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Resum
L’objectiu d’aquest treball és formalitzar un mecanisme general per a garantir la se-

guretat de les computacions en lògica de reescriptura. La tècnica proposada consisteix en
una transformació de programes que garanteix que el sistema transformat satisfà els in-
variants de seguretat definits per l’usuari, evitant així que el sistema aconsegueixi estats
considerats insegurs. La transformació és genèrica i no depèn d’estratègies ad hoc, sinó
que aquestes es defineixen com a assercions que es tradueixen de manera automàtica al
llenguatge d’estratègies de Maude, recentment definit. La tècnica proposada s’ha imple-
mentat en una eina anomenada STRASS i la seva eficiència i escalabilitat s’han avaluat
empíricament amb excel·lents resultats que demostren la seva viabilitat a la pràctica.

Paraules clau: lògica de reescriptura, Maude, llenguatge d’estratègies, seguretat, síntesi
de controladors, transformació de programes

Resumen
El objetivo de este trabajo es formalizar un mecanismo general para garantizar la se-

guridad de las computaciones en lógica de reescritura. La técnica propuesta consiste en
una transformación de programas que garantiza que el sistema transformado satisface
los invariantes de seguridad definidos por el usuario, evitando así que el sistema alcance
estados considerados inseguros. La transformación es genérica y no depende de estrate-
gias ad-hoc, sino que éstas se definen como aserciones que se traducen de forma automá-
tica al lenguaje de estrategias de Maude, recientemente definido. La técnica propuesta se
ha implementado en una herramienta llamada STRASS y su eficiencia y escalabilidad se
han evaluado empíricamente con excelentes resultados que demuestran su viabilidad en
la práctica.

Palabras clave: lógica de reescritura, Maude, lenguaje de estrategias, seguridad, síntesis
de controladores, transformación de programas

Abstract
This work aims to formalize a general mechanism for safety enforcement in rewriting

logic computations. The proposed technique consists of a program transformation that
guarantees that the transformed system satisfies user-defined invariants, thus preventing
the system from reaching states considered insecure. The transformation is generic and
does not depend on ad-hoc strategies but relies on the newly defined Maude strategy
language. The proposed technique has been implemented in a tool called STRASS and
its efficiency and scalability have been empirically evaluated with excellent results which
demonstrate that the technique pays off in practice.

Key words: rewriting logic, Maude, strategy language, safety, controller synthesis, pro-
gram transformation
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CHAPTER 1

Introduction

Our society increasingly depends on software in order to deliver its benefits and to
achieve its goals. Year after year, from industrial equipment to personal vehicles, most
technology around us is driven by software instructions that can be uninterruptedly ex-
ecuted for hundreds or even thousands of hours. This automation often comprises com-
plex, concurrent and reactive systems which need to be aware of its environment and re-
act to it in real time. As automated systems embrace more important roles in our society,
the risks involved in possible malfunctions become more evident and critical: systems
guided by defective software may lead to monetary loss, environmental damage or even
harm to human life.

Complex, concurrent systems can be encoded in many different programming lan-
guages, of which Maude is one of them. In the case of Maude, such concurrent systems
can be encoded as rewrite theories that describe, means of rules, the transitions between
system states, which are encoded as terms of an algebraic datatype. Just like in any other
programming language, constructs such as rewrite rules are written and added to the
program’s source code by programmers and domain experts. Those human agents may
incur in mistakes arising from a bad understanding of details and requirements that are
inherent to the problem domain, or from a deficient encoding of the expected semantics.
Software specification errors can manifest in different ways and with a wide range of
consequences and severity levels. Given the importance of properties such as correctness
and completeness of models and programs, several approaches have been developed in
order to (semi-)automatically ensure that existing programs have those desirable prop-
erties. One of such approaches is model checking [13], which is available for Maude
programs [15, Chapters 11-12].

Another important property besides software correctness is safety of the system. We
say a program is safe when it cannot accidentally cause harm to its environment, because
it passively or actively remediates or mitigates possible hazards that can be or derived
from its operation. One way to approach the problem of ensuring the safety of a soft-
ware system is invariant enforcement. Invariants are logic assertions that specify some
constraints that must always hold in a given software, e.g., the fact that an elevator must
never move with its doors open is an invariant in the domain of elevator controllers. In-
variant enforcement refers to the set of techniques that pursue the guarantee that some
given invariants actually hold in a certain program. There are several approaches to in-
variant enforcement: static software verification techniques can ensure the compliance
of the program w.r.t. some invariants without executing the program, while some dy-
namic techniques ensure the invariants are not violated while said program is running.
Static software verification techniques are varied but sometimes cannot contend with
some properties, or may over- or under-approximate results, while dynamic techniques
may offer precise results that are closer to the real behavior of the system at the cost
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2 Introduction

of completeness or run time performance. This is especially important for the complex
systems often found in safety-critical scenarios [19].

In this thesis, we explore a dynamic safety enforcement technique that can ensure
programs written in the Maude language don’t deploy derivations where invariants are
violated, acting as a sentinel of safety for the program computations. This work is based
on the newly defined Maude strategy language [22], which enables fine control on the
application of rules, hence imposing an external, programmable control layer on top of
an existing program. By relying on the Maude strategy language, we have have de-
fined a new, logical specification language that allows safety invariants to be defined and
overimposed to a given Maude program. We have developed a program transformation
that translates such a “external” safety policy specification into a “internal” Maude strat-
egy module that lays on top of the original program. Moreover, our safety specification
language is rich enough to not only reason about the safety of states but also safety the
transitions. One important advantage of our approach is that safer, more refined versions
of a program can be incrementally built without any programming effort, enabling the
inexperienced user to largely forget about Maude syntax and semantics.

The technique presented here improves existing preliminary approaches for safety en-
forcement in Maude programs [8, 9]. Our proposal leverages the programmable Maude
strategy language and so avoids depending on ad-hoc, hard-coded safety checks that are
intertwined with the existing code, which could negatively impact tracing and mainte-
nance [21]. The generated strategies are integrated alongside the original program but
kept separate in its own module, allowing for incremental refinement to be built by sim-
ply appending new logical constraints, and also avoiding the need to rely on an external,
expensive system monitor. On top of that, the techniques presented in [8, 9] only apply
to topmost rewrite theories (i.e., programs where terms can only be rewritten at the root
position) while the proposed technique at hand covers a wider class of programs that
are not necessarily topmost, and that optionally make use of advanced Maude language
features previously unsupported.

A friendly, user-facing tool called STRASS, which is publicly available as a web appli-
cation, efficiently implements this framework. The efficiency and scalability of its imple-
mentation has been empirically evaluated by using a series of benchmarks with excellent
experimental results.

The structure of this thesis is as follows. Chapter 2 covers the preliminaries by pre-
senting the Maude programming language alongside its underlying rewriting logic fun-
damentals and its strategy language. Chapter 3 introduces the new MSPS language that is
specifically devised for specifying the required safety policy for a given Maude program,
as well as its related program transformation technique for automatic safety enforcement.
Chapter 4 presents the STRASS tool and provides technical details on its implementation.
Chapter 5 provides an empirical evaluation of the efficiency and scalability of STRASS.
Finally, Chapter 6 concludes this thesis by presenting related work, determining the fu-
ture work to be explored and offering some discussion and insight of the obtained results.



CHAPTER 2

The Maude Programming
Language

Maude is a declarative, multi-paradigm and high performance programming language
and system based in rewriting logic [15, 20]. Maude integrates concurrent, functional and
logic programming, and it also includes features from other paradigms, such as object-
oriented programming. Maude acts simultaneously as a general-purpose programming
language and as a formal logic framework, allowing the user to define and run formal
specifications that may be subject to a broad range of formal methods without giving up
properties such as executability or I/O capabilities.

Given the formal properties of rewriting logic, as introduced in the subsequent sec-
tions, Maude is useful as a semantic and methodological framework for defining the
semantics of a broad range of languages and formal systems, and is especially capable of
handling modeling and the execution of complex concurrent, reactive systems. Further-
more, its extensive meta-programming capabilities have paved the way for a consider-
able tooling ecosystem, including theorem provers [14], debuggers and code optimizers
[10], and cryptographic protocol analyzers [17], among many others.

The following sections provide a brief introduction to the Maude programming lan-
guage alongside its underlying rewriting logic basis. The considered version is 3.2.1 [15],
the most recent at the moment of writing this work. More information and resources
about the Maude language may be found at http://maude.cs.illinois.edu.

2.1 Rewriting Logic Fundamentals

Rewriting logic (RWL) [20] is a many-sorted (i.e., typed) logic that is based on member-
ship equational logic. RWL empowers the user to describe the evolution of a concur-
rent system in a simple, expressive and effective manner: states are represented as terms,
equations allow those terms to be simplified, and rewrite rules define transitions that cause
those states to change. Similarly to other kinds of logic, rewriting logic can be seen as a
model and framework for unambiguously encoding some knowledge about our world,
as well as reasoning about it by inferring conclusions using a set of rules.

