22 UNIVERSITAT
37) POLITECNICA
./ DE VALENCIA

UNIVERSITAT POLITECNICA DE VALENCIA

Escuela Técnica Superior de Ingenieria Industrial

Estudio y propuesta de mejoras del control de fuerza con el
robot colaborativo UR3

Trabajo Fin de Master

Master Universitario en Ingenieria Industrial

AUTOR/A: de Smedt , Jarne
Tutor/a: Zotovic Stanisic, Ranko

CURSO ACADEMICO: 2021/2022



 UNIVERSITAT # %  ESCUELA TECNICA
] POLITECNICA i . 2 SUPERIOR INGENIERIA i
DE VALENCIA . *t" INDUSTRIAL VALENCIA
Table of Contents

TabIE OF CONTENES ...eeeiieee ettt b e b et sttt et e s bt e sbeesatesaneeabeebeenbeennees i
I L o] Ty A T T YR ii
TADIE OF TADIES. ...ttt et e e bt e e s b e e sbee e sabe e sabeesneeesaneeesanes iv
Table Of ADDIrEVIGTIONS ..coc.eiiiieeee ettt et e et e e e e s bt e e sab e e sbeeeneeesabeeenneeas v
O AN o1 i T TP UP PR PPN 1
2. PLANOS ettt e h e bt s h et st e e bt bt e b e e be e ehe e et e et e e abeenaeesane e 2
D B o o =Tl At o T o [ o -1 o L PPNt 2
D2 A |V, =Y i g To Yo [o] o =4V P POTPPPPNE 2
3. SHAtE OF ThE ANt ettt sttt st st e st e e ab e s abe e snaeesaree s 4
3.1, Collaborative rODOL .....co.eieiieeee et sttt e shee s 5
3.2, Force control (in FODOTICS) ....ccuviieiiiiie et e e et e e e tre e e e aate e e eeanaeeeean 7
S O [ o o Te F=Ta ol I ol Yo i o o] IS PSPPI 10
3.4, Distributed CONLIOl.....cooiiiiiiieiieee ettt et e bt e e sabe e sbeeesaree s 13
3.5, Machining With rODOLS ......cocoiiiie e e e e e e e 14
3.6, KAIMAN FIIEEE ettt ettt st st b e 16
3.7.  INNEr/OULEr 100D CONTION cocuviiiiieeciee ettt ettt e e et e e ete e e e beeeetbeeeabeeebeeeeaneeen 18
B | Y=Y Aot | I AN o 1Y LSRRI 19
4.1. Robot breakdown: clarifying robot Jargon ........cccoeevveiiiciii i 19
4.2.  Stiffness matrix and Jacobian of robot ..o 22
4.3.  Specifications 0f DOTh UR3BS........oii ittt e e etae e et e e e bae e e e 25
L v T (or- | =) q =T g o 1= ) &P PRPPPRN 28
LI I - o Yo T o V2T <1 A U | IO PSP 28
I A U | 1 BT =1 1 U] o PP PPPPPPPPPPPPPRE 29
5.3, Preliminary @XPeriMENTES ......ueeiii it e ettt e e e e s e e e e e e e s eae e e e e e e e e eeabraeeeeeeeeesnanrnnes 34
5.3.1. UR — PC position communication [Appendix | — UR — PC communication]................... 34
5.3.2. Basic force control [Appendix Il — Basic force control]........cccccovveviieeiecciee e, 36
5.3.3. Remote robot force reading [Appendix Ill — Remote robot force reading] .................. 38
5.3.4. Remote control of UR3/UR3e [Appendix IV — Remote control]........cceeeeveeveenveenenns 39
5.3.5. Attempts direct sensor reading [Appendix V — Attempt direct sensor reading]........... 40
5.3.6. Force control with excel writing [Appendix VI — Force control with excel writing] ...... 43
5.3.7. Adaptive force control [Appendix VII — Adaptive force control].......ccccccvvveviiieeennnen. 44

5.3.8. Trapezoidal Velocity Profile PD force control [Appendix VIII — Trapezoidal speed
L =Y =Tor o o V2 SRR 46

5.4. Experimental setup for comparison UR3 and UR3e........cccuveeeeiiieiiiiiiiieeee e 50



N UNIVERSITAT *“‘%"& ESCUELA TECNIC‘A
] POLITECNICA i»i] ; SUPERIOR INGENIERIA
DE VALENCIA ;)&‘:" INDUSTRIAL VALENCIA

5.4.1. Experiment one: Sampling period in force control [Appendix IX — Sampling period
o] gol=I ol oY 4 o] | PR 51

5.4.2. Experiment two: Multi-robot communication [Appendix X — Multi-robot
COMMUNICATION] ceeiiiiiiiitiieee et eeeetr e e e e eeeebte e e e e e e eeesaabaaereeeeeeeaessbasereseeseeessbranreaeeeenans 55

5.4.3. Experiment three: Communication time delay [Appendix XI — Communication time

delay] 58
5.4.4. Appendix Xl — Force sensor CONNECLION] ....cccuuieieiiieeeciiieee e eree e e eiree e e rre e e e 59
5.5. Experimental setup for advanced control SyStemMS ........cceeeeeciieiiiiiieeccciee e e 62
5.5.1. Force filtering and CONtIol......ccuuiii i e 62
Theoretical @XPlanatioN ... ... i e e et e e e st e e e s s bae e e s eearaeeeenes 62
Appendix Xl — Force filtering and CoNtrol]........ccccueie i et 68
5.5.2. Impedance control [Appendix XIV — Impedance control] ........ccccceecveeeeecieeeecciee e, 76
6. RESUILS @Nd CONCIUSIONS. ...c..eiiiiiiiiiie ittt sttt sb e st sbe e b e b e nnes 81
T RETEIBNCES ....eei ettt ettt ettt et e st e e s bt e s bt e s bt e e s be e s baeesabeesbee e natee s beeenares 84
S TR Y o T o =T o [ U RPPPPRN 88
Appendix | — UR — PC COMMUNICATION ....iiiiiiiiec ettt ettt et e e ette e e erae e e e nte e s eeaneeaeenreeas 88
Appendix 11 — BasiC fOrCE CONTIOL......cccuiiie et e eetae e e bee e e e eare e e e e areeas 88
Appendix Il = Remote robot force reading........ccceviiiiieiiiciie e e 88
Appendix IV — REMOLE CONTIOL .. ..uuiiiiiiie e e e sbee e e e ebae e s e enbaeeeeareeas 89
Appendix V — Attempt direct SENSOr reading .........ceevecieiiiiiiie e e 89
Appendix VI — Force control with eXcel WEItiNg.........cccoviiiiiiii e 90
Appendix VII — Adaptive fOrce CONTIOl ......cuiiii et 91
Appendix VIII — Trapezoidal speed trajeCtory ... iciei i e 92
Appendix IX — Sampling period force CONTrol.........ooiiiei i 93
Appendix X — Multi-robot commMUNICAtION........ccciiiiiiiie e e e 94
Appendix XI — Communication time delay ... 95
Appendix Xl — FOrce SeNSOr CONNECLION ...ccccieiiiiiiiie et e e e e e s e e e e e e e e s anaraeeeeeeeeenns 96
Appendix Xl — Force filtering and CONtrol.........ccueiiiiiii i 97
Appendix XIV — IMpedance CONTIOL........ooi ittt e e erte e e e e e e e e snraeeeenes 102

Table of Figures

Figure 1: Overview of conducted eXPerimeENTS .........coiiciiiieeciiiie et eetre e e e e tre e e e e areeeeas 2
Figure 2: Universal Robot Hand Guide fUNCLION..........cccuiiiiiiiee et e 6
Figure 3: Force control block diagrami.......cooiiie i e ae e e s sare e e e eaaeeeas 8
Figure 4: UR robot in force control in z, other DOF are fre@ ... iciiiieeee et 8
Figure 5: Impedance control mass-spring-damper SYSTEM ........cccccieeeiiiiieeeciieee e e e e e 11
Figure 6: Impedance control block diagrami.........cccuvevieiiiiiccie e s 11
Figure 7: Line network vs distributed control network topology.........cccuveeeeeeiccciiiieeee e 13

Figure 8: Visual representation of milling cutting forces .......couviiiiiee e, 14



=

v UNIVERSITAT # - % ESCUELA TECNICA

POLITECNICA g - } SUPERIOR INGENIERIA .

DE VALENCIA Sy &  INDUSTRIAL VALENCIA
Figure 9: Kalman filter block diagram ........coccuiiiiiiiiieece e e 16
Figure 10: Inner/outer loop control block diagram.........cceecieeieeiiecieeceeeecee et 18
Figure 11: UR3 collaborative roDOt .........uiiiiiiee ettt et e e aaae e e 19
FISUIE 12: 1 DOF JOINTS ceeieeeeiiiitieeee e e ettt e e e e ettt e e e e e e ettt et e e e e s e s aabeaeeeeeeesasanbebaeeaeeesasannsrnaaeaesssannn 19
Figure 13: Higher DOF JOINTS ...uviiiiciieiiiiiiie ettt e st e et e s s sate e e s sbte e e e s abaeessnbaeesenabeeessnnsenas 19
Figure 14: 6-DOF robot analysis Per JOINT.......c.ueiieiiiiieeiiee et e e e e e e eabae e e e 20
Figure 15: RODOt JOINt COOMAINAtES....ciiiiiiiiiiiiii ettt e s e e s sabee e s e nareeas 21
Figure 16: RODOt t00] COOMAINATES. .. .cciiiuiiiieciiee ettt et e e e e b ee e e e nbee e e e abeee e e areeas 21
Figure 17: RObot cOOrdinate SYSTEMS.......uiii ittt e e ae e e e bae e e e eabee e e e areeas 21
FIgUre 18: UR SINGUIAIITIES .ciiiuriiiieciiee ettt et e e e aee e st e e s s be e e e s abee e s ssbeeesenabeeesensrenas 23
Figure 19: UR €lbOW SINGUIATITY ..ccccuvieieeiiie ettt e et e et tree e e s abae e e s aba e e s e aaree e e areeas 23
Figure 20: UR3 datashEet...cccuuiiiiciiee ettt ettt e s abee e e ee e s s abae e e eareeas 25
Figure 21: UR3E datashEet ... ..uiiiiiiiii ittt et e s aee e e st e e e s abee e e e abeeeeenareeas 25
FIUIE 22: URS WOIKSPACE ... . uiiiieciiee ettt e et e e et e e e s et e e e s e aatae e e eabaeesennbeeeeennseeeeennrenas 26
FIUIE 23: URBE WOIKSPACE ... tiiiiiiiiee ettt ettt et e e ettt e e et e e e e st e e e e s asbae e e snbaeeessbaeesensseeesennrenas 26
Figure 24: HEX SeNSOFr dataShEet.......cccccuviiiieiiie ettt ettt e et e e tae e e e atee e e e naee e e e nbeae e e nneeas 26
Figure 25: Laboratory setup communication flOW ........ccueeiviiiiiiiiiiec e 28
FISUIE 26: URSB STArt SCIEEIN ...ueiiiiiiiiieeeiiitete ettt e e ettt et e e e s e s bae e e e e e e s sssaabebaeaeeesessnsstaaaeaesssnnan 29
=V Y Ay A 1 Y o Yo YUl -1 TSR 29
Figure 28: Setup Robot - Mounting initialization ..........ccueeiiiiiiiiiiec e 30
Figure 29: Setup RODOt - NEtWOIrK SETLINGS .....vveiieiiiieeccitee ettt e e e e e e e e e e e e eaneeas 30
Figure 30: UR options in creating or [oading @ NEW Program ........cccceeeeciieeeecieeeeeciieeeeeieee e eeveee e 30
Figure 31: UR demonstration 'Variables' tab ... 31
Figure 32: UR demonstration of simulation and 'Graphics' tab........ccccccuieiieiiiie e, 31
Figure 33: TCP IP: Synchronization, synchronization acknowledgement and acknowledgement........ 34
Figure 34: UR3 F/T Control parameter OPtioNS.......ccieieeiieiieiieeereeireeereesreesteesteeesseeseeseesseesseesanesnneens 36
Figure 35: Movements UR3 of basic FOrce CONTIOl. ......cuuiviieiiiie ittt e 36
Figure 36: Remote robot force reading Python ouUtpUL .......cccuviiiiiiiii i, 38
Figure 37: UR remote control output error diSplay .......cceeeeecieieicciiee et e 39
Figure 38: OnRobot HEX F/T Sensor Web diSPlay.......cccueeecueeeeiiieeiiie ettt ettt etee et evee e 40
Figure 39: OnRobot F/T Sensor web display HTML code for sensor reading.........c.ccceevveevreenieenvennenns 41
Figure 40: OnRobot F/T Sensor compute box request data format ...........ccceeeveeeciieecee e 41
Figure 41: Direct sensor reading - webscrapingl with Beautifulsoup .......ccccccveveeiiieiiiiiiee e, 42
Figure 42: Direct sensor reading - webscraping2 with requests.......cccccccvveeieiieeeecciiee e, 42
Figure 43: Direct sensor reading - compute box direct communication error ........cccccceeevecccvvveeeeeeenn. 42
Figure 44: Force control with excel writing Excel output of force values .........cccecvveeevcieeeccciee e, 43
Figure 45: Output graphs adaptive force Control..........ccueeeeeuiii e e 45
Figure 46: Output graphs adaptive force control - stable..........ooocciieeieciei e, 45
Figure 47: Trapezoidal VElOCity Profile .......ccucuiiiiiiiiiieccie et 48
Figure 48: Triangular sPEEd Profil .......cueei ittt et e et ee e e e areeas 48
Figure 49: Trapezoidal velocity profile output raph........ceeeeieei i 49
Figure 50: Trapezoidal velocity profile output graph - zoomed in - NOISE ........eeveeciieeeiiiieecciiee e, 49
Figure 51: URCap F/T Control configuration OPtiONS ........ccueeevvieeireeeieeeeiee e eetee et e e eveeeeraeeevee e 51
Figure 52: UR3e Force mode configuration Options .........ceeecuvieiiiiiiee it 51
Figure 53: Force samples URB VS URBE ..ottt ettt e e e e e e e nnraae s e e e e s e e ra e e ae e e e e 53
Figure 54: Touch samples UR3 VS URBE ...uuiiiiiiiiiiiiiiiee ettt e e e e eettee e e e e e e s e e nneaaeseeeeseennsraneeeaasennnn 54
Figure 55: Multi-robot communication - setup with movements and boX........ccccccceeevviieeeiciieeeennen. 55
Figure 56: Multi-robot communication - UR3 and UR3e MODBUS settings........ccccoceeeeeeececcviiieeeeeeenne 55


https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099345
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099346
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099347
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099348
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099349
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099379
https://d.docs.live.net/a2b1e05bb6216146/MasterThesis/PEP267977_TFM.docx#_Toc108099380

) POLITECNICA

UNIVERSITAT * o % ESCUELA TECNICA
g =y ; SUPERIOR INGENIERIA

DE VALENCIA “\) &1:" INDUSTRIAL VALENCIA

Figure 57: Multi-robot communication - communication l0GiC........ceeeeviiiiiiiiiee e,
Figure 58: Output time delay URS ... ..ottt ettt e e s aree e s abe e e e s sbaee s eabeeas
Figure 59: Output tiMe delay URBE....cccuiiiieciiie ettt e s ttee e e ttee e e s abae e e e aba e e s e nrae e e e anaeas
Figure 60: Python code computer clockSpeed teSt......ccvviiiiiiiiiiiiiee e
Figure 61: Clock Speed WiINAOWS L1 ..ccuuiiiiiiiiiiciiieeeeiitee e csiree e ssree e s saee e s ssbe e e e s abee e s s areeessnbeeesssnenas
Figure 62: Clock Speed WINAOWS 10.........cviiiiiiiiieiiiieeeciiee e esiree e esttee e e e atee e e sata e e e s abae e s ensaeesensaeesennenas
Figure 63: Force sensor connection - encoded received data package .........cccceevvcveeeiriieeeecsiieeeesneen,
Figure 64: Force sensor connection - decoded and transformed data package........ccccocveveeiieeennnen.
Figure 65: Output sensor compute box connection for force measurements .........cccceeeveeeecciveeeennnen.
Figure 66: Multi rate PD with averaging filter — theoretical working in graph .......cccccoevcvevinicenennneen.
Figure 67: Multi rate PD 2nd order filter — theoretical working in graph .........cccoeeveeeiiiee e,
Figure 68: Multi rate PD averaging vs 2nd order filter — theoretical in graph .......cccccevvviveiniiee s,
Figure 69: Polynomial approximation - theoretical in graph .......cccoveeiiiiiiiiiee e,
Figure 70: Kalman filter experiment Working prinCiple........cccueeeeccieee i
Figure 71: Force filtering - proportional control graph .......ccccueiieiciiie i
Figure 72: Force filtering - proportional derivative graph.........ccoccveee e
Figure 73: Force filtering - PV control actions graph......cc.ceeeeiiiiiiiiiee ittt
Figure 74: Force filtering - PD with averaging graph.........coovviiiiiie e
Figure 75: Force filtering - PD with 2nd order filter graph........cooeccvieeicciee e
Figure 76: Force filtering - polynomial approximation graph ........cccceeeecieeeiviiiee s
Figure 77: Kalman filter - process noise covarianCe SUMMAIY ......cccceeeecieeeeecieeeeeiiieeeeereeeeesveeeeeenseeas
Figure 78: Kalman filter - gaussian distribution example deviation of 1........ccccceeeiiieeiiciiee e,
Figure 79: Impedance control - reference trajectory ... vciieeiccieee e
Figure 80: Impedance control - block diagrami..........cooccuiiiiiciiie e e
Figure 81: Impedance control - difference in active stiffness.......cccveeeviiiiiiciiei e,
Figure 82: Impedance control - y coordinate plotted over time.......cccocvveeiiiiei e,
Figure 83: Impedance control - KJ of circular part ........cceeeeeiiii et e

Table

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:

of Tables

Jacobian MatriX @NAIYSIS ...cuveiiiiee e e
Specifications 0f DOth UR3BS .........oiiiiieeeee et e e e
URCaps accompanying ONRODOt HEX F/T SENSOI ....c.uicvieiiieireeireentiecireeereenre e esteesaveeveeveenvees
Important specifications of UR roObOLS......ccccuiiiiiiiiiii et
Most important used UR Script commands ...........coeeeiiiiiiiiiiiiie e e e e
IP addresses of robots, compute box and COMPULETS......ccccuvieeiiciiieiciieee e
Illustrative examples adaptive force control experiment .........ccoceeeeeeiieeecciiee e e
Trapezoidal profile fOrmMUIAS.........coi i e
Sampling period in force control output SUMMArY ......ccocciiiiiiiiiie e,
Force sensor connection - variables compute box connection........ccccecceevceeecieenieeeceeenne,
Force filtering and control - outer loop control equations..........cccceeeveieieeicieee i,
Force filtering - proportional control SUMMAry.........ccccuiiieciiieeeciiieee et
Force filtering - proportional derivative control sUMmMary.........ccocceeeecieieeciieeccccieee e

Table 14: proportional velocity CoONtrol SUMMAry........cccueieiiiieeeeciieee et e e e

Table 15:
Table 16:
Table 17:
Table 18:

Force filtering - PD control with averaging summary..........ccccceeeececiiiiiee e
Force filtering - PD control with 2nd order filter summary........ccocceevecieeeeciieee e,
Force filtering - polynomial approximation sSUMmMary......ccccccceeeeeiiieeeeciieee e
Kalman filter - sensor N0ise CoVariaNCe SUMMAIY .......cccccuviieeeeeeeeieiiriereeeeeeeeesnreeeeeeeeesssnnenns



UNIVERSITAT {'%‘w ESCUELA TECNICA

) POLITECNICA g } SUPERIOR INGENIERIA
DE VALENCIA Yo € INDUSTRIAL VALENCIA
Table 19: Impedance control - linear MOtioN SUMMAIY.......ccccueieeiiieeeeiiiiee e e e e ree e e e 77
Table 20: Impedance control - circular MOtioN SUMMAIY ....cccuuiiiiiiiieieiiiee e 79
Table 21: Conclusion - difference UR3 and UR3e force control........ccccevceeiiiiinieeeiieesee s 81
Table 22: Conclusion - force filtering and control of UR3 ........oiiiiiiiiiie e, 81
Table 23: Conclusion - difference between F/T Control and self-programmed force control of UR3.. 82
Table 24: Conclusion - impedance CONTrol N ........ueeieiiiiiecee e e 82
Table 25: Conclusion - impedance CONLrol CIrCle ......uiiiiiiiiieie e 83
Table 26: UR - PC communication Python and UR COAE .......cuuiiiiiiiiiiiiiiee ettt e 88
Table 27: Basic force control UR COUB.... ittt ettt stes et e siee st ste e sie e sabe e sbe e snaeeesbeeenes 88
Table 28: Remote robot force reading Python and UR COAE .....ccovuiiiiiiiiiiiiiiiee e 88
Table 29: Attempts remote control Python COAes......cccuuiiiiiiiiiiiieec e 89
Table 30: Attempts direct ssensor reading Python codes..........cooviiiiiiiiiiiiiiiiee e 90
Table 31: Force control with excel writing Python and UR code ........coocviiiiiiiiiiiiciiee e, 90
Table 32: Adaptive force control Python and UR COdEe .......cocuuiiiiiiiiiicieee et 91
Table 33: Trapezoidal speed trajectory Python and UR COAE ....ceeeiiiiiiiiiiieiiiiiiiiiiieeee e 92
Table 34: Sampling period force control Python and UR codes.........cccccueieiiiiiieicciiee e, 94
Table 35: Multi-robot communication UR COAES ......uiiiiiiiiiiiiiicciiee ettt 94
Table 36: Communication time delay Python and UR COAES .......cccuiiiiviiiiiiiiiiiie et 95
Table 37: Force sensor connection PYThoN COAE ......ooiiiiiiiiiiiiiccciee ettt e e 96
Table 38: Force filtering and control Python and UR COAES.......ccccuviiiiiciieiiiiiiee e 101
Table 39: Impedance control Python and UR COOE........uuiiiiiiiiiiiee ettt e e 103

Table of Abbreviations

DHCP: Dynamic Host Configuration ProtocCol........c...eiieciiiiiiiiiii et 30
DOF: Degrees Of FrE@UOM ... ...uiii ettt e e e e et e e e s saea e e e s saaaeeesntaeeeennnneeeean 19, 23
[\ LR A [=Yoru oY a oY= =T o] VTSR 12
PD: ProportioNal DEIVALIVE.......iiiiciiiieicciiee ettt ee ettt e e et e e e st e e s atae e e sataeeeeataeeessnsaeeeennssaeenas 9
Pl: ProportionNal INTEEIAl ......c..uviiiiieee ettt et e e et e e et e e e st ae e e e aaaeeeeeasaeeesansseeeeansraeanan 9
PID: Proportional INtegral DErIVAtIVE .........cccccuiiiieiiiiee ettt e et e e e ebae e e eaaee e e e eabaee e e areeas 62
ROI: REtUIN ON INVESTMENT ....oeiiiiiiiie ettt e e e e e e e e e s e s nnnnee 1
B O e Ko To] I @ =T ) <Y gl 2o 1| oo WU 21
TCP IP: Transmission CONErOl PrOTOCO] ......uuuuueuueiiiiiiiiiiiiiiiii b asaaassaaaananes 28, 35

UDP: User Datagram ProtOCO!.......c.uiiiiiiiiiicciiie ettt ecr e eire e e e satae e e e saaa e e e ssnaaeeeesasaaeeennareae s passim



UNIVERSITAT ¢* o % ESCUELA TECNICA

POLITECNICA L } SUPERIOR INGENIERIA 1
DE VALENCIA ‘;)ék INDUSTRIAL VALENCIA
1. Abstract

Robots and automation have proven themselves to be valuable investments that have a good ROI.
When investigating the value of these tools it is important to know that apart from the ROI, they are
useful because they increase the flexibility of processes, it is possible to work autonomously, and the
repeatability is high. Robots and most of automation technology have the advantage to be usable in
different applications, but at the same time this imposes a challenge for them to be as effective as
specialized equipment. This is where research enters the picture.

This research on robots and more specifically collaborative robots is done within the scope of a
bigger project of professor and coordinator (Ranko Zotovic Stanisic). This big project serves as a
contribution to the field of robotics. For several years research on force control with robots has been
done, while adding new elements to it, with robots that are not specifically designed for this task and
to investigate how and if it is possible to compensate their shortcomings and use them accurately.

The main goal of this Master Thesis is to examine the force control of a collaborative robot. This is
very broad and allows to execute multiple different experiments with different goals to gather
information, even if the current experiment is not a continuation of the previous one.

The first big goal is to distinguish the difference between the UR3 and UR3e collaborative robot,
using force control tasks. The motion commands are programmed on the UR Teach Pendant module
and information is sent to a computer using a Python program. This is first done by communicating
with the robot and later directly with the force sensor.

In another experiment the two robots were to create a multi-robot communication program, where
the robots are able to communicate with each other and synchronize their movements to pick up a
box with force control.

The second goal is to do research and conduct experiments on inner/outer loop control of the robot
in force control applications. Since it is possible to establish a direct UDP connection between the
robot and the force sensor, it is possible to apply different controllers and filters and create an inner
loop motion control with an accompanying outer loop force control.

The third goal is on machining with robots, because this is part of the professor’s big project a few
students are working on this. It is my task to do research on robot machining and milling and, at the
end, compare my results and use my knowledge to evaluate these students’ outcomes.

A try on remote control of the robot was done but is yet to be solved.

Finally, an experimental setup is created to perform and evaluate the UR3’s impedance control,
where the interaction control of the robot is tested.
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2. Planos

2.1. Project roadmap:
This master thesis was a complete project for me, | had learned about automation and servomotors,
so | am familiar with control loops, block diagrams and some of the principles, but | started off with
no knowledge of robotics. For this reason, an extensive literature study on robotics has been done,
as well as following two courses on the subject; ‘Robotics and mechanisms’ from my home university
in Belgium and ‘Mobile Robotics’ here at UPV.
Apart from robotics in general, knowledge about coding was needed. | had experience with Java and
a basic understanding of MATLAB, but Python was new to me.

This is why the first experiments are not significant but mentionable in this master thesis, they
provide the base for further experiments and illustrate the progress made throughout this semester.

2.2. Methodology:

Do literature study and go to the lab. At first learn to use the robot, write in Python, and read sensor

values.
Learn URScript
Learn basic Learn URScript
Python commands
| 1 1 1
e mnacaion Robot - robot Specific Python Impedance
between PC and Force control o
communication programs control
robot
| [Remeie et & — PD control Excel writing
robot
Communication
— time — PV control Numpy arrays
measurements
Direct UDP
ol CONnection with m Multirate filter
sensor

Polynomial
approximation

ol Kalman filter

Figure 1: Overview of conducted experiments

Using the outcome of these experiments, the research from the literature study can serve as
comparison.

While progress was made in the laboratory, it was possible to create more advanced experiments
and the literature study gave inspiration for new experiments.

