation

Max Min #peaks
<4N

#peaks
>6N

0.001 0.00001 5.03271 1.395388 8.56934 1.66934 176 179

0.001 0.000005 5.02308 0.928597 8.00801 2.50801 96 127

0.001 0.00003 7.0823 8.836956 25.8896 0.010352 457 277
Table 16: Force filtering - PD control with 2nd order filter summary

The second order filter works worse than the classic PD controller, because out of a small sample

size, it gives great importance to one value. Because the sample size is small, this one value will vary

a lot throughout the process, resulting in a poor control performance.

72

A small derivative gain gives a better control because the proportional and the derivative control

action are added together to form the total control action.

Figure 75: Force filtering - PD with 2nd order filter graph

f) Polynomial approximation

𝐾𝑝 𝐾𝑑 Mean Standard
deviation

Max Min #peaks
<4N

#peaks
>6N

Sample
size

0.001 0.00001 5.02808 1.161284 9.80949 2.012444 1161 1300 5979

0.001 0.000005 4.82006 1.301085 9.16959 1.197505 1513 1009 5969

0.001 0.00003 4.57307 1.836676 10.54228 0.006849 2412 1246 5942
Table 17: Force filtering - polynomial approximation summary

The polynomial approximation fits a curve out of a data sample. This data sample in this case is four

force values. The standard deviations are higher than in the experiment with the ordinary PD control.

As can be seen in the graph below, the polynomial fits a curve within the sample and uses this for

extrapolations if necessary. These extrapolations cause the extra deviations from the desired value.

Figure 76: Force filtering - polynomial approximation graph

73

g) Kalman filter

As been stated in [3.6Kalman filter], the Kalman filter method exists of two phases. Both are

implemented in a Python program, where the computer sets up a connection with the compute box.

For every sample, measurements are read out and for each value the Kalman filter corrects and

predicts the robot state x, which is a 1x2 matrix: [
𝐹
𝐹̇
].

In order to use the Kalman filter, knowledge about the sensor and process noise covariance is

needed. This first one is easily calculated in MATLAB and the second one is approximated trough

trial-and-error. The output of this experiment is the updated/predicted robot state matrix x (force

and force derivative in a 2x1 matrix) and the state covariance matrix P (where the diagonal elements

are the variances and the off-diagonal elements the correlations represent in a 2x2 matrix).

Experiment Sensor Kalman output

Mean Variance x 𝑥̇ p11 p12 p21 p22

1 0.0494 0.0061 0.2323 -0.0129 0.29186 0 -0.1994 0.5

2 0.2133 0.0090 0.023938 -0.00957 0.290899 0 -0.19988 0.5

3 -0.2538 0.0073 -0.1679 -0.01281 0.291462 0 -0.19959 0.5

4 0.0465 0.0090 -0.09502 -0.00199 0.290899 0 -0.19988 0.5

5 0.0443 0.0095 0.007971 -0.00319 0.290734 0 -0.19996 0.5

Table 18: Kalman filter - sensor noise covariance summary

The robot state (x and 𝑥̇) differ because these are based on the on-line measurements from the

sensor. It is visible that the force and force derivate are both close to zero, as desired. This is

significant because the data resolution is only one decimal, allowing the data to jump from 0 to 0.1

and because the force derivative is calculated using a time period of the order milliseconds.

The covariance matrices are almost identical and contain small values in all the experiments.

To find out the correct process noise covariance, the same experiment is conducted with a constant

sensor noise covariance R value and for the process noise Q the following values are tested:

0.005 0.05 0.5 1

The results of each of the tests are summarized in this table

Experiment Sensor Kalman output

Q-value Mean Variance x 𝑥̇ p11 p12 p21 p22

1 0.005 0.0443 0.0095 -0.12306 0.000109 0.162889 0 -0.0000044 0.005

2 0.05 0.0443 0.0095 -0.04113 -0.0011 0.315261 0 -0.00094 0.05

3 0.5 0.0443 0.0095 0.00497 -0.00199 0.290734 0 -0.19996 0.5

4 1 0.0443 0.0095 -0.10433 0.005455 -0.71386 0 -1.25839 1

Figure 77: Kalman filter - process noise covariance summary

When either the process (low Q-value) or the sensor data (high Q-value) is given a high accuracy, so

Q=0.005 and Q=1, the result of the robot state deviate a lot from the expected 0 Newton. Q=0.5 is a

74

safe option, where the sensor measurements and the process data are given an equal amount of

importance.