The series of statements that assert knowledge we know to be true are called axioms.
A theory is a set of statements that are subject to be proven before they can be considered
to be true or false. A formal system is an abstract structure containing a notation and a set
of rules (called the logical calculus of the system) that can be used to infer which theorems
are true or false given some axioms. Rewriting logic has been efficiently implemented
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4 The Maude Programming Language

in the programming language and system Maude, which is introduced in the following
sections.

Consider a collection of typed operator symbols called a signature and denoted Σ,
where each operator has some arity and may be prefix, suffix or mixfix. The recursive
valid1 applications of these operators form terms. For instance, the term 0 + 1 is an ex-
ample of the application of the binary operator + to 0 and 1. In turn, 0 and 1 are also
operators, of arity 0, as they do not take any input. Such 0-arity operators are called
constants. Terms are the fundamental means of encoding knowledge and may represent
a wide variety of system states or data. By defining new operators, the user is able to
define a personalized grammar that can be used to form terms of any shape and for any
purpose.

Terms may be represented as trees where a node is an operator and its children are the
different operators and variables it is applied to. A position w of a term t is a hierarchical
sequence of natural numbers that addresses a subterm of t by indicating how to traverse
its tree until a certain node is found. Let t|w denote the subterm of t at position w. The
set of valid positions of a term t is denoted by Pos(t). The special position λ denotes the
root position of a term tree, such that t|λ = t. For example, ((1 + (2 − 0)) ∗ 3)|1.2 is 2 − 0.
The subterm replacement operation is denoted t[t′]w and results in the term t where t|w has
been replaced by t′. For example, ((1 + (2 − 0)) ∗ 3)[7]1.2 = (1 + 7) ∗ 3. We use root(t) to
denote the symbol occurring at the top of t, e.g., root(1 + 2) is the binary operator +.

Recall that rewriting logic is a many-sorted logic: terms, operators, variables and other
elements of the language are typed. Types classify values into several homogeneous
and different sets, instead of considering all data to be part of a unique heterogeneous
universe. Similarly to other statically and strongly typed languages, Maude enforces this
type safety by using conventional type-checking techniques. In contrast to conventional
languages, rewriting logic and Maude consider two varieties of types: sorts and kinds.

Sorts correspond to named sets of possible values and are analogous to the traditional
concept of type as presented in many other languages. Types on operators are coherent
with their arity and specify their domain and image. For instance, if Nat is a sort referring
to all natural numbers and the operator + has signature Nat Nat → Nat, we are denoting
this operator takes two natural numbers to produce a third potentially different one. We
use S to denote the set of all sorts of a program. Sorts have a subsort relation <, defining
typical subtype polymorphism. This relation is one of partial order and is encodable as
a poset (S,<). Let s, u ∈ S be two sorts; we say s is a subsort of u (or u is a supersort
of s), denoted s < u, if an only if all valid values of sort s are also valid values of sort u.
Each term t is classified using one least sort, denoted ls(t) ∈ S, and corresponding to the
maximal return sort of the operator symbol at the root of t, root(t). We say the term t has
sort s ∈ S if s ≤ ls(t), and we denote this fact as t :: s.

A kind of a set of one or more sorts {s}s∈S is denoted [{s}s∈S] and is a type that corre-
sponds to the maximal of all sorts s ∈ S in the poset (S,<). Thus, kinds act as equivalence
classes where two sorts are grouped in the same equivalence class if they belong to the
same connected component. In Maude, kinds are implicitly defined and do not have
their own name; instead, they are represented by enclosing one or more sorts of their
class in square brackets, like this: [Nat, String]. The previously introduced :: nota-
tion may be naturally lifted to kinds: we say t :: [{s1, . . . , sn}] for a term t if and only if
(∃si ∈ {s1, . . . , sn}) si ≤ ls(t).

A variable is a special symbol that conceptually acts as a placeholder for any term.
Consider a family of typed variables V = {Vs}s∈S. We use τ(Σ,V) to denote the term

1This is, applications which respect the arity of each operator.
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algebra induced by V a d Σ, this is, the set of all valid terms that may be constructed using
operators in Σ and variables in V . Terms without variables are called ground terms, and its
algebra is denoted τ(Σ). The set of variables that appear in a term t is denoted by Var(t).
For example, 1 + X is a valid term in τ(Σ,V) for the aforementioned signature if X has
sort Nat.

A substitution σ ≡ {x1/t1, . . . , xn/tn} is a mapping from variables in V to terms in
τ(Σ,V) that is equivalent to the identity relation for all variables except the finite set
of variables {x1, . . . , xn} it replaces. The application of a substitution σ to a term t is
denoted by the juxtaposition tσ. A term t is an instance of another term t′ if there exists a
substitution σ such that t = t′σ. The composition of two substitutions σϕ is the substitution
such that tσϕ is equivalent to applying ϕ to the result of tσ. For instance, given the
substitution σ = {X/7} then ((1 + X) + Y)σ results in (1 + 7) + Y.

Equations have the form [ℓ]: l = r, where ℓ is an optional label and l, r ∈ τ(Σ,V) are
terms. Equations describe how terms may be deterministically simplified in a process
called equational simplification or equational reduction, being analogous to the concept
of function definition in other languages. In Maude, equations are oriented from left to
right on application: the left hand side l is a term that may contain variables, conceptually
acting as a pattern which specifies the family of terms that will be affected by the equation,
while the right hand side r indicates the result of its application on a term. Maude looks
for subterms that match these left hand side patterns by using a mechanism called pattern
matching. Conditional labeled equations generalize equations and have the form [ℓ] :
l = r if C where ℓ is an optional label; l, r ∈ τ(Σ,V) are (potentially non-ground) terms
and C is a condition that can be interpreted as a Boolean expression whose normal form
is a truth value. Formally, we say a term t reduces to t′ using a (left-to-right oriented)

equation (l →
= r) ∈

→
E if and only if there exists a position w and a substitution σ such that

t|w = σl and t′ = t[σr]w. This one-step reducing relation is denoted t w−→→
E

t′ (or simply
t →E t′) and is henceforth called an equational step. Each instance lσ of an equation l = r
is called a redex, which stands for reducible expression. If C is not empty, the equation
only applies to a redex when σC is ground and satisfied for the corresponding instance
σl. We use E to denote the set of equations in a program.

A (conditional) equational theory E is a pair (Σ, E0 ∪ Ax) (from now simply denoted
as E = (Σ, E)) where Σ is a signature, E0 is a set of (conditional) equations (which are
implicitly oriented from left to right) and Ax is a collection of equational axioms that are
distinguished equations that can be associated with binary operators in Σ. Such equa-
tional axioms often represent well-known mathematical properties such as associativity,
commutativity and unit element. Terms in E are semantically equal (or E-equal) when
both can be reduced to a common normal (i.e., irreducible) form. This induces a congru-
ence relation on the term algebra τ(Σ,V) that is denoted =E. For example, 1 + 1 =E 2 +
0 if E defines the usual addition of natural numbers, as both have the same normal form
2.

In Maude, equational theories are assumed to be Church-Rosser [16] (i.e., confluent
and sort-decreasing) and terminating [15]. Roughly speaking, a theory is confluent if a
term has a unique normal form regardless of the order in which equations are applied.
A theory is terminating if its execution always halts, i.e., it finds a normal form for all
possible “input” terms.

We consider a natural partition of the signature Σ as Σ = D ⊎ Ω, where Ω is the set of
constructor symbols and D are the defined symbols. Constructor symbols are used to define
irreducible data values, whereas defined symbols are always evaluated via equational
simplification. Terms in the algebra τ(Ω,V) are called constructor terms.
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Rewrite rules are the non-confluent and/or non-terminating counterpart of equations,
and share a similar form [ℓ] : l ⇒ r, where ℓ is an optional label and l, r ∈ τ(Σ,V) are
terms. Conditional rewrite rules have the form [ℓ] : l ⇒ r if C where, similarly as
before, ℓ is an optional label; l, r ∈ τ(Σ,V) are terms and C is a condition. We say a term
t rewrites to t′ using (l ⇒ r if C) ∈ R, denoted t w−→R t′ (or simply t →R t′), if and only
if ∃w, σ such that t|w = σl ∧ t′ = t[σr]w and Cσ holds. This relation is a (conditional)
rewriting step. We use R to denote the set of rewrite rules in a program.

A (conditional) rewrite theory R is a triple (Σ, E0 ∪ Ax, R) (or simply denoted R =
(Σ, E, R)) where R is a set of (conditional) rewriting rules, Σ is a signature, E0 is a set of
(conditional) equations and Ax is a collection of equational axioms that can be associ-
ated with binary operators in Σ. The components (Σ, E0 ∪ Ax) constitute the underlying
equational theory of R. In Maude, rewriting theories are subject to fewer constraints than
equational theories, as rules may model concurrent computations that are not terminant
or confluent. However, the underlying equational theory is still subject to all constraints
relevant to equational theories.