At the start, in the laboratory, | worked together with Raul Alfonso Safont (Master in automation and
industrial informatics [DISA]) and Ricardo Ruiz Monsalve (Master in mechatronics engineering
[ETSID]) to advance more quickly. Especially when getting to know the robot, because this stage is
important for later but not valuable for the thesis or research.

During the project we all worked on our own research field and when we were in the lab together it
was possible for me to add or improve their code and vice versa. It was an individually challenging
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assignment, with each pursuing their own objectives, but it was possible to refine programs together
or set up a foundation for more complicated tasks.
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3. State of the art

State of the art can be defined as the current way of working, what is generally accepted as good
practice. It is worth mentioning what is possible right now and is known to be efficient with the
techniques and technologies used in this thesis. With this knowledge in mind, it is possible to start
exploring alternative ways or combining current methods to find a solution to the obstacles when
using force control with a collaborative robot.

Robots are needed in today’s industrial environment, for companies to be competitive they need to
innovate in order to maximize their efficiency. Today’s market can be identified by quickly changing
demands, needs, more customized products and a higher variety in general. This and because a lot of
companies are engaged in various industries and applications, adaptivity and flexibility are strived
for. If equipment such as robots is non-specialized it can easily be reconfigured and used in other
applications, if necessary, it even allows for planning and tool-switching, which increases the
flexibility all the more.

Robots are already used for low-impact tasks such as pick-and-place tasks, welding, packaging,
painting, ... because of their flexibility and the low complexity in environmental interaction, but the
study of general robots in milling applications is new. This is because milling requires force control, to
compensate the external forces that occur while machining and requires position control, because
the tool needs to follow a desired trajectory. Specialized equipment is more often used for these
applications because of their increased stiffness and adaptive approach. Robot parameters are
improved through hardware modifications, resulting in a higher performance for the specific
application.

This is only a subdivision of the bigger scope in this research, force control is the main subject
tackled. Due to the complexity in interaction between workpiece and robot, the quickly changing
dynamics of the robots and low accuracy of the pre-designed force control mode, a margin of error
exists, and it is possible to explore solutions for this. Because a collaborative robot is investigated,
the human-robot interaction plays a role as well in the overall performance and leads to even more
complicated interactions with the environment.

The rising application of collaborative robots in the industry is a good sign, their advantages such as
flexibility, ease of use and allowance for intelligence are often outweighing their disadvantages,
being lower stiffness, affecting the accuracy, limited range and load. With research alternative
techniques and theories are explored in order to improve the robot’s functionalities and by doing so
expanding its application range. Research can help reach a point where companies can buy general,
modular equipment and use this for different tasks, specialized modules can be attached to keep the
production costs at a minimum, while maintaining and hopefully even improving the output and
increasing the efficiency.
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3.1. Collaborative robot
Nowadays, in Industry 4.0, technology is used to increase company efficiency and productivity and
has led to a more competitive environment [33]. The use of automation and robots played a big part
in this new shift.

Collaborative robots (cobots) are the perfect example of this, they are robots that can work safely
together with people, though previously it was necessary to separate the robot and the worker to
provide a safe work environment.

Definition 1 (industrial robot)

Automatically controlled, reprogrammable multipurpose manipulator, programmable in three or
more axes, which can be either fixed in place or mobile for use in industrial applications.

(ISO 8373)

Definition 2 (collaborative robot)

Robot designed for direct interaction with a human within a defined collaborative workspace
(Definition 3).

(1SO 10218-2:2011)

Definition 3 (collaborative workspace)

Workspace within the safeguarded space where the robot and a human can
perform tasks simultaneously during production operation.

(1SO 10218-2:2011)

It is well known that automation and robots relieve workers from tedious, labour-intensive and
repetitive tasks and allows them to do more knowledge-based work such as creative, strategic and
changing tasks, because robots lack the imagination and ability to invent new, better practices.

But cobots should not only be used for repetitive tasks because their application range goes beyond
this. They have built in safety functions, which allows them to work side by side with human workers
and support them with physical work (increase strength, provide protection or support) as well as
cognitive (store a lot of information, monitor the worker’s condition to determine when work breaks
are necessary to increase productivity and recognize patterns)[5].

Cobots sense the proximity of a worker and adapt their speed and/or force accordingly.

This provides a more ergonomic workspace for the workers: their risk on injuries and overall stress
due to work with heavy loads is decreased. Humans are still a valid asset in processes because even
though cobots can provide unbiased decision-making, we are better at adapting, innovating and it is
up to us to make the final decisions with the available information. [33]

This leaves more room for personal development, business-oriented thinking and augments their
work experience.

When comparing a collaborative robot with an industrial robot it becomes clear that:

robots are used for high volume tasks with high repeatability and not a lot of variety while cobots are
flexible, compact, are better for low volumes with a lot of room for variety. They can be used for a
variety of tasks because they are easy to install and program thanks to their user-friendly software
and built-in teach-in method, where the developer can manually move the robot and store this
information. [50]

Both UR3 and UR3e mentioned in this paper are equipped with what is called a “kinesthetic
programming” tool. On the robot controller this function is called “Hand guide” and allows the end-
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user to program the robot by replicating a shown movement. Figure 2: Universal Robot Hand Guide
function shows how the robot can be manipulated by hand, with a minimum amount of force.

Figure 2: Universal Robot Hand Guide function

This way a real collaboration between human and robot is possible, the user doesn’t have to do
complex programming and his or her creativity can enhance the process.

When the hand-guide function is enabled it’s possible to restrict movements and rotations in certain
directions, because the robot will generate a trajectory depending on what is shown by the user. The
only thing left to do is guide the robot trough the desired motion by leading the end-effector of the
robot.

This translates into the industry as an easy way to adapt according to a high variety in products,
without a high necessity for accuracy. Instead of reprogramming the robot multiple times per day or
week, the worker can easily demonstrate the movement or adjust the previous one without
disrupting the workflow for a long time.
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3.2. Force control (in robotics)
There are three big types of robot handlings and the robot control is adapted accordingly.
First it is possible to have negligible interaction forces, the robot executes a movement with no or
nearly no external resistance. Here motion control suffices, when the position, velocity and
acceleration are controlled the task is executed properly.

In 1977 Donald T. Greenwood [14] constructed an equation [Equation 1: General robot control
formula] for robot control with gravity compensation g, acceleration-dependent term I(q) which is
the mass inertia matrix and velocity-dependent term f (g, ¢) which is the moment equation. 7 is the
actuator input.

(@G+f(qq+g(@ =t

Equation 1: General robot control formula

In case a certain force value should be applied the equation is as follows:

I@i+f(q.d)+g9@+]"(@QF =7

Equation 2: Robot force control formula

The second type is where the interaction forces are not negligible, the robot encounters external
resistance of a higher magnitude, but the interaction between manipulator and the environment is
static. Here force control suffices, the robot is submitted to a normal force and executes a movement
as well. Similar to motion control, in force control it is possible to plan the trajectory of the force in
the application.

The difficult part about this control action is that a position control is necessary because the robot
needs to perform a motion, and at the same time the force against the workpiece needs to be
controlled. During the motion, the configuration of the robot changes and the stiffness of the robot
as well, resulting in difficult to predict motion errors.

An example is in application where an object needs to be picked up with a gripper, here the gripper
force should be kept between strict boundaries to prevent workpiece or robot tool damage while
handling the object.

As last type dynamic interaction occurs, this means that work is done on the environment. The best-
known applications of this are machining operations such as drilling, grinding, milling, ... .

This is part of robot force control is further explained in [3.5 Machining with robots].

Another example is when assisting someone with an exoskeleton [54], force control is used to
enhance or diminish the occurring force on a joint. When lifting a heavy item, the force from the
person on the box needs to be enhanced and the counteracting force from the item on the person
needs to be diminished.

When a process requires an interaction from the manipulator with the environment, force control is
necessary and the feedback complexity increases. Applying force control causes added stress to the
robot in the form of internal reaction forces, which can lead to a reduction of its life span if not well
designed. Other consequences are or can be: offset in trajectory, unexpected variations in the
magnitude due to both tool wear and plastic deformation of workpiece and in the case of machining
applications, external lateral forces can occur.

All of previously mentioned by-products of force control lead to a difficult or inaccurate feedback
loop, leading to a reduction in accuracy and this is why research on this subject is necessary and will
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help further advance automation technology and expands its applicability.

x(’
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; + Controller {3 Controller €
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| I
I I Force | _

Outer loop Sensor

Figure 3: Force control block diagram

[35]

The difficult part about force control is that a position control is necessary because the robot needs
to perform a motion, and at the same time the force against the workpiece needs to be controlled.
This is part of robot force control is further explained in [3.5 Machining with robots].

Force control makes it possible to determine the execution force during an application. Similar to
motion planning, force planning is possible. The applied force has different possible configurations,
depending on the application it’s possible to apply normal or lateral forces and change their
magnitude according to the time, step in the action or other variables.

When the application is known, the different movements are known as well. For example, when a
robot needs to perform horizontal movement in the XY-plane, all the other degrees of freedom (Z
and the three degrees of rotations) can be used in force control and vice versa. The robot applies the
joint forces and torques in order to reach and maintain the desired cartesian force and/or torque
values at the end-effector.

\ Z (force control)

Figure 4: UR robot in force control in z, other DOF are free

Another difficulty in robot force control is the big variety in methods. There is a general and safe
force control mode programmed on the cobot, which works but is not focused on performance. A
PID controller is used, with certain unknown internal parameters. Many applications are built-in and
perform the desired task, but when the importance of a certain task is high, the default control
method might not suffice. For this reason, different self-written programs with well-known or more
advanced control methods are explored and tested.

In [8] a DC motor is used to simulate a 1-DOF robot in force control, displaying different types and
degrees in complexity of force control. In [55] and in [53] the most common ways of applying force
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control are mentioned and are further explained below [3.3 Impedance control and 3.7 Inner/outer
loop control].

The two big groups in force control methods are fundamental and advanced, where the first one
applies a relationship between position/velocity and force and the second one extends this with
adaptive control, robust control and/or learning methods. In this research paper the fundamental
force control methods are investigated.

e Explicit force control, where there is direct force feedback.
The force sensor measurements are used to calculate a force error and this is compensated
accordingly. The desired value is a constant programmed setpoint and the force control is
executed as a Pl controller. As can be seen in [Equation 3: Force control with force feedback
formula]

9@ + I @ + KF + Ki [ R(0)d6) = ¢
Equation 3: Force control with force feedback formula

Pl allows the elimination of steady-state wrench error if there is a constant disturbance,
which can occur when for example the gravity compensation has an error. A derivative term
is not often used, because the lack of dynamics between the joint forces and torques and the
wrench at the end-effector does not support the use of a derivate term and force/torque
sensors are noise prone. Taking the derivative of noisy measurements only amplifies the
noise.

e Hybrid position/force control, where an inner/outer loop scheme is used. [3.7ZInner/outer
loop control]
Information from the sensor and from the position are evaluated and controlled separately.
This way both the position and force are tracked simultaneously and there is one control
action for the position errors and one for the force errors. “Normally, the position control
law in Figure 3 consists of a PD action, and the force control law consists of a Pl action. This is
because for the position control a faster response is more desirable, and for the force control
a smaller error is more preferable” [55]

e Impedance control, where the relation between velocity and force is applied and the
stiffness is controlled thanks to position feedback. [3.3Impedance control]
Impedance control is more of an interaction control, with as main parameter the stiffness.
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3.3. Impedance control
To improve the robot control, whilst maintaining the safety level, more advanced interaction
methodologies are used. In proportional or proportional derivative control high gains are used to
help reach the desired value quickly and maintain it in a strict way, this would lead to high impact
forces (as can be seen from experiment [5.4.1 Experiment one: Sampling period in force control
[Appendix IX — Sampling period force control]]), which is negative for both the robot and
the environment.

Impedance control can help overcome position errors and avoid large impact forces by programming
robots to modulate their motion according to force perceptions, because it generates a relationship
between the force and contact point instead of controlling the force directly [13].

As described by Hogan [16]: Manipulation requires mechanical interaction with an object or the
environment. It is not sufficient to only control the robot’s motion when it dynamically interacts with
its environment. Position, force and dynamic behaviour is controlled using impedance control.

When comparing impedance control to position control, the big difference is that the goal of position
control is to reach a reference point by following a path, while the goal of impedance is to control its
dynamic behaviour, the relationship between position (or velocity) and force. This means that in
position control the robot will execute the programmed motion, disregarding any external
disturbances since it does not take forces or torques into account. This will result in high impact
forces. In impedance control external forces are allowed, the robot acts as a spring, where the
movement is disrupted but once the external force is released it returns to complete the desired
movement. This is why impedance control is a form of interaction control.

Controlling the robot impedance is a way of controlling how the robot behaves when interacting with
the environment by defining its stiffness and damping. The control method is equivalent to
controlling a mass-spring-damper system. The three parameters are the mass, stiffness and damping,
with mass being the most complicated to implement and thus the least used. The stiffness is the
most important for safety and the damping is usually used to avoid oscillations.

A balance needs to be found for the stiffness, if the stiffness value is low, the resistance against
external forces is low, increasing the safety, but the mass will be more prone to oscillations, but a
damper can gradually reduce these to return to the initial position. This is why in robotics often a
high stiffness is desired; it assures a greater positional and force maintenance and accuracy. For
collaborative robots this also means high impact forces when encountering an obstacle, which can be
dangerous because these robots operate in unknown and fast-changing environments.

“Robots that physically interact with their surroundings, in order to accomplish some tasks or assist
humans in their activities, require to exploit contact forces in a safe and proficient manner.
Impedance control is considered as a prominent approach in robotics to avoid large impact forces
while operating in unstructured environments.” [1]

This applies to collaborative robots, these are designed to work together and interact with humans,
so safety is of a big importance [25 - 34]. The robot control forms a challenge because the robots
need to operate and interact within an unstructured, varying and, in case humans are near, sensitive
environment.
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Figure 5: Impedance control mass-spring-damper system

Newton’s third law of motion:
F(t) =miX + cx + kx

Equation 4: Newton's third law of motion
F(s) = m[s?X(s) — sx(0) — x(0)] + c[sX(s) — x(0)] + kX(s)
F(s) = (ms? + cs + k)X(s) + (—=ms — ¢)x(0) — mx(0)
Equation 5: Laplace transform of Newton's third law of motion
Laplace transform gives

and we assume x(0) = x(0) =0
F(s) = (ms? + cs + k)X (s)

l Z+es+k
- =ms cS
X

F
Impedance Z = Vo ms+c¢ +§

Equation 6: Impedance equation mass-spring-damper

k is equivalent to Kp, the proportional constant for the position control and indirect stiffness control.
b is equivalent to Kd, the derivational constant reacting to the difference in velocity and damping the
system.

This impedance, as in Equation 6: Impedance equation mass-spring-damper is called the mechanical
impedance and represents the ratio of force output to motion input. It is controlled in experiment

[5.5.2Impedance control [Appendix XIV — Impedance control]] by adjusting the active
stiffness values of the robot joints.
£y
Inverse Tt Robot and
Dynamics Environment
pv X q:
Forward | .
Kinematics | 9t

Impedance Control (IC)

Figure 6: Impedance control block diagram

The robot stiffness (K in Figure 6: Impedance control block diagram) consists of active and passive
stiffness, being programable and joint stiffness of the harmonic drives respectively.
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0 K, O 0 0 O
0 0 K
The joint stiffness matrix is Kg = 0 0 0 3 K40 g 00 and K, = ] TKyJ~
0 0 O 0 Ky O
0 0 O 0 0 Kg

This joint stiffness is constant during motion tasks, but because of the transformation using the
Jacobian, the cartesian stiffness changes depending on the robot configuration.

The total robot stiffness is the cartesian or joint stiffness, plus the active stiffness introduced by the
controller.

The speedL command exists of with v, = px(xref - x) + Kgx (%rer — x) and similar for the

other velocities. The proportional gain of the control action is equivalent to the active stiffness and
the derivative gain to the damping.

The following study [21] about adaptive impedance control is a perfect example of what impedance
controlled is designed for. Powered exoskeletons to enhance or restore human’s muscular force and
endurance, in other words they cooperate with the human by assisting or supplementing its motion.
The robot system’s impedance model is designed by using an impedance algorithm. Because the
exoskeleton needs to match the operator’s kinematic and dynamic behaviour.

In [2] impedance is used for indirect force control and in parallel a direct force control method is
used for counteracting contact forces when interacting with a surface. It is confirmed that impedance
control finds its use in assisting humans and attain contact forces safely, as mentioned before. This
limits the needed safety measurements when employing a collaborative robot in the work
environment in a way that the robot can work in close proximity of humans and other robots,
extending the robot’s work range and using the most of its capabilities. EMG signals are used to
measure muscle response or electrical activity in response to a nerve's stimulation of the muscle,
allowing a stiffness estimation of the human’s arm when cooperating.

In [32] impedance control is used to measure interaction forces and compensate the robot
deformation and an adaptive material removal formula is set up for milling, this was shown to be
successful. A sensor-less force control method was proposed in 2014 [11] and worked well enough to
be applied in practical applications.
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3.4. Distributed control
“A distributed control system is a digital automated industrial control system that uses
geographically distributed control loops throughout a factory, machine or control area. Unlike a
centralized control system that operates all machines, a distributed control system allows each
section of a machine to have its own dedicated controller that runs the operation. It has several local
controllers located throughout the area that are connected by a high-speed communication network.
While each controller works autonomously, there is a central supervisory control run by an
operator.” [39]
The word distributed shows that in this control method, the network topology is not in a line, where
one component can only communicate with one other above or below in hierarchy but is distributed
amongst different controllers on different levels and the communication is of a more diverse and
complex pattern.

O—0—0—0 Ei| |

i

{li

Line Distributed control

Figure 7: Line network vs distributed control network topology

Distributed control is increasing in importance [6] because the system fulfils the wish of flexibility by
allowing modularity; functionalities can be added, subtracted and substituted according to the
demand [22 - 37]. This is a big improvement over ordinary control systems because the innovation
rate in today’s industry is high, meaning that systems or at least the majority of their components
should be reusable. This gives a cost-effective solution to industries where processes change or have
to adapt at a fast rate. The ease of scalability this solution offers is a second advantage, because it’s
possible to integrate external controllers into the distributed system it is possible to expand or
reduce the system.

The industrial collaborative robot UR3 and the laboratory setup in general, used for this research
utilize distributed control because different machines are unified to share information and resources,
while still being able to work autonomously. The UR3 communicates with its force sensor, the PC and
the teach pendant while all of these components are controlled separately, thus maintaining the
control complexity at a minimum.

Making multiple task-specific controllers work together and share information is more reliable than
using one centralized controller for all the different modules. This also allows to work on different
levels, in this application the lower-level system can be the force value that’s controlled and one level
above that the motion controller verifies that the force control doesn’t cause trajectory errors. In
applications with multiple force controllers, it is possible to install a balance controller on the next
level, to even out all the force values and essentially monitor the lower-level controllers.
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3.5. Machining with robots
The study of machining with robots is a new facet to the field of robotics. Most of the research
written on this is done with specialized equipment and does not go into detail on mathematical
equations to estimate force values, which is one of the main problems to be tackled; when
machining, a lot of forces occur and these need to be compensated to maintain the accuracy, but
without damaging the robot joints or tool due to the increased stress.

Specialized tools and robots are designed because machining operations require high stiffness to
assure the accuracy. A balance must be found between flexibility and robustness because the
machining tasks involve large reaction forces that can damage the tool, the robot or the
environment. Even if this does not damage the tool, it reduces the lifespan significantly. If the robot
robustness is increased, the flexibility decreases and this takes away one of the main advantages of
robot usage.

Machining with collaborative robots is a subject that is not yet strongly supported by research,
because these robots are designed to be flexible and machining with normal robots is yet to be
optimized for application. The occurring forces also highly depend on the used feed rate, removal
depth, material, ... [24]

Research on the use of collaborative robots in machining should be pursued because of their big
application range and their flexibility.

But the research found on this topic shows how the rather simple task of maintaining a constant
force and compensating the tool deviation while machining imposes a lot of other difficulties.

Force compensation

Figure 8: Visual representation of milling cutting forces

a
hgem =fz d

Equation 7: Average cut thickness milling

d

5—a

d

2

cosQ =

Equation 8: Angle of impact milling

z = L*z
360°

Equation 9: Amount of cutting teeth milling
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F, = key * hgem) b+ 2

gem

Equation 10: Average tangential force in milling

The average tangential force [Equation 10: Average tangential force in milling] can be derived from
[Equation 7: Average cut thickness milling, Equation 8: Angle of impact milling and Equation 9:
Amount of cutting teeth milling]. In this final equation k1,1 is the specific cutting force with a surface
area of 1x1mm?, the next symbol is the average cutting thickness, which depends on the feed per
tooth, depth of cut and diameter of mill (resp. f,, a and d). The tangential force is directly
proportional to the width of the cut b and by multiplying this with the number of teeth that are
cutting z;, this gives the full force. The number of teeth cutting depends on ¢, which is the angle of
impact.

When only few teeth cut at the same time, so ziand ¢ are small, the variations in forces are big. This
means that when the tool enters the material, at first the force fluctuations will be high.

These complex calculations show that real time data processing is necessary to have an accurate
force control when machining. These forces can be measured immediately but there will always be a
delay on the feedback and thus the compensation.

Tool path compensation

‘Linear interpolation of the workpiece coordinates is important for machining with industrial robots.
A tool motion linearly interpolated in joint coordinates becomes a fluctuating trajectory in the
workpiece coordinates’ [38], so we need to do the linear interpolation of the tool motion in the
workpiece coordinates.

The robot joint stiffness depends on the used configuration and because during a movement the
configuration changes, the stiffness values change as well. This causes more stable and more instable
robot poses and makes the path compensation more complicated.

This small literature study on machining with robots is done but is very limited in such a way that
after doing the literature study, it became clear that to properly implement force control for
automated machining, a more profound study should be done.

Analysis of material, implementation of simulations using different software packages to predict the
behaviour etc. CAD models, material models, virtual machining technologies for even more realistic
simulations and modelling. Virtual machining has been proven [10] to work for assembly.

Machine learning and Al could be implemented into the research to make the robot work in the most
efficient way imaginable, but this goes beyond this research because of the time and resource
limitation. By implementing this, some complex problems can be avoided or reduced in complexity.
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3.6. Kalman filter

“The Kalman filter estimates a process by using a form of feedback control: the filter estimates the
process state at some time and then obtains feedback in the form of (noisy) measurements. As such,

the equations for the Kalman filter fall into two groups: time update equations and measurement
update equations.” [49]

INITIALIZE
Input: Input:
Estimate Uncertainty System State
@ Initial Guess Initial Guess
MEASURE
Xpn-
Input: Input: nn-1
Measurement Uncertainty Measured Value
Poo X0.0
Th Zn @
UPDATE @ PREDICT
Calculate the Kalman | K7 | Estimate the current state using Output 1: System State Lfdl: ltllmf m‘c.:f':ﬂlt‘.nﬁdli.ld!_u Antiln| i
Gain (K,) the State Update Equation . Estimate X, ,, S —
Xnn - = system’s Dynamic Model
Unit Delay
H (n—>n+1)
Update the current estimate Pnan Output 2: Estimate Extrapolate the estimate Pn+1n
uncertainty Uncertainty p, uncertainty |~ | 7
Pnn-1

Figure 9: Kalman filter block diagram

These two groups of equations form two phases in the process: the prediction phase and the
correction (or update in Figure 9: Kalman filter block diagram) phase.

Prediction phase:
Xiey1 = ApXy
Equation 11: State prediction Kalman Filter
— — T
Pry1 = AxPrAg + Qx
Equation 12: Covariance prediction Kalman Filter

The predictor estimates the next state X;. ¢, using the state matrix A and previous state X, as well
as the covariance Py 4, using the state matrix, previous covariance, transposed of the state matrix
and adding the process noise covariance Q. This process noise covariance matrix reflects the
exactness of the model and the probability of disturbances.

Correction phase:
Ky = PgHi (H P H + R)™!
Equation 13: Kalman gain Kalman Filter
J?k = 5(.'\]: + K(Zk - Hk)’C\]:)
Equation 14: State correction Kalman Filter
P = (I = Ky Hp) Py

Equation 15: Covariance correction Kalman Filter
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The corrector calculates the Kalman gain K}, used as gain factor to determine the weigh on the
measurement error (z;, — H, X, ). The predicted covariance is used for this, in combination with the
measurement function H; and the sensor noise covariance R.

Next, the process is measured z;, and used to compute the updated state estimate.

The last step is to calculate the updated error covariance estimate, out of the identity matrix |, the
calculated Kalman gain, the measurement function and the previous covariance.

In the way a Kalman filter is used later, in force control, x represents the state of the robot = [g] The

force and force derivative. The equations mentioned below are used in this experiment and first
require some manipulation, so it’s easier to code. The initialized parameters and further calculations
are done below in [5.5.1Force filtering and control].
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3.7.Inner/outer loop control
In most force control applications, a combination of position and force control is needed, a force is
applied, and its magnitude needs to be controlled, while executing a motion. The probability of a
motion error rises with a rising force value because the latter hinders the former.

X

Position Robot Environ- | Fs
control manipulator |y ment

Y

S~
| ~ Fc:!rce Comrol
Force Directions

control

T crmerre |
Force sensors

Figure 10: Inner/outer loop control block diagram

[30]

Inner/outer loop control as presented in Figure 10: Inner/outer loop control block diagram acts as a
cascade control system where the force controller generates control references for the position
controller and this way both controllers work together to achieve the desired output (force).

The inner loop functions as a traditional feedback control system with a setpoint, a process variable,
and a controller (in this case a position controller) acting on a process (the robot) by means of an
actuator. The inner loop controls the variable directly and thus gives a quick response to errors,
before its magnitude expands and transmits throughout the system, resulting in a poor performance.

The outer loop does the same except that it uses the entire inner loop as its actuator, plus an extra
controller, being both the force controller and the position controller. It regulates the force variable
in an indirect fashion, which is why it operates at a lower frequency and needs sensor data
processing for the feedback. The outer loop’s indirect nature possibly affects the process in case of a
continuously rising error but has the advantage to not oscillate excessively when the error fluctuates
at a high rate.

The inner loop disturbances are less severe than the outer loop disturbances. Otherwise, the position
controller will be constantly correcting for disturbances to the robot motion and unable to apply
consistent corrective efforts to the force control.

This way of controlling shows its applications in tracking applications [9 - 26 - 52], because the outer
loop either tracks a position or a force value. In 2016 [30] used PI control to evaluate an inner/outer
loop force control and good results came from this.
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4. Theoretical Analysis

4.1. Robot breakdown: clarifying robot jargon
The used robot in this Master Thesis is a 6-DOF, anthropomorphic, collaborative robot.

The robot exists of different mechanical parts, with different functionalities and properties.
The movements are possible thanks to joints in blue, the base, shoulder, elbow and the three wrists
in this case. Each of these joints move a link (grey bar/body/arm in between joints) and all higher
located joints.