For practical reasons it is possible to eliminate variance +1 as an option because in these cases the

data is inaccurate, this means that (given the gaussian distribution of the Kalman Filter) the

probability of a value being between -0.5 and +0.5 is less than 40%.

Figure 78: Kalman filter - gaussian distribution example deviation of 1

The real experiment with on-line force control with Kalman filter was not able to be conducted

because the robot sensor broke down during this experiment.

Results

A general technique is proposed than can be implemented in different processes and on different

variables, that leads to a performance improvement.

a) Proportional control

A small control action works on the robot, this gives the most stable output in these force control

experiments.

b) PD control

The proportional control gives a small control action and thus a low standard deviation, if a derivative

action is introduced, the control action becomes bigger and gives a higher standard deviation. The

predictive ability of the derivative component reduces the stability of the process because of the high

frequent oscillations due to noise.

c) PV control

The PV control gives almost constant output, where the average is reached with an approvable

accuracy, but the deviation of 1N can be high if the desired value is as small as 5N. The PD control

was more accurate than this one.

75

d) PD with average

For Kp 0.001 and Kd 0.00001 this controller has the same accuracy as the normal PD controller, for all

the other values the performance is worse. A reason for this could be that the calculations are done

on the computer and then sent to the robot, meaning there is a communication delay, whereas in

the ordinary PD control all the calculations were done on the Teach Pendant.

This means that the advantage of reading force values 4x quicker than the robot does not have an

effect when using a PD control with averaging, because the gained efficiency is at the expense of

another time delay.

e) PD with 2order filter

The standard deviation here is even higher than with averaging, this because the last value of the

four data samples gets a significant importance and thus is followed better. Because the data is

noisy, this PD filter follows the noise and as a result oscillates more.

f) Polynomial approximation

The expected result seemed promising but because of the small sample size of 4 measurements, the

fitted curve follows the real values with high accuracy. In addition to this, a lot of computation time is

required for this method, where the Python program is occupied and does not store new received

force values. This leads to big overshoots in this dead time, because the estimation after receiving

four high-frequent values gives an even worse approximation.

If this method was used with a bigger sample size, as in 16 or more values, I am convinced, and

theory [36] supports that noise would be eliminated.

g) Kalman filter

During this last set of experiments the sensor of the robot broke down. Even though this experiment

did not give positive results, the concept and ability to predict values became clear. Out of every

measurement a prediction is made and corrected, as well as the uncertainty of the system. This is a

powerful tool because after a few oscillations, the Kalman filter will recognize this and filter it out.

If the parameters are tuned well, this method looks promising to deliver good results because of its

estimation ability and iterations with corrections on this value create a higher belief on the true

value.

76

5.5.2. Impedance control [Appendix XIV – Impedance control]
Goal

In this experiment a PD controller is used to control the position with a trapezoidal velocity profile.

Using impedance control the robot executes a linear movement and then a circular one.

The impedance control acts in all possible directions, except the vertical. This last one is preserved

for force control actions. The linear movement is unidirectional so has a reference value to compare

the real one to, while the other directions are measured in the initial position and kept constant

throughout the movement with the impedance control.

Figure 79: Impedance control - reference trajectory

Theory mentioned in [3.3Impedance control]

Figure 80: Impedance control - block diagram

The speedL command exists of

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

𝑣𝛼
𝑣𝛽

𝑣𝛾]

 with 𝑣𝑥 = 𝐾𝑝𝑥(𝑥𝑟𝑒𝑓 − 𝑥) + 𝐾𝑑𝑥(𝑥̇𝑟𝑒𝑓 − 𝑥̇) and similar for the

other velocities. The proportional gain of the control action is equivalent to the active stiffness and

the derivative gain to the damping.

𝑥𝑟𝑒𝑓 is calculated and updated every 8ms from the trapezoidal speed trajectory generator. The x in

Figure 80 contains all six position values: x, y, z, and the three rotational values.