When a term t cannot be reduced anymore with the equations in E (resp., the rules in
R), we say that that t is a E-normal form (resp., R-normal form). Given a relation (→•) ⊆
τ(Σ)× τ(Σ) (e.g., the defined reduction and rewriting relations →E and →R), let →∗

• and
→+

• be the transitive (and in the case of →∗
• also reflexive) closures, following the typical

definitions of zero-or-more steps and one-or-more steps, respectively. The reduction of a
term to its normal form w.r.t. →• is called normalization and is denoted t↓•.

In a (conditional) rewrite theory R = (Σ, E0 ∪ Ax, R), computations evolve by rewrit-
ing terms using the equational rewriting relation →R,E0∪Ax (or simply →R,E), which ap-
plies the rewriting rules in R modulo the underlying equational theory E = (Σ, E0 ∪ Ax).
Given a term t, one redex is chosen following a certain strategy and then a corresponding
rewriting rule is applied. Directly after that, the reached term is E0-normalized modulo
the axioms Ax. Formally, ti

r→R,E0∪Ax ti+1 (or simply ti →R,E ti+1) if ti →R t′i using rule
r and ti+1 = t′i ↓E0∪Ax. This relation is called a Maude step. This step is then repeated
forming a sequence t0 →R,E0∪Ax t1 →R,E0∪Ax . . . →R,E0∪Ax tn where each ti is called a
system state. Note that each state is irreducible w.r.t. the equational theory E .

Given a term t, more than one redex may exist and more than one rule may be ap-
plied, resulting in several possible sequences of →R,E steps. Because rules may not be
confluent, these sequences may diverge and reach different states. The transition space
of all computations in R stemming from some initial state t0 can be represented as a com-
putation tree denoted TR(t0). The nodes of this tree are states and the arcs correspond to
the application of rules in R.

Finally, we use labels(E) (resp., labels(R)) to denote the set of labels collected from all
equations (resp., rules), and let label be the projection function that obtains the label ℓ of
an equation or rule.

2.2 Functional Modules

The basic constructs of Maude consist of definitions of new operators and sorts, which
allow the user to define a custom signature Σ, effectively composing a new ad-hoc, spe-
cialized grammar for expressing data and computations as terms. Definitions are led by
meaningful keywords and are terminated by a space followed by a dot (␣.) as shown in
Listing 2.1.

Operators are defined using the following syntax led by the op keyword:



2.2 Functional Modules 7

op id : τ1 τ2 . . . τn -> τreturn [ a ] .

where id is an identifier, {τ1, . . . , τn} ⊆ (S ∪ {[s]}s∈S) is a whitespace-separated sequence
of types (sorts or kinds) where τi is the type of the i-th input argument, τreturn ∈ (S ∪
{[s]}s∈S) is the return type, and a is an optional set of operational attributes defining
properties such as metadata, native integrations or axioms. The arity of the newly de-
fined operator is automatically inferred and equals, as expected, the cardinality of the
sequence {τ1, . . . , τn}. The identifier id may take one or more underscore symbols (_),
which have a special meaning and denote conceptual “term placeholders” comparable
to anonymous variables, that allow for the definition of infix and mixfix operators, e.g.,
see line 6 in Listing 2.1. If the attribute set a is empty, the surrounding square brackets
may be omitted.

Sorts and their subsort relations can be defined using the sort and subsort keywords
as seen in lines 2 and 3 of Listing 2.4. The type system defined by sorts is entirely nominal
and thus sorts are represented by an identifier, e.g., String.

Equations and conditional equations can be defined using the eq and ceq keywords,
respectively, followed by their corresponding expected syntax:

eq [ ℓ ] : l = r [ a ] .
ceq [ ℓ ] : l = r if C [ a ] .

where l ∈ τ(Σ,V) and r ∈ τ(Σ) are terms, ℓ is an optional identifier acting as a label, a is
an optional set of equational attributes, and C is an equational condition. An equational
may be left unlabelled, and in such case the surrounding square brackets and follow-
ing colon are omitted as well. Similarly, if no attributes are provided, the corresponding
square brackets are not present. The equational condition C is a collection of expres-
sions connected by logical connectives that can be interpreted as a Boolean formula, and
unconditional equations have an implicit trivial condition of true.

The posed definitions may not appear directly at the top level of Maude source code;
they need to be encapsulated in an organizational unit called module. Maude allows three
different grouping constructs at the top level, called functional modules, system modules
and strategy modules2. Modules have an identifier and can be hierarchically composed
by using a notion of inclusion or extension, comparable to the concept of “importing” of
other languages. A Maude program can be seen as an arrangement of modules that form
a directed graph of “imports”.

Functional modules are logical groupings of definitions of types, operators and equa-
tions, describing at most a system executable using equational reduction and constituting
a program comparable to the ones defined in conventional functional languages. Func-
tional modules follow this syntax:

fmod id is d endfm

where id is an identifier uniquely distinguishing this module, and d is a set of definitions
and statements constituting the body of the module, which include import directives,
(sub)sort and operator definitions and equations. Note that an equational theory E is en-
coded in a Maude program as one or more functional modules. The number of modules
has no semantic implication and is entirely a source code organization decision left to the
discretion of the programmer.

2Full Maude also allows object-oriented modules, which are translated internally to functional or system
modules and are not considered in this work.
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Apart from the modules that are defined by the user, Maude includes a standard
library called the prelude, containing a series of predefined modules carrying useful defi-
nitions for common domains, e.g., natural numbers (NAT module), text (STRING), Boolean
algebra (BOOL), ... A distinguished modules in the prelude, which will be used heavily
in our framework, is META-LEVEL, which contains Maude definitions about the Maude
language itself, allowing for run time reflection.

Given a term t in the encoded equational theory E = (Σ, E), equational reduction of t
can be requested to Maude by means of the reduce command [15, Section 4.9]:

reduce in m : t .

where m is an optional argument specifying the identifier of a module. Commands, con-
trary to definitions, are not part of modules and are provided directly to the Maude in-
terpreter, which often happens interactively after the source code has been fully loaded.
See Example 1 to examine a sample output of this command.

When using Maude, the user will likely work with terms that may contain variables,
which in Maude are typed and are denoted by an identifier, followed by a colon and a
type. For instance, Message:String is an example of a variable called Message and of
sort String. Specifying the type of a variable each time it appears is not convenient,
especially if such variable is used many times through the source code. Thus, Maude
provides a variable declaration mechanism using the var keyword, which appears inside
a module and persistently binds the variable name to a type, allowing the use of the
variable name directly without the subsequent colon and type annotation.

EXAMPLE 1
The program in Listing 2.1 illustrates a simple functional module encoded in Maude. This
module, called MY-NAT, defines natural numbers using the axioms of Peano: a constant
for zero, and a unary symbol to denote the successor of a number. Additionally, it also
defines the mathematical addition operation for two given natural numbers.

1 fmod MY-NAT is
2 sort MyNat .
3

4 op 0 : -> MyNat [ctor] . --- zero
5 op s : MyNat -> MyNat [ctor] . --- successor
6 op _+_ : MyNat MyNat -> MyNat . --- addition
7

8 vars N M : MyNat .
9

10 eq 0 + N = N .
11 eq s(N) + M = s (N + M) .
12 endfm

Listing 2.1: Functional module encoding Peano natural numbers with addition

As seen in Listing 2.1, operators in Maude are introduced using the op keyword fol-
lowed by their symbol and then their type signature. The _+_ notation indicates + is an
infix operator. The sort keyword is used to define the new sort MyNat. The vars keyword
is used here as a shorthand for multiple separate var definitions to declare that names N
and M are variables of the newly defined sort. Three dashes (---) mark a comment and
cause the interpreter to ignore the rest of the line.
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We can now ask Maude to reduce a term using the reduce command during an inter-
active session with the interpreter:

Maude> reduce s(0) + s(0) .
reduce in MY-NAT : s(0) + s(0) .
rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)
result MyNat: s(s(0))

As expected, given the definitions in Listing 2.1, the term s(0) + s(0) is reduced to
s(s(0)). In order to reach this result, first the equation on line 9 has been applied with
substitution {N/0, M/s(0)}, and immediately after that, the equation on line 8 has re-
moved the leftover zero with substitution {N/s(0)}.

Equational axioms are attributes encoded in Maude as functions that may be added
to any binary operator in Σ and that automatically derive distinguished equations for
algebraic laws such as associativity, commutativity, or unity of the symbols they accom-
pany. While axioms may be represented simply as equations, the use of axioms incurs
in different, more efficient semantics when it comes to pattern matching and has impor-
tant performance implications. Whereas using equations to represent the aforementioned
algebraic laws may increase the search space significantly or even cause a previously ter-
minating theory to become non-terminating, Maude can leverage efficient algorithms for
matching modulo axioms algorithms that normalize terms w.r.t. axioms before equations
are applied. The implications of this process, which is completely transparent to the user,
become evident in Example 2.