Figure 11: UR3 collaborative robot

Joints can have 1 DOF, thus allowing one movement, shown in Figure 1: the Revolute, Prismatic and
Helical joints, or they have multiple DOF: Cylindrical, Universal or Spherical joints.

[R5
Revolute I
= % (R) ;
> .
% Prismatic Universal
(P) U)
N

Cylindrical
(€)

Spherical
Helical 5)
(H)

Half joints - (higher pair)
Cylindrical: 2 DOF
Universal: 2DOF

Full joints - 1 DOF (lower pair) Spherical: 3DOF

Figure 12: 1 DOF joints Figure 13: Higher DOF joints

The robots made by Universal Robots are made of 6 revolute joints. They all have a fixed rotation axis
and do not allow translations of any kind.

A combination of the six different joint angles describes the robot configuration and if the robot
sweeps all possible configurations, it creates a volume called robot workspace.

Two calculations used by the robot are the forward and inverse kinematics of the robot, these serve
as methods to calculate the robot end-effector pose relative to reference frame from given joint
angles and the joint angles when the end-effector pose is given respectively.
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The Denavit-Hartenberg formulas are used for this and follow out of a set of matrix calculations with
angles for each joint. In other words, the Denavit-Hartenberg representation divides the motion of
the kinematic chain of the robot in the relative motion between different links. As shown in the
picture below.

a4

- (l_; r
de

—

A

- - )
f\”:
21 NS P 1 Y % X ‘v >
di | < R
20 =
v
X X4
h &"Y

Figure 14: 6-DOF robot analysis per joint

Each relative displacement is described in the form of a matrix A, when multiplying consecutive
matrices from 0 to 3, we get the arm model and from 3 to 6 we get the wrist model.
First three values in each row are for orientation and the last value is for the position.

cosBicos(8, + 63) —sinb; —cosOysin(6, + 03) a,cosb,cosH,

Arm model: %As= sinelcqs(ez +63) cosf; —sinf;sin(6, + 03) azsinelc.osez
sin(6,+63) 0 cos(6,+653) d, + a,sinf,
0 0 0 1

c4c5c6 — s4s6  —c4c5s6 — s4c6 —c4s5 —d6c4ss
s4c5c¢6 + c4s6 —s4c5s6 + c4c6 —s4s5 —d6s4s5
s5¢6 —5556 ¢S5 dy+dgch
0 0 0 1
with c1=cos0; and s1=sin6;

Full robot model = °Az; x 3As = °As

Wrist model: 3A¢=

Joint, tool and workpiece coordinates

The robot environment can be described using different coordinate systems, depending on the origin
and its unit vectors. They are called joint, tool and workpiece coordinates and illustrated in [Figure 15
- Figure 16 - Figure 17].
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Figure 15: Robot joint coordinates Figure 16: Robot tool coordinates

»
{World-Coordinate
isystem

SR )= Teol-Coordinate
: system

Workpiece-Coordinate
system

ROBOOT-
Coordinate system

" © Learnchannel-TV.com

Figure 17: Robot coordinate systems

Joint coordinates

‘The angle-position and length of each axis of an articulate robot axes describes the orientation of
the TCP exactly. With the joint coordinate-system each robot axis can be moved particularly in
positive or negative sense rotation.’ [19]

The joint coordinates are a set of joint angles and are useful because no transformations are needed,
and the robot position and axes positions are easy to visualize.

Tool coordinates

When using tool-coordinates, we use the TCP, so we calibrate our TCP to the desired position and
from then on, we know exactly where our tool is located.

‘The following tasks are easier to program using the tool coordinate system:
e Turning the tool around the TCP (Tool Center Point)
e To maintain the speed at the TCP even with complex paths
e To push the tool in a certain direction’ [20]

Workpiece coordinates

‘The object coordinate system specifies how a workpiece is positioned in a fixture or workpiece
manipulator.’ [17]

If the workpiece is fixed during the whole process, or we know the movement of the fixture, this
coordinate system might be useful.
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4.2. Stiffness matrix and Jacobian of robot
Jacobian [7]

“The matrix which relates changes in joint parameter velocities to Cartesian velocities is called the
Jacobian Matrix. This is a time-varying, position dependent linear transform.”

The Jacobian consists of linear and rotational elements, defining the occurrence of these two
movements and using the rotation matrix in order to do so. Rotation matrices define the relative
rotation of coordinate frames.

— . A J
X
#colun J . J J
. _ vl v2 Vi .
y #rows= J = - q
z ) le w2 an
=J- q
. N
@ Time derivatives of joint
Y parameters (d;, 6,)
a):
Prismatic joint Revolute joint
linear along z-axis V=@xr
0 0
Linear J;
R0 R’,|0 X(d: _dxo—l)
1 1
no rotation rotation around z-axis
0 0
Rotational J ; 0
0 R0
0 1

Table 1: Jacobian matrix analysis

This is an important matrix because it is used in different control calculations, for example in the
Kalman filter and in controlling the end effector velocity by controlling the angular joint velocities.
The matrix is set up to calculate singularities in the robot. Where the determinant of the Jacobian is
equal to zero, a singularity occurs.

A singularity is when the robot is in a certain configuration and from then wants to move with a
linear velocity in cartesian space, but because of the configuration the joint velocities become
infinite. The robot then loses one or more degrees of freedom.
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"A robot singularity is a configuration in which the robot end-effector becomes blocked in certain
directions." [4]

Types of singularity in the typical collaborative robot arm: wrist (left), elbow (center) and shoulder
(right) singularities

Figure 18: UR singularities
Wrist singularity: axes of joints 4 and 6 become parallel. 85 = 0°, 85 = £180° or 65 = £360°.
Because the shoulder (1), elbow (2) and first wrist (3) move in the same plane, a singularity occurs
when we move the second wrist joint (4) to 0° or 180°. See picture below

-'

Figure 19: UR elbow singularity
[47]
Elbow singularity: stretched out arm. Axes of joints 2,3 and 4 are in the same plane. 63 =0°
Shoulder singularity: intersection point of the axes of joints 5 and 6 lies in the plane passing through
the axes of joints 1 and 2.

Stiffness matrix

This is the matrix notation of the resistance against external forces. In this 6-DOF robot the stiffness
matrix is a 6x6 matrix. The robot joint stiffness shows the resistance of the joints against forces (both
internal and external) because a force in one direction does not only initiate a displacement in this
same direction, but a matrix notation is also desired for the robot stiffness. The values also differ in
different directions, which gives a multi-dimensional set of values.

[Kle{uye = {F}* (114

Where [K]¢ is the element stiffness matrix {U} is the vector of nodal displacements for the nodes
contained in the element and {F}¢ is the nodal load vector, which specifies which forces are applied to
the nodes contained in the element.
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The stiffness matrix is not given by the manufacturer but can experimentally be approximated [40].
This is beyond the scope of this research, but it can be noted that the stiffness values are dynamic
and change depending on the robot configuration.

Stiffness control can either be passive or active [18]. In passive stiffness control the robot arm acts as
a spring, where the stiffness is pre-set and constant. This control is equivalent to feedback control
because first an action needs to take place before a control action is introduced. In active stiffness
control the spring constant is programmable trough force feedback. This is equivalent to feedforward
control because it adapts according to a possible following action, for example when following a
trajectory, the active stiffness depends on the next reference point.

To control the stiffness of the robot, the active stiffness values can be changed. The following
formulas demonstrate the relationship between the Jacobian and the stiffness control.
With 1 being the joint torque matrix, K being the passive stiffness matrix of the robot and Aq the
change in robot pose.

T = KgAq

Equation 16: Stiffness - robot joint torque in function of stiffness and pose difference
Ax = J(qQ)Aq = Aq = ] 1Ax
Equation 17: Stiffness - cartesian position change in function of pose change
1=]TFoJTF =Ky "Ax o F = ] TKy] 1 Ax
Equation 18: Stiffness - torque in function of force
With K, =) TKyJ '=F = K,Ax
Equation 19: Stiffness - force in function of cartesian position change

Equation 16: Stiffness - robot joint torque in function of stiffness and pose difference can be used for
the active stiffness as well, where the active stiffness matrix is a diagonal matrix with elements in the
range of 300-2000.

The total stiffness of the robot is the active plus the passive.
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Universal Robots is a company founded in Denmark and is now world’s largest manufacturer of
collaborative robots [50]. Their values of adaptability and reliability show in the cobot functions:
‘flexible to deploy, easy to program, fast to set up, budget-friendly and safe’. [42]

They have two product series: the normal UR (CB-series) and a newer UR e-Series. The number
behind the ‘UR’ stands for the payload capacity. The e-serie robots have the same payloads, except

for a new UR16e.

Experiments are a helpful tool to gather information about the differences between these robots, as
a verification tool datasheet are published by the manufacturers and summarized below.

UNIVERSAL ROBOTS

UR3 Technical specifications Iltemno. 110103

6-axis robot arm with a working radius of 500 mm / 19.7 in

Weight: 11kg/ 243 Ibs
Payload: 3kg/66lbs
Reach: 500mm /19.7in
Joint ranges: +/-3607

Infinite rotation on end joint

Speed: Allwrist joints: 360 degrees/sec.
Other joints: 180 degrees/sec.
Tool: Typical 1 m/s. /39.4 in/s.

Repeatability: +/-0.1 mm/ +/-0.0039 in (4 mils)
Footprint: @128mm /5.0
Degrees of freedom: 6 rotating joints
Control box size (WxHxD): 475 mmx 423 mm x 268 mm / 18.7x 16.7x 106 in
1/0 ports: Controlbox  Tool conn.
Digitalin 1 2
Digital out 16 2
Analogin 2 2
Analog out 2 -
1/0 power supply: 24V 2Ain control box and 12 V/24 ¥ 600 mA in tool
Communication: TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX

Ethemet socket & Modbus TCP

userinterface on 12 inch touchscreen with mounting

Noise: Comparatively noiseless
IP classification: P64

i Approx. g a typical program

15 advanced adj

Materials: Aluminum, PP plastic
Temperature: The robot can work in atemperature range of 0-50°C*
Power supply: 100-240 VAG, 50-60 Hz
Cabling: Gable between robot and control box (6 m / 236 in)

Cable between touch screen and control box (4.5 m / 177n)

#) At high continuous joint speed, ambient temperature s reduced

Figure 20: UR3 datasheet
[41]

U R3e technical details

Performance
Power consumption Approx. 100 W using a typical program

Safety System All 17 advanced adjustable safety functions
incl. elbow monitoring certified to Cat.3, PL d
Remote Control according to IS0 10218
Certifications by TUV Nord EN IS0 13843-1, Cat.3, PL d,
and full ENISO 102181

F/T Sensor - Force, x-y-z

Range 30N
Resolution 10N
Accuracy asN
F/T Sensor - Torque, x-y-

Range 10Nm
Resolution 0.02Nm
Accuracy 0.10Nm

Control box

Specification

Payload 3kg/66lbs Features
— 500mm /197 in P classification 1Paa
Degrees of freedom 6 rotating joints DOF IS0 Class Cleanroom 6
Programming Polyscope graphical user interface on 12 Ambient temperature range  0-50°
inch touchscreen with mounting /0 ports Digitalin 7
Movement Digital out 16
Analog in 5
Pose Repeatability +/-0.03 mm, with payload, per IS0 9283 Analog out 2
Axis movement robot arm  Working range  Maximum speed £00 iz coutrol, £ sepersied
high speed quadrature digital inputs
Base £360° £1807/5
1/0 power supply 24v24
Shoulder +360° +1807/s
Communication Control frequency: 500 Hz
Elbow 4360 +180°/s ModbusTCP. 500 Hz signal frequency
Wrist 1 +360° +3607/s ProfiNet and EthernetIP. 500 Hz signal
- - - frequency
- Lo ES00E USB ports: 1 USB 2.0,1 USB 3.0
bosired Aafid 13507¢ Power source 100-240VAC, 47-440Hz
Typical TCP speed 1m/s/39.4in/s Humidity 90%RH (nom-condensing)
Features
Physical
1P classification 1P54
Control box size (WxHxD) 475 mm x 423 mm x 268 mm
150 Class Cleanroom 5 187inx167inx10.6in
Noise Less than 60 dB(A) Weight 13kg/ 287 Ibs
Any Orientation Materiak teel

Figure 21: UR3e datasheet
[43]

Repeatability is +/- 0,2dmm.

Repeatability is 0,03mm.

No built-in force/torque sensor

Has a built-in force/torque sensor

Size specifications

Footprint @128mm

Footprint $128mm

Reach 500mm

Reach 500mm

Weight 11kg

Weight 11,2kg
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Figure 23: UR3e workspace

Figure 22: UR3 workspace

[45]

F/T specifications: for UR3 HEX-E/H QC Sensor

Range 200N

Range 30N

Resolution 0,2 for X-Y & 0,8 for Z

Resolution 1N

Accuracy <2% so <4N

Accuracy 3,5N

DATASHEET

(EDrobot
1. Datasheet

11. HEX-E QC

General Properties 6-Axis Force/Torque Sensor Unit
Fxy Fz Txy Tz

Nominal Capacity (N.C) 200 200 10 6.5 [N] [Nm]

Single axis deformation at N.C (typical) +17 +03 |25 |[+5 [mm] [
+0.067 (£0.01 |£25 (x5 [inch] [7]

Single axis overload 500 500 500 500 [%]

Signal noise” (typical) 0.035 015 0.002 |0.001 |[N][Nm]

Noise-free resolution (typical) 0.2 0.8 0.01 0.002 |[N][Nm]

Full scale nonlinearity <2 <2 <2 <2 [%)

Hysteresis (measured on Fz axis , typical) <2 <2 <2 <2 [%]

Crosstalk (typical) <5 <5 <5 <b [%]

IP Classification 67

Dimensions (H x W x L) 50x71x 93 [mm]
197 x2.79 x 3.66 [inch]

Weight (with built-in adapter plates) 0.347 [kg]
076 [Ib]

[44]
Figure 24: HEX sensor datasheet

Table 2: Specifications of both UR3s
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Following the information from above, it can theoretically be concluded that:

e The UR3e is more precise, with a repeatability of 0,03mm instead of UR3’s 0,1mm

e Both robots have the same size, except for the three wrists. These have different proportions
resulting in a 2mm total height difference, but no difference in workspace reach

e The robot joint speeds are equal

e Because the UR3 has an external F/T sensor, this accuracy and resolution is better than the
UR3e’s
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5. Practical experiments

Previous mentioned information is important to conduct experiments with both cobots. First the
most important information about the used components is given, then the first experiments that
were conducted to test functions and get to know the commands.

Finally, more advanced experiments are described, these are the ones that give results for the
research and combine multiple basic functions.

5.1. Laboratory setup
In the laboratory the following equipment is used in the experiments: a desktop computer with
Windows 10 (6), a Universal Robots UR3 CB-series robot (3), with corresponding Control box (2) and
with this Control box there comes a teach pendant (1). Because the CB-series do not contain an
internal f/t-sensor, a HEX-E QC sensor (4) with corresponding compute box (5) is attached.

This figure is for the UR3, for the UR3e the setup is similar except that there is no external sensor or
compute box.

O 3 4
@

%

Force/Torque data

-l
@H

Cable  motion + force 36 byte UINT 4 byte UINT
| e data response Iproperlv requests

Speed + force data

Socket bind/receive
Client — Server

Cable

Motion + force Q‘ <

commands
Start signal

Figure 25: Laboratory setup communication flow

Figure 25: Laboratory setup communication flow shows the hardware + software used in the
laboratory for the experiments. The data flow is displayed as well.

The compute box, control box and computer are connected to the same Local Area Network with
ethernet cables and communicate this way. For the communication between the PC and the robot
control box a TCP IP communication is set up because this is a connection-oriented protocol and
between the PC and the sensor compute box a UDP communication, which prioritizes speed over
connectivity.

The computer is equipped with Python, MATLAB and Excel. This component in the communication is
used to send requests and receive and process data, using Python. Excel files are created to store the
received data with any computed data, which can later be used in MATLAB for quick computations.
In the same Python program, the PC first sets up the UDP socket connection and is then able to send
requests to the compute box in order to set the data transmission parameters (read-out speed,
biasing, filtering) as well as the start signal to send sensor output data. In other words, another
responsibility of the PC is setting the communication parameters.

The robot controller box contains both digital and analog input and output sockets which can be used
for interfacing other components or system components itself. It receives data from both the Teach
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Pendant in the form of motion and force commands and the robot in the form of position, speed and
force data. The control box transfers information to or reads information from the computer when
stated by the Teach Pendant.

The attached teach pendant is used to write the motion and force commands of the program to be
executed. The software installed is called PolyScope and allows the end user to write programs using
built-in UR Caps and visual representations of robot positions. The teach pendant allows a USB
connection to load and run programs.

“Compute box: A unit provided by OnRobot along with the sensor. It performs the calculations
needed to use the commands and applications implemented by OnRobot. It needs to be connected
to the sensor and the robot controller.” [31]

5.2. UR3 setup
Before being able to start conducting experiments and in order to work efficient and achieve good
results, the hardware setup of the robot is important. The basic and most important steps are
explained in this paragraph because this provides extra information on how difficulties or problems
during the laboratory sessions are tackled.

R Universal Robots Graphical Programming Environment -+ x R About -+ x

PolyScope Robot User Interface ©| |

Version | Legal

Please select

Universal Robots Software: URSoftware 3.14.3.1031232 (Oct 20 2020)

Safety Processor A: URSafetyA (471)
UNIVERSAL

R 0 B OTS Hostname: ursim
IP address 192.168.191.128 (Not connected to network!)

S/N: 2018339999

UNIVERSAL ROBOTS
About www . universal-robots.com
Copyright ® 2009-2020 - Universal Robots A/S

Covered by U.S. Patent No. 8,779,715

Figure 27: UR3 'About' tab

Figure 26: UR3 start screen

Start screen of UR3, when turning on the robot this screen appears and allows different actions.

‘Run Program’ is used to move the robot around and run a built program, when the program does
not require further changes, this gives a better overview of the variables.

‘Program Robot’ is used to create and browse through created programs and load these to the robot,
with the goal to change the code.

‘Setup Robot’ is the settings screen of the robot, internet, language, and even time settings are
changed here.

‘About’ gives more information about the robot.

The first step to be taken is ‘Setup Robot’ and then ‘Initialize Robot’, to configure the mounting of
the robot to the real one. When programming the robot, the mounting will be set as the default view
and an accompanying coordinate system is created accordingly.

It is possible to move the robot manually using digital arrow keys, so a logical mounting should be
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chosen depending on the relative position of the manipulator to the robot.

30

R Universal Robots Graphical Programming Environment —+ xR Universal Robots Graphical xR Universal Rabots Graphical Programming Environment
Setup Robot @ Initialize Robot 7] Robot Mounting and Angle
M e that the atale on an payicad are camecl and press the bultEn Wi the green ican a i alze the 1250t
ritializa Robot
Rooat @ Normal
Callbrate sereen
STA  OFF
uRcaps
0.60]z
Network
default Load installation
Language [
Set password
UASoftwars 3.14,3.1931232 (et 20 20201 Configure TCR
Tim

! configure Mounting
Update

@ OK

Back Aotate Robot Base Hounting| daase || & | 12000 @ || asca

Figure 28: Setup Robot - Mounting initialization

The next thing to do in ‘Setup Robot’ is connect the robot to the Ethernet network by assigning it an
IP address. DHCP automatically provides an IP address, while the static option gives the possibility to

choose yourself.

IR Universal Robots Graphical Programming Environment -+ x
Setup Robot @
Initialize Robot NEtwork
select your network method
@ oHer

Calibrate Screen
@ static Address

URCaps @ Disabled network

¥ Not connected to network!
Network detailed settings:

IP address
Language
Subnet mask:

Defalt gateway:
Set Password

Preferred DNS server:

Time Alternative DNS server:

Back

Figure 29: Setup Robot - Network settings

Now the robot is ready to be programmed.

R Universal Robots Graphical Programming Environment -+ X
@ File 18:25:40 cccc O D File 18:28:38 Cccc O
Program | Installation | Move |10 |'Log Program | Installation | Move | /O | Log

<unnameds= Command | Graphics | Structure | Variables |

New Program < Robot Program

— <empt) Program

Load From File

- The window on the left shows the program-tree,

-# Use the Next and Previous buttons to navigate through
the program-tree.

 Use the Structure-tab to modify the program tree,

| Prer—

Use Template

‘ Pick and Place ‘

‘ Empty Program ‘

[] Add BeforeStart Sequence
[ set Initial Variable Valuss
Q” H H <---p Program Loops Forever

I DO D ———

Figure 30: UR options in creating or loading a new program

There is the opportunity to load a program, from a USB or from the internal storage of the teach
pendant or create a new program.

Programs are written in a node structure, to make the steps visualizable and when running the code,
the active step is highlighted. New code is added in the ‘Structure’ tab on the top right of the screen
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and the parameters of the code can be adjusted in the current visible tab ‘Command’.

Universal Robot provides prebuilt commands in the form of UR Caps, that can be downloaded and
only require variables to complete them.

“UR Capabilities or URCaps are hardware and/or software extensions for the Universal Robot system.
The purpose of URCaps is to seamlessly extend any Universal Robot with customized functionality.
Using the URCap Software Platform, a URCap developer can define customized installation screens
and program nodes for the end user. These can, for example, encapsulate complex new robot
programming concepts, or provide friendly hardware configuration interfaces” [29]. This finds it
purpose when extending the cobot’s functionalities with a camera or a force torque sensor.

During the program it is useful to store data, this is done using variables. Different data types such as
lists, strings and numbers can be stored this way and are available for calculations further down the
program tree and monitoring in the following screen [Figure 31: UR demonstration 'Variables' tab].
The UR program also allows to set waypoints and save these under a name, to be reused later.

Program | Installation | Move [ 1/0 [ Log ‘l
Move_1 command | Graphics | Structure | Variables |
V BeforeStart ‘ Clear
= Step=0 =
— Aotionsi0 ] Variable | Value
Actions 2
V¥ Robot Program St 5
¢ ¥ Loop 3times P
¢ ¥ Move)
B o Waypoint_1
= Stepi=1
=[Actions=Actions|
¢ ¥ Move)
® Waypoint_2
= Step=2
= Actions:=Action
| i D
Rlel [ =
@ simulation ] EI@ Speed =—=—=1_J100% | 4 Previous || Next 5
G Real Robot pee

Figure 31: UR demonstration 'Variables' tab

Before any program with movements is run, the robot moves to the first set position. When re-
running the program to test its functions, it can be time consuming to move the robot back and
forth. A given solution is to not use the real robot and simulate the experiment using the button in
the bottom left corner. The movements of the robot can be tracked in the ‘Graphics’ tab of the

program.
3 File 13204 CCCC ()
Program | Installation | Move | /O | Log
Move_1 command | Graphics | Structure | Variables |
L ROEY PAN 4 | 4
W
m]
Ll g
&
41 I [ Tv
A 4
[ ’T”i‘ speed ==————J100% Next B

Figure 32: UR demonstration of simulation and 'Graphics' tab
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Because both UR3 and UR3e use the same software, the programs written on the UR3 can be read
and executed by the UR3e and vice versa, except when using the URCap F/T ‘Control’, this one is
stored under the name of ‘Force mode’ on the UR3e. This is because the UR3e has an internal force
torque sensor and the UR3 has an external one, compatible with the following URCaps.

F/T Center F/T Fix and rotate
F/T Control F/T Guard

F/T Insert box F/T Move

F/T Route F/T Insert part
F/T Search F/T Stacking

F/T Waypoint F/T Zero

F/T Set load

Table 3: URCaps accompanying OnRobot HEX F/T sensor

Important specifications of UR and sensor

UR3 UR3e
Update frequency (control period) | 125Hz (8ms) 500Hz (2ms)
Force resolution in Z-direction 0,8N IN
Repeatability 0,2mm 0,03mm

Table 4: Important specifications of UR robots

The accuracy of the sensor compute box is limited to one decimal due to internal filtering when
operating at a frequency up to 500Hz. Higher decimals are possible when receiving data at a lower
frequency. [31]

UR Script commands

movel(q, a, v, t, r) linear movement in joint-space to position g,
with time as priority

movel(pose, a, v, t, r) linear movement in joint-space to pose, with
time as priority

moveC(pose_via, pose_to, a, v, r, mode) circular movement in tool-space.

moveP(pose, a, v, r) blend circular in tool-space and move linear in
tool space to pose

pose_trans() transform the current pose to set a new origin

socket_open(address, port) set up TCP/IP ethernet communication socket
with host IP address and port number.

socket_read_ascii_float(number) reads a number of ascii formatted floats from
the socket

get_actual_tcp_pose() returns current tool pose (X, Y, Z, Rx, Ry, Rz)

get_actual_tcp_speed() returns current TCP speed (X, Y, Z, Rx, Ry, Rz)

speedL(speed_vector, a, t, a_rot) linear movement in cartesian space with
acceleration a and then constant speed vector

force_mode(taskframe, selectionvector, taskframe is the current tool pose,

wrench, type, limits) selectionvector and type combine for the force
control direction ([0,0,1,0,0,0] and 2 for Fz).
Wrench sets the magnitudes and limits are the
speed values.

Table 5: Most important used UR Script commands
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5.3. Preliminary experiments
Getting to know the basic robot and Python commands.

UR3 (CB) UR3e Compute box PC
IP addresses until 158.42.206.10 158.42.206.89 158.42.206.1 158.42.206.7
11/04:
IP addresses after | 192.168.1.132 192.168.1.133 192.168.1.98 192.168.1.103
11/04:
Personal laptop IP | 192.168.1.102

Table 6: IP addresses of robots, compute box and computers

It is important to state the way different commands and functions work, in every application it is
important to test the basic functions separately before trying complex tasks. This way it is possible to
verify the accuracy and even feasibility of the application, possible system faults, shortcomings and
calibration errors are identified this way and considered when using these same commands in next
experiments.

Especially when working in a real environment and when you are new to the subject it is
recommended to test the hardware and software functionality. As research the UR Script manual
served its purpose [48] to know the different commands and their required parameters.

5.3.1. UR—=PC position communication [Appendix | — UR — PC communication]
Goal

In the pursuit of robot remote control using the computer, this experiment is set up with the goal of
connecting the robot to the computer and transferring data between the components.

In this particular experiment the goal is for the robot to send its tool center point position to the
computer and for the computer to send the next position coordinates to the robot. This is read out
and the robot executes the movement.

Theory

TCP IP socket communication.

TCP stands for Transmission Control Protocol and is an IP protocol where first a connection is set up
between the two components using the host’s IP address and a specific port number. The connection
is set up with a three-way-handshaking and only after this is executed, data transfer is possible.

Host Server
= P o
)’\(\
__Syn
Syn-Ack_
Ack

Figure 33: TCP IP: Synchronization, synchronization acknowledgement and acknowledgement

Since TCP is connection oriented, it provides a reliable connection, and the data delivery is in-order. If
by mistake data is sent to another port, this gives an error because the connection is refused.