Setup

A TCP IP connection is set up between the robot and the computer, allowing communication from

the Teach Pendant to the Python program. The motion and impedance control are programmed on

the Teach Pendant and the Python program is used to store received data.

77

Results

For the line a proportional Kp and a derivative gain Kd is used.

 Average error [mm] Standard deviation [mm]

Kp Kd y x y x

0.5 0 -0.17162 -0.0427 0.439227 0.090531

0.5 0.001 -0.19858 -0.10675 0.995345 0.130152

0.5 0.002 -0.26733 -0.05303 2.027663 0.093442

0.2 0 -0.17065 -0.0867 0.289876 0.117252

0.2 0.001 -0.25314 -0.07659 0.448141 0.112696

0.2 0.002 -0.35966 -0.04791 0.686037 0.133144

0.1 0 -0.17512 -0.12824 0.237925 0.097512

0.1 0.001 -0.32063 -0.09709 0.542904 0.092139

0.1 0.002 -0.52561 -0.08549 1.060119 0.124055

0.01 0 -0.16565 -0.12214 0.256214 0.097437

0.01 0.001 -1.60709 -0.11624 2.822332 0.109392

0.01 0.002 -2.78258 -0.06718 6.373058 0.140276

0.0001 0 -0.07013 -0.14021 0.18127 0.113878
Table 19: Impedance control - linear motion summary

When the derivative gain is set to zero, a small Kp value leads to a worse average value and deviation

in the x-direction. This is because the stiffness is set to a small value. This results in a better control of

the y-direction, which is the movement direction because the control action is not too big. For a big

Kp value the control in a position error is big, leading to oscillations on the system.

Introducing a derivative action does not improve the position control of the robot. In all cases the

standard deviation rises and the average value as well.

This all is graphically displayed in the figure below [Figure 81]. Since the stiffness is the inverse of the

elasticity, it can be seen that for a low stiffness the elasticity is high. This results in a constant

position error when Kp is equal to 0.01, until the derivative action is 0.02, then the average value in

the x-direction is maintained better. For the high stiffness, the impact of the derivative action is low

and the process is visible more unstable than when the stiffness is low. The oscillations occur at the

same frequency as when the stiffness is low, but the magnitude of it is higher.

78

Figure 81: Impedance control - difference in active stiffness

To evaluate the y-direction accuracy, it is necessary to plot the y-direction to the time, because on

the (x,y)-graph it is not visible if the y-coordinate is ahead or behind the reference value at the

required timestamp. As displayed in [Figure 82], introducing a derivative action causes a control

action that is too big, resulting in big oscillations. The robot lags behind, then compensates this but

this causes the end-effector to be ahead of the reference value. This way the oscillations keep

occurring. A low active stiffness is desirable in the movement direction, when there is no derivative

action, the trajectory is followed with high accuracy. This means that the passive stiffness is sufficient

for motion control applications.

79

Figure 82: Impedance control - y coordinate plotted over time

For the circle a gain KJ is used

 Average error [mm] Standard deviation [mm]

KJ y x y x

100 -0.0237 -0.0198 0.88625 0.72782

500 -0.0202 -0.00999 0.724407 0.697575

1000 -0.01236 -0.01038 0.714813 0.696257

2000 -0.0882 -0.01458 1.269412 0.69123
Table 20: Impedance control - circular motion summary

Up to a certain point a higher stiffness leads to an improvement in trajectory tracking, when the KJ is

too high, the deviation rises again because the control action is too strong. For small values the

stiffness is too low, causing the robot to lag behind relative to the reference position.

The big radius and relatively low speed make it easier for the robot to follow the circular trajectory,

the influence of the stiffness or impedance is more visible when either the radius is lower or the

speed is higher. For a big radius the simplification of dividing the circular trajectory into multiple

80

linear segments is accurate, because every 8ms the angle towards the goal only changes slightly. The

smaller the circle and higher the velocity, the more the update period of 8ms impacts the

performance.

The figure below shows the motion of half of the circle, it can be seen that the low stiffness oscillates

at the start but later maintains the correct value. For the highest KJ, there is a small but constant

position error, which is visible in the ascending part from second 9.2 to 11.2 and this shape is

repeated twice. Overall, this method worked well, but as mentioned before this is due to the low

velocity and big radius.