EXAMPLE 2
Consider the definitions in Listing 2.1, describing natural numbers using Peano notation.
The following module (incorrectly) defines the product of natural numbers by importing
the previous definitions and then adding the corresponding equations in a new func-
tional module.

1 fmod MY-NAT-PROD is
2 protecting MY-NAT . --- import definitions of Example 1
3

4 vars N M : MyNat .
5

6 op _*_ : MyNat MyNat -> MyNat .
7 eq 0 * N = 0 .
8 eq N * s(M) = N + (N * M) . --- not commutative!
9 endfm

Listing 2.2: Incorrect (non-commutative) product of Peano natural numbers

However, if we try to reduce the following term corresponding to an unevaluated
product we will observe Maude returns it untouched, as if it was already a normal form:

Maude> reduce s(0) * 0 .
reduce in NAT : s(0) * 0 .
rewrites: 0 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(0) * 0

This occurs because the term is indeed in normal form: pattern matching fails to match
the given term with all defined equations. The newly defined product symbol, just like
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any other operator, strictly follows the order of its arguments and assumes no commuta-
tivity. Hence, for the right hand side of the second equation s(M) is matched against 0,
which always fails. Let us try to fix this by adding a new equation that encodes commu-
tativity explicitly:

eq N * M = M * N . --- causes non-termination!

This is not an adequate solution because it causes non-termination: products reduce over
themselves infinitely, causing the program to freeze without ever yielding a result. Note
that the left hand side N * M matches absolutely all unevaluated products with no ex-
ceptions. In order to solve this issue efficiently, Maude provides a built-in method for
expressing some selected properties such as commutativity: equational axioms. Con-
sider the program in Listing 2.3, which adds the attribute comm to the operator _*_ in line
6.

1 fmod MY-NAT-PROD is
2 protecting MY-NAT . --- import definitions of Example 1
3

4 vars N M : MyNat .
5

6 op _*_ : MyNat MyNat -> MyNat [comm] .
7 eq 0 * N = 0 .
8 eq N * s(M) = N + (N * M) .
9 endfm

Listing 2.3: Functional module encoding the product of Peano natural numbers

In this program, the undertaken computation finishes with the expected result:

Maude> reduce s(0) * 0 .
reduce in NAT : s(0) * 0 .
rewrites: 0 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: 0

EXAMPLE 3
We may also use equational axioms to quickly and easily define a list of natural numbers.
The binary associative operator _._ allows elements to be chained together as in any
semigroup. This operator also has the empty list nil as its unity symbol, which allows
the pattern matching algorithm to insert or ignore occurrences of nil freely when con-
sidering the different equations. With the definitions given, an example of concrete list
is 1 . 3 . 0 . Similarly, sets and multisets may be also defined by adding and removing
equational axioms from the binary constructor.

2.3 System Modules

In Maude, system modules extend functional modules with the capability of containing
rewrite rules, allowing the representation of rewrite theories. Because system modules
are a superset of functional modules and have no obligation of containing rules, they can
also be used to represent equational theories. A system module may import a functional
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1 fmod MY-NAT-LIST is
2 protecting NAT . --- use natural number definitions from the prelude
3

4 sort NatList .
5 subsort Nat < NatList . --- a single natural is also a (singleton) list
6

7 op nil : -> NatList . --- constant representing an empty list
8 op _._ : NatList NatList -> NatList [ctor assoc id: nil] . --- list constructor
9

10 --- example: calculate the size of a list
11 op size : NatList -> Nat .
12 eq size(E:Nat . L:NatList) = s(size(L:NatList)) .
13 eq size(nil) = 0 .
14 endfm

Listing 2.4: Functional module encoding a list of natural numbers

module, but not vice versa. Their syntax uses the keywords mod and endm instead of fmod
and endfm.

Rewrite rules and conditional rewrite rules can be roughly seen as a means to rep-
resent the transitions among system states of a (typically concurrent and reactive) non-
deterministic system. Similarly to equations, they are respectively encoded using the
following syntax:

rl [ ℓ ] : l => r [ a ] .
crl [ ℓ ] : l => r if C [ a ] .

where l ∈ τ(Σ,V) and r ∈ τ(Σ) are terms, ℓ is an optional identifier acting as a label, a is
an optional set of equational attributes, and C is a rewriting condition.

When using rules, considering the canonical normal form of the overall system is non-
sensical as the system may take one of many intrinsically different states depending on
the particular sequence of choices it has traversed. For instance, a door may be open or
closed and it can transition between both states, but none of them may be reduced away
to the other. On the other hand, equations are used to represent deterministic computa-
tions that achieve the simplification of states towards a normal form. For instance, the
term 1 + 1 can be seen as a version of 2 that has yet to be computed, i.e, another represen-
tation of the same state. Using both rules and equations together offers great expressive
power and empowers the user to model complex scenarios with favorable computational
performance properties.

Given an initial state, the search space of possible behaviors (sequence of rewrites)
defined by the system can be explored using the search command [15, Section 5.4.3],
which effectively explores and yields the computation tree TR(t). The simplified syntax
of this command is as follows:

search [b] in m : t0 =>• tn .

where t0 is the initial term; tn is a term acting as a pattern used for optionally filtering
the reachable states of interest; • is either 1, +, * or !; b is an optional maximum bound of
result states to yield; and m is optionally the name of a module. When using • = 1, we are
asking Maude to return the states reachable with strictly one Maude step that also match
the pattern tn. When using * (resp., +), we request terms reachable after zero or more
(resp., one or more) steps that match the pattern tn. Finally, when using !, we restrict
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results to normal forms that may not be reduced with more steps, and that also match
the pattern tn. Note that the pattern tn may be a trivial term formed by one free variable
and no constructors, which may be roughly seen as a null filter that vacuously allows all
reachable terms. See Example 4.

EXAMPLE 4
Consider the following example in Listing 2.5, modelling a store in a country using a
currency with dollars ($) and quarters of dollar (c). Those two monetary units have a
conversion ratio of 1$ = 4c. A customer may have any combination of dollars and quar-
ters, and may decide to buy items x and y (with selling prices of 1$ and 3c, respectively)
at any moment, in any quantity and combination.

1 mod SHOP is
2 sorts Coin Item Marking .
3 subsorts Coin Item < Marking .
4

5 op __ : Marking Marking -> Marking [assoc comm id: null] . --- juxtaposition
6 op null : -> Marking .
7 op $ : -> Coin .
8 op c : -> Coin .
9 op x : -> Item .

10 op y : -> Item .
11

12 rl [buy-x] : M:Marking $ => M:Marking x .
13 rl [buy-y] : M:Marking c c c => M:Marking y .
14

15 rl $ => c c c c .
16 rl c c c c => $ .
17 endm

Listing 2.5: System module encoding a shop with dollars and quarters

The search space of a term denoting a system state, such as $ $ c c c , can be ex-
plored using the search command, yielding the terms reachable after a sequence of rule
applications:

Maude> search [4] $ $ c c c =>+ M:Marking .

Solution 1 (state 1)
M:Marking --> $ c c c x

Solution 2 (state 2)
M:Marking --> $ $ y

Solution 3 (state 3)
M:Marking --> $ c c c c c c c

Solution 4 (state 4)
M:Marking --> c c c x x

Roughly speaking, note that the free variable M of sort Marking is here used to include all
reachable terms with no filtering whatsoever. The [4] fragment is part of the syntax of
the search command and indicates we wish to limit the response to 4 solutions, halting
the exploration process early after finding this number. In this specific case, the unlimited
version of this command would have yielded 16 solutions.



2.4 The Maude Strategy Language 13

Another command, rewrite, promptly chooses an arbitrary rewrite sequence of TR(t)
and yields the resulting term:

rewrite [b] in m : t0 .

where t0 is the initial term, b is an optional maximum bound of steps to perform, and m is
used optionally to indicate the name of a module. If the bound b is not specified, Maude
steps are applied until the normal form t ↓R,E is reached, which may result in an infinite
computation.

As shown in Examples 1 and 4, software systems can be modeled as rewriting or
equational theories which can then be encoded as a Maude program. These programs
may be executed, transformed, optimized, analyzed, verified, etc., by using the Maude
interpreter and the broad variety of tools that are available in the Maude ecosystem.

2.4 The Maude Strategy Language

Rule-based rewriting can be a highly nondeterministic process where, at every step,
many rules could be applied at various positions. In order to provide a finer control on
rule application, Maude 3.0 introduced a new specification layer on top of the standard
system modules by means of Maude’s strategy language [15, 22, 23]. This (sub-)language
allows the user to control the rewriting process while respecting the separation of con-
cerns principle since the rewrite theory is not modified in any way and could be executed
according to different strategies. The strategy language is broad and contains many dif-
ferent strategy constructors dedicated to fulfilling different purposes. We consider a re-
stricted, yet non-trivial, version of the strategy language that is sufficient to fulfill the
specific needs described and developed in this work.