In Python a TCP socket connection is classified as a stream socket and coded: socket.SOCK_STREAM
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Setup

This experiment is executed on the UR3, a socket TCP IP communication is set up with the PCand a
Python program is written. The robot stores its start position in a variable and sends this to the
computer. The computer is used to send a waypoint in cartesian coordinates, the Teach Pendant
reads this, stores it in a variable and moves to this waypoint. Next, the robot measures its position
and moves 250mm in the z-direction, after which it measures its position again and moves 250mm in
the negative z-direction. To finish it returns to the initial position.

Results

This eliminates programming every waypoint on the Teach Pendant, because it is easier to change
the Python code and have a compact execution code on the Teach Pendant. The downside of this is
that knowledge is needed about the used coordinate system, due to the robot workspace limitations.

After doing more experiments this method can be seen as inefficient, because the teach pendant
allows for more than relative movements. It can be made possible to repeat the first steps, where
the computer sends coordinates to the robot and the robot moves towards this point, to do the
other movements as well and thus eliminating coordinate calculations.

Another simplification would be to save each received value as a different value, making it easier to
move back to a certain point.
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5.3.2. Basicforce control  [Appendix Il — Basic force control]

Goal

To test out the force control function of the robot, this experiment is set up. This is not state-of-the
art but vital to check all functions. The goal is to move the robot to the surface and for it to maintain
a certain value while executing a horizontal movement.

Theory

With the UR3’s external sensor it is possible to load URCaps onto the Teach Pendant and expand the
prebuilt commands for easy integration of the sensor module.
F/T Control allows different force control configurations.

i | il ‘1"J‘I!|||li||r Lkl

Figure 34: UR3 F/T Control parameter options

Setup

The robot moves its tool with movel to a safe distance from the table, making this motion harmless
so speed and trajectory do not have to be controlled. From this position, Movel is used to have a
controlled vertical trajectory until a vertical force of 2N is measured, meaning the robot touches the
surface. Using F/T Control and F/T move it is possible to control the applied force along a set of
waypoints, a direction or a predefined absolute or relative route. The motion back is the same: first
Moverl to a safe distance and then MoverJ to the initial position.

Figure 35: Movements UR3 of basic Force control.
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The first and last movement are not in a straight line because these are executed with joint movements, while the other
vertical ones are executed in cartesian space. The force control movement path in this experiment is the arc on the green
surface.

Results

The robot successfully executes this movement and in the ‘variables’ tab it is possible to monitor the
output values, being Fx, Fy, Fz, Tx, Ty, Tz and F3D.
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5.3.3. Remote robot force reading [Appendix IIl — Remote robot force reading]

Goal

The goal is to connect the computer to the robot, in order to send and receive force data. This allows
for displaying results and monitoring the process, because it is possible to keep a data record.

Setup

On the Teach Pendant a port is opened to establish a socket communication, using the following
command with the computer IP and a chosen port socket_open(“158.42.206.7”,30000). The
connection is realized by the computer via Python, where a socket.bind command is used with its
own IP address and the same port as used by the Teach Pendant.

The robot moves the tool towards the surface and executes a force control movement. In parallel it
updates and sends a variable every 8ms, containing the Fx, Fy and Fz values as a String.

The computer receives this, decodes this byte array and then splits it into a list of three Strings.
Finally, it prints them with their label and is able to convert them into floats for calculations.

Results

This provides quantitative feedback for the force control application. This program sets up the base
for calculations, data storage and further evaluation of processes, because data transmission
between two components is possible. This is an example of distributed control.

The output looks like this:

Figure 36: Remote robot force reading Python output

The data “b’p...” is the actual received, encoded data from the robot. This is then decoded and split
into the desired Fx, Fy and Fz values, which are displayed in the next line.
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5.3.4. Remote control of UR3/UR3e [Appendix IV — Remote control]
Goal

The goal is to set up a connection between computer and robot, to make communication possible
without the Teach Pendant.

Setup

By writing full commands in byte form and sending these to the robot, it should be possible to
control the robot.

In order to create a TCP socket communication with the robot, the socket needs to be opened and
this has to be written on the Teach Pendant.

Results

This was unsuccessful on both UR3 and UR3e. After further research it was noted to remove the
Teach Pendant from the control box in order to make this work. This was not tested, because there
was still no guarantee.

Figure 37: UR remote control output error display
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5.3.5. Attempts direct sensor reading [Appendix V — Attempt direct sensor

reading]
Goal

To improve the force control of the robot it would be useful to gather information at a higher rate
than the robot can, this gives a buffer for calculations and the opportunity to diminish noise and data
irregularities. Different experiments were set up to create a direct connection with the sensor,
without the use of the Teach Pendant.

The first one is reading the webpage of the sensor, where the data is available for monitoring. When
typing the IP address of the compute box, a website is visible with the live values. The goal is to
extract data from this webpage and display it on the computer.

The second one is by creating a connection with the compute box. A TCP connection is set up and
data requests are sent for the compute box to react to.

Theory

Web scraping is the process of extracting content and data from a website. The HTML code is
extracted, and this content can be used elsewhere. It is used by search engines as Google, price
comparison sites and more.

First the webpage is visited, and its URL address is used, then by inspecting the page the HTML
structure becomes visible and allows to locate where in the structure the data to be extracted is
located. When all of this is known, a Python program can be written to move through the structure
and extract and store the HTML data.

Finally, another attempt was by manually assigning the compute box as the listener in the
connection. In the code a TCP client is assigned and a server, so it should be possible to set the
compute box of the sensor as the server.

Setup

Web scraping:
The first step is to find the website and expect its HTML code to find the data to be extracted.
For this experiment this is the sensor compute box IP address, but the old one: 158.42.206.

™AL B

Pl

lease select the detected device/s on the network

(<]

=

HEX 6-Axis Force/Torque sensor RG2-FT Gripper RG2 Gripper

RGS Gripper Dual Gripper Gecko Gripper

ol © 90 Gk A =
Toghacshzes 7H 5220 Oderce. Desimark (54 imogarssotcm

Figure 38: OnRobot HEX F/T Sensor web display
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After selecting the sensor, the force data is visible, and it is possible to see where the data is stored in
the HTML code.

Figure 39: OnRobot F/T Sensor web display HTML code for sensor reading

The next and last step is to write the Python code using the BeautifulSoup and requests package and
run it to display and store the extracted data.

Compute box connection:
In its manual [Figure below] it is said to be possible to read data via a TCP connection on port 49151.
Requests should be sent to the robot in the form of bytes.

2.4.4.1 GET THE LATEST F/T READING

2.4.4.1.1 REQUEST

A simple command must be sent to the device as a request that has the following structure:

The byte count of the request must be 20 bytes.

Figure 40: OnRobot F/T Sensor compute box request data format
Results

Web scraping:

The experiment was successful in the way that HTML structure is extracted and available, but the
results were unsuccessful because the force data is not shared in the HTML code of the website. A
private, secured connection is set up and thus unavailable for the Python program to access this
information.

Compute box connection:
The failure of this experiment is possibly due to a poor data byte conversion or socket setup.
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(

Traceback (most recent call last):

File "E:/Experiments/d.RemoteControl/TestReadWebpage.py”, line 15, in <modules

for i in tablel.find_all('td"):

AttributeError: 'NoneType' object has no attribute 'find_all
<Response [200]>
<!doctype html>
<html lang="en">
<head>

<meta charset="utf-8">

ctitles</title>

<base hrefz"/">

<meta name="viewport" content="width=device-width, initial-scale=1">
image/x-icon" href="/assets/images/misc/favicon.png">
<link rel="stylesheet" href="styles.12b29e5c3735a91777e8.css"></head>
<body>

<app-root></app-root>
<script types"text/javascript" src="runtime.a66f828dcaSeeebd8ed?2. js"></scriptrescript
type="text/javascript” src="polyfills.dec546e@e@017b45c7d2.js"></script><seript type="
text/javascript” src="scripts.8cf4f555c2467d7419e 35 ></script><script type="text/
javascript” sre="main,72b2c6f707bdb4815631.35"></script></body>
</html>

content:
b'<!doctype html>\n<html lang="en">\n<head>\n <meta charset="utf-8">\n <title></title>\
n <base href="/">\n <meta name="viewport" content="width=device-width, initial-scale=1
*>\n  <link rel="icon" type="image/x-icon" href="/assets/images/misc/favicon.png">\n<link
rel="stylesheet" href="styles.12b29e5c3735a917778.css"></head>\n<body>\n <app-root></
app-root>\n<script type="text/javascript" sro="runtime.ab6828dca56eeb90e02.35"></script
><script type="text/javascript® src='polyfills.dec646e0eddlfb4scTd2. js"></scripto<script
type="text/javascript" src="scripts.8cf4f555c24F47d7419. 35" ></scripto<script type="text/
javascript* src="main.72b2c6f707bdb4815631.§s"></script></body>\n</html>\n"

<!DOCTYPE htal>

<html lang="en">
<head>

<meta charset="utf-8"/>

<title></title>

<base href="/"/>

<meta content="width=device-width, initial-scale=1" name="viewport"/>

<link href="/assets/inages/misc/favicon.png" rel="icon" type="image/x-icon"/>

<link href="styles.12b29e5c3735a91777e8.cs5" rel="stylesheet"/></head>

<body>

<app-root></app-root>

<script snc="runtime.a66f828dca56eeb98e02. 5" type="text/javascript”></script>cscript src
="polyfills.dec546e0e801fb45c7d2.35" type="text/javascript"></script><script src="scripts
.8cfaf555c24F67d7419. Js" type="text/javascript"></script>cscript src="main.
72b2c6£707bdb4815631.35" type="text/javascript"></script></body>

</html>

None

Process finished with exit code 1

Figure 41: Direct sensor reading - webscraping1 with Beautifulsoup

Traceback (most recent call last):

File "E:/Experiments/e.AttemptsDirect ing/Testl py", line 9, in <
modules

req = urllib.request.urlopen('http://192.168.1.98/#/devices')

NemeError: name 'urllib' is not defined
<!doctype html>
<html lang="en">
<head>

<meta charset="utf-8">

<titles</title>

<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1"s

<link rel="icon" type="image/x-icon" href="/assets/images/misc/favicon.png">
<link rel="stylesheet" href="styles.12b29e6c3735a91777¢e8.css"></head>
<body>

<app-root></app-root>
<script type="text/javascript” src="runtime.a66f8280ca56eeb90e02. 5" ></seript><seript
type="text/javascript” src="polyfills.dec546e0eB01b45c7d2. js"></soript><soript type="
text/javaseript” src="scripts.8cfaf555c24f67d7419e. js"></seript><seript type="text/
javascript" src="main.72b2c6f707bdb4816631. js"></script></body>
</html>

Process finished with exit code 1

Figure 42: Direct sensor reading - webscraping2 with requests

Figure 43: Direct sensor reading - compute box direct communication error



UNIVERSITAT ¢* o % ESCUELA TECNICA

POLITECNICA i ﬁ SUPERIOR INGENIERIA 43
DE VALENCIA ;)Rj,*' INDUSTRIAL VALENCIA
5.3.6. Force control with excel writing [Appendix VI — Force control with excel
writing]

Goal

Gathering and displaying force data on the computer is great for verifying the output and checking it
on program errors. If the extracted data needs in-depth analyzation or further calculations, it is more
useful to store it in an excel file. The goal here is to create a Python program that creates an excel file
and writes data into it.

Setup

First communication is opened, the robot moves to the table with Movel, then force mode is started,
with a vertical force of 5N. Movel is used to make a horizontal movement on the table.

In the subtask of the UR Script the speed values are retrieved; an array with the first three values
being the cartesian speeds, then the other three are angular velocities. (Universal Robots).

The movement on the table is in the negative Y-direction, so when the norm of the y-speed value is
bigger than 20mm/s (0.02) the force control movement has started and thus the vertical force has
been applied to the table. This is the ideal condition to start sampling force data.

A trigger signal “var_start_send” with value 1 is send at this point in time. This is read by the
computer and the robot. For the robot this is the start signal to send force values and for the
computer to read messages received from the robot, print them, and store them in an Excel file as
well.

In the Python program, an excel file is created using ‘XIsxWriter’, a workbook is opened and given a
name, which will be the document name, within this workbook a worksheet is created, where the
data will be written onto. worksheet.write(a,b,c) allows to write data c to row a and column b, this
way the first row in the file contains the data titles, being time, Fx, Fy and Fz.

Every 8ms the computer receives the force values and calculates the elapsed time, and this is
repeated during 2 seconds. Depending on the application it is possible to choose for how long
samples are read and stored.

This application is used in further applications to store and evaluate data efficiently.

Results

This base code can be used to story any kind of information from the Python program to an Excel file.
Information can be saved, transferred, and manipulated to create graphs and compare different
experiments.

The output of this program is as expected, an excel file is created under a given name, with on each
row the total elapsed time, force in X, force in Y and force in Z.

Pl 0.015994 0.5 -1.8 -5.50079
0.023991 0.5 -1.8 -5.50079
L3 0.031989 0.5 -1.8 -5.60083

0.039986 0.4 -1.6 -5.80078
[ 0.047984 0.4 -1.4 -5.90082
[l 0.055983 0.4 -1.5 -6.00079
[l 0.063979 0.4 -1.5 -6.00079
E 0.072007 0.4 -1.5 -6.10083
gi*j 0.080004 0.4 -1.5 -6.20081
Al 0.087979 0.4 -1.5 -6.10083
Py 0.095979 0.4 -1.6 -5.80078
QE} 0.103966 0.4 -1.6 -5.80078
gEy 0.111981 0.4 -1.5 -5.70081
Y 0.119975 0.4 -1.5 -5.60083
ey 0.127977 0.4 -1.5 -5.40082
Wl 0.135959 0.4 -1.5 -5.40082
gk} 0.143956 0.4 -1.5 -5.40082
gl 0.151973 0.4 -1.5 -5.20081
Pl 0.159978 0.4 -1.5 -5.20081
Al 0.167965 0.4 -1.5 -5.10083

Figure 44: Force control with excel writing Excel output of force values
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5.3.7. Adaptive force control [Appendix VII — Adaptive force control]

Goal

The robot force control action contains a lot of noise, and this causes oscillations in the force control
action. By applying direct sensor reading, noise is filtered out trough averaging or a second order
filter and from this value a new calculated value is send to the robot as reference force value.

Any constant offset due to disturbances will be filtered out, as well as periods where the force value
differs from the reference, especially if the force varies at a slow rate.

Theory

The idea behind this experiment is described with examples in the table below.

Step Fres Faverage ef: Compensated:
Frefl - Faverage FTef e

1 5 4 1 6

2 6 5.2 -0.2 5.8

3 5.8 5.05 -0.05 5.75

Step Frep Faverage ef: Compensated:
Frefl - Faverage Fref e

1 5 6 -1 4

2 4 4.8 0.2 4.2

3 4.2 5.05 -0.05 4.15

Table 7: lllustrative examples adaptive force control experiment

Every 8ms the robot updates its force control value to Fy..r and Fy.f4is the true desired force value
(5N in this case).

Setup

The computer is connected to the Teach Pendant with a TCP IP connection and to the sensor
compute box with a UDP IP connection, initialized in the Python code.

The robot moves towards the surface and once contact is made, force control is applied, and the tool
is moved in one direction over a fixed distance. In parallel of this process, every update period of
8ms, the teach pendant reads and stores the received value from the socket connection as a variable
‘f_correction’. Force mode is activated and chooses the type of force control and its magnitude. For
the magnitude of the force ‘f_correction’ is used, updating the force setpoint every 8ms.

The computer reads sensor force data every 2ms and every 8ms computations are done and a
compensated value is sent to the teach pendant.

Results

Output of the program can be found in [Figure 45: Output graphs adaptive force control].
The multirate filter with averaging and without compensation has the highest peak force and reaches
a steady state just after 4seconds, while with compensation this is reduced to just under 3 seconds.
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The second order multirate filter is overall better, the compensation gets the force control to steady
state in under 3 seconds.

average_compensation average_noCompensation
30 30
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25 25 1
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Figure 45: Output graphs adaptive force control

Overall, this method works poorly. The desired value is set to 5N, and this is only reached after 4
seconds. It is better to use a proportional control, that reacts to the force error with an added gain,
instead of this experiment which is similar to proportional control but with a gain of 1.

Once the desired value of 5N is reached, the output value is stable when compensation is active.
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Figure 46: Output graphs adaptive force control - stable
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5.3.8. Trapezoidal Velocity Profile PD force control [Appendix VIII — Trapezoidal
speed trajectory]

Goal

For the inner loop control of the force control and filtering experiments, motion control is
demanded. Therefore, a trapezoidal velocity profile generator is used because it is one of the most
common ones and because the limited acceleration and velocity gives it a more stable output than
the built-in trajectory generators.

Outer loop control is also applied in this experiment, in the form of a PD controller, reacting every
8ms on the vertical force measured by the sensor. But the main goal of this experiment is making the
trapezoidal velocity profile, proportional derivative control is handled in [5.5 Experimental setup for
advanced control]

Theory

A trapezoidal speed trajectory generator works in three phases, first there is a phase with constant
acceleration, then constant velocity and the final phase is constant deceleration.

When all parameters are known (max acceleration, velocity, and distance to travel), it is possible to
calculate the formulas in [Table 8: Trapezoidal profile formulas]. These formulas follow from basic
physics formulas for motion.

) dv
accelerationa = —
dt

Equation 20: Acceleration in terms of velocity and time

locit _ds
veoayv—dt

Equation 21: Velocity in terms of distance and time
Out of equation 1 and 2, the inverse formulas can be calculated:

v=fadt=at

Equation 22: Velocity in terms of acceleration and time

a *t?
s=fvdt=fa*tdt= >

Equation 23: Distance in terms of acceleration and time

Rewriting equation 3 gives

Equation 24: Time in terms of velocity and acceleration

and by combining equation 4 and 5, this gives

v2

S=Z

Equation 25: Distance covered during the acceleration phase
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The integral in equation 4 is equivalent to saying that the distance is proportional to the surface
under the velocity profile and because the profile is symmetrical, the distance covered during the
deceleration phase is equal to the one during the acceleration phase.

When the velocity is constant, the distance covered during this time period can be calculated with
following formula

t2
s = f vdt = v(ty — tq)
t1

Equation 26: Distance covered during constant velocity phase

which makes it able to calculate the time with constant velocity t, = % + t4 and t; follows out of

equation 5.

Equation 27: Equation for time at constant velocity
The total time can be calculated and is equal to t;o = 2 * t; + t5.

If the covered distance during the acceleration is bigger than or equal to half of the total, there is
insufficient time for the constant velocity phase. Instead, a triangular profile is generated, only
containing an acceleration and a deceleration phase.

Stor =2 %5, = a *t?

Equation 28: Equation for total covered distance

Which gives the acceleration time, which is half of the total time. t;,; = 2 * t;

¢ S
! a

Equation 29: Equation for acceleration time
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Figure 47: Trapezoidal velocity profile
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[23]
Trapezoidal Constant acceleration Constant velocity Triangular
s axt? v v*(t, —ty) axty?
or —
2 2a 2
Vv a * tl \" a x tl
a a 0 a
; v S v
time t]_ = - tz =—+4 - t, = Ei
a v oa 1 a
Table 8: Trapezoidal profile formulas
Setup

The Teach Pendant’s UR Script is used to program the speed trajectory generator and the motion
commands, while the computer provides visual feedback on the process. Output data is sent to the
computer, which stores the data in excel and allows me to plot graphs and make calculations in order
to evaluate the results.

The velocity and acceleration are chosen as constants and the distance is calculated from the
coordinates of the waypoint. The formulas from table [8] are implemented to calculate the
acceleration and constant velocity time.

The robot descends to the surface, once contact is made the trapezoidal is activated by
implementing a constant acceleration with a given maximum velocity. Command ‘speedL’ allows to
give the desired speed values, to be reached with a certain acceleration and when the speed is
reached it maintains this value.
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To program the deceleration phase, the same command is used but with speed values set to zero
and a negative acceleration.

During this whole process proportional derivative controller is implemented with a fixed reference
value of 5N and the robot updating the proportional and derivative action every 8ms, depending on
the value measured by the sensor.

Results

Kp 0.001 Kd 0.00001

—— speed

position

Figure 49: Trapezoidal velocity profile output graph

There is a clear acceleration and deceleration phase. The speed in this case is set to 30mm/s and the
acceleration to 50mm/s, giving an acceleration time of 0.6 seconds. This checks out with the output.

Kp 0.001 Kd 0.00001
40

35
30
25
20

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 038 0.9 1

——speed —— position

Figure 50: Trapezoidal velocity profile output graph - zoomed in - noise

It is also visible that during the acceleration the position behaves parabolic and during the
deceleration hyperbolic, due to the double integration.

Noise exists on the control action due to process noise and the combination in vertical (force control)
and horizontal (position control) movement.
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5.4. Experimental setup for comparison UR3 and UR3e
The experiments mentioned above are limited in complexity and application range but are necessary
to get used to the individual functions before combining them.

To further define the differences between the UR3 and UR3e collaborative robots, more advanced
experiments are set up. Table 4: Important specifications of UR robots gives reference values to
evaluate the success of the experiments or the difference between theory and practice.

Both robots force controls are compared on impact force and on force maintenance using the built-in
force control command, if these robots are used for these tasks, it is importance to evaluate to what
degree the accuracy is and what the magnitude of the oscillations on the variable is. If the actual
reached value deviates strongly from the setpoint or if the oscillations are significant, this would
mean other force control methods should be applied or the robot is not suited for delicate
operations, where the force value should be followed in a strict manner.

Because both robots are similar in size, it should be possible to make them collaborate. When
handling big objects or performing difficult tasks it can be useful for efficiency purposes or even
feasibility of the process to let two or more robots work together. To avoid collisions and the need to
control both robots separately, they communicate via a MODBUS protocol. If the experiment gives
odd results, this could mean there are (internal or external) differences in the two robots that
weren’t considered or documented.

Differences in communication time of both robots are evaluated, as a verification of the datasheet
values (8ms for UR3 and 2ms for UR3e) and in another experiment, a solution has been found to
avoid the slow communication time of the UR3 and receive values from the sensor every 2ms.



ESCUELA TECNICA
SUPERIOR INGENIERIA
INDUSTRIAL VALENCIA

POLITECNICA

< 51
DE VALENCIA

&

5.4.1. Experiment one: Sampling period in force control
period force control]

[Appendix IX—Sampling

Goal

The goal of this experiment is to evaluate the performance of the UR3 and UR3e’s force control
functions. This is done by letting them execute the same force control movement and gathering their
force values along the way. The goal is to maintain a vertical force of 5N, while performing a
horizontal linear movement.

The accuracy of both should be similar, with the UR3 being more accurate with a resolution of 0.8N,
while the UR3e has a resolution of 1N. The deviation and the time until the force value is constant
are evaluated as well.

Theory

Since the UR3e has an update period of 2ms and the UR3 one of 8ms, it is fairer to evaluate both on
the same sample rate. If more values are measured, more values will be closer to the desired one
thus bringing the average value closer to this and manipulating the variance.

Figure 51: URCap F/T Control configuration options

There are different kinds of ‘Force mode’, but for this application Simple or Frame are the most
convenient.

Simple

Feature

Frame Point Motion

Feature Feature Feature

[pese -] [pese - Base - Base -
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position of the robot
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Task frame (for force
control) changes with
the direction of the TCP
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Figure 52: UR3e Force mode configuration options
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Setup

The computer is connected to the robot (either UR3 or UR3e, but one at a time) with a TCP IP socket
connection. Motion and force control commands are written on the Teach Pendant, while the
computer receives, stores, and does calculations with data from the robot.

The robot start pose has the base at 0°, the other joints are set to start the tool at X=-450mm, then
the tool is moved vertically towards the table until it touches and after that, the robot executes a
unidirectional force control movement of 150mm in the positive X-direction.

The cartesian velocity is set to 25mm/s.

For the UR3, the force control is executed using ‘F/T Control’ and then the motion command, where
a waypoint is set. The UR3e does not support this script, here ‘Force mode’ has to be introduced.
Force mode Frame is used in this experiment, this allows to set the force value in one of the six
degrees of freedom and the z-axis in this mode is static.

The Fz force on both robots is set at -5N.

The UR3e needs to update the force values ‘manually’, by coding. In parallel of the main force control
program a subprogram is created and executed in loops, where a variable named ‘force_torque’ is
initialized, holding the get_tcp_force() return values, being all the current forces and torques: Fx, Fy,
Fz, Tx, Ty, Tz.

The rest of the program differs depending on the sample type: force or touch.

Force:

This sample is one of 3 seconds and starts whenever the velocity in the x-direction is greater than
20mm/s, because this is meant to be the stable part of the force control. In parallel of the main
program the TCP speed is measured and once the value of the speed in the x-direction exceeds
0,02m/s or 20mm/s the robot sends a start signal to the PC and starts sending output variables.
Because the control cycle time of the UR3e robot is 2ms, while the one of the UR3 is 8ms, the ‘Wait’
command in the Loop of the parallel program is once set to 0.002 and once to 0.008 in the UR3e UR
program.

This is to verify if, even with the same sampling frequency, the UR3e is more accurate than the UR3.

Touch:

This sample starts when the robot tool descends and continuous to measure the whole force control
movement. In order to check how quickly the force control stabilizes, the start signal is immediately
sent to the computer. This gives a sample where the impact force and the force control are
measured together.

In the Python program, an excel file is created and the different force values are vertically printed
next to each other. As soon as the start signal from the robot is received, a timer to end the data
gathering and Excel writing starts and for each data exchange the communication time is measured
and returned to the Excel file. For sample ‘force’ the timer is set to 3seconds, while in ‘touch’ this is
set to 10seconds.
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Results
UR3 UR3e

Force Slow (8ms) Slow (8ms) Fast (2ms)
Average [N] 5.095 4,996 5.005
Deviation [N] 0.633 0.301 0.263

Touch

Average [N] 4,977 4,994 4,998
Deviation [N] 0.513 0.217 0.221
Peak [N] 10.537 11.093 11.399
Settling time [ms] 399.87 255.91 247.92

Table 9: Sampling period in force control output summary

Settling time is the time difference between the start of the first force peak and the steady-state
(+/- IN).

It can be concluded that the UR3e approaches the required force value more than the UR3. As
expected, the higher rate gives better result, but the standard deviation doesn’t improve
significantly. When the UR3 and UR3e send data at the same rate, the UR3e has a deviation half the
size of the UR’s.

The UR3 needs more time to get into a steady state, even though its force peak is lower.

The only downsides of the UR3e are the oscillations at a higher frequency than with the UR3 and the
slightly higher force peak when touching the surface.

Results are visualized in [Figure 53 - Figure 54] and when evaluating the results from Table 9:
Sampling period in force control output summary, it can be seen that the average value alone might
not give the best representation of the force control, since symmetrical oscillations are ignored. The
deviation on the other hand does not evaluate around what value the oscillations occur.

UR3 force 8ms Fz AVERAGE

05 1 15

UR3e force 2ms

UR3e force 8ms .