Figure 83: Impedance control - KJ of circular part

81

6. Results and conclusions
Difference UR3 and UR3e

It has been proven in [Experiment three: Communication time delay [Appendix XI –

Communication time delay]], as given by the manufacturers that the communication time of the

UR3 is 8ms and the one of the UR3e is 2ms. This gives the opportunity for the UR3e to react 4x as

fast to errors in the control and thus generate a higher accuracy.

The dimensions are almost identical and as was seen in [Experiment two: Multi-robot

communication [Appendix X – Multi-robot communication]], the commands written on the Teach

Pendant allow for synchronization in terms of joint positions/velocities and cartesian

positions/velocities. Meaning that any difference in dimensions can be avoided and eliminated by

configurating the robot’s coordinate system and code in the right way.

In terms of force control [Experiment one: Sampling period in force control [Appendix IX –

Sampling period force control]], the force deviation is the most significant indicator to evaluate the

noisiness and ability to maintain a constant value. It is visible that the repeatability of the UR3e leads

to a better maintenance of a vertical force and indirectly position. When the UR3e operates at its

highest frequency of 500Hz, this improves the force control even more.

 UR3 UR3e

Force Slow (8ms) Slow (8ms)

Deviation [N] 0.633 0.301

Touch

Deviation [N] 0.513 0.217
Table 21: Conclusion - difference UR3 and UR3e force control

Filters

Filter 𝐾𝑝 𝐾𝑑/𝐾𝑣 Mean Standard deviation % of data within +/- 1N

P 0.001 0 5.01603 0.573354 91.07

PD 0.001 0.000005 4.99939 0.650689 87.07

PV 0.001 0.06 4.98049 1.005806 66.00

PD average 0.001 0.00001 5.05705 0.746747 81.60

PD 2order 0.001 0.000005 5.02308 0.928597 70.27

Polynomial 0.001 0.00001 5.02808 1.161284 58.84

Kalman / / / / /
Table 22: Conclusion - force filtering and control of UR3

The derivative action is usually responsible for damping the system, because of its predictive

behaviour. When trying to reach a setpoint, the derivative gives an indication of how far this setpoint

is from the current value and the reaction speed. If the setpoint is far away, the derivative is high and

control action as well. Oscillations cause the derivative action to think the control action should be

higher than it actually is.

PD with averaging and second order filter have a worse performance than the ordinary PD control,

this is because there is a communication time delay of 8ms, which means the robot reacts to old

data. During 8ms information is gathered and 8ms later the robot receives the new value, so there is

a delay of 16ms on the system. During this time the force is able to deviate a lot from its previous

value.

82

The polynomial approximation works, but it does not generate an output with less noise. Perhaps if

the sample size was bigger, this would have been the case because it is rather easy to plot a

polynomial out of four values, but if this needs to be done out of sixteen or more, the fitted curve

will not follow the peak values very well. If this small change is made, this method could lead to

better results.

The self-programmed force control method comes with the ability to be tuned, during the conducted

force control experiments a somewhat random proportional gain is used, so there was room for

improvement for further (PD, PV, …) controllers.

Out of the table below it can be seen that if the proportional controller is tuned correctly, it will work

better than the built-in F/T Control method because it already works at the same level of accuracy.

This means that the other control methods also might give better results when tuned until the best

possible result is achieved.

Numbers of [5.4.1] – Force sample period Numbers of [5.5.1]– Proportional control

 Average [N] Deviation [N] Kp Average [N] Deviation [N]

Force 5.095 0.633 0.0005 5.03466 0.5166

Touch 4.977 0.513
Table 23: Conclusion - difference between F/T Control and self-programmed force control of UR3

Impedance control

A method of implementing impedance control has been introduced, applying a normal force to a

surface with motion commands and changing the active stiffness and damping of the collaborative

robot.

Especially in the static x-direction, the stiffness value plays a great role in maintaining this value. For

small active stiffness values, the deviations and average value in this direction worsen. The gain for

the active stiffness is the proportional action in the control and thus for big values more oscillations

occur. The derivative action, which is responsible for the damping, does not improve the control. This

is probably because a high damping prevents the robot from responding quickly, which is necessary

since the motion updates occur every 8ms. The extra friction due to the normal force makes this

even worse.