Definition 1. [22] A strategy (or strategy expression) ζ for a rewrite theory R is an ex-
pression that is built using the following abstract syntax.

fail | idle | ℓ | amatch P s.t. C | α ; β | (α | β) | α ? β : γ | α∗ | α+ | α! | all | not(α)

where ℓ is a rewrite rule label, α, β, γ are strategies, P ∈ τ(Ω,V) is a (possibly non-
ground) constructor term, and C is an equational condition.

Strategies guide the program space exploration by specifying the collection of admis-
sible rule applications, thus constraining the computation tree. Given the rewrite theory
R = (Σ, E, R), the semantics of a strategy ζ, denoted JζK, is a function τ(Σ) 7→ P(τ(Σ))
that maps a term representing a system state t ∈ τ(Σ) to the set of terms that are reachable
using some rules of R, where only the finite number of rule applications deemed valid
by said strategy are considered [15, 22, 23]. The semantics for the different constructors
of Definition 1 are summarized in Definition 2.
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Definition 2. [15] Let R = (Σ, E, R) be a rewrite theory. Let t ∈ τ(Σ). The strategy
operators of Definition 1 have the following semantics:

JidleK(t) = {t} JfailK(t) = ∅ Jα|βK(t) = JαK(t) ∪ JβK(t) Jα; βK(t) =
⋃

t′∈JαK(t)

JβK(t′)

JℓK(t) = {t′ ∈ τ(Σ) | t r→R,E t′ for any r ∈ R s.t. label(r) = ℓ}

Jamatch P s.t. CK(t) =

{
{t} if θ ∈ {σ | ∃w ∈ Pos(t) s.t. Pσ =E t|w} ∧ Cθ holds
∅ otherwise

Jα?β : γK(t) =

{
Jα; βK(t) if JαK(t) ̸= ∅
JγK(t) if JαK(t) = ∅

Jα∗K(t) = Jidle | α; α∗K(t) Jα+K(t) = Jα; α∗K(t) Jα!K(t) = Jα∗; (α ? fail : idle)K(t)

JallK(t) = {t′ ∈ τ(Σ) | t r→R,E t′ for any r ∈ R} Jnot(α)K(t) = Jα ? fail : idleK(t)

Roughly speaking, there is an intuitive notion of “success” associated to strategies.
When a strategy returns an empty set, we say that strategy fails; otherwise, it succeeds. The
idle strategy always succeeds and conceptually does nothing, by returning a singleton
containing the same term that was provided initially, unchanged, and not causing any
rule application to occur. The fail strategy always fails by returning an empty set. A
strategy that just contains a rule label ℓ only considers applications with that rule, and
thus returns the set of all terms t′ such that t r→R,E t′ 3. The choice operator α | β returns
the union of all terms returned by α and β, conceptually representing that any of the
two strategies may be applied concurrently. The sequential operator α ; β first applies
the strategy α to completion, and then sequentially applies β to all terms returned by
α. The conditional operator α ? β : γ first applies strategy α and then, if said strategy
succeeds, applies β sequentially to its results; otherwise, it applies γ on the initial term.
The strategy all triggers a step →R,E for all applicable rules in R.

Repetition may be expressed in the strategy language using the closure constructors
α* and α+. The former denotes the application of α zero or more times, whereas the
latter requires the strategy to be applied at least once. The negation strategy constructor
not(α) = α ? fail : idle fails when α succeeds, and succeeds as idle when α fails.
The normalisation closure α! = α* ; not(α) applies a strategy repeatedly until it cannot be
applied anymore.

A strategy ζ can be applied to a term t using Maude’s srew command (strategy
rewrite), whose syntax is as follows:

srew [b] t using ζ .

where b is an optional natural number specifying the maximum bound of ζ-controlled
Maude steps to perform. If no bound is provided, the strategy will be applied to com-
pletion, until no steps can be carried out anymore. This command requests Maude to
calculate and print the set of terms JζK(t).

The given set-based semantics describe the behavior of the strategy language based
on its term results. However, it does not describe the explicit steps taken by the inter-
preter when expanding the computation tree under the control of a strategy [23]. Given
a strategy ζ, this notion of computation tree R w.r.t. ζ can be formalised resorting to the
small-step operational semantics described in [22] and [23, Section 4.2]. Such semantics
provide a finer description of the intermediate states and present two different strategy
step types: control strategy steps and system strategy steps. Control steps expand the given

3Note that this set will be empty (i.e., the strategy will fail) if there are no redexes in t where r can be
applied.
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tree t into a series of intermediate steps necessary for carrying out the strategy computa-
tion, while system steps represent the actual rewrite steps using the rules of R. Finally,
the tree is compacted by removing the intermediate steps and control steps, thus yielding
a tree whose branches represent rule applications and nodes represent system states in R.
The leaves of this tree form the set JζK(t): each term has been obtained by the application
of zero or more rewrite rules (represented by control strategy steps), obeying the control
imposed by ζ.

Definition 3. Let R = (Σ, E, R) be a rewrite theory and let ζ be a strategy for R. The
strategy-controlled computation tree T ζ

R(t0) for the initial term t0, w.r.t. R and ζ, is such that
T ζ
R(t0) ⊆ TR(t0) and its branches represent computations of the form t0 →R,E t1 . . . →R,E

tn where each ti is computed by the strategy ζ according to the small-step semantics of
[22] and [23, Section 4.2] for 0 ≤ i ≤ n.

Given the close relation between T ζ
R(t0) and TR(t0), Definition 3 ensures that tn is

reachable from state t0 using the strategy ζ whenever tn ∈ JζK(t0). Intuitively, T ζ
R(t0)

constraints the computation tree TR(t0) by pruning the computations that do not satisfy
the strategy ζ, hence reducing the search space of R.

In Maude, strategy expressions may be encoded as callable named definitions that
work akin to functions, allowing organisation and reuse. These definitions support sev-
eral features such as optionally being parametric over several input parameters. Named
strategy definitions must be typed like a normal operator, and must be defined inside a
new kind of module called strategy module. Strategy modules act as an overlay over ex-
isting Maude programs and may import system and functional modules, but system and
functional modules may not import strategy modules.

In Maude, named strategy definitions are actually divided into two different con-
structs, one specifying the strategy name alongside its signature using the strat key-
word, similarly to the definition of a new operator using op, and a second one using the
sd keyword to actually map the strategy call to a strategy expression, analogously to an
equation definition. Furthermore, named strategies encode complex features and may
take arguments, just like non-constant operators [15, Section 10.2]. The simplified syntax
for both syntactic constructs is as follows:

strat id : τ1 τ2 . . . τn @ τsubject .
sd ζ := ζ ′ .

where id is an identifier, {τ1, . . . , τn} ⊆ (S ∪ {[s]}s∈S) is a whitespace-separated sequence
of types corresponding to the input arguments, τsubject ∈ (S ∪ {[s]}s∈S) is the subject type,
and ζ, ζ ′ are two strategy expressions. What we call the subject type τsubject is the type
of all terms on which this strategy can be applied, i.e., it is the type such that JζK(t) is
defined for all terms satisfying t :: τsubject.

For our purposes, we do not make use of the capability of receiving arguments and we
keep a one-to-one relation defining one sd “equation” per each 0-arity strat “operator”,
so we can simplify the syntax even further:

strat i : @ τsubject .
sd i := ζ ′ .

Let us illustrate the strategy language by means of the following program, which
models the controller of an unmanned space probe orbiting Earth in space, and resem-
bling an artificial satellite. This program is a Maude implementation extending a simple
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model described in [11, 12], which has been extracted from a series of papers related to
several efforts conducted by the European Space Agency to improve mission planning
and scheduling of several operations, including the well-known Mars Express mission.
We use this program as a case study through the rest of this work. The complete source
code is available in the companion file satellite.maude4.

EXAMPLE 5
Let us model in Maude a satellite that floats through space and can rotate on itself in order
to extract scientific information from any point of interest located in space. These data are
stored in an on-board memory and, eventually, telematically delivered to mission control
when the probe is facing Earth. This device orbits our planet, so it is visible from mission
control only during certain periodic windows of time and is occluded by the mass of
the planet for the rest of the time. Attempting to communicate when the probe is not
visible from mission control is fruitless, even if it is properly pointing towards Earth. The
satellite is also equipped with scientific equipment that can analyze the collected data on
the fly, and this equipment may turn on or off dynamically according to certain needs
and conditions, such as the ones posed by energy management requirements.

The controller keeps track of the system state by retaining values for a collection X
of state variables. Each state variable is an instance of a sum type, i.e., each variable rep-
resents one piece of information by storing exactly one value at a time from a predeter-
mined and finite selection of values. Specifically, the state variables and their associated
values are defined in Listing 2.6 and are summarised in Table 2.1. The family of all pos-
sible valid variable values C = {Cx}x∈X is split into sets corresponding to the different
state variables these values are associated with. The set of allowed values a state variable
x ∈ X may take is denoted by Cx.