Figure 53: Force samples UR3 vs UR3e
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Figure 54: Touch samples UR3 vs UR3e
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5.4.2. Experiment two: Multi-robot communication [Appendix X — Multi-robot
communication]
Goal

Collaborative robots are widely used in areas where humans can benefit from assistance, to make
their work-environment safer and tackle more varying tasks.

In line with distributed control [3.4], an experiment is set up to further explore this topic. Different
machines and controllers are connected within the same network for data-transfer, and it is possible
to set up a client-server connection between the computer and the robots, in this experiment is an
attempt to set up a client-server connection between the two robots.

The goal of this specific experiment is to simulate how two collaborative robots (UR3 and UR3e) can
cooperate in order to pick up a box in between the two of them, using force control. It is a
simulation, so there is no physical object present and the two robots communicate via a MODBUS
TCP connection between the two of them. In this communication mode, the computer is eliminated.

Theory

Theory of MODBUS communication:

“Modbus is a serial communication protocol developed by Modicon published by Modicon® in 1979
for use with its programmable logic controllers (PLCs). In simple terms, it is a method used for
transmitting information over serial lines between electronic devices. The device requesting the
information is called the Modbus Master and the devices supplying information are Modbus Slaves”
[28]

On the Teach Pendant it is possible to use the IP address of a device and set is as a MODBUS client.
Signals are created, which can be setup as register input/output or digital input/output, contains
addresses and a name can be assigned to them. This is the data the client can access and monitor.
Some register addresses contain internal data such as robot positions, joint angles or self-written
data, but all of these variables can from then on be read-out. [3]

> File 20:44:49
Program | Installation | Move | 1O [Log

TP Configuration MODBUS client |10 Setup
Mounting 192.168.1.133
bogmn 2 192.168.1.133]

e — - PEXETS IP address 192.168.1.132 @
Q Safety ‘3 0| |Register Input | w || 128||MoDBUS_S = EtherNet/IP

Address m e
variables | | [PROFRET =
s - 12
MoDBUS - .
Features [ Show advanced optians. + Add New Signal
Basa

Figure 56: Multi-robot communication - UR3 and UR3e MODBUS settings
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Modbus allows to setup registers which are data pathways between the two devices. When a
register on one device is set to a certain value, it can be read by the other device.

Each of the robots sets the other as client using its IP address, this way a two-way communication is
possible. The master sends the waypoint data and the slave receives it.

Master Slave

IP 192 168.1.133

IP192.168.1.132

Robot Program
write_port_register{128,111)

MODEBUS
IP:192.168.1.132
value Register input 128 MODBUS

Send waypoint

MODBUS gets value "111°
Robot Program

Movel
‘Wait MODBUS=111
Waypoint

MODEBUS
IP: 192.168.1.132
value Register input 128 MODBUS_1

MODBUS
IP: 192.168.1.133
value Register input 129 MODBUS_2

Robot Program
Movel
Waypointl
write_port_register(129,10)
Wait MODBUS_1=111
Waypoint

Robot Program
Movel
‘Waypointl
write_port_register(128,111)
Wait MODBUS_2=10
Waypoint

Figure 57: Multi-robot communication - communication logic

Movements are synchronized by executing a handshake, containing the next waypoint: the master
sends the data to the slave using ‘write_port_register(‘slave_address’, ‘data’), this is received and
read out by the slave and confirmed by sending data back to the master.

The slave can either move to the waypoint coordinates, but this only works if the two robots use the
same coordinate system, or, in case of any offsets, it is better if the slave uses the waypoint data as a
relative movement from the current position. Once the waypoint is reached, another handshake is
executed.

First the two robots start at a save position and then quickly move towards the box with movel, but
still at a safe distance from the box. For a correct contact the robots then move linear (in tool-space)
towards the box until contact is made (measure force normal to tool).

From this position force control is applied, to verify that the contact force is big enough to pick up
the box and yet not too big to damage the object.

After the required movement, the box is put down and then first movel is executed to move the
robot to a safe distance before the two robots execute a next task.

Results

The two robots were able to work together and perform a task at a slow speed in order to evaluate
the accuracy. Because both robots can be given speed parameters in cartesian coordinates or in joint
velocities, assuring that they operate the same way is no problem. Both robots nearly have the same
dimensions and even if these were different, using cartesian speeds eliminates this problem.
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This experiment has a few pauses, so it is visible when synchronization or mirroring might occur,
which was not the case after a few improvements.

This sets the foundation for a setup where multiple robots can work together at a higher speed, on
more complicated tasks that require more than one robot. Extending the program with anterior and
or posterior tasks makes it possible to simulate a full process as it will be used in the industry.
Another advantage of this arises when one robot’s performance is improved using control
techniques. Instead of having to copy the whole code for the other robot, the output variables can be
transmitted using the MODBUS communication and the two robots perform at the same level.
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5.4.3. Experiment three: Communication time delay [Appendix XI —

Communication time delay]

Goal

When looking for improvement in control it is important to find where improvement is possible. Out
of the manufacturer’s datasheet different properties are available, but first experimentational
validation of these is needed to find their state in current setup.

With this in mind, this experiment is created to validate the communication delay between the robot
and the computer when sending data using TCP IP connection. For the UR3 this should be around
8ms and for the UR3e 2m:s.

Setup

The same experiment is executed twice, once by creating a connection with the UR3 and once with
the UR3e. The Python and Teach Pendant code are the same for both.

A socket communication is established with the computer as the host and as soon as the connection
is established the Teach Pendant creates an empty variable and repeats a loop where it reads the
communication socket, once this value is different from zero it sends an integer to the computer.
The computer creates an empty variable as well, to store the returned data. Going through the cycle
50 times, it sends data to the Teach Pendant, starts a timer, checks for the return value and once this
is received the timer is stopped. The time difference is calculated and printed onto the screen.

Results

This experiment was successful, the results were as given by the manufacturers. The time delay for
the UR3 was 8ms and for the UR3e 2ms. Validating this, ways can be found to diminish the effect on
delay on the robot’s overall and especially force control performance.

Output of the Python program can be found in [Figure 58 - Figure 59].

UR3 UR3e
0:00:00.006028 0:00:00.000993
0:00:00.007997 0:00:00.002000
0:00:00.007998 0:00:00.002000
0:00:00.007997 0:00:00.001999
0:00:00.007998 0:00:00.001999
0:00:00.007998 0:00:00.001999
0:00:00.007997 0:00:00.002000
0:00:00.007997 0:00:00.001999
0:00:00.007997 0:00:00.001999
0:00:00.007998 0:00:00.002000
0:00:00.007997 0:00:00.001999
0:00:00.007998 0:00:00.002000
0:00:00.007997 0:00:00.001996
0:00:00.007968 0:00:00.001999
0:00:00.008027 0:00:00.002007
0:00:00,007998 0:00:00.002000
0:00:00.007997 0:00:00.002000
0:00:00.007997 0:00:00.001982
0:00:00.007969 0:00:00.001999
0:00:00,008026 0:00:00.001999
0:00:00.007972 0:00:00.001999
0:00:00.008024 0:00:00.002012
0:00:00.007997 0:00:00.002000
0:00:00.007997 0:00:00.001999
0:00:00.007998 0:00:00.001999
0:00:00.007967 0:00:00.002000
0:00:00.008028 0:00:00.001999
0:00:00.007967 0:00:00.001999
0:00:00.008028 0:00:00.001999
0:00:00.007988 0:00:00.002001
0:00:00.008009 0:00:00.001998

Figure 58: Output time delay UR3 Figure 59: Output time delay UR3e
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Experiment four: Force sensor connection [Table 36: Communication time delay Python and UR codes

5.4.4. Appendix Xl — Force sensor connection]
Goal

After the verification of the communication time, different experiments were conducted in order to

receive force values from the robot at a higher frequency than the control cycle of the robot.

The experiment was unsuccessful using previous setup in [5.3.5Attempts direct sensor reading
[Appendix V — Attempt direct sensor reading]], until a direct connection with the compute

box of the force sensor was set up, which is done in this experiment. The goal is to read sensor values

quicker than the robot, so at a significantly higher rate than every 8ms, using a UDP connection.

Theory

In Python a UDP socket connection is classified as a datagram type socket and coded:
socket.SOCK_DGRAM. No handshaking is required so it a connection-less protocol, meaning it can
only send data and not receive data, which is a big difference with the TCP protocol and thus limits its
applicability. In this case, where a sensor is read out this forms no limitation.

UDP has the advantage to be fast, since it's connection-less, it does not require package
acknowledgement and can establish a continuous packet stream.

Setup

A UDP connection is set up between the computer and the compute box of the UR HEX sensor. UDP
is used because of its higher speed (up to 500Hz) [31] in comparison to TCP.

At first this setup gave either 0 as time value or 15ms, because the used ‘time.time()’ command has a
poor resolution of 15ms.

[https://www.webucator.com/article/python-clocks-explained/]

Using time.time_ns(), the time is given in nanoseconds and thus at a higher resolution. Then it still
did not work on my computer, but it did on the PC in the laboratory and on other people’s computer.
After some research | found out the reason is the Windows version. In Windows 11 (my PC) the timer
resolution is 15,6ms [12], while in Windows 10 the default timer resolution is 1ms.

This issue was tested using following code:
import time

while True:
start_time=time.time_ns()/1000000
time.sleep(0.0001)
end_time=time.time_ns() /1000000
print(end_time - start_time)

Figure 60: Python code computer clockspeed test

The sleep time of 0,1ms is too short to be measured by both computers, so it gives the smallest
measurable time. As can be seen in the output:
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for my PC for the lab PC

16.027099609375 1.999755859375

15.2275390625 1.9990234375

15.62451171875 1.999267578125

15.627197265625 1.99951171875

15.60791015625 1.999755859375

15.6259765625 1.998779296875

15.638427734375 1.99951171875

15.859375 1.99951171875

15.38252421875 1.999267578125

15.6416015625 1.999267578125

15.61083984375 1.0

15.638427734375 )

15.9326171875 1.9990234575

1t 3134765625 1.99951171875

15. 61865234375 1.999267578125

15. 640380859375 1.9998234375

Figure 61: Clock speed Windows 11 Figure 62: Clock speed Windows 10

In this setup only the computer is used and has an IP address of 192.168.1.103. The sensor compute
box has an IP address of 192.168.1.98 and UDP requests are sent to port 49152, in the data form of
unsigned integers (UINT). UINT32 is an unsigned integer with a size of 32bits and the same for
UINT16. [31]

Three requests are sent to the compute box before being able to read data. The first one is
‘request_biasing’, the second one ‘request_speed’ and the third and last one is ‘request_send’. Their
structure and action are described below.

Variable UINT16 Header UINT16 Command UINT32 Data
request_speed | must be 0x1234 | 0x0082 set read-out speed 0x0002 time in milliseconds
encoded: 18 52 0 130 0 0 0 2

request_send must be 0x1234 ‘ 0x0002 start sending output ‘ 0x0001 amount of samples
encoded: 18 52 02 000 1

request_biasing | must be 0x1234 ‘ 0x0042 set software bias ‘ 0x0255 set or 0x0000 reset
encoded: 18 52 0 66 0 0 2 85

Table 10: Force sensor connection - variables compute box connection

These values are sent by converting the original input into a hexadecimal number format and then
appending them into one NumPy array. NumPy has the advantage to be quick and use less data than
normal Python arrays.

During the infinite while-loop the elapsed time is measured between the request sending and
message receiving.

The received data package has a structure of 36 bytes:

b'\x00\x00\x00\x01\x00\x08\xc4\xa8\x00\x00\x00\x00\x FF\xFF{0\x00\xB0\xaf\xc8\x00_Z (\xFf\xFF\xfe\xBc\xFF\xffox\xff\xff\
xa44' encoded received data

Figure 63: Force sensor connection - encoded received data package

and needs to be split into nine UINT32 data with the following values: HS_sequence (sequence
number of current UDP record) — FT_sequence (Compute Box internal sample counter) — Status
(needs to be 0) — Fx — Fy — Fz — Tx — Ty — Tz with Fx, Fy and Fz in 10000N and Tx, Ty and Tz in
100000N/m.

The data splitting and converting is done using Python’s struct module:
Recibido=struct.unpack(‘llIIIIF, receivePacket), ‘lIIIIII" which is nine times ‘I’, returning nine
unsigned integers with a size of 4 and thus splitting the 36 bytes perfectly into the nine required
variables.

These variables are stored in a Python variable and can be split into the desired status values, force
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values or torque values.

(16777216, 2831417344, 0, 813432831, 3366912008, 677011200, 218038271, 2820605951, 883228671) unpacked received data
[ 1 50344 0 -34000 45000 6249000 -500 -37000 -23500] decoded received data

[ -3.4 4.5 624.9] Force values

[-0.005 -0.37 -0.235] Torque values

Figure 64: Force sensor connection - decoded and transformed data package

The received values are not zero even though there are no forces applied to the sensor. This can
easily be solved by setting a software bias with command ‘0x0042’ and data ‘255’, this way the
current values are set to be zero and accurate measurements can be made.

In order to stop the UDP package sending, another request can be sent, or the socket connection can
be closed using s.close(). In this experiment the data sending only stops when the Python program is
stopped.

Results

This is special because this makes it possible to read sensor values quicker (every 2ms) than the
control cycle of the robot (8ms).

request_biasing sent
request_read-out speed sent
[-8.1 0. 0.4] Force values
1.994140625 millseconds

[-8.1 8. 0.3] Force values
1.999755859375 millseconds
[0. ©. 0.1] Force values
1.999755859375 millseconds
[6. B. 08.1] Force values
1.99609375 millseconds

[6. 8. 8.1 Force values
2.00390625 millseconds

(6. 8. ©0.1] Force values
1.994384765625 millseconds
[6. B. 8.] Force values
1.989990234375 millseconds

[ 8. -0.1 -8.1] Force values
2.00830078125 millseconds

[ 8. -08.1 -08.1] Force values

Figure 65: Output sensor compute box connection for force measurements
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5.5. Experimental setup for advanced control systems

5.5.1. Force filtering and control
After the successful experiment for reading the sensor every 2ms in [0 Experiment four: Force sensor
connection] it’s possible to exploit the possibilities of this.
The read-out rate of the PC is 4x faster than the robot’s update frequency of 125Hz, which gives the
opportunity to get four measurements within one robot control period and do calculations. For this
practice six different options are available listed below:

Theoretical explanation

To apply force control with the industrial robot, sensing is needed. It is known that in all applications
uncertainties exist on the process, due to a lack in resolution, suboptimal process conditions or
uncalculated parameters and furthermore, the inaccuracy increases due to sensor noise. Sensor
noise is random variations of output, unrelated to variations in input and occurs because of the
wiring or external noise in the sensor’s environment.

To further support the theory of the multi rate filters and polynomial approximation, they are first
applied on sensor data without any form of control action or feedback to the robot, only to see what
the adjusted output could look like and in the part ‘practical’ experiments they are tested out with a
control action.

All the control and filter formulas are written in Python, the motion and force control actions are
written on the Teach Pendant.

The real practical experiments where the filters and controllers are applied are summarized in
[Practical experiments [Table 37: Force sensor connection Python code

Appendix XIIl — Force filtering and control]], the transferred data is subject to different calculations
and the output (hopefully) gives a result with less oscillations and thus higher accuracy.

a) PD control

Proportional Derivative control is a combination of feedback and feedforward control because it uses
the current error and the derivative of the error. If the error in steady state does not have to be
compensated, PD can be used, because it lacks the integral term of the PID controller.

The PD controller looks at the sensor data and compares this to a reference value. The proportional
action reaction is directly proportional to the difference between measured and reference value,
meaning it increases with increasing error and the other way around, while the derivative reaction is
proportional to the difference in force value, if the force error is constant, the derivate action is equal
to zero.

The derivative action responds poorly to noise because it varies quickly.

It’s the most basic controller, with simple inputs and a single output.
U= Ky(Frer — F) + Kg(Frep — F)
Equation 30: PD control

with
poff
8ms

Equation 31: Force derivative
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Because the force change rate can be high in force control applications, the derivative output will be
high as well and in this case oscillations and peaks will occur in the control action, significantly
decreasing the control performance and potentially damaging the workpiece and/or robot.

An improvement is made from this controller that compensates last-mentioned problem and is called
the Proportional Velocity controller.

b) PV control

In Proportional Velocity control, the control system is equivalent to proportional control with velocity
feedback. A pure proportional control action does not eliminate the error in steady state and
therefore requires to be accompanied by a velocity feedback term. A second function of the velocity
term is to damp the system on peaks and oscillations.

U = Ky(Fres — F) — K%
Equation 32: PV control

Out of Equation 32: PV control can be derived that when the velocity is increased the control action
is reduced, which means that a speed increase tolerates a bigger force error because the
proportional control action is counteracted by the velocity control action. The reason behind this is
that it is harder to control the force in a fast-changing process, what results into oscillations and
drastic control actions when using a proportional or proportional derivative control system.

c) Multi rate PD with averaging

This filter is multi rate because instead of measuring every 8ms, the measurements are done
approximately every 2ms and out of these measurements, the average is calculated every 8ms, as
the estimated force value. This way the original data is decimated and is less prone to oscillations
and noise. Multi rate filtering is proven to be useful in control applications [15 - 27 - 51].

In this experiment the elapsed time period is measured, to verify the possibility of measuring four
times and if not three values are used for the force estimation.

This technique filters out a big part of the sensor noise, because these occur in the form of
oscillations, but process noise in the form of surface irregularities along the motion are not
accurately filtered out.

. 1
F:Z(F1+F2+F3+F4)

Equation 33: Multi rate PD average
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Figure 66: Multi rate PD with averaging filter — theoretical working in graph

d) Multi rate PD 2" order filter

An averaging method gives every measured value the same weight, meaning most recent values are
as significant as the least ones. For control purposes it makes more sense to give more importance to
the latest measurement and less to the oldest, because approximately 6ms passed in between those
two measurements.

The proposed solution is a second order filter, that gives a fixed coefficient to every force value.

F = 0.1F, + 0.2F, + 0.3F; + 0.4F,

Equation 34: Multi rate PD 2nd order filter

For example.
Sum of the coefficients has to be one because it’s a variant of the averaging method and the result
would otherwise be that the estimated value is too big (sum bigger than 1) or too small (sum smaller
than 1).
It can be seen in Figure 67 that this method follows the real data very well, while ignoring local peaks
and fluctuating at a lower frequency. Because of the chosen coefficients it gives more importance to
the most recent measurement.

—8—Real forces —@—2order forces

-4
0 8 16 24 32 40 48 56 64 72 8 88 9%

-10

Figure 67: Multi rate PD 2nd order filter — theoretical working in graph
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Figure 68: Multi rate PD averaging vs 2nd order filter — theoretical in graph

Both averaging and second order filter ignore the force peaks, with the averaging method giving the
best result on this aspect of the force control. This is because the importance here is equal for every
measurement, while the 2" order will still try to follow the last given value more. If this last value is a
peak, the resulting force value will be one as well.

e) Polynomial approximation

Polynomial interpolation is a way of representing a data set as a polynomial function. A curve is fitted
in the given data set, and this results in a continuous function with smooth transitions between
values. Python can calculate the coefficients itself using numpy.polyfit().

F(t) = a0t3 + a1t2 + azt + a3
Equation 35: Polynomial approximation
The blue curve gives the real and red the fitted data.
-3

6000 6020 6040 6060 6080 6100 6120 6140 6160 6180 6200
-3.5
-4
45
5
55

-6

-6.5

Figure 69: Polynomial approximation - theoretical in graph
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f) Kalman filter

The Kalman filter is used in an experiment to measure the sensor noise, in a static setup and later in a
force control application. In both of these the setpoint is static, allowing mathematical simplifications
to the model because the desired derivative term becomes zero.

As described in [3.6 Kalman filter], this filtering method exists of a prediction and a correction phase.
Starting with the matrices from, the steps taken to find the final formulas are mentioned in this
paragraph.

He=[1 0]
P o]
r=[y 1

Ay = [é Tm] with Tm = 0.002, representing the sample period of 2 milliseconds.

Prediction phase:

= ace=ly Tl ][R

Equation 36: Kalman filter - prediction of robot state
Pir1 = AxPrAf + Q.
_[1 Tp,1.[P11 D1z [ 1 0]
1o 1]*[1921 pzz]* T, 1 + Qi

[ + * T + * T 1 0
_ |P1a T P21 *Im P12 T P22 m]*[T ]+Qk

P21 D22
_ [P11 + D21 * T + Ty * (P12 + D22 * Tr) p12+P22*T]+Q
= T ;
P21 T D22 * P22
_ Dra + P21 * T+ Ty % (D15 + Doz * Ton) P12+P22*T]
P21+ P22 * T P22 + Qk

Equation 37: Kalman filter - prediction of covariance matrix
Correction phase:
_ _ -1
Ky = P HY (HyPg HY + Ry,)
_ P11 P12 1 P11 P12 1
~p2s Pzz] * [0] * ( 1 0]~ P21 Pzz] * [0] + Rk)
P11
] ([p11] + R)™!

_ P11(P11 + Ry)
P21 (P11 + Ri)

-1

Equation 38: Kalman filter - correction Kalman gain

~

X = X + K(z — HXy)

=[]+ [ie] - (- o]

_ [x1+k1(F—x1)
TR+ ky(F—2%)

Equation 39: Kalman filter - correction of robot state
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e
P, = — K H )Py
(11 0_k1] ) P11 P12
_(0 1] [kz #[10])« P21 Pzz]
_ ( 1 0] _ [kl 0]) . [P11 p12]
0 1 k, 0O P21 P22
_ P11 (1 —kq) P12(1 — k1) ]
P11(—k2) + P21 D12(—k3) + D22

Equation 40: Kalman filter - correction of covariance matrix

10]

The initial value of P, = [0 1

Resulting in the final formulas.

1sample
| Send to robot

|
correct correct correct correct /

predict predict predict predict
1 1 1 1

T T T T
0.2 0.4 0.6 0.8

Sensor reading 1 2 3 4

Figure 70: Kalman filter experiment working principle

It would also be possible to create a continuous Kalman filter, instead of a discrete one. Then a

67

continuous covariance matrix of the process is needed. Over a big time period, the covariance should

be higher than over a small period. This can be seen in the following formulas received from
Professor Antonio Sala.

M =exp({_0A W;A:T}Tk){HléTk) :zgﬂ

Wd = H;(Tk)*HZ(Tk)



S22 ,
5  ESCUELA TECNICA
mi: » SUPERIORINGENIERIA 68
a4 INDUSTRIAL VALENCIA

. UNIVERSITAT
) POLITECNICA
DE VALENCIA

Practical experiments [Table 37: Force sensor connection Python code

Appendix XIIl — Force filtering and control]

Each experiment is conducted multiple times to eliminate the factor of unexpected events and they
are conducted using 5N, given the maximum workload of 30N. All the movements are executed with
inner/outer loop control and the tool follows a trapezoidal trajectory.

The inner loop control is provided by the trapezoidal velocity profile generator, the motion is
executed with a limited acceleration and velocity, as an attempt to give more stable output. If the
maximum velocity is too high for the acceleration or the distance too short, a triangular velocity
profile is generated instead.

The outer loop control is provided by the different filters and controllers mentioned in [Table 11:
Force filtering and control - outer loop control equations].

Experiment one to five is dynamic, during the force control a movement is executed in a fixed
direction. The tool is mounted on the robot and the gravity (tool weight) is compensated with a
calculated offset. From a given position the robot descends, until it touches the surface and from
then force mode is activated where the robot attempts to maintain a constant force value normal to
the surface, whilst executing a unidirectional movement with constant speed.

Experiment six, the one of the Kalman filter, is static and does not require force control.

The stable part of the experiment is taken from 1second to 7seconds because this is also the stable
part of the motion control.

. F— E1
F= 8ms

Equation 41: Force filtering and control - force derivative formula

Python Teach pendant
P / u =Ky (Fres — F)
PD / u=Ky(Fref —F) + Kg(Frer — F)
PV / u=Ky(Frer —F) — K,

PD with averaging £ %(Fl L E 4+ 4 ) u = Ky(Fre — F) + Ky(Frep — F)

F =0.1F, + 0.2F, + 0.3F; + 0.4F,
ﬁ(t) = a0t3 + a1t2 + azt + a3

PD with filtering u=Ky(Fref = F) + Kg(Frer — ﬁ')

U =Ky(Fres — F) + Kg(Frep — F)

Polynomial
approximation
Kalman filter

Predictor & corrector u= Kp(Fref — F) + Kd(Fref -F

Table 11: Force filtering and control - outer loop control equations

a) Proportional control

K, Mean Standard Max Min #peaks <4N | #peaks >6N
deviation
0.001 5.01603 0.573354 6.50391 3.20391 29 38
0.0005 5.03466 0.516616 6.75411 3.25411 13 29
0.002 7.18277 9.126594 48.0672 0.167187 271 237

Table 12: Force filtering - proportional control summary

Before using PD, a proportional controller is implemented to find a Kp value that fits the application.
The force error is estimated to be in the order of 1N, so the Kp should be in the order of 0.001 to
transform it into a speed value. A higher value generates high force peaks, followed by surface
contact loss, while a smaller value a lower frequency in peaks has but, because of its lower response,
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the magnitude of it remains the same.
To give a reference to the amount of peaks, a total number of 750 data points are sampled.
——Kp 0.001

Kp 0.0005 Kp 0.002
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Figure 71: Force filtering - proportional control graph

As expected, a high proportional gain gives more and higher peaks but it reaches the desired value
more closely (mean value closer to 5N).

b) PD control

K, K, Mean Standard | Max Min #peaks #peaks
deviation <4N >6N
0.001 0.00003 5.84112 7.406285 | 23.4514 0.048634 | 465 260
0.001 0.00001 5.006 0.743706 | 7.5791 2.8791 72 60
0.001 0.000005 | 4.99939 0.650689 | 7.08008 2.98008 53 44

Table 13: Force filtering - proportional derivative control summary

In regular control systems, the derivative term provides a big improvement in terms of damping the
system, but as expected, when used on noisy data this results in a stability loss.
A K, value of 0.001 is chosen because this still gave oscillations and should have enough room for
improvement.

A big derivative gain creates instability in the process, but a small value (0.000005) leads to an
improvement in reaching the mean value. An increase in standard deviation occurs (0.65 instead of
0.573 in proportional control), leading to a significant number of extra peaks out of the +/- 1N range.
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Figure 72: Force filtering - proportional derivative graph

c) PV control

Ky K, Mean Standard | Max Min #peaks #peaks
deviation <4N >6N
0.001 0.03 4.98685 1.078344 | 7.86035 2.06035 153 143
0.001 0.06 4.98049 1.005806 | 8.12695 2.32695 127 128
0.001 0.015 4.97951 1.026188 | 8.11133 1.81133 114 126

Table 14: proportional velocity control summary

Since the derivative control action of a noisy system augments the oscillations, an alternative way to
damp the system is by using the velocity used to control the force.

Even though the derivative action is chosen to be small, it has a big negative impact on the system’s
performance in force control.