A low active stiffness is safe and when introducing damping, the error will increase significantly. If the

active stiffness is high, the derivative action has less of a negative influence, which is as expected.

This shows that it is dangerous for a collaborative robot that interacts with the environment to be

programmed with high stiffness values, despite its advantages in terms of control accuracy.

 Average [mm] Standard deviation [mm]

Kp Kd y x y x

0.5 0 -0.17162 -0.0427 0.439227 0.090531

0.0001 0 -0.07013 -0.14021 0.18127 0.113878

0.5 0 -0.17162 -0.0427 0.439227 0.090531

0.5 0.001 -0.19858 -0.10675 0.995345 0.130152

0.01 0 -0.16565 -0.12214 0.256214 0.097437

0.01 0.001 -1.60709 -0.11624 2.822332 0.109392
Table 24: Conclusion - impedance control line

83

In the active direction (movement), a low stiffness value and no damping gives the best result. For

the passive direction a high stiffness gives the best results, since maintaining a pose is easier when

the stiffness is increased.

For the circular movement, the effect of the stiffness is not big because the radius is chosen big and

the velocity rather slow. It is still visible that when going from 100 to 500 as active stiffness value, the

performance improves significantly. When the value rises from 1000 to 2000 it is visible that the

stiffness value becomes too high and leads to a control action that is too strong.

 Average [mm] Standard deviation [mm]

KJ y x y x

100 -0.0237 -0.0198 0.88625 0.72782

500 -0.0202 -0.00999 0.724407 0.697575

1000 -0.01236 -0.01038 0.714813 0.696257

2000 -0.0882 -0.01458 1.269412 0.69123
Table 25: Conclusion - impedance control circle

Machining with collaborative robot

Because in milling a combination of normal and lateral forces occur, in theory the force control in this

application is more complicated and needs a force compensation and trajectory compensation as

well. Literature confirmed that complex calculations are needed or specialized equipment needs to

be designed for accurate force control of this kind.

A colleague student Ricardo Ruiz Monsalve was assigned to make his Master Thesis about the

application of collaborative robots for milling. Thanks to his approval for me to use the results of his

research, the literature study done on this topic is enforced by experiments.

He started with the UR3 and later performed the same experiments using the UR3e. The goal is to

mill in a linear motion, while maintaining a certain depth and velocity. First only motion control in the

movement direction was used, but this delivered bad results for the UR3, trying to solve this with an

extra control parameter in the other direction was unsuccessful. Especially when entering the

material, the high elasticity of the collaborative robot influences the performance.

The UR3e created almost perfect lines, but not always with a great surface finishing. When using

harder material, it was necessary to mill at a slow feed rate and a shallow depth of cut. The best

results came when applying motion control in X, Y and Z, because the line has to be straight and the

cutting depth has to be constant. It should be noted that the internal joint stiffnesses of the robots is

information we do not get access to, so this is a possible reason why the accuracy of the UR3e is

higher than the UR3’s.

In conclusion, it is made possible to perform milling tasks with a collaborative robot, despite not

finding research papers with this sort of robot. In the used setup (controlling the motor of the mill

with an Arduino and controlling the motion of the mill with the robot Teach Pendant) Ricardo

achieved positive results, without using complicated force or motion compensation formulas or

predicting lateral force values.

84

7. References
1. Abu-Dakka, F. J., & Saveriano, M. (2020, December). Variable Impedance Control and

Learning—A Review. Frontiers in Robotics and AI, 7(590681). doi:10.3389/frobt.2020.590681

2. Amersdorfer, M., Kappey, J., & Meurer, T. (2020, October). Real-time freeform surface and

path tracking for force controlled robotic tooling applications. Robotics an Computer-

Integrated Manufacturing, 65. doi:10.1016/j.rcim.2020.101955

3. Axis New England. (n.d.). Universal Robots Multi-Robot Communication. Retrieved from

https://us.v-cdn.net/6027406/uploads/editor/yt/p993fs105yxo.pdf

4. Bonev, I. (2019, August 27). What are Singularities in a Six-Axis Robot Arm. Retrieved from

mecademic.com: https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-

robot-arm

5. Bragança, S., Costa, E., Castellucci, I., & Arezes, P. M. (2019). A Brief Overview of the Use of

Collaborative Robots in Industry 4.0: Human Role and Safety. Occupational and

Environmental Safety and Health, 641-650.