1 sorts PointingMode PointingModeState .
2 ops earth slewing science comm maintenance : -> PointingMode .
3 op pm:__ : Time PointingMode -> PointingModeState .
4

5 sort GroundVisibility GroundVisibilityState .
6 ops visible notVisible : -> GroundVisibility .
7 op gv:__ : Time GroundVisibility -> GroundVisibilityState .
8

9 sort InstrumentStatus InstrumentStatusState .
10 ops idle warmup process turnoff : -> InstrumentStatus .
11 op is:__ : Time InstrumentStatus -> InstrumentStatusState .
12

13 sort State .
14 op {_,_,_} : PointingModeState GroundVisibilityState InstrumentStatusState -> State .

Listing 2.6: Definition of state variables of a space probe and their possible values

The controller also contains a series of synchronized clocks that advance in lockstep,
tracking how long each state variable has held its current value.

Let us consider an example instance t of the probe’s state:

t = { pm: 12 earth, gv: 28 notVisible, is: 7 idle }

4This source code is also available for download at https://raw.githubusercontent.com/skneko/
strass/master/core/examples/satellite/satellite.maude

https://raw.githubusercontent.com/skneko/strass/master/core/examples/satellite/satellite.maude
https://raw.githubusercontent.com/skneko/strass/master/core/examples/satellite/satellite.maude
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In this state t, the pointing mode (pm) indicates the probe is looking towards Earth and
has been keeping this rotation configuration for 12 time units; also, the probe has not been
visible from mission control for 27 time units, as denoted by the value of the gv variable;
and finally, the on-board instruments (is) have been idling for 7 time units. The value of
a state variable x ∈ X in a state t is denoted valuet(x) : X 7→ CX and the accompanying
clock annotation is called duration and denoted durationt(x) : X 7→ N, e.g., valuet(pm) is
earth and durationt(pm) is 12.

There are two ways in which this system may evolve at every step: on the one hand,
the advance-time rule may act as a time “tick” by advancing all the clocks simultane-
ously, and thus reaching a new state t′ where the durations would be 13, 29 and 8 while
keeping the same values for each state variable unmodified. On the other hand, one of
the many other transition rules could mutate the value of a state variable if such a tran-
sition is possible. For example, the satellite could become visible from mission control
just as it moves through the trajectory of Earth’s orbit, and in such a case a new state
would be reached where all values and clocks remain untouched except for value(gv) =
visible and duration(gv) = 0. Note that advancing time and mutating state are mod-
eled using different rules and are hence two independent possibilities which may occur
independently and intertwined in any combination.

Figure 2.1: Representation of the enabled transitions for state variables of the space probe

earth slewing science

comm maintenance

pm

visible

notVisible

gv

idle warmup

turnoff process

is

However, not all state transitions are admissible: mutating state is subject to condi-
tions, so it is not allowed for certain states to reach others according to the values of
their state variables. For instance, variable is may not transition from idle directly to
turnoff, but a transition from idle to warmup does exist. This notion of enabled tran-
sition can be defined using a judgement function λ : (X , CX , CX ) 7→ B, taking a state
variable, its current value and the value we are attempting to assign, to finally return a
Boolean value5. Nevertheless, in our model implementation, this function does not ac-
tually exist but enabled transitions are encoded as a series of rules. Enabled transitions
are summarized in Fig. 2.1. Furthermore, transitions are also restricted according to their
durations, defining an allowed minimum and maximum amount of time the different
state variables must hold each specific value, e.g., the probe must be visible between 60
and 100 time units, so it can not change that value before 60 time units have passed and
is required to change after 100 time units have passed. The allowed duration of a state
value is a mapping δ : C 7→ (N, N∞) from any value (for any variable) to a pair of
time values (m, M) encoding the closed time interval [m, M] allowed to hold that value.
Thus, a state t can only transition into a new state t′ if and only if the Boolean formula
(∀x ∈ X ) λ(x, valuet(x), valuet′(x)) ∧ m ≤ durationt(x), where (m, M) = δ(valuet(x)),

5Keeping an already assigned value is always allowed (modulo duration restrictions), so (∀x ∈
X ) λ(x, c, c) = true.
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is satisfied. In a state t, time may advance only if durationt(x) ≤ M where (m, M) =
δ(valuet(x)). The allowed duration function δ is encoded in Maude as shown in List-
ing 2.7 and is summarized in Table 2.2.

1 op duration : StateVariable -> TimeInterval .
2 eq duration(earth) = [ 1, +inf ] .
3 eq duration(slewing) = [ 30, 30 ] .
4 eq duration(science) = [ 36, 58 ] .
5 eq duration(comm) = [ 30, 50 ] .
6 eq duration(maintenance) = [ 90, 90 ] .
7 eq duration(visible) = [ 60, 100 ] .
8 eq duration(notVisible) = [ 1, 100 ] .
9 eq duration(idle) = [ 1, +inf ] .

10 eq duration(warmup) = [ 5, 5 ] .
11 eq duration(process) = [ 5, 5 ] .
12 eq duration(turnoff) = [ 5, 5 ] .
13

14 --- ... omitted code ...
15

16 vars T Tmin Tmax : Time .
17

18 op canContinue : Time TimeInterval -> Bool .
19 eq canContinue(T, [ Tmin, Tmax ]) = T <= Tmax .
20 eq canContinue(T, [ Tmin, +inf ]) = true .
21

22 op canChange : Time TimeInterval -> Bool .
23 eq canChange(T, [ Tmin, Tmax ]) = T >= Tmin .

Listing 2.7: Maude encoding of duration bound restrictions for state values of the space probe

Table 2.2: Duration bound restrictions for state values of the space probe

Var. x ∈ X Value cX ∈ C Min. duration Max. duration

pm

earth 1 +∞
slewing 30 30
science 36 58
comm 30 50
maintenance 90 90

gv
visible 60 100
notVisible 1 100

is

idle 1 +∞
warmup 5 5
process 5 5
turnoff 5 5

Let us now consider the strategy advance-time + . Here, advance-time is the label
of the rule that describes the advancement of time, moving forward all of the clocks in
tandem without changing the values of the state variables. Recall that, in the strategy
language, a rule label describes its application on the subject term, and + denotes the
transitive (but not reflexive) closure. Thus, this strategy conveys the meaning “time must
advance one or more times”. Let us use the srew command to apply this strategy on the
considered term t:

srew { pm: 12 earth, gv: 28 notVisible, is: 7 idle } using advance-time + .
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Solution 1
result State: { pm: 13 earth, gv: 29 notVisible, is: 8 idle }

--- ... output truncated ...

Solution 71
result State: { pm: 83 earth, gv: 99 notVisible, is: 78 idle }

Solution 72
result State: { pm: 84 earth, gv: 100 notVisible, is: 79 idle }

No more solutions.

Notice that the first term is the result of advancing time once, the second term results
from advancing time twice, and so on, forming a chain where each solution is a temporal
continuation of the previous one. It is perhaps surprising that this command yields a
finite set stopping after 72 solutions: the + closure indicates one step or more and imposes
no upper limit on the number of applications. However, recall the rule advance-time is
conditional and is subject to the previously stated condition that the maximum duration
bound of a value is not to be exceeded. The figures in Table 2.2 reveal that the maximum
duration bound for the value notVisible (associated to the variable gv) is 100, which
is exactly the value that appears in the last solution. This is not a coincidence: the rule
advance-time cannot be applied anymore because the hypothetical solution 73 would
violate the constraint durationSol.73(gv) = 101 ≤ M for (m, M) = δ(notVisible) =
(1, 100). In spite of the fact that there are rules in the program that could apply now
and continue this derivation, the considered strategy only allows the advance-time rule
in exclusivity that now is unable to trigger, and thus solution 72 cannot transition any
further.



CHAPTER 3

Safety Enforcement via
Programmable Strategies in

Maude

In this chapter, we introduce the developed safety enforcement technique by first present-
ing a new language enabling the specification of the notion of safety for a given rewrite
theory and then detailing a novel method which leverages the Maude strategy language
to carry out an automatic program correction procedure that enforces the safety con-
straints expressed by the user.

3.1 The Maude Safety Policy Specification (MSPS) Language

As discussed before, Maude can be used to encode a rewrite theory that models some
complex, concurrent, reactive system by describing the transitions between system states
as rewrite rules. Programmers and domain experts using Maude may incur in mistakes
when defining constructs such as rewrite rules and equations, causing a misalignment
between the intended semantics and the actual semantics of the specified artifact, and
thus threatening the functional safety of the model and the real software system.