0.006
0.004

0.002

-0.002

-0.004

-0.006

P-action ——D-action

Figure 73: Force filtering - PV control actions graph
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K, K, Mean Standard | Max Min #peaks #peaks
deviation <4N >6N
0.001 0.00001 5.05705 0.746747 | 7.43652 2.83652 61 77
0.001 0.000005 | 5.1734 0.745065 | 8.08008 3.18008 48 88
0.001 0.00003 6.8276 9.379864 | 28.8176 0.017578 | 484 247

Table 15: Force filtering - PD control with averaging summary

This technique filters out a big part of the sensor noise, because these occur in the form of repetitive
oscillations, but process noise in the form of surface irregularities along the motion for example are
not accurately filtered out.

In theory it is a safe option to choose the average measured value as the true value, but sensor and
process noise does not behave regularly, so this assumption approaches the real value but still needs
verification. The accuracy is hard to evaluate but it is certain that the output is more stable because
of the averaging.

The estimated force follows the real one, but high-frequency fluctuations in the measured force are
ignored thus it maintains the desired value in a more constant manner. The filtered-out force is still
subject to peaks because of the dynamics of the executed movement, friction, surface irregularities
and internal feedback delay.

5.00
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Figure 74: Force filtering - PD with averaging graph
e) PD with 2order filter
K, K, Mean Standard | Max Min #peaks #peaks
deviation <4N >6N
0.001 0.00001 5.03271 1.395388 | 8.56934 1.66934 176 179
0.001 0.000005 | 5.02308 0.928597 | 8.00801 2.50801 96 127
0.001 0.00003 7.0823 8.836956 | 25.8896 0.010352 | 457 277

Table 16: Force filtering - PD control with 2nd order filter summary

The second order filter works worse than the classic PD controller, because out of a small sample
size, it gives great importance to one value. Because the sample size is small, this one value will vary
a lot throughout the process, resulting in a poor control performance.
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A small derivative gain gives a better control because the proportional and the derivative control
action are added together to form the total control action.
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Figure 75: Force filtering - PD with 2nd order filter graph

f)  Polynomial approximation

K

P K, Mean Standard | Max Min #peaks #peaks Sample
deviation <4N >6N size
0.001 | 0.00001 | 5.02808 | 1.161284 | 9.80949 | 2.012444 | 1161 1300 5979
0.001 | 0.000005 | 4.82006 | 1.301085 | 9.16959 | 1.197505 | 1513 1009 5969
0.001 | 0.00003 | 4.57307 | 1.836676 | 10.54228 | 0.006849 | 2412 1246 5942

Table 17: Force filtering - polynomial approximation summary

The polynomial approximation fits a curve out of a data sample. This data sample in this case is four
force values. The standard deviations are higher than in the experiment with the ordinary PD control.
As can be seen in the graph below, the polynomial fits a curve within the sample and uses this for
extrapolations if necessary. These extrapolations cause the extra deviations from the desired value.

7000 8000

9000

« Forces

10000

—— Polyforces
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Figure 76: Force filtering - polynomial approximation graph
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g) Kalman filter

As been stated in [3.6Kalman filter], the Kalman filter method exists of two phases. Both are
implemented in a Python program, where the computer sets up a connection with the compute box.
For every sample, measurements are read out and for each value the Kalman filter corrects and

predicts the robot state x, which is a 1x2 matrix: [i]

In order to use the Kalman filter, knowledge about the sensor and process noise covariance is
needed. This first one is easily calculated in MATLAB and the second one is approximated trough
trial-and-error. The output of this experiment is the updated/predicted robot state matrix x (force
and force derivative in a 2x1 matrix) and the state covariance matrix P (where the diagonal elements
are the variances and the off-diagonal elements the correlations represent in a 2x2 matrix).

Kalman Filter » Forcedata  ——Force Kalman Kalman Filter + Forcedata

time [ms] 0.15

Experiment Sensor Kalman output
Mean Variance X X pll pl2 p21 p22
1 0.0494 0.0061 0.2323 -0.0129 0.29186 0 -0.1994 0.5
2 0.2133 0.0090 0.023938 -0.00957 0.290899 0 -0.19988 0.5
3 -0.2538 0.0073 -0.1679 -0.01281 0.291462 0 -0.19959 0.5
4 0.0465 0.0090 -0.09502 -0.00199 0.290899 0 -0.19988 0.5
5 0.0443 0.0095 0.007971 -0.00319 0.290734 0 -0.19996 0.5

Table 18: Kalman filter - sensor noise covariance summary

The robot state (x and x) differ because these are based on the on-line measurements from the
sensor. It is visible that the force and force derivate are both close to zero, as desired. This is
significant because the data resolution is only one decimal, allowing the data to jump from 0 to 0.1
and because the force derivative is calculated using a time period of the order milliseconds.

The covariance matrices are almost identical and contain small values in all the experiments.

To find out the correct process noise covariance, the same experiment is conducted with a constant
sensor noise covariance R value and for the process noise Q the following values are tested:

0.005 0.05 0.5 1

The results of each of the tests are summarized in this table

Experiment Sensor Kalman output

# Q-value Mean Variance X X pll pl2 p21 p22
1 0.005 0.0443 0.0095 -0.12306 0.000109 0.162889 0 -0.0000044 | 0.005
2 0.05 0.0443 0.0095 -0.04113 -0.0011 0.315261 0 -0.00094 0.05
3 0.5 0.0443 0.0095 0.00497 -0.00199 0.290734 0 -0.19996 0.5
4 1 0.0443 0.0095 -0.10433 0.005455 -0.71386 0 -1.25839 1

Figure 77: Kalman filter - process noise covariance summary

When either the process (low Q-value) or the sensor data (high Q-value) is given a high accuracy, so
Q=0.005 and Q=1, the result of the robot state deviate a lot from the expected 0 Newton. Q=0.5is a
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safe option, where the sensor measurements and the process data are given an equal amount of
importance.

For practical reasons it is possible to eliminate variance +1 as an option because in these cases the
data is inaccurate, this means that (given the gaussian distribution of the Kalman Filter) the
probability of a value being between -0.5 and +0.5 is less than 40%.
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Results:

Area (probability) =

Figure 78: Kalman filter - gaussian distribution example deviation of 1

The real experiment with on-line force control with Kalman filter was not able to be conducted
because the robot sensor broke down during this experiment.

Results

A general technique is proposed than can be implemented in different processes and on different
variables, that leads to a performance improvement.

a) Proportional control

A small control action works on the robot, this gives the most stable output in these force control
experiments.

b) PD control

The proportional control gives a small control action and thus a low standard deviation, if a derivative
action is introduced, the control action becomes bigger and gives a higher standard deviation. The
predictive ability of the derivative component reduces the stability of the process because of the high
frequent oscillations due to noise.

c) PV control

The PV control gives almost constant output, where the average is reached with an approvable
accuracy, but the deviation of 1N can be high if the desired value is as small as 5N. The PD control
was more accurate than this one.
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d) PD with average

For Kp 0.001 and Kd 0.00001 this controller has the same accuracy as the normal PD controller, for all
the other values the performance is worse. A reason for this could be that the calculations are done
on the computer and then sent to the robot, meaning there is a communication delay, whereas in
the ordinary PD control all the calculations were done on the Teach Pendant.

This means that the advantage of reading force values 4x quicker than the robot does not have an
effect when using a PD control with averaging, because the gained efficiency is at the expense of
another time delay.

e) PD with 2order filter

The standard deviation here is even higher than with averaging, this because the last value of the
four data samples gets a significant importance and thus is followed better. Because the data is
noisy, this PD filter follows the noise and as a result oscillates more.

f)  Polynomial approximation

The expected result seemed promising but because of the small sample size of 4 measurements, the
fitted curve follows the real values with high accuracy. In addition to this, a lot of computation time is
required for this method, where the Python program is occupied and does not store new received
force values. This leads to big overshoots in this dead time, because the estimation after receiving
four high-frequent values gives an even worse approximation.

If this method was used with a bigger sample size, as in 16 or more values, | am convinced, and
theory [36] supports that noise would be eliminated.

g) Kalman filter

During this last set of experiments the sensor of the robot broke down. Even though this experiment
did not give positive results, the concept and ability to predict values became clear. Out of every
measurement a prediction is made and corrected, as well as the uncertainty of the system. This is a
powerful tool because after a few oscillations, the Kalman filter will recognize this and filter it out.

If the parameters are tuned well, this method looks promising to deliver good results because of its
estimation ability and iterations with corrections on this value create a higher belief on the true
value.
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5.5.2. Impedance control  [Appendix XIV — Impedance control]

Goal

In this experiment a PD controller is used to control the position with a trapezoidal velocity profile.
Using impedance control the robot executes a linear movement and then a circular one.

The impedance control acts in all possible directions, except the vertical. This last one is preserved
for force control actions. The linear movement is unidirectional so has a reference value to compare
the real one to, while the other directions are measured in the initial position and kept constant
throughout the movement with the impedance control.

Figure 79: Impedance control - reference trajectory

Theory mentioned in [3.3Impedance control]

UR3 control E ﬁ
xref speedL Tl
b %G

X

Figure 80: Impedance control - block diagram

Ux

2%

UZ
vd
Vg
Yy
other velocities. The proportional gain of the control action is equivalent to the active stiffness and
the derivative gain to the damping.

The speedL command exists of with v, = pr(xref - x) + Kgx (Xrer — x) and similar for the

Xres is calculated and updated every 8ms from the trapezoidal speed trajectory generator. The x in
Figure 80 contains all six position values: x, y, z, and the three rotational values.

Setup

A TCP IP connection is set up between the robot and the computer, allowing communication from
the Teach Pendant to the Python program. The motion and impedance control are programmed on
the Teach Pendant and the Python program is used to store received data.
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Results

For the line a proportional Kp and a derivative gain Kd is used.

Average error [mm)] Standard deviation [mm)]
Kp Kd y X y X
0.5 0 -0.17162 -0.0427 0.439227 0.090531
0.5 0.001 -0.19858 -0.10675 0.995345 0.130152
0.5 0.002 -0.26733 -0.05303 2.027663 0.093442
0.2 0 -0.17065 -0.0867 0.289876 0.117252
0.2 0.001 -0.25314 -0.07659 0.448141 0.112696
0.2 0.002 -0.35966 -0.04791 0.686037 0.133144
0.1 0 -0.17512 -0.12824 0.237925 0.097512
0.1 0.001 -0.32063 -0.09709 0.542904 0.092139
0.1 0.002 -0.52561 -0.08549 1.060119 0.124055
0.01 0 -0.16565 -0.12214 0.256214 0.097437
0.01 0.001 -1.60709 -0.11624 2.822332 0.109392
0.01 0.002 -2.78258 -0.06718 6.373058 0.140276
0.0001 0 -0.07013 -0.14021 0.18127 0.113878

Table 19: Impedance control - linear motion summary

When the derivative gain is set to zero, a small Kp value leads to a worse average value and deviation
in the x-direction. This is because the stiffness is set to a small value. This results in a better control of
the y-direction, which is the movement direction because the control action is not too big. For a big
Kp value the control in a position error is big, leading to oscillations on the system.

Introducing a derivative action does not improve the position control of the robot. In all cases the
standard deviation rises and the average value as well.

This all is graphically displayed in the figure below [Figure 81]. Since the stiffness is the inverse of the
elasticity, it can be seen that for a low stiffness the elasticity is high. This results in a constant
position error when Kp is equal to 0.01, until the derivative action is 0.02, then the average value in
the x-direction is maintained better. For the high stiffness, the impact of the derivative action is low
and the process is visible more unstable than when the stiffness is low. The oscillations occur at the
same frequency as when the stiffness is low, but the magnitude of it is higher.
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Figure 81: Impedance control - difference in active stiffness

To evaluate the y-direction accuracy, it is necessary to plot the y-direction to the time, because on
the (x,y)-graph it is not visible if the y-coordinate is ahead or behind the reference value at the
required timestamp. As displayed in [Figure 82], introducing a derivative action causes a control
action that is too big, resulting in big oscillations. The robot lags behind, then compensates this but
this causes the end-effector to be ahead of the reference value. This way the oscillations keep
occurring. A low active stiffness is desirable in the movement direction, when there is no derivative
action, the trajectory is followed with high accuracy. This means that the passive stiffness is sufficient

for motion control applications.
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Figure 82: Impedance control - y coordinate plotted over time

For the circle a gain KJ is used

Average error [mm] Standard deviation [mm)]
KJ y X v X
100 -0.0237 -0.0198 0.88625 0.72782
500 -0.0202 -0.00999 0.724407 0.697575
1000 -0.01236 -0.01038 0.714813 0.696257
2000 -0.0882 -0.01458 1.269412 0.69123

Table 20: Impedance control - circular motion summary

Up to a certain point a higher stiffness leads to an improvement in trajectory tracking, when the Kl is
too high, the deviation rises again because the control action is too strong. For small values the
stiffness is too low, causing the robot to lag behind relative to the reference position.

The big radius and relatively low speed make it easier for the robot to follow the circular trajectory,
the influence of the stiffness or impedance is more visible when either the radius is lower or the
speed is higher. For a big radius the simplification of dividing the circular trajectory into multiple
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linear segments is accurate, because every 8ms the angle towards the goal only changes slightly. The
smaller the circle and higher the velocity, the more the update period of 8ms impacts the
performance.

The figure below shows the motion of half of the circle, it can be seen that the low stiffness oscillates
at the start but later maintains the correct value. For the highest KJ, there is a small but constant
position error, which is visible in the ascending part from second 9.2 to 11.2 and this shape is
repeated twice. Overall, this method worked well, but as mentioned before this is due to the low
velocity and big radius.
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Figure 83: Impedance control - KJ of circular part
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6. Results and conclusions
Difference UR3 and UR3e

It has been proven in [Experiment three: Communication time delay  [Appendix XI —
Communication time delay]], as given by the manufacturers that the communication time of the
UR3 is 8ms and the one of the UR3e is 2ms. This gives the opportunity for the UR3e to react 4x as
fast to errors in the control and thus generate a higher accuracy.

The dimensions are almost identical and as was seen in [Experiment two: Multi-robot
communication[Appendix X — Multi-robot communication]], the commands written on the Teach
Pendant allow for synchronization in terms of joint positions/velocities and cartesian
positions/velocities. Meaning that any difference in dimensions can be avoided and eliminated by
configurating the robot’s coordinate system and code in the right way.

In terms of force control [Experiment one: Sampling period in force control [Appendix IX —
Sampling period force control]], the force deviation is the most significant indicator to evaluate the
noisiness and ability to maintain a constant value. It is visible that the repeatability of the UR3e leads
to a better maintenance of a vertical force and indirectly position. When the UR3e operates at its
highest frequency of 500Hz, this improves the force control even more.

UR3 UR3e
Force Slow (8ms) Slow (8ms)
Deviation [N] 0.633 0.301
Touch
Deviation [N] 0.513 0.217
Table 21: Conclusion - difference UR3 and UR3e force control
Filters
Filter K, K,4/K, Mean Standard deviation % of data within +/- 1N
P 0.001 | O 5.01603 | 0.573354 91.07
PD 0.001 | 0.000005 | 4.99939 | 0.650689 87.07
PV 0.001 | 0.06 4.98049 | 1.005806 66.00
PD average 0.001 | 0.00001 5.05705 | 0.746747 81.60
PD 2order 0.001 | 0.000005 | 5.02308 | 0.928597 70.27
Polynomial 0.001 | 0.00001 5.02808 | 1.161284 58.84
Kalman / / / / /

Table 22: Conclusion - force filtering and control of UR3

The derivative action is usually responsible for damping the system, because of its predictive
behaviour. When trying to reach a setpoint, the derivative gives an indication of how far this setpoint
is from the current value and the reaction speed. If the setpoint is far away, the derivative is high and
control action as well. Oscillations cause the derivative action to think the control action should be
higher than it actually is.

PD with averaging and second order filter have a worse performance than the ordinary PD control,
this is because there is a communication time delay of 8ms, which means the robot reacts to old
data. During 8ms information is gathered and 8ms later the robot receives the new value, so there is
a delay of 16ms on the system. During this time the force is able to deviate a lot from its previous
value.




¢* o % ESCUELA TECNICA

iy ﬁ SUPERIOR INGENIERIA 82
9 #* INDUSTRIAL VALENCIA

L

2 UNIVERSITAT
POLITECNICA
DE VALENCIA

The polynomial approximation works, but it does not generate an output with less noise. Perhaps if
the sample size was bigger, this would have been the case because it is rather easy to plot a
polynomial out of four values, but if this needs to be done out of sixteen or more, the fitted curve
will not follow the peak values very well. If this small change is made, this method could lead to
better results.

The self-programmed force control method comes with the ability to be tuned, during the conducted
force control experiments a somewhat random proportional gain is used, so there was room for
improvement for further (PD, PV, ...) controllers.

Out of the table below it can be seen that if the proportional controller is tuned correctly, it will work
better than the built-in F/T Control method because it already works at the same level of accuracy.
This means that the other control methods also might give better results when tuned until the best
possible result is achieved.

Numbers of [5.4.1] — Force sample period Numbers of [5.5.1]- Proportional control

Average [N] Deviation [N] Kp Average [N] Deviation [N]
Force 5.095 0.633 0.0005 5.03466 0.5166
Touch 4977 0.513

Table 23: Conclusion - difference between F/T Control and self-programmed force control of UR3

Impedance control

A method of implementing impedance control has been introduced, applying a normal force to a
surface with motion commands and changing the active stiffness and damping of the collaborative
robot.

Especially in the static x-direction, the stiffness value plays a great role in maintaining this value. For
small active stiffness values, the deviations and average value in this direction worsen. The gain for
the active stiffness is the proportional action in the control and thus for big values more oscillations
occur. The derivative action, which is responsible for the damping, does not improve the control. This
is probably because a high damping prevents the robot from responding quickly, which is necessary
since the motion updates occur every 8ms. The extra friction due to the normal force makes this
even worse.

A low active stiffness is safe and when introducing damping, the error will increase significantly. If the
active stiffness is high, the derivative action has less of a negative influence, which is as expected.
This shows that it is dangerous for a collaborative robot that interacts with the environment to be
programmed with high stiffness values, despite its advantages in terms of control accuracy.

Average [mm] Standard deviation [mm]
Kp Kd y X y X
0.5 0 -0.17162 -0.0427 0.439227 0.090531
0.0001 0 -0.07013 -0.14021 0.18127 0.113878
0.5 0 -0.17162 -0.0427 0.439227 0.090531
0.5 0.001 -0.19858 -0.10675 0.995345 0.130152
0.01 0 -0.16565 -0.12214 0.256214 0.097437
0.01 0.001 -1.60709 -0.11624 2.822332 0.109392

Table 24: Conclusion - impedance control line
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In the active direction (movement), a low stiffness value and no damping gives the best result. For
the passive direction a high stiffness gives the best results, since maintaining a pose is easier when
the stiffness is increased.

For the circular movement, the effect of the stiffness is not big because the radius is chosen big and
the velocity rather slow. It is still visible that when going from 100 to 500 as active stiffness value, the
performance improves significantly. When the value rises from 1000 to 2000 it is visible that the
stiffness value becomes too high and leads to a control action that is too strong.

Average [mm] Standard deviation [mm)]
KJ y X y X
100 -0.0237 -0.0198 0.88625 0.72782
500 -0.0202 -0.00999 0.724407 0.697575
1000 -0.01236 -0.01038 0.714813 0.696257
2000 -0.0882 -0.01458 1.269412 0.69123

Table 25: Conclusion - impedance control circle
Machining with collaborative robot

Because in milling a combination of normal and lateral forces occur, in theory the force control in this
application is more complicated and needs a force compensation and trajectory compensation as
well. Literature confirmed that complex calculations are needed or specialized equipment needs to
be designed for accurate force control of this kind.

A colleague student Ricardo Ruiz Monsalve was assigned to make his Master Thesis about the
application of collaborative robots for milling. Thanks to his approval for me to use the results of his
research, the literature study done on this topic is enforced by experiments.

He started with the UR3 and later performed the same experiments using the UR3e. The goal is to
mill in a linear motion, while maintaining a certain depth and velocity. First only motion control in the
movement direction was used, but this delivered bad results for the UR3, trying to solve this with an
extra control parameter in the other direction was unsuccessful. Especially when entering the
material, the high elasticity of the collaborative robot influences the performance.

The UR3e created almost perfect lines, but not always with a great surface finishing. When using
harder material, it was necessary to mill at a slow feed rate and a shallow depth of cut. The best
results came when applying motion control in X, Y and Z, because the line has to be straight and the
cutting depth has to be constant. It should be noted that the internal joint stiffnesses of the robots is
information we do not get access to, so this is a possible reason why the accuracy of the UR3e is
higher than the UR3’s.

In conclusion, it is made possible to perform milling tasks with a collaborative robot, despite not
finding research papers with this sort of robot. In the used setup (controlling the motor of the mill
with an Arduino and controlling the motion of the mill with the robot Teach Pendant) Ricardo
achieved positive results, without using complicated force or motion compensation formulas or
predicting lateral force values.
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IS
Appendix | = UR — PC communication
import socket Programa
import time AntesDeIniciar
var_li=socket_open("158.42.206.7",30000)
HOST = "158.42.236.117" st MO\SEE%O darmena
POI?T = 30098.# The some y the server programa de robot
print("Starting Program") Bucle var 1L False
1= 0 . var_li=socket_open("158.42.206.7",30000)
while i<1: Esperar: 0.5
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) var_2:=get_actual_tcp_pose()
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) socket_send_string(var_2)
s.bind((HOST, PORT)) # Bin Esperar: 0.5
print("Port binded" var_3:=[0,0,0,0]
s.listen(5) # Now for client connection. Bucle var_3[0]Z0
print("Client connected") var_3:=socket_read_ascii_float(3)

ction with client Esperar: 0.5
var_4:=p[var_3[1]/1000,var_3[2]/1000, (var_3[3]/1000)-0.05,0,0,0]
var_5:=pose_trans(var_2,var_4)

¢, addr = s,accept() # Est
print("Connection with client

ish co

)

try:
Y msg = c.recv(1024) ;gcgz?p[o,o,o.zs,o,o,o]
print(msg) var_5
time.sleep(2) Esperar: 1.0
i=1i+1 var_8:=get_actual_tcp_pose()
pos = "(3908,200,180)" var_6:=pose_trans(var_8,var_7)

c.send(pos.encode()) MoverL
print("Data sent")
time.sleep(0.5)
print("")
time.sleep(0.5)
pos2 = msg.decode()

p[0,0,-0.25,0,0,0]
var_9:=pose_trans(var_10,var_11)

pos2=pos2[2:1en(pos2)] MO::::LQ

b=pos2.replace("[","").replace("]","") Esperar: 1.0

lst=[x for x in b.split(’,')] var_13:=get_actual_tcp_pose()

print(lst) var_1. [-var_3[1]/1000,-var_3[2]/1000,-(Cvar_3[3]/1000)+0.05,0,0,0]
pl = str(float(1lst[6])+1000) var_12:=pose_trans(var_13,var_11)

p2 = str(float(lst[1])+10080) Mover3]

p3 = str(float(lst[2])%1800) var_12

OS2 = "(M4ple”, "+p2+”, "4p3+)" Esperar: 1.0

print(pos2)

except socket.error as socketerror:
print("Error")
c.close()
s.close()
print("Progran finish")

Table 26: UR - PC communication Python and UR code

Appendix || — Basic force control

Programa
AntesDeIniciar
F/T Cero
Programa de robot
Mover]
Punto_de_paso_2
Esperar: 0.2
F/T Cero
Bucle norm(Fz)<5
MoverL
Direccidn: Base Z-
F/T Mover
F/T Ruta: route_01

Table 27: Basic force control UR code

Appendix Il — Remote robot force reading

import socket
import time

Programa .
AntesDeIniciar
socket_open("158.42.206.7",30000)

HOST = "158.42.206.7"# T
PORT = 30000 # The s

print(“Starting Progran’) o F/T Cero
i=0
' Programa de robot
hite (1):
- socket . socket(socket.AF_INET, socket.SOCK_STREAM) Mover ]
s.setsackopt (socket.SO0L_SOCKET, socket.SO_REUSEADDR, 1) PUﬂtO_dE_DaEO_z
s.bind((HOST, PORT)) # Bind to the port E/T Cero

Esperar: 1.0
Bucle norm{Fz)<5

¢, addr = s.accept() #

print("Connection with client") ' MoverL .

“while (1): D1 FEC!I:'I on: Base Z._
g+ . reon(1026 until (expression)
rint(m
:1592 = ;gg,necune() FfT Cero
w2 - mRllilenCes) F/T Ccontrol
b=msg2.replace("[","").replace("]",""

Totohe fom x dn b spLiEC 3] F/T Mover
Erigti{F)ﬁ;(_{Lﬂilélgv: {1}, Fz: {2} ".format(lst[0],1stl1],1st[2])) F/T Ruta
excopt sacket.enron a5 socketerror: Esperar: 1.0
print("Errar") subTarea_1
e.close() Esperar: 0.008
“close) .
print(Progran Finish") forcel:==[Fx,Fy,Fz]

socket_send_string(forcel)

Table 28: Remote robot force reading Python and UR code
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import urx
import logging
import time
import socket
HOST = "192.168.1.133"
PORT = 40008
print("program start")
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
5.connect ((HOST,PORT))
time.sleep(8.5)
print("turning on digital output port2")
stringstr = "set_digital_out(2,true)"
bitbit = stringstr.encode()
s.send(bithit)
time.sleep(8.1)
command = "movej(p[0.2, 8.3, 8.5, @, 8, 3.14], a=8.5, v=0.5)"
s.send(command.encode())
print("command sent ")
time.sleep(1)
command = "movej(p[1.21, -1.9, -1.4, -2.89, -08.85, -1.12], a=0.5, v=0.5)"
s.send(command. encode())
print("command sent ")
time.sleep(1)
print(“Getdata")
data = s.recv(1024)
s.close()
print (repr(data))
print("finish")
if __name__ - "
legging.basicConfig(level=logging. INFO)
robot = urx.Robot("192.168.1,133")
robot.set_tcp((8, @, 8, 8, 8, 8))
robot.set_payload(8.5, (8,0,8))
try:
v
a
r 1
init_pos = robot.getj()
print("Initial joint position is ", init_pos)
transf = robot.get_pose()
print("Transformation from base to tcp is: ", transf)
joints_posl = (1.21, -1.98, -1.40, -2.89, -0.85, -1.12)
joints_pos2 = (2.26, -1.71, -1.27, -1.84, -2.28, -1.18)
print(“Move to position 1%)
rohot.movej(joints_posl, acc=a, vel=v)
time.sleep(5)
print("Move to position 2")
robot.movej(joints_pos2, acc=a, vel=v)
finally:
robot.close()
print ("Finished")

6.5
0.3
6.0

1 import socket

2 import time

3

4 HOST = "158.42.286.7"# The remote host

5 PORT = 49151 # The same port os used by the server

6

7 print("Starting Progran")

gi=8

9

10 while (1):

11 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
12 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
13 s.bind((HOST, PORT)) # Bind to the port

14 print("Pert binded")

15 s.listen(5) # Now wait for client connection.