6. Brugali, D., & Fayad, M. (2002, September). Distributed computing in robotics and

automation. IEEE Transactions on Robotics and Automation, 18(4), 409-420.

doi:10.1109/TRA.2002.802937

7. Bruggeman, K. (2022). Robotica en mechanismen. JLI32G. Catholic University of Leuven,

Belgium.

8. Burn, K., Robinson, E., & Dixon, D. (2014). Introducing fundamental concepts of control: A

case study in robot force control. International Journal of Mechanical Engineering Education,

42(4), 320-339. doi:10.1177/0306419015574223

9. Cao, N., & Lynch, A. F. (2016, September). Inner-outer loop control for quadrotor UAVs with

input and state constraints. IEEE Transactions on Control Systems, 24(5), 1797-1804.

doi:10.1109/TCST.2015.2505642

10. Chang, R.-J., & Jau, J.-C. (2016). Augmented Reality in Peg-in-Hole Microassembly Operations.

International Journal of Automation Technology, 10(3), 438-446.

doi:https://doi.org/10.20965/ijat.2016.p0438

11. Cho, H., Kim, M., Lim, H., & Kim, D. (2014). Cartesian sensor-less force control for industrial

robots. International Conference on Intelligent Robots and Systems, 4497-4502.

doi:https://doi.org/10.1109/IROS.2014.6943199

12. Dawson, B. (2013, July 8). randomascii.wordpress.com. Retrieved from Windows Timer

Resolution: Megawatts Wasted: https://randomascii.wordpress.com/2013/07/08/windows-

timer-resolution-megawatts-

wasted/#:~:text=The%20default%20timer%20resolution%20on,consumption%20and%20har

m%20battery%20life.

13. Goldenberg, A. A. (1988). Implementation of force and impedance control in robot

manipulators. 1988 IEEE International Conference on Robotics and Automation. 3, pp. 1626-

1632. IEEE. doi:10.1109/ROBOT.1988.12299

14. Greenwood, D. T. (1977). Classical dynamics. Mineola, New York: Dover Publications, INC.

85

15. Harris, F. J., & Rice, M. (2001, December). Multirate digital filters for symbol timing

synchronization in software defined radios. IEEE Journal on Selected Areas in

Communications, 19(12), 2346-2357. doi:10.1109/49.974601

16. Hogan, N. (1985, March). Impedance Control: An Approach to Manipulation. Journal of

Dynamic Systems, Measurement, and Control, 107, 1-24. doi:10.23919/ACC.1984.4788393

17. IPA SA. (n.d.). Robot Motion. Retrieved from

http://www.ipacv.ro/proiecte/robotstudio/textbooks/file/robot_motion.htm

18. Iqbal, K., & Mughal, A. (2007). Active control vs. passive stiffness in posture and movement

coordination. 2007 IEEE International Conference on Systems, Man and Cybernetics (pp.

3367-3372). IEEE. doi:10.1109/ICSMC.2007.4414105

19. Learnchannel-TV. (n.d.). Robot JOINT-coordinates. Retrieved from Learnchannel-TV.com:

https://learnchannel-tv.com/robot/robot-coordinate-systems/joint-coordinates/

20. Learnchannel-TV. (n.d.). Robot tool coordinates. Retrieved from https://learnchannel-

tv.com/robot/robot-coordinate-systems/tool-coordinates/

21. Li, Z., Huang, Z., He, W., & Su, C.-Y. (2017, February). Adaptive Impedance Control for an

Upper Limb Robotic Exoskeleton Using Biological Signals. IEEE Transactions on Industrial

Electronics, 64(2), 1664-1674. doi:10.1109/TIE.2016.2538741

22. Liu, G., Abdul, S., & Goldenberg, A. A. (2007, June 22). Distributed control of modular and

reconfigurable robot with torque sensing. Robotica, 26, 75-84.