The first step towards ensuring the system safety is being able to express what is safety
in a certain domain or context, this is, the user needs to be able to unambiguously encode
what states of a program are desirable or safe, or dually, undesirable or unsafe, allowing
unsafe behaviors to be unmistakably identified and tagged as such (to a certain extent).
We call this description the safety policy of a system. In order to be able to automate this
process, this means the encoding must also be representable in some formal language
that can be processed by a machine.

We propose a new formal language, called the Maude Safety Policy Specification (MSPS)
language, which can convey the safety policy associated to a Maude program. Given a
rewrite theory R = (Σ, E, R), this language allows the user to provide a series of state-
ments using the signature Σ that, together, form a safety policy A w.r.t. R. A safety policy
expressed in MSPS is encoded as text containing one statement per line, according to the
grammar in Definition 4.

Definition 4. A policy safety A for a rewrite theory R can be expressed in the Maude
Safety Policy Specification (MSPS) language using the following grammar, given in Ex-

21
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tended Backus–Naur (EBNF) notation as described in [18].

⟨policy⟩ ::= ⟨statement⟩ newline? | ⟨statement⟩ newline ⟨policy⟩
⟨statement⟩ ::= ⟨state-assrt⟩ | ⟨path-strat⟩
⟨state-assrt⟩ ::= term ′#′ term
⟨path-strat⟩ ::= ′path for′ identifier ′:′ strategy

where term is a valid Maude term and identifier is a valid Maude identifier.

As denoted by the grammar, each statement in a safety policy A can be either a state
assertion or a path strategy, which roughly speaking relate to the safety of terms and tran-
sitions, respectively.

3.1.1. State assertions

State assertions are used to denote the (un)safety of states. The set of all state assertions,
state(A), enables automatic rulings of safety for any ground term t ∈ τ(Σ) representing
a system state of R.

Definition 5. Given a rewrite theory R = (Σ, E, R), with Σ = D ⊎ Ω, a state assertion has
the form Π # φ, where Π ∈ τ(Ω,V) is a (possibly non-ground) constructor term and φ is
a quantifier-free first-order logic formula.

As seen in Definition 5, state assertions have two parts: first, a pattern term Π that
selects states according to their shape; and second, a logic formula φ that decides whether
the selected state is safe. Intuitively, a state assertion requires that all terms matching
the pattern Π must obey the requirement φ. The pattern matching algorithm creates a
variable context when matching a given state with the pattern, allowing the formula φ
to reason about the contents of such a term. The pattern Π is a possibly non-ground
term. The formula φ can be constructed using the usual Boolean operators as well as
user-defined operators. For the sake of the user’s convenience, we allow the addition of
new operators and equations in an independent step, so that they can be used as custom
predicates in the property φ even if they are not originally part of Σ, as we show in
Section 4.6.

Operationally, state assertions check the logic invariants Π # φ in any subterm and not
only at the top of the considered system state, empowering the user to express complex
properties with notable expressive power. For instance, if N and M are two variables of
sort Nat, the state assertion N . M # N > M holds for the program defined in Example 3
and indicates that, for any pair of natural numbers inside the same list, the first num-
ber must be greater than the second one. For example, this assertion works for the list
3 . 2 . 1 , in spite of the fact it contains more than two numbers: it causes the condition

to be checked repeatedly, pairwise. This, in turn, states that all lists of natural numbers
must be arranged in strictly decreasing order.

Definition 6. Let R = (Σ, E, R) be a rewrite theory and let t be a system state in R. We
say a state assertion holds in t, denoted Π # φ |= t, if for every position w ∈ Pos(t) and
for every substitution σ, t|w =Ax Πσ implies that φσ is satisfied. If no such position w
exists, the assertion vacuously holds. We also say t is safe w.r.t. Π # φ.

We know how to determine if an individual system state is safe w.r.t. a specific state
assertion as posed in Definition 6, and this notion may also be extended for collections of
state assertions. Consider the state assertions Π # φ ∈ state(A) contained in some safety
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policy A of a rewrite theory R, and a term t representing a system state of R. This term t
may match several state assertions at once, i.e., there may be a subset of state assertions
{Π0 # φ0, . . . , Πn # φn} ⊆ states(A) such that their patterns simultaneously match the
term with a series of corresponding substitutions σi, t =Ax Πiσi, for 0 ≤ i ≤ n. In this
case, we say the state assertions in such a subset overlap on t. Intuitively, the expected
semantics in such a situation is that all the overlapping state assertions must hold on t
simultaneously, as the user has expressed a list of conditions for safety and leaving even
one unsatisfied could pose a great threat for the system safety. There is, therefore, an
implicit conjunction joining all state assertions in a safety policy, i.e., they can be chained
using a logical AND.

For instance, remember the state assertion N:Nat . M:Nat # N:Nat > M:Nat for the
list of natural numbers defined in Example 3. Let us say that the considered lists contain
quantities that will be used as the denominator of a division in some algorithm, and
thus we consider 0 to be invalid as an element. In such case, it could be argued that the
list 4 . 3 . 1 . 0 is undesired, and that running the algorithm on it could eventually
produce a division by zero error. We can add a new state assertion in order to forbid this
value from appearing inside lists:

L:NatList . 0 . L’:NatList # false

However, if we only check the first assertion, we could reach the false and potentially
dangerous conclusion that this list is admissible in the considered domain, as all pairs
satisfy the monotonic order imposed by the guard N > M despite it violates the second
assertion.

Definition 7. Let R = (Σ, E, R) be a rewrite theory. We say a safety policy A holds in a
term t representing a system state in R, denoted A |= t, if and only if all system assertions
contained in A hold in t, i.e. (∀(Π # φ) ∈ state(A)) Π # φ |= t. We also say t is safe w.r.t.
A.

3.1.2. Path strategies

While safety may be expressed from the point of view of the suitability of states w.r.t.
the expected semantics of a given domain, there exists another notion involving safety,
which relates to the way states evolve into other states. Sometimes, even if two states t
and t′ are safe, what may be unsafe is the way the overall transition has taken place, as
the domain constraints may require some intermediate states to be traversed in a certain
admissible way. For example, imagine t represents a container of water that is full with a
considerable but still safe quantity of water. The state t′ represents the empty container,
which is also a safe state. However, the one-step transition relating both denotes the
container has lost all its volume in one time unit, which is either impossible or dangerous
for the pipes draining such container. An approach purely based on state assertions is
unable to reason about the admissible transitions between safe states, and is hence unable
to express that such an scenario may be undesirable. This is the reason why a second kind
of statement is considered in MSPS: path strategies.

As introduced before, Maude has a mechanism for specifying how terms evolve by
controlling and constraining possible rule applications by means of the strategy lan-
guage. Such control may be used to describe the subset of transitions between states
that are safe, and thus adding the capability of attaching path strategies to a MSPS spec-
ification is helpful for encoding the safety constraints of a system in one self-contained,
complete safety policy A for the rewrite theory R. Path strategy statements enable the
user to attach a Maude strategy to the safety policy while relating it to a sort in R, and
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intuitively claim that all terms of sort s must evolve as indicated by the accompanying
strategy. This associated sort enables a conceptual filtering such that only terms repre-
senting (relevant) system states are affected: for example, adding a path strategy for a sort
State will not affect how standalone terms of sort NatList may evolve. However, a path
strategy may cover all the subterms of the relevant terms: subterms of sort NatList that
are contained inside a term of sort State may be controlled if the relevant path strategy
for State indicates so. Only one path strategy may be declared per each sort.

Definition 8. Let R = (Σ, E, R) be a rewrite theory and let S be the set of sorts in R. A
path strategy Ps, with s ∈ S, imposes a strategy ζ to all terms of the sort s. If said sort is
not relevant, we simply use P. We denote the set of all the path strategies that can be
built in R by PStr(R).

Path strategies are notably useful for systems that model actions that repeat pre-
dictably over time, in an operation cycle that is inherent to its domain. This is common in
real-time systems. For instance, consider again a computer-controlled container of water.
A collection of rules models the possible actions that may exist between the system and
its environment, e.g., a human agent pushing a button to request the system to empty the
container. However, a time advancement rule must be executed repeatedly and regularly
to track the inner volume of the container as it changes per unit of time, regardless of
the inbound orders. A scenario that ignores the advancement of time, where orders keep
being processed without recalculating and updating the volume, should be unfeasible.
This controlled rule interleaving may be enforced using a path strategy.

The syntax of path strategies is as follows:

path for s : ζ

where s is the sort this path strategy Ps is being associated to, and ζ is a strategy expres-
sion.

For the sake of the user’s convenience, strategy expressions ζ in path strategies have
been extended with a custom operator that is especially useful when expressing safety
policies: the all except L operator, denoted all-(L) in MSPS, where L is comma-separated
list of rule labels. In programs where some rule acts as a time advancement or where
there exists an evident asymmetry between certain groups of rules, it may be useful to
specify that we wish to apply all possible rules except a certain set of excluded rules. This
operator performs exactly this function, acting as a restricted counterpart of the built-in
all strategy constructor. See Example 6.