16 print(“Client connected")

17 #c, addr = s.accept() # Establish connection with client.
18 #print("Connection with client")

19 try:

20 while (1):

21 print(“start")

22 datareguest = '10000008000000000000"

23 print(datarequest.encode())

24

25 array = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
26 byte_array = bytearray(array)

27 print(byte_array)

28 c.send(byte_array)

29 print("message sent")

30

31 msg = s.recv(1024)

32 #print(msg)

33 msg2 = msg.decode()

34 print(msg2)

35

36 except socket.error as socketerror:

37 print("Error")

38

39 c.close()
48 s.close()
41 print("Program finish")

Table 29: Attempts remote control Python codes

Appendix V — Attempt direct sensor reading

Web scraping

1

2

import regquests
from bs4 import BeautifulSoup

url = 'http://192.168.1.98/#/devices’
page = requests.get(url)
print(page) #check connection
print(page.text)
print('content: ')
print(page.content)
soup = BeautifulSoup(page.text, 'html.parser')
print(soup)
tablel = soup.find('div', id = 'monitoring')
print(tablel)
forces=[]
for i in tablel.find_all('td'):
valores = i.text
forces.append(valores)
print(forces)

import requests

resp = requests.get('http://192.168.1.98/#/devices"')
print(resp.text)

req = urllib.request.urlopen("http://192.168.1.98/#/devices')
print(str(req.getcode() ))

data = reqg.read()

print(data)

Compute box connection a




UNIVERSITAT
POLITECNICA
DE VALENCIA

ESCUELA Tf(NIQA
SUPERIOR INGENIERIA 90
INDUSTRIAL VALENCIA

import socket
import time

HOST = "158.42.2086.7"# The
PORT = 49151 # The

CLIENT = "158.42.286.
PORT_S = 48000
print("Starting Program")
i=@8

emate host
rt s used by the server

while (1):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT)) # Bind to the port
print("Port binded")
s.listen(5) # Now woit for client connection
print("Client connected")
¢, addr = s.accept() # Estoblish connection with client
print("Connection with client")
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(("158.42.2086.1", 40808))
try:

while (1):
msg = c.recv(1024)
print(msg)
msg2 = msg.decode()
msg2 = msg2[1:1len(msg2)]
b=msg2.replace("[","").replace("]","")
1st=[x for x in b.split(',')]
print("Fx: {6} , Fy: {1} , F:

v = int.fr

1,1stl1]

1st(2)))

rint (Fx)
print("Client test value")
from_server = client.recv(4096)
print(from_server)
except socket.error as socketerror:
print("Error")
client.close ()
c.close()
s.close()
print("Program finish")

Table 30: Attempts direct ssensor reading Python codes

Appendix VI — Force control with excel writing

import socket Program
import time Beforestart
import xlsxwriter var_li=socket_open("158.42.206.7",40000)
workbook = xlsxwriter.Workbook('UR3_29.084_InitiateSample.xlsx') Robot Program
worksheet = workbook.add_worksheet() var_start_send:=0
print(“excel created") Loop var_1< False
row =1 var_l:=socket_open("158.42.206.7",40000)
column = 1 Movel
worksheet.write('B1', 'Fx') Punto_de_paso_2
worksheet.write('C1', 'Fy') wait: 0.01
worksheet.write('D1', 'Fz') Movel
Waypoint_1

HOST = "192.168.1.182"#% PC IP ress Force

PORT = 40800 # The same port as ed by the server MoveP

print("Starting Program") Waypoint_2

i=8 wait: 1.0

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) SubTarea_1
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) var_speed:=get_target_tcp_speed()
s.bind ((HOST, PORT)) # Bind to the port If var_speed[1]<-0.02

print("Port binded") wait: 1.0

s.listen(5) # Now for client connection. var_start_send:=1

print("Client connected") socket_send_string(var_start_send)|
c, addr = s.accept() # Estoblish connection with client. Loop var_start_sendZl
print("Connection with client") Wait: 0.01

startSignal = c.recv(10824) Forces_var:=get_tcp_force()
print(startSignal) #the signal is var_start_send, with volue 1 socket_send_string(Forces_var)

start_time = time.time()
print("Start writing ")

while startSignal == b'1' : #byte nototion
nsg = c.recv(1024)
current_time = time.time()
elapsed_time = current_time - start_time

if elapsed_time > 3: # le time of 2sec
print("time elapsed")
break

else;

msg2 = msg.decode()
msg2 = msg2[1:1en(msg2)]
b=msg2.replace("[","").replace("]","")
1st=[x for x in b.split(',')]
#print(“Fx: {0F , Fy: {1} , Fz: {2} ".formot
column = 1
for item in lst:
worksheet.write(row,8,elapsed_time)
worksheet.write(row, column, item)
column += 1
row += 1
workbook.close()
print("Excel is finished")
c.close()
s.close()
print("Program finish")

Table 31: Force control with excel writing Python and UR code

(ist{e], lst[1],1st[2]) )
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from socket importx

import struct

import zlib

import numpy as np

import time

import xlsxwriter

workbook = xlsxwriter.Workbook('multirate_average_comp.xlsx')
worksheet = workbook.add_worksheet()
print("excel created")

row = 1

worksheet.write('Al", 'time")
worksheet.write("B1*, 'Fz')
worksheet.write('C1', 'F1')
worksheet.write('0D1", 'F2')
worksheet.write('E1", 'F3')
worksheet.write('F1', 'F4')

s = socket(AF_INET, SDCK_DGRAN)
s.bind(('192.168.1.183", 38801))
IPAddress = '192.168.1.98°
port = 49152
v = socket(AF_INET, SOCK_STREAM)
v.bind(('192.168.1.183" , 4B080))
v.listen(5)
print("connection reguest sent")
client,addr = v.accept()
print("eonnection with Robot")
def transform{command, data):
command = int{command, 1&)
command = np.array([command], dtype=np.uintlé)
comnand, byteswap (inplace=True)
data = np.array([datal, dtype=np.uint32)
data.byteswap(inplace=True)
% = np.array([a, command], dtype=np.uintlé)
request_header_command = x.view(np.uint8)
reguest_data = data.view(np.uint8)
request_header_command = request_header_command.flatten().tolist()
reguest_data = request_data.flatten().tolist()
request = np.append(request_header_command, regquest_data)
request = np.array([request], dtype=np.uint8)
return request
header = "1234°
a = int(header,16)
a = np.array([a], dtypesnp.uintlé)
a.byteswap(in, lace-True)
command_1

data_l =

command_2 = ‘'8882° set t
data_2 =

command_3 = "8842° to set bios.
data_3 = "255' et 15, 8 is r

reguest_send = transform(command_1,data. 1)
reguest_speed = transform(command_2, data_2)
request_biasing = transform(command_3,data_3)
s.sendto(request_biasing, (IPAddress,port))
print('request_biasing sent’)
s.sendto(request_speed, (IPAddress,port))
print('request_read-out speed sent')
startSignal=client.recv(8)

Programa L
AntesDeIniciar
var_l:=socket_open("192.168.1.103",40000)
Programa de robot

var_start_send:=0
Bucle var_1= False

var_l:=socket_open("192.168.1.103",40000)
Mover ]

Punto_de_paso_2
Esperar: 0.01
MoverL

Direccidn: Base Z-

until (expression)

Esperar var_start_send=1
F/T Mover

F/T Punto de ref.
var_start_send:=0
socket_send_string(var_start_send)
ESperar:

SubTarea_1

var_data—socket_read_ascii_float(1)

f_correction:=5

If norm(Fz)>2
var_start_send:==1
socket_send_string(var_start_send)

Bucle var_start_send=1
var_data=socket_read_ascii_float(1)

f_correction:=var_data[1]
force_mode(tool oseE , [0,0,1,0
[0,0,f_correction,0,0, DE 0.1,0.1,0.1
end_force modef
Esperar: 1.0

0,0]

5,0.17,0.17,0.171)

print(startSignal)

programtisme= time.time_ns()/1000800

listvalues =

i=8

Fest=0

averagePeriod = time.time_ns()/1B808000

Fgoal=5

while startSignal==b'l': while startSignal==b'l’
i+=1 i+=1

start_time = time.time_ns()/1886808
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfrom(36)
end_time = time.time_ns() / 1008000
delta_time = end_time - start_time
recibido = struct.unpack(’ IIIIIIIII', receivePacket)
recibido = np.array(recibido, dtype=np.uint32)
recibido = recibido.astype('int32')
recibido.byteswap(inplace=True)
valuesAll = np.array_split(recibido,3)
valuesF = valuesAll[1]/16008
Fz = valuesF[2]
Llistvalues.append(Fz)
if (1% 4 ==
end_period = time.time_ns()/1088880
period = end_period - averagePeriod
if (period>8):
Fest = 1/3+(listvalues[8]+listvalues[1]+listvalues[2])
del listvalues[-1:]
period = period - delta_time
else:
Fest = 1/4*(listvalues[@]+listvalues[1]+listvalves[2]+1listvalues[3])
print("LIST RESET, AVERAGE IS: ", average)
Fcorrection = 2+Fgoal-abs(Fest)
prlnt["EﬂRREETIﬂN I5: ", Feorrection}
+ str(Fcorrection) + ")"
f_d.encede()
client. send(F_d)
elapsed_time=end_period-start_time
worksheet.write(row,8, elapsed_time)
worksheet.write(row, 1, Fest)
worksheet.write(row, 2, listvalues[0])
worksheet .write(row, 3, listvalues[1])
worksheet.write(row, 4, listvalues[2])
worksheet.write(row, 5, listvalues[3])
row += 1
listvalues = []
averagePeriod = time.time_ns()/1800088
elif (averagePeriod-programtime>3500):
workbook. clese()
print("Excel is finished")
break
client.close()
v.close()
print("Program finished")

start_time = time.time_ns()/1600000
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfrom(36)
end_time = time.time_ns() / 1080000
delta_time = end_time - start_time
recibido = struct.unpack('IIIIIIIII*, receivePacket)
recibide = np.array(recibido, dtype=np.uint32)
recibido = recibido.astype(‘int32')
recibido.byteswap(inplace=True)
valuesAll = np.array_split(recibido,3)
valuesF = valuesAlL[1]/100880 #Force
Fz = valuesF[2]
llstvalves anvend(FZ)
if (1 %4 ==10):
enu_pernnd time.time_ns()/1000000
period = end_period - averagePeriod
if (periods8):
Fest = 0.2+listvalues[8] + B.2%listvaluves[1] + 8.6¥listvalues[2]
del listvalues[-1:]
period = peried - delta_time
else:

Fest = 8.1 * listvalues[8] + 8.2 * listvalues[1] + 8.3 % listvalues[2] + 8.4

* listvalues[3]
print("LIST RESET, AVERAGE IS: ", average)
Fcorrection = 2xFgoal-abs(Fest)
print("CORRECTION IS: ", Fcorrection)
f_d = "(" + str(Fcorrection) + ")"
f_d = f_d.encode()
client.send(f_d)
elapsed_time=end_period-start_time
worksheet.write(row, 8, elapsed_time)

worksheet.write(row, 1, Fest)

worksheet.write(row, 2, listvalues[8])
worksheet.urite(row, 3, listvalues[1])
worksheet.write(row, 4, listvalues[2])
worksheet.write(row, 5, listvalues[3])

row += 1
listvalues = []
averagePeriod = time.time_ns()/1886800
elif (averagePeriod-programtime>3568):
workbook.close()
print("Excel is finished")
break
client.close()
v.close()
print("Program finished")

Table 32: Adaptive force control Python and UR code
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import socket
import time
import xlsxwriter

workbook = xlsxwriter.Workbook('Trapezoidal.xlsx')
worksheet = workbook.add_worksheet()
worksheet.write('Al', 'time')
worksheet.write('B1', 'position')
worksheet.write('C1', 'speed')

row=1

HOST = "192,168,1,103"# The remote host

PORT = 40008 # The same port os vsed by the server
print("Starting Program")

i=0

5 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind ((HOST, PORT)) # Bind to the port
print("Port binded")
s.listen(8) # Now woit for client connection
print("Client connected")
¢, addr = s.accept() # Establish connection with client
print("Connection with client")
startSignal = c.recv(1024)
print(startSignal) #the signol is var_start_send, with value 1
start_time = time.time()
print("Start writing ")
while startSignal == b'1l
msg = c.recv(1024)
nsg2 = msg.decode()
nsg2 = msg2[1:len(msg2)]
b=msg2.replace("[","").replace("]1","")
1st=[x for x in b.split(',')]
print("FORCE: ", 1st)
worksheet.write_row(row,0,1lst)
row+=1
if (msg == b'0'):
c.close()
break
workbook.close()
s.close()
print("Program finished")

1 #byte notation

Programa
AntesDeIniciar
F/T Cero
Fz_ant.-0
Fref.-5
ei-0
ed-0
tm=0.008
vyref.-0,03
t0-0
start.-0
var_l.socket_open("192,168.1.103",40000)
control SpeedL
P_act.-0
D_act.-0
Kp-0.001
KduO.gOOOOS
Programa de robot
Bucle var_l. False
var_l-socket_open("192.168.1.103",40000)
Bucle
control SpeedL Z
Mover]
Punto_de_paso_1
start.
socket_send_string(start)
Esperar: 0.
Bucle norm(Fz)<l
speed1([0,0,-0.005,0,0,0],1,0)
Esperar: 0.5
vrefe-vyref
Aref.-0,05
Trapezium
PO.- et_actua]_tcg_pcse()
pf.10,0.2,0,0,0,0]
s=PF[1]-PO[1]
If 5<0
sign.--1
Else
sign-1
If norm(s)>vref*vref/aref
tl-vref/aref
t2-norm(s)/vref
tfin=2*t1+t2

Else
t%usqrt(ncrm(s)/AreF)
t2.
tfin-2#%tl
vt-0
Yt-0
t0-0
tcp_posO-get_actual_tcp_pose()
Bucle
Force-Fz

ef-Fref-Force

ed-(Force-Fz_ant)/0.008

speed.-get_actual_tcp_speed()

P_act.-kKp*ef

D_act-Kd*ed

vz_ref-P_act+D_act

If tl=tl+t2
speed1([0,vyref,vz_ref,0,0,0],Aref,0)

se
speed]([0,0,0,0,0,0],-aAref,0)
If norm(x1)<0.1
start-0 .
socket_send_string(start)
Moverl
Punto_de_paso_1
Detener
Fz_ant=Force
t0-t0+tm
subproceso_1
Esperar: 0,008
tiempo: Iniciar
targe_joint_pos-get_target_joint_positions()
targ_tcp_speed-get_target_tcp_speed()
tcp_speeduget_actua1_tcp_speed(?
tcp_pose-get_actual_tcp_pose()
target_tcp_pose-get_target_tcp_pose()
x1-tcp_speed[1]%1000
yl-tcp_pose[1]
datos.-[t0,x1,yl,Fz,P_act,D_act]

If start.l
socket_send_string(datos)

Table 33: Trapezoidal speed trajectory Python and UR code



UNIVERSITAT
POLITECNICA
DE VALENCIA

Appendix IX —Sampling period force control

ESCUELA Tf(NIQA
SUPERIOR INGENIERIA
INDUSTRIAL VALENCIA

93

import socket

import time

import xlsxwriter

workbook = xLlsxwriter.Workbook('UR3e_sampleForce3s_05_85_2ms.xlsx')
worksheet = workbook.add_worksheet()
print("excel created")

row = 1

column = 1

worksheet.write('B1', 'Fx')
worksheet.write('C1', 'Fy')
worksheet.write('D1', 'Fz')

HOST = "192.168.1.183"# The remote host

PORT = 408080 # The some port as used by the server
print("Starting Program")

i=®8

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
5.bind ((HOST, PORT)) # Bind to the |
print("Port binded")

s.listen(5) # WNow wait for client connection.
print("Client connected")

¢, addr = s.accept() # Estoblish connection with client.
print("Connection with client")

startSignal = c.recv(1024)

print(startSignal) #the signol is var_start_send,
start_time = time.time()

print("Start writing ")

with valve 1

while startSignal == b'1
msg = c.recv(1824)
current_time = time.time()
elapsed_time = current_time - start_time

1 #byte notation

if elapsed_time > 3: #sample time of Xsec
print("time elapsed")
break

else:

msg2 = msg.decode()
msg2 = msg2[1:1len(msg2)]
b=msg2.replace("[","").replace("]","")
1st=[x for x in b.split(',")]
print("Fx: {8} , Fy: {1} , Fz: {2} ".format(lst[®],1st[1],1st[2]))
column = 1
for item in 1st:
worksheet.write(row,B,elapsed_time)
worksheet.write(row, column, item)
column += 1
row += 1
workbook.close()
print("Excel is finished")

AntesDeIniciar

var_l:=socket_open{"192.168.1.103",40000)
Programa de robot

var_start_send:=0
Bucle var_l1= False

var_l*=socket_open("192.168.1.103",40000)
Mover ]
Punto_de_paso_2
Esperar: 0.01
MowverL
Direccién: Base Z-
until %express.'i on)
F/T Contro
F/T Mover
F/T Punto de ref.
Esperar: 1.0
SubTarea_1

var_speedi=get_target_tcp_speed()

If var_speed[0]=0.02
var_start_send:i=1
socket_send_string(var_start_send)

Bucle var_start_send=1
Esperar: 0.008
Forces_var:=[Fx, Fy, Fz]
socket_send_string(Forces_var)

c.close()

s.close()

print("Program finish")

UR3 Force UR3 Touch
Programa Frograma

AntesDeIniciar

var_l:=socket_open("192.168.1.103",40000)
Programa de robot

var_start_send:=0
Bucle var_1= False

var_l:=socket_open("192.168.1.103",40000)
Mowver ]

Punto_de_paso_2
Esperar: 0.01
MoverL

var_start_send=1
socket_send_string(var_start_send)
Direccidn: Base Z-
until %express.'i on)
F/T Contro
F/T Mover
F/T Punto de ref.
Esperar: 1.0

SubTarea_1
Bucle var_start_send=1
Esperar: 0.008

Forces_var’=[Fx, Fy, Fz]
socket_send_string(Forces_var)

UR3e Force

UR3e Touch
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Program
Beforestart
var_l:=socket_open("192.168.1.103",40000)
robot Program

var_start_send=0
force_torque=get_tcp_force()
Loop var_1= False

var_l:=socket_open("192.168.1.103",40000)
Move]
Punto_de_paso_2
wait: 0.1
MoveL
Direction: Base Z-
until (tool_contact_detection)
Force
MoveL .
Direction: Base X+
. until (distance)
wait: 1.0
SubTarea_1

var_speed:=get_target_tcp_speed()

If var_speed[0]>0.02
wait: 1.0
var_start_send:=1
socket_send_string(var_start_send)

Loop var_start_send=1
wait: 0.002 J/2 for fast and 8 for slow
force_torquer=get_tcp_force()
socket_send_string(force_torque)

Program
peforestart

var_l:=socket_open("192.168.1.103",40000)
rRobot Program

var_start_send:=0
force_torquei=get_tcp_force()
Loop var_1< False

var_l:=socket_open("192.168.1.103",40000)
Move]

Punto_de_paso_2
wait: 0.1
MoveL

var_start_send:=1
socket_send_string(var_start_send)
Direction: Base Z-

until (tool_contact_detection)

Force

MoveL .

Direction: Base X+

until (distance)

wait: 1.0
subTarea_1
Loop var_start_send=1
wait: 0.002 J/2 for fast and 8 for slow

force_torquei=get_tcp_force()
socket_send_string(force_torque)

Table 34: Sampling period force control Python and UR codes

Appendix X — Multi-robot communication

until (expression)
write_port_register(128,10)
F/T Control
F/T Mover
Esperar MODBUS_5Z50
F/T Punto de ref.: LiftBox
Esperar: 0.5
F/T Punto de ref.
Esperar: 1.0
write_port_register(128,20)
Esperar MODBUS_5Z60
MoverL
Direccion: Base X-
until (distance)
write_port_register(128,0)
Esperar: 1.0

UR3 UR3e
Programa o Program
AntesDeIniciar BEf oot
write_port_register(128,0) write_port_register(128,0)
Mover] = — )
Sfarteose startPose
Programa de robot
Mover] Robot Program
Esperar MODBUS_5Z0 MoveJ .
Punto_de_paso_2 wait MODBUS_4:0
MoverL Waypoint_3
Direccidon: Base X+ MovelL

Direction: Base Y-
uUntil (expression)
write_port_register(128,50)
Force
MoveL
Direction: Base Z7Z+
until (distance)
wait: 0.5
Direction: Base Z-
until (distance)
wait: 1.0
write_port_register(128,60)
wWait MODBUS_4=20
MovelL
Direction: Base Y+
until (distance)
write_port_register(128,0)
wait: 1.0

Table 35: Multi-robot communication UR codes
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import datetime
import socket
import time

HOST = "192.168.1.183"# The remote host

PORT = 300080 # The same port as used by the server
print(“Starting Program")

i=0

while (1):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockapt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT)) # Bind to the part
print("Port binded")
s.listen(5) # Now woit for client connection.
print("Client connected")
c, addr = s.accept() # Estoblish connection with client.
print("Connection with client")
try:
for x in range(®, 50):
returnUnit = @
testunit = "(1,1,1)"
c.send(testunit.encode())
time_start = datetime.datetime.now()
returnUni= c.recv(1024)
returnUnit = returnUni.decode()
if returnUnit != 0:
time_end = datetime.datetime.now()
deltaTime = time_end - time_start
print(deltaTime)

except socket.error as socketerror:
print("Error")

c.close()
s.close()
print("Program finish")

Programa
AntesDeIniciar
var_l=socket_open("192.168.1.103",30000)
Mover]
Punto_de_paso_1
Programa de robot
Bucle var_1ZX False
var_l=socket_open("192.168.1.103",30000)
var_3=[0,0,0,0]
Bucle wvar_3[0]Z0
var_3=socket_read_ascii_float(3)
socket_send_int(1)

Program
Beforestart
var_1l:=socket_open("192.168.1.103",30000)
Move]

Punto_de_paso_1
Robot Program

Loop var_1< False
var_l:=socket_open("192.168.1.103",30000)

var_3:=[0,0,0,0]

Loop var_3[0]=0
var_3:==socket_read_ascii_float(3)
socket_send_int(1)

Table 36: Communication time delay Python and UR codes
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from socket imports
import struct
import numpy as np
import time
5 = socket(AF_INET,SOCK_DGRAM)
s.bind(('192.168.1.183"', 38801))
IPAddress = '192.168.1.98"
port = 49152
def transform(command, data):
command = int(command, 16)
command = np.array([command], dtype=np.uintlé)
command . byteswap({inplace=True)
data = np.array([datal, dtype=np.uint32)
data.byteswap(inplace=True)
® = np.array([a, command], dtype=np.uintls)
request_header_command = x.view(np.uint8)
reguest_data = data.view(np.uint8)
request_header_command = request_header_command.flatten().tolist()
request_data = request_data.flatten().tolist()
request = np.append(request_header_command, request_data)
request = np.array([request], dtype=np.uintg)
return reguest
header = '1234'
a = int(header,16)
a = np.array([al, dtype=np.uint1é)
a.byteswap(inplace=True)
command_1 = '2' #command to stort sending output
data_1 = '1'

of sent somples

command_2 = 'B082' d to set read-out speed in ms
data_2 = '2"

command_3 = '0042° a set biosing

data_3 = '255' #set bios, @ is reset bigs

request_send = transform{command_1,data_1)
request_speed = transform(command_2, data_2)
request_biasing = transform(command_3,data_3)
s.sendto(request_biasing, (IPAddress, port))
print('request_biasing sent')
s.sendto(request_speed, (IPAddress,port))
print('request_read-out speed sent')
while True:
start_time = time.time_ns()/1006080
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfrom(3é)
end_time = time.time_ns() / 1000080
delta_time = end_time - start_time
recibido = struct.unpack('IIIIIIIII', receivePacket)
recibido = np.array(recibido, dtype=np.uint32)
recibido = recibido.astype('int32')
recibido.byteswap(inplace=True)
valuesALL = np.array_split(recibido,3)
valuesS = valuesAL1[0] #sensor stotus
valuesF = valuesAll[1]/10008 #
valuesT = valuesAll[2]1/10008008 #Torque
print(valuesF , " Force values")
print(delta_time , " millseconds")

orce

Table 37: Force sensor connection Python code
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Proportional — PD — PV

import socket
import time
import xlsxwriter

workbook = xlsxwriter.Workbook('PV_trap_(88681).x1lsx"')
worksheet = workbook.add_worksheet('88081")
Kp=0.881

Kd=0.0015

print("excel created")

row = 1

column = 1

worksheet.write('A1", 'time')
worksheet.write('B1', 'speed')
worksheet.write('C1", 'position')
worksheet.write('D1', 'Force')
worksheet . write('E1", 'P-action’)
worksheet.write('F1', 'D-action')

HOST = "192.168.1.1083"# The remote host

PORT = 40080 # The some port os uvsed by the server
print("Starting Program")

i=8

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT)) # Bind to the port

print("Port binded")

s.listen(5) # Now woit for client connection
print("Client connected")

¢, addr = s.accept() # Establish connection with client
print("Connection with client")

startSignal = c.recv(1824)

print(startSignal) #the signol is vor_stort_send, with volue |

start_time = time.time()
print("Start writing ")

while startSignal == b'1l
msg = c.recv(1024)
msg2 = msg.decode()
msg2 = msg2[1:1len(msg2)]
h:msg?.replace("[“, ||||) .replace("]", un)
1st=[x for x in b.split(',')]
print ("force valves ", 1lst)
worksheet.write_row(row, B8, 1st)
row += 1
if (msg == b'0"):

worksheet.write(0,

1 #byte notation

'Kp*)

7
worksheet.write(8, &, 'Kv')
worksheet.write(1, 7, Kp)
worksheet.write(1, 8, Kd)
c.close()
break

workbook.close()
print("Excel is finished")
c.close()

s.close()

print("Program finish")

Programa
AntesDeIniciar
F/T Cero
Fz_ant.0
Fref.-5
ei-0

VZ =
vyref-0,03
t0-0
start-0
var_l-socket_open("192.168.1.103",40000)
control SpeedL

P_act-0

D_act-0

Kp=0.,001

K
Kvi0.015
Programa de robot
Bucle var_l. False
var_l-socket_open("192.168.1.103",40000)
Bucle
Control SpeedL Z
Moverl
Punto_de_paso_1
start-
socket_send_string(start)
Esperar: 0.5
Bucle norm(Fz)<l
speed]([0,0,-0.005,0,0,0],1,0)
Esperar: 0.5
Vrefmvyref
Aref.0.05
Trapezium
Po_iet_actua1_tcp_pnse()

-10,0.2,0,0,0,0]
[1]-pPO[1]

s<0
sign--1

Else
sign=1

If norm(s)>vrefsvref/aref
tl-vref/aref
t2=norm(s) /vref
tfin-2*tl+t2

pF.
5-P
f

Else
t%wsqrt(nurm(s)/AreF)
tfin-2*tl

vt-0

Yt-0

t0-0

tcp_posO-get_actual_tcp_pose()