23. Mathworks. (n.d.). Design Trajectory with Velocity Limits Using Trapezoidal Velocity Profile.

Retrieved from mathworks.com: https://nl.mathworks.com/help/robotics/ug/design-a-

trajectory-with-velocity-limits-using-a-trapezoidal-velocity-profile.html

24. Matsubara, A., & Ibaraki, S. (2009). Monitoring and Control of Cutting Forces in Machining

Processes: A Review. International Journal of Automation Technology, 3(4), 445-456.

25. Matthias, B., Kock, S., Jerregard, H., Kallman, M., Lundberg, I., & Mellander, R. (2011). Safety

of collaborative industrial robots: Certification possibilities for a collaborative assembly robot

concept. 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM) (pp. 1-

6). Tampere, Finland: IEEE. doi:10.1109/ISAM.2011.5942307

26. Maurya, P., Aguiar, A. P., & Pascoal, A. (2009). Marine Vehicle Path Following Using Inner-

Outer Loop Control. IFAC International Conference on Manoeuvring and Control of Marine

Craft, 42, pp. 38-43. Guarujá (SP), Brazil. doi:10.3182/20090916-3-BR-3001.0071

27. Mizuochi, M., Tsuji, T., & Ohnishi, K. (2005). Force sensing and force control using multirate

sampling method. 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON

2005. (pp. 1919-1924). IEEE. doi:10.1109/IECON.2005.1569198

28. Modbus. (2012, April 26). MODBUS protocol. Retrieved from modbus.org:

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

29. Naumann, M., & Alexopoulos, K. (n.d.). UR Capabilities. Retrieved from portal.effra.eu:

https://portal.effra.eu/result/show/1177

30. Neranon, P., & Bicker, R. (2016). Force/position control of robot manipulator for human-

robot interaction. Thermal Science, 537-548. doi:10.2298/TSCI151005036N

86

31. OnRobot. (2018, September). DESCRIPTION Compute Box. (Compute Box Version 4.0.0),

Edition E10.

32. Pan, Z., & Zhang, H. (2008). Robotic machining from programming to process control: a

complete solution by force control. Industrial Robot: An International Journal, 35(5), 400-409.

doi: 10.1108/01439910810893572

33. Pauliková, A., Babel'ová, Z. G., & Ubárová, M. (2021). Analysis of the Impact of Human–Cobot

Collaborative Manufacturing Implementation on the Occupational Health and Safety and the

Quality Requirements. International Journal of Environmental Research and Public Health.

doi:https://doi.org/10.3390/ijerph18041927

34. Raiola, G., Cárdenas, C., Tadele, T. S., Vries, T. d., & Stramigioli, S. (2018). Development of a

Safety- and Energy-Aware Impedance Controller for Collaborative Robots. IEEE Robotics and

Automation Letters, 1237-1244. doi:10.1109/LRA.2018.2795639

35. Rodrigo, P.-U., & Ranko, Z.-S. (2020). Force Control Improvement in Collaborative Robots

through Theory Analysis and Experimental Endorsement. applied sciences.

36. Selesnick, I. W., Arnold, S., & Dantham, V. R. (2012, December). Polynomial Smoothing of

Time Series With Additive Step Discontinuities. IEEE Transactions on Signal Processing,

60(12), 6305-6318. doi:10.1109/TSP.2012.2214219

37. Strasser, T., Rooker, M., & Ebenhofer, G. (2008). Distributed Control Concept for a 6-DOF

Reconfigurable Robot Arm. PROFACTOR GmbH.

38. Tajima, S., Iwamoto, S., & Yoshioka, H. (2021). Kinematic Tool-Path Smoothing for 6-Axis

Industrial Machining Robots. IJAT, 15(5), 621-630. Retrieved from

https://doi.org/10.20965/ijat.2021.p0621

39. Tech Target Contributor. (2017, september). distributed control system (DCS). Retrieved from

WhatIs.com: https://whatis.techtarget.com/definition/distributed-control-system

40. Testa, G. (2017, June). Experimental stiffness identification in the joints of a lightweight

robot. Barcelona, Spain.