Bucle
Force-Fz

ef-Fref-Force
'ed-(Force-Fz_ant)/0.008"
P_act-Kp*ef
D_act=Kv*tcp_: speed[z]
vz_ref.-P_act-D_a
If t0stlst2
1speed'l([O Jvyref,vz_ref,0,0,0],Aref,0)
Else
speed1(E0 ,0,0,0,0,01,-Aref,0)
If norm(x1)<0.1
start-0 |
socket_send_string(start)
Mover3
Punto_de_paso_1
Detener
Fz_ant-Force
t0-t0+tm
subproceso_1
Esperar: 0.008
targ_tcp_speed-get_target_tcp_speed()
tcp_speed-get_actual_tcp_speed()
tcp_pose-get_actual_tcp_pose()
dat_target_tcp_speed
wE_targ_tcp_speedEui*luuu
w7-targ_tcp_speed[1]*1000
wB-targ_tcp_speed[2]*1000
dat_actual_tcp_speed
x0-tcp_speed[0]*1000
X1 tcp_speedEl]*lOOO
x2-tcp_speed[2]#1000
dat_tcp_pose

y0-tcp_pose[0]
yl-tcp_pose[1]*1000
y2-tcp_pose[2]
datos- [tO x1,yl,Fz,P_act,D_act]
If start.l
socket_send_string(datos)
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PD with averaging filter

2 order filter

from socket importx

import struct

import zlib

import numpy as np

import time

import xLlsxwriter

workbook = xlsxwriter.Workbook('PD_trap_average_(8683).x1sx')
worksheet = workbook.add_worksheet('av_8063')

Kp = 0.801

d = 0.08003

print("excel created")
worksheet.write('A1', 'time') #e
worksheet.write('B1 'Forces_measured') #1
worksheet.write('D1', "time') #3
worksheet . write('E1', ‘velocity') #4
worksheet.write('F1', 'position') #5
worksheet.write('61', ‘force') #6
worksheet.write('H1', 'P action') #7
worksheet.write("I1', 'D action') #8

worksheet.write('J1', 'tiempo') #9
s = socket(AF_INET,SOCK_DGRAM) #UDP compute box
s.bind(('192.168.1.103", 38001))
IPAddress = '192.168.1.98"
port = 49152
v = socket(AF_INET, SOCK_STREAM) #compu
v.bind(('192.168.1.103" , 48000))
v.listen(5)
print("connection request sent")
client,addr = v.accept()
print(“connection with Robot")
def transform(command, data):
command = int(command, 16)

= np.array([ 1, dtype=np.uintle)
command. byteswap(inplace=True)
data = np.array([data], dtype=np.uvint32)
data.byteswap(inplace=True)
x = np.array([a, command], dtype=np.uint16)
request_header_command = x.view(np.uint8)
request_data = data.view(np.uint8)
request_header_command = request_header_command.flatten().tolist()
request_data = reguest_data.flatten().tolist()
request = np.append(reguest_header_command, request_data)
request = np.array([request], dtype=np.uint8)
return reguest
header = '1234" #header of every request
a = int(header,16)
a = np.array([al, dtype=np.uintl1é)
a.byteswap(inplace=True)
command_1 = '2' #eo
data_1
command_2
data_2
command_3
data_3 = '255"
request_send = transform(cemmand_1,data_1)
request_speed = transform(command_2, data_2)
request_biasing = transform(command_3,data_3)
s.sendto(request_biasing, (IPAddress, port))
print('request_biasing sent')
s.sendto(request_speed, (IPAddress, port))
print('request_read-out speed sent')
startSignal=client.recv(8)
print(startSignal)
prograntime= time.time_ns()/1880000
listvalues = []
listperiods = []
row = 1
=0
average=0
Fp=5 #Fprevious, assume SN
Fv=0 #Fvelocity
averagePeriod =
while startSignal

foe

socket

nding outp

ng ut

ind to start s
#number of sent somples

'80882' Jcommand to set read-out speed in ms
#oms

'8842'  #command to set biasing

#set bios, 0 is reset bias

ime. time_ns()/1808800
1

#msg = client.recv(1024)
start_time = time.tine_ns()/1008000
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfrom(36)
end_time = time.time_ns() / 1086008
delta_tine = end_time - start_tine
elapsed_t = end_time - programtine
recibido = struct.unpack('IITITIIII', receivePacket)
recibido = np.array(recibido, dtype=np.uint32)
recibido = recibido.astype('int32')
recibido.byteswap (inplace=True)
valuesAll = np.array_split(recibido,3)
valuesF = valuesAll[1]/10080 #Force
Fz = valuesF([2]
listvalues.append (Fz)
listperiods. append(elapsed_t)
if (i==0):
end_period = tine.time_ns()/1080800
period = end_period-averagePeriod
if(period>8) :
average = 1/3(Listvalues(0]+Listvalues(1]+listvalues[2])
del listvalues[-2:] #delete Lost two values in list
period = period - delta_tine

else
average = 1/4+(listvalues[8]+listvalues[1]+listvalues[2]+listvalues[3])
Fv=(average-Fp)/0.008
Fp=average
sent = "(" + str(average) + ")"
nsg = client.recv(1024)
nsg2 = msg.decode ()
nsg2 = msg2[1:len(msg2)]
b = nsg2.replace("[", "").replace("]", "")
st = [x for x in b.split(',")]
worksheet.write_row(row, 3, lst]
if (msg==b'0'):
worksheet .write(0, 16, *Kp')
worksheet.write(0, 11, *Kd')
worksheet.write(1, 10, Kp)
worksheet.write(1, 11, Kd)
workbook., clese()
client.close()
print ("EXCEL FINISHED")
break
sent = sent.encode()
client.send(sent)
worksheet .write_colunn(row,1, listvalues)
worksheet .write_colunn(row,8, listperiods)
row += 4
listvalues = []
listperiods =
averagePeriod = time.time_ns() / 1008000
i=0
v.close()
print("Progran finished")

if (i==4):
end_period = time.time_ns()/1000808
period = end_period-averagePeriod
if(period>8):
average = B.2xlistvalues[0]+8.2xlistvalues[1]+8.6%listvalues[2
del listvalues[-2:] #del n
period = period - delta_time
else:
average = 0,1xlistvalues[0]+0.2+listvalues[1]+0,3listvalues[2]40.4%

listvalues[3]

te lost two volues i
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Programa
AntesDeIniciar
F/T Cero
Fz_ant-0
Fref--5
ei=0

V2
vyref.0.03
t0-0
start.0
var_l-socket_open("192.168.1.103",40000)
control SpeedL
P_act=0
D_act-0
Kp-0.001
Kd-0.00003
Programa de robot
Bucle var_1: False
var_l-socket_open("192.168.1.103",40000)

Bucle
control speedL z
Mover)
Punto_de_paso_1
start-1
socket_send_string(start)
Esperar:

Bucle norm(Fz)<l
speed?([o 0,-0.005,0,0,0],1,0)
Esperar: 0.
vref.vyref
05

Trapezium
et_actual_tcp_pose()
-10,0.2,0,0,0,0]
s=Pf[1]-PO[1]
If s<0
sign--1
Else
sign-1
If norm(s)>vref*vref/aref
tl-vref/aref
t2-norm(s) /vref
th1n ~2%tl+t2
E
tlesqrt(norm(s)/Aref)

2.
tfin-2%tl

vt-0

Yt-0

10
tcp_posO-get_actual_tcp_pose()
ucle

Force-f_average
ef-Fref-Force
ed.(Force-Fz_ant)/0.008
speed-get_actual_tcp_speed()
vz-speed[2
P_act-Kp*e
D_act-kd*ed
vz_ref.P_act+D_act
If t0stlet2
Tspeexﬂ([ﬂ yvyref,vz_ref,0,0,0],aref,0)

speed1([0,0,0, 0 0,0],-Aref,0)
If norm(xl)<
start-0
socket_send_string(start)
Mover)
Punto_de_paso_1
Detener
Fz_ant-Force
t0-t0+tm
Subproceso_1
Esperar: 0.008 )
fdata-socket_read_ascii_float(1)
f_average-fdata[1]
targ_tcp_speed-get_target_tcp_speed()
tcp_speed-get_actual_tcp_speed()
tcp_pose-get_actual_tcp_pose()
dat_target_tcp_speed
wh-targ_tcp_speed B]*lDDB
w7-targ_tcp_speed[1]*1000
w8-targ_tcp_! speed[Z]*lOOO
dat_actual_tcp
x0wtep_: speed[O?’lUOO
xlmtcp_speedE ]*lUUU
x2-tcp_speed[2]%1000
dat t(p pose
0-tcp_pose[0
yl-tcp_| pnse[l]*looo
y2-tcp_pos
datos.-[t0, xl yl,Fz,P_act,D_act]
If start.d
socket_send_string(datos)

Polynomial approximation
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from socket importx

import struct

impert zlib

import numpy as np

import time

import xlsxwriter

workbook = xlsxwriter.Workbook('polynomial_trap_BO83.xlsx')
worksheet = workbook.add_worksheet('poly_BBB3')
print("excel created")

Kp=8.001

Kd=0.00083

worksheet.write('A1", 'time period') #0
worksheet.write('B1', 'x3") #1
worksheet.write('C1", 'x2') #2
worksheet,write('D1", 'x1') #3
worksheet.write('E1", 'C") #4
worksheet,write('61", 'time') #é
worksheet.write('H1", 'Forces') #7
worksheet.write('J1", 'Polytime') #9
worksheet,write('K1', 'Polyforces') #10
worksheet.write('J1", 'Kp') #11
worksheet.write('K1', 'Kd') #12

worksheet.write('J2", Kp)

worksheet.write('K2', Kd)

s = socket(AF_INET,SOCK_DGRAM) #UDP compute box

s.bind(('192.168.1.183"', 38861))

IPAddress = '192.168.1.98"

port = 49152

v = socket(AF_INET, SOCK_STREAM) #computer sccket

v.bind(('192.168.1.183' , 48080))

v.listen(8)

print(“connection regquest sent")

client,addr = v.accept()

print("connection with Robot")

def transform(command, data):
command = int(command, 16)
command = np.array([command], dtype=np.uintlé)
command .byteswap(inplace=True)
data = np.array([datal, dtype=np.uint32)
data.byteswap(inplace=True)
% = np.array([a, command], dtype=np.uintlé)
request_header_command = x.view(np.uint8)
request_data = data.view(np.uint8)

request_header_command = request_header_command.flatten().tolist()

request_data = request_data.flatten().tolist()

request = np.append(request_header_command, request_data)

request = np.array([request], dtype=np.uint8)
return request
def polynom(t,x8,x1,x2,x3):
value = xBxpow(t,3) + xl#pow(t,2) + %2 * t + X3
return value
header = '1234' #he
a = int(header,16)
a = np.array([al, dtype=np.uint1é&)
a.byteswap(inplace=True)

der of every request

command_1 = "2°' #commond to start sending ovtput
data_1l = '1' #nu

command_2 = 'B082' #commond to set read-out speed in ms
data_2 = '2' #2ms

command_3 = '@B842' Jfcommond to set bigsing

data_3 = '255°' #set bias, @ is reset bias

request_send = transform(command_1,data_1)
request_speed = transform(command_2, data_2)
request_biasing = transform{command_3,data_3)
s.sendto(reguest_biasing, (IPAddress, port))
print(*request_biasing sent')
s.sendto(request_speed, (IPAddress, port))

print('request_read-out speed sent')
startSignal=client.recv(8&)
print(startSignal)
prograntime= time.time_ns()/1000000
listvalues = []
listperieds = []
row = 1
n=1
i=0
Fest=0
averagePeriod = time.time_ns()/1000008
Fgoal=5
while startSignal==b'1':
i+=1
start_time = time.time_ns()/10008008
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfrom(3é)
end_time = time.time_ns() / 1800080
delta_time = end_time - start_time
elapsed_t = end_time - programtime
recibido = struct.unpack("IIIIIIIII', receivePacket)
recibido = np.array(recibide, dtype=np.uint32)
recibido = recibido.astype('int32')
recibido.byteswap(inplace=True)
valuesAll = np.array_split(recibido,3)
valuesF = valuesAll[1]/1008088 #Force
Fz = valuesF[2]
listvalues.append(Fz)
listperiods.append(elapsed_t)
if (i==4):
end_period = time.time_ns()/1880008
period = end_period-averagePeriod
if(period=8):

del listvaluves[-1]

del listperiods[-1]

period=period-delta_time

programtime+=delta_time

z = np.polyfit(listperiods, listvalues, 2)

z = np.insert(z, O, 8)
else:

z = np.polyfit(listperiods, listvalues, 3)
worksheet,write(row, 8, period)
worksheet.write_row(row, 1, z)
worksheet.write_column(row, 7, listvalues)
worksheet.write_column(row, 6, listperiods)
msg = client.recv(1024)
msg2 = msg.decode()
msg2 = msg2[1l:len(msg2)]

b = msg2.replace("[", "").replace("]", "")
1st = [x for x in b.split(',")]
if (msg==b'0"):

workbook ,close()

client.close()

print("EXCEL FINISHED")

break
n=round(listperiods[B8]-8.5)
for k in range(9):

worksheet.write(n,9,n)

polyF = polynom(n,z[0],z[1],z[2],2[3])

worksheet.write(n,10, polyF)

n+=1
row += 4
listwalues = [
listperiods =
averagePeriod
i=0

client.close()

]
[l
= time.time_ns() / 1000860

Kalman filter
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from socket importx

impert struct

inport zlib

import numpy as np

impoert time

import xlsxwriter

#define commands

def transforn(command, data):
connand = int(command, 16)
command = np.arrayC[command], dtype=np.uintlé)
command . byteswap(inplace=True)
data = np.array([datal, dtype=np.uint32)
data.byteswap(inplace=True)
% = np.array([a, command], dtype=np.uint1s)
request_header_command = x.view(np.uint8)
request_data = data.view(np.uint8)
request_header_command = request_header_command.flatten().tolist()
reguest_data = reguest_data.flatten().tolist()
request = np.append(request_header_command, request_data)
request = np.array([request], dtype=np.uint8)
return request

# prepare excel file

workbook = xlsxwriter.Workbook('Kalman_Kp8.8885_(3).x1sx')

t = Ladd_i t('p6.0885_3')
Kp=0.0005
Kd=0.0085
Q= 8.5 #process noise, estimation

worksheet.write('A1', 'Measurement#') # 0
worksheet.write('B1', 'RealF') # 1
worksheet.write('D1', ‘Kp') # 3
worksheet.write('E1", 'Kd') # 4

#sensor v ce, out of Matlab
x1=1 #state estimation of force
x2=0 #state estimation of force derivative

elements

#Force value should be five
listperiods = [1

listvalues = []

i=8

averagePeriod = time.time_ns()/1000000
row=1

#define kalman steps:predict a
def predictor(x1,x2,p11,p12,p21,p22):
x1 = x1 + x2%Tm
x2 = x2
pll = pll + p21%Tm + Tmx(p12+p22%Tm)
pl2 = pl2 + p22%Tm

d correct

p21 = p21 + p22xTn
p22 = p22 + Q
return [x1, x2,pl1,p12,p21,p22]

def corrector(x1,x2,p11,p12,p21,p22,F):
k1 = pllx(p11+Rk)
K2 = p2lx(pll+Rk)

x1 = x1+klx(F-x1)

%2 = x2+k2%(F-x1)
pll = pllx(1-k1)
pl2 12+ (1-k1)
p21 = plix(-k2)+p21

P22 = pl2#(-k2)+p22
return [x1,x2,p11,p12,p21,p22]

#set up connection
s = socket(AF_INET,SOCK_DGRAM) #U0P compute box
s.bind(('192.168.1.183", 38081))
IPAddress = '192.168.1.98'
port = 49152
v = socket(AF_INET, SOCK_STREAM) #robot-c
v.bind(('192,168.1,103' , 40000))
v.listen(5)
print(“connection request sent")
client,addr = v.accept()
print ("connection with Rnhnt”)

#prepare
header = '1234'
a = int(header,16)
a = np.array([al, dtype=np.uint16)
a.byteswap(inplace=True)
command_1 = '2'
data_1
command_2
data_2 '
command_3 = '
data_3 = '255°
request_send = transfurm(cammand 1, data 1)
request_speed = transforn(conmand_2, data_2)
request_biasing = transform(command_3,data_3)

#set up connection with compute box
s.sendto(request_biasing, (IPAddress, port))
print(‘request_biasing sent')
s.sendto(request_speed, (IPAddress, port))
print('request_read-out speed sent')
startSignal=client.recv(8)
print("Start signal received")
programtime= time.time_ns()/1000000

mputer socket

r of every request

t sending output
mples

read-out speed in ms

while startSignal==b'1"':
i+=1
start_time = time.time_ns()/1660000
s.sendto(request_send, (IPAddress, port))
receivePacket, addr = s.recvfron(36)
end_time = time.time_ns() / 1080808
delta_time = (end_time - start_time)/1000 #time in (milli)seconds
elapsed_t = end_time - programtime
recibido = struct.unpack('IIIIIIIII', receivePacket)
recibido = np.array(recibido, dtype=np.uint32)
recibido = recibido.astype('int32")
recibido.byteswap(inplace=True)
valuesAll = np.array_split(recibido,3)
valuesF = valuesAll[1]/10000 #Force in N
Fz = valuesF[2]

#Fz value is extracted, what acti
Tistvalues.append(Fz)
listperiods.append(elapsed_t)
if (i==4):

worksheet.write_colunn(row, 8, listperiods)

worksheet .write_column(row, 1, listvalues)

rOW = FOW + 4

for n in range(len(listvalues)):

x1, x2, pil, pl2, p21, p22 = corrector(xl, x2, pll, pl2, p21, p22,
listvalves[nl) ment update
# cted”,

n to perform?

ed ictor(x1, x2, pll, pl2, p21, p22)

#print( cted | X.
send= ”(”ostr(xl)e” " str(xz) e

send=send.encode()
print(send)
client.send(send)
msg = client.recv(48)
msg2 = msg.decode()
msg2 = msg2[1:1len(msg2)]
b = msg2.replace("[", "").replace("]1", "")
1st = [x for x in b.split(',')]
if (msg==b'0"):
break
listvalues=[)
listperiods=[]
i=0

worksheet,write(0,5, 'FINAL')
worksheet.write(8,6,"State vector")
worksheet.write(0,8, "Covariance vector")
worksheet.write(l1,6,x1)
worksheet.write(2,6,x2)
worksheet.write(1,8,pl1)
worksheet.write(1,9,p12)
worksheet.write(2,8,p21)
worksheet.write(2,9,p22)
worksheet.write(1,3,Kp)
worksheet.write(1, 4, Kd)
workbook.close()

client.close()

v.close()

print("Program finished")

Programa
AntesDeIniciar

start.-0
var_le-socket_open("192.168.1,103",40000)
control SpeedL

Kff-0.000

Programa de robot
Bucle var_l. False
var_l-socket_open("192.168.1.103",40000)
Bucle
Control SpeedL Z
Moverl]
Punto_de_paso_1
Esperar: 0.5
start-1 .
socket_send, str1ng(start)
Bucle nurm(F <1
speedl1([0,0,-0.005,0,0,01,1,0)
Esperar: 0.5
vref-vyref
Aref-0.05
Trapezium
pOw?et_actuaW _tcp_pose()

F[1]-PO
iFP [1]-PO[1]

sign-1

If norm(s)>vref*vref/aref
tl-vref/are
t2=norm(s)/vref
tﬁ n=2*tl+t2

Els
tlmgqrt(nnrm(s)/Aref)

b1y
tfin-2*tl
vt=0
Yt.0
t0-0
tcp_posO-get_actual_tcp_pose()
Bucle
Force-f_av
ef.Fref-Force
ed_FEder ; 4o
speed-get_actual_tcp_spee
d[2]

speed1 ([0,vyref,vz_ref,0,0,0] ,Aref,0)

Else
speed1([0,0,0,0,0,0],-Aref,0)
If norm(x1)<0.1

start.-0 .
'socket_send_string(start)’
Moverl
Punto_de_paso_1
Detener
Fz_ant-Force
t0=-t0+tm
Subproceso_1
Esperar: 0.008
Fdata_socket read_ascii_float(2)
f_av.-fdata[l]

F,der--Fdata[ZI
socket_send_string(start)
tcp_speed-get_actual_tcp_speed()
tcp_pose-get_actual_tcp_pose()
target_tcp_pose-get_target_tcp_pose()
dat_actual_tcp_speed
x1-tcp_speed[1]*1000
x2=tcp_speed[2]*1000
dat_tcp_pose
yl-tcp_pose[1]*1000

Table 38: Force filtering and control Python and UR codes
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Appendix XIV — Impedance control

import socket Programa

import time AntesDeIgiciar

import xlsxwriter ;ﬁiggé_ac:ua‘l_tcp_pcse()

workbook = xLsxwriter.Workbook('InpedanceControl(5).x1sx') poant

worksheet = workbook.add_worksheet('5') E}f

Kp=0.0001 £m-0.008

Kd=0,0000 ;ﬁgg o

KJ=1000 yref-0

print("excel created") *rgfsu

row = 1 o5 y-0

column = 1 vyre -0.032

worksheet.write('A1', 'time') Vxref.0

worksheet.write('B1', 'speed') :5934

worksheet.write('C1', 'Xposition') start-0

worksheet.write('D1', 'Ypositien')
worksheet.write('E1', 'xrefposition')
worksheet.write('F1', 'yrefposition')
worksheet.write('G1', 'P-action')

worksheet.write('H1', 'D-action')

HOST = "192.168.1.103"# The remote host

PORT = 480060 # The same port as uvsed by the server
print("Starting Program")

i=8

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT)) # Bind to the port

print("Port binded")

s.listen(5) # Now wait for client connection
print("Client connected")

c, addr = s.accept() # Estoblish connection with client.
print("Connection with client")

startSignal = c.recv(1024)

print(startSignal) #the signal is vor_start_send, with value 1

start_time = time.time()
print("Start writing ")
while startSignal == b'1l" : #byte nototion
msg = c.recv(1024)
msg2 = msg.decode()
msg2 = msg2[1:len(msg2)]
b=msg2.replace("[","").replace("]","")
1st=[x for x in b.split(',')]
print ("position values ", 1st)
worksheet.write_row(row, 8, 1st)
row += 1
if (msg == b'0'):
worksheet.write(8, 8, 'Kp')
worksheet.write(®, 9, 'Kv')
worksheet.write(1, 8, Kp)
worksheet.write(1, 9, Kd)
worksheet.write(1,10,KJ)
c.close()
break
workbook. close()
print("Excel is finished")
c.close()
s.close()
print("Program finish")

wvar_l-socket_open("192.168.1.103",40000)
R-0.05
we2.5
control SpeedL
P_act-0
D_act-0
Kp=0.1
Kd-0

1-2000
Programa de robot
Bucle var_1. Fal
var_l-socket open("192 168.1.103",40000)

Bucle
control SpeedL Z
Moverl
Punto_de_paso_1
start.l
socket_send_string(start)

MoverL
Direccion: Base Z-
until (distance)
Esperar: 0.5
vref-vyref
Aref.-4
Tl"a ezium
get actua1 _tcp_pose()
xre

y_0- PU[l]

zref.-p0[2]

pf-[0,0.2,0,0,0,0]

s=Pf[1]-PO[1]

If s<0
sign--1

Else
sign-1

If norm(s)>vref*vref/aref
tl-vref/aref
t2-norm(s)/vref
tfin=2%tl+t2

Else
tl-sgrt(norm(s)/Aref)

tfin-2*tl

]

y_l-y_O+Aref*tl#tl/2

y_2eylivyref* 2

Yt-0

t0-0 o ; o

tcp_pos et_actual_tc ose
achg gO<tF$n p-p

pos_y-=y1/1000

POS_Xe ¥D/IDUU

ef-yref-pos_y

efx-xref-pos_x

ei-Fref-v2

ed-(pos_y-y_ ant)IO 008

edx= épcs _X-x_ant)/0.008

speed.-get_actual tcp_speed()

P_act-Kp*ef
D_act-Kd*ed
vz=0,00005%ei

vxref.- Kp*efx+kd*edx
vref-vref+P_act+D_act
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If tOstl
speed]([vxref,vref,-vz,0,0,0],Aref,0)
yref-y_O+Aref*t0*t0/2
vref-Aref*t0

ElseIf tOstl+t2 and t0O>tl
speed1([vxref,vref,-vz,0,0,0],aref,0)
_lyref: -yref+vyref*tm

E
speedl1([0,0,0,0,0,0],-Aref,0)
vre; Vyr‘ef Aref* (10-12)
yre
Iif norm(x1)<0 1

start-1
socket_send_string(start)

X_ant-pos_x

y_ant-pos_y

t0-t0+tm

tend-t0
Bucle 1 veces

vref-vyref

Trapezium
PO-get_actual_tcp_pose()
x_c=P0[0]-0.02
5-2%3.14*R
w-vref/R
'If s<0'

If norm(s)svref*vref/aref
tl-vref/Aref
t2-norm(s)/vref
t‘F'in--?*tl+t2

E
tl sqrt(norm(s)/aref)

tF1n..2*t1
Vte0
Yt-0
Xt=0
t0-tend
tcp_posO«get_actual_tcp_pose()
PO-get_actual_tcp_pose()
Bucle tO<tfin+tend
If tO<tfin+tend
ve=vyref
yref.-r*sin((t0-tend) *w)
_‘xr‘e =-R+R*¥cos(w*(t0-tend))
Else

speed-get_actual_tcp_speed()
vz.-speed[2]
pos2-get_actual_tcp_pose()

tCp_new.-pose_ add(p[tcp pos0[0] ,tcp_| pnsD[l] pos2[2],pP0[3],P0[4],P0[5]],p[xref,yref,0,0,0,0])
ikine.get_inverse_kin(tcp_nei
servoj(ikine,aref,0.03,0. OOB 0.03,K3)
t0=t0+tm
start.-0
socket_send_string(start)
Esperar: 0.008
Detener
Subproceso_1
Esperar: 0.008
tiempo: Imiciar
targ_tcp_speed.-get_target_tcp_speed()
tcp_speed-get_actual_tcp_speed()
tecpforce-get_tecp_ ‘Force(g
tcp_pose-get_actual_tcp_pose()
target_tcp_pose-get_target_tcp_pose()
dat_force ur3
v2-tepforce[2]
dat_actual_tcp_speed
x0-tcp_speed[0]*1000
xL-tcp_speedEli*lUDU
x2-tcp_speed[2]%1000
dat_tcp_pose
y0-tcp_pose[0] %1000
yl-tcp_pose[1] *1000
y2-tcp_pose[2]%10
datos-[t0,x1,y0,y1, (xreﬁPU[U])*lUUU (yref+P0[1])*1000,P_act,D_act]
If start.l
socket_send_string(datos)

Table 39: Impedance control Python and UR code