41. Universal Robots. (2015). UR3 Technical specifications. Retrieved from Retrieved from:

https://www.universal-robots.com/media/240787/ur3_us.pdf

42. Universal Robots. (2018). e-series. Retrieved from Universal-Robots.com:

https://www.universal-robots.com/e-series/

43. Universal Robots. (2018). UR3e Technical details. Retrieved from https://www.universal-

robots.com/media/1802780/ur3e-32528_ur_technical_details_.pdf

44. Universal Robots. (2019). Datasheet HEX-E/H QC. Retrieved from

https://onrobot.com/sites/default/files/documents/Datasheet_HEX_QC_v1.1_EN%20%281%

29.pdf

45. Universal Robots. (2021, May 28). ROBOT WORKING AREA DXF-UR3-CB-SERIES. Retrieved

from universal-robots.com: https://www.universal-robots.com/download/mechanical-cb-

series/ur3/robot-working-area-dxf-ur3-cb-series/

87

46. Universal Robots. (2021, May 28). ROBOT WORKING AREA PDF - UR3e - E-SERIES. Retrieved

from universal-robots.com: https://www.universal-robots.com/download/mechanical-e-

series/ur3e/robot-working-area-pdf-ur3e-e-series/

47. Universal Robots. (2022, January 19). What is a singularity? Retrieved from

https://www.universal-robots.com/articles/ur/application-installation/what-is-a-singularity/

48. Universal Robots. (n.d.). The URScript Programming Language.

49. Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter.

50. WiredWorkers. (n.d.). Cobots. Retrieved from Wiredworkers.io:

https://wiredworkers.io/cobot/

51. Xie, C., Zhao, X., Savaghebi, M., Meng, L., & Guerrero, J. M. (2017, June). Multirate Fractional-

Order Repetitive Control of Shunt Active Power Filter Suitable for Microgrid Applications.

IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 809-819.

doi:10.1109/JESTPE.2016.2639552

52. Xie, Y., Sun, D., Liu, C., Tse, H., & Cheng, S. (2010, August). A Force Control Approach to a

Robot-assisted Cell Microinjection System. The International Journal of Robotics Research,

29(9), 1222-1232. doi:10.1177/0278364909354325

53. Yoshikawa, T. (2000). Force control of robot manipulators. 2000 IEEE International

Conference on Robotics & Automation, (pp. 220-226). San Francisco, CA.

doi:10.1109/ROBOT.2000.844062

54. Yu, W., & Rosen, J. (2013, April). Neural PID Control of Robot Manipulators With Application

to an Upper Limb Exoskeleton. IEEE Transactions on Cybernetics, 43(2), 673-684.

doi:10.1109/TSMCB.2012.2214381

55. Zeng, G., & Hemami, A. (1997). An overview of robot force control. Robotica, 15, 473-482.

doi:10.1017/S026357479700057X

88

8. Appendix

Appendix I – UR – PC communication

Table 26: UR - PC communication Python and UR code

Appendix II – Basic force control

Table 27: Basic force control UR code

Appendix III – Remote robot force reading

Table 28: Remote robot force reading Python and UR code

89

Appendix IV – Remote control

Table 29: Attempts remote control Python codes

Appendix V – Attempt direct sensor reading
Web scraping

1 2

Compute box connection a

90

Table 30: Attempts direct ssensor reading Python codes

Appendix VI – Force control with excel writing

Table 31: Force control with excel writing Python and UR code

91

Appendix VII – Adaptive force control

Table 32: Adaptive force control Python and UR code

92

Appendix VIII – Trapezoidal speed trajectory

Table 33: Trapezoidal speed trajectory Python and UR code

93

Appendix IX – Sampling period force control

UR3 Force UR3 Touch

UR3e Force UR3e Touch

94

Table 34: Sampling period force control Python and UR codes

Appendix X – Multi-robot communication
UR3 UR3e

Table 35: Multi-robot communication UR codes

95

Appendix XI – Communication time delay

Table 36: Communication time delay Python and UR codes

96

Appendix XII – Force sensor connection

Table 37: Force sensor connection Python code

97

Appendix XIII – Force filtering and control
Proportional – PD – PV

98

PD with averaging filter 2 order filter

99

Polynomial approximation

100

Kalman filter

101

Table 38: Force filtering and control Python and UR codes

102

Appendix XIV – Impedance control

103

Table 39: Impedance control Python and UR code