Definition 9. Let R = (Σ, E, R) be a rewrite theory. Let t ∈ τ(Σ). Let L ⊆ labels(R). The
new operator all-(L) is defined as a macro that expands to Maude’s strategy language
as follows:

all-(L) = ℓ1 | . . . | ℓn where {ℓ1, . . . , ℓn} = labels(R) \ L

EXAMPLE 6
Consider again the satellite controller of Example 5. We can use the MSPS language to
specify a safety policy ASATELLITE encoding representative domain constraints as shown
in Listing 3.1. Each line contains a different declaration, where the first five lines contain
state assertions Π # φ and the last line contains a path strategy path for s : ζ.

Line by line, the safety policy at hand imposes the following constraints on the con-
sidered domain:

Line 1. Time values (e.g., durations) must be either zero or positive.
It may be common for Maude programs to contain definitions that are broader
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1 T:Time # T:Time >= 0
2 { pm: Tpm:Time comm, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus } #

GV:GroundVisibility == visible
C

C
3 { pm: Tpm:Time maintenance, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus } #

IS:InstrumentStatus == idle
C

C
4 { pm: Tpm:Time maintenance, gv: Tgv:Time notVisible, is: Tis:Time IS:InstrumentStatus } # false
5 { pm: Tpm:Time science, gv: Tgv:Time notVisible, is: Tis:Time IS:InstrumentStatus } # Tis:Time <=

2 * max(duration(process))
C

C
6 path for State : (all-(advance-time) | idle) ; advance-time

Listing 3.1: Safety policy for the space probe controller

than what is actually required for a certain scenarios, especially when importing
already existing modules for the purpose of code reuse. We simulate such situa-
tion in this example: the auxiliary module TIME contains some generic, program
independent definitions for the concept of time, using (potentially negative) inte-
gers as orderable logic time values or time stamps. In this case, however, we only
wish to use the domain of naturals, being zero the first valid time instant possi-
ble. We thus use this assertion to match any time value and explicitly indicate it
must be equal to or greater than 0.

Line 2. The satellite may only communicate with mission control in a time window
where both can see each other.
The space probe at hand communicates periodically with Earth, but in order for
this communication to occur, the probe and the antennas located at mission con-
trol must be visible from each other. This happens during certain windows of
time, as the probe rotates and is sometimes occluded by our planet. Two condi-
tions must align simultaneously: (i) the probe must be pointing towards Earth (pm
= earth) and (ii) the probe must be visible from mission control (gv = visible).
We encode this pair of conditions using the pattern to match states where the
satellite attempts to communicate, to the enforce that the visibility must be ade-
quate as well in such moment.

Line 3. During maintenance operations, the on-board scientific instruments must re-
main inoperative.
In order to ensure the safety of on-board instruments, they must not execute any
task during the entire time where maintenance operations take place. We encode
this restriction in a way that is similar to the previous one: the pattern matches a
maintenance situation, and then the condition enforces that the instruments must
be idling.

Line 4. The probe cannot be in maintenance mode while not visible.
This state assertion is an example of marking undesirable states leveraging pat-
tern matching. In this case, the pattern is enough to capture the semantics of the
unsafe situation: a term having both maintenance and notVisible in their re-
spective slots as indicated. The trivial formula false then explicitly forbids the
family of terms captured.

Line 5. During scientific data collection operations, the on-board instruments will not
idle for longer than double of the maximum processing time allowed.
The time dedicated to maintenance operations is valuable and hence it is impor-
tant the on-boards instruments remain operative and are actively used during
said time frames. Thus, in case the instruments are idling, they must not spend
more than 2M units of time in such a state, where M is the maximum processing
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time allowed as encoded by (m, M) = δ(process). In order to define this asser-
tion, we define an auxiliary operator max which obtains the second component
of the pair (m, M), i.e., the maximum duration bound. This auxiliary operator is
not part of the original program and is hence provided as part of the auxiliary
predicates of the safety policy, shown in Listing 3.2.

Line 6. State variable change transitions and time advancement transitions must be
intertwined.
As explained in Example 5, transitions changing the value of the different state
variables and transitions advancing time are independent and can be applied in
any order and manner. In reality, time advances at regular clock cycles that allow
at most one state change to occur. Hence, we use a path strategy to enforce that
transitions on states must have one of the following form: (i) no state variable
changes and then time advances, or (ii) exactly one state variable changes and
then time advances. After the time advancement “tick” is complete, this process
repeats. Thus, a situation where two consecutive state variable changes occur
with no interlaced time advancement is not allowed.

In the contained strategy expression

(all-(advance-time) | idle) ; advance-time

we use all-(advance-time) to refer to all rules in the program bar the time
advancement rule, which in this case corresponds to all rules encoding the en-
abled transitions that change the state variables. The strategy sub-expression
(all-(advance-time) | idle) indicates that at most one of such state change

rules should be applied, where idle represents the absence of a rule application.
Finally, the sequential concatenation of advance-time indicates that the time ad-
vancement rule must be applied exactly once, concluding what is conceptually
one clock cycle.

1 var Tmin Tmax : Time .
2

3 op max : TimeInterval -> Time .
4 eq max([Tmin, Tmax]) = Tmax .

Listing 3.2: Auxiliary safety policy predicates for the space probe controller

3.2 Computing Safe Maude Programs

We have previously explained that the MSPS language allows the user to express a safety
policy for a given program, describing the safety of states using state assertions and con-
trolling how computations evolve through the use of path strategies. In this section we
introduce an automatic correction technique that allows the automatic enforcement of a
given safety policy for a given program. Given a program R and a safety policy A, the
technique transforms R into a new safe program R′ whose computations satisfy A. This
new program uses the Maude strategy language to identify unsafe situations and drive
the control away from them, effectively restricting computations to the ones deemed safe
by A.
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Note that the procedure for straightening a program is an operation that must only
be run once per each pair of program R and safety policy A, in order to obtain the safe
version R′. Once this result has been obtained, it may be stored and then executed a
potentially infinite number of times. In this program lifecycle, we say that operations
and properties that apply to this one-time reparation procedure occur at transformation
time. In contrast, we say that everything related to the later executions of R′ occur at run
time.

In order to enforce the allowed semantics of safety policies as shown in Section 3.1,
a strategy module is generated and added to the original program encoding R, acting
as an overlay that does not actually modify the semantics (and thus properties) of R. In
other words, the presented technique attains automatic run time safety by extending the
original program with new, additional source code, and without modifying said origi-
nal code. Recall the concept of computation tree TR(t), containing the program search
space of states reachable from an initial state t, alongside the corresponding sequences
of applied rewrite rules. Roughly, the new attached strategy module drives the program
constraining its computations to a new computation tree T ′

R(t) ⊆ TR(t) that only com-
prises safe states and transitions.

This strategy module is generated in three steps. First, state assertions in the given
safety policy are encoded as strategy expressions in Maude’s strategy language. Sec-
ondly, path strategies are transformed and integrated with state assertions. Finally, the
generated strategy expressions are wrapped in named strategy definitions and then ar-
ranged to construct the final strategy module that will be overimposed to the program.

3.2.1. Encoding State Assertions as Strategies

The main objective of state assertions is removing unsafe states from a given computation
tree, which intuitively can be seen as limiting, constraining or filtering such tree. State as-
sertions in a safety policy are encoded as Maude strategy expressions that can determine
whether a term is safe, i.e., if the encoded state assertion holds in a term. Because these
strategies are used to prune unsafe states from the tree, we call them state filters.

Definition 10. Let Π # φ be a state assertion in A. A state filter for Π # φ, denoted F Π # φ,
is a strategy defined as not(amatch Π s.t. not(φ)), where not represents the Boolean
negation1.

Proposition 1. Let R = (Σ, E,R) be a rewrite theory. Given a state assertion a ∈ A, and
a term t ∈ τ(Σ):

JFaK(t) =

{
∅ if a ̸|= t
{t} otherwise

Proof. Immediate given the semantics of the strategy operators in Definition 2.

EXAMPLE 7
Consider the safety policy defined in Example 6, which defines safety for the controller of
a space probe. The following example shows the codification of the state assertion shown
in line 3 of Listing 3.1 as a filter strategy:

{pm: Tpm:Time comm, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus} #
GV:GroundVisibility == visible

1This Boolean operator is not to be confused with the strategy constructor not(α), where α is a strategy.
Here, not is applied to a Boolean formula and has the traditional Boolean algebra semantics.
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⇓
not(amatch {pm: Tpm:Time comm, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus}

s.t. GV:GroundVisibility == visible = false)

Given a state assertion a ∈ state(A) of a safety policy A for R, and a term t represent-
ing a system state in R, its corresponding state filter strategy Fa succeeds if said term t
is safe w.r.t. A, by returning a singleton set with the same term unchanged. However,
if the term is instead deemed unsafe, the strategy fails by returning the empty set. Intu-
itively, a state filter strategy is equivalent to the idle strategy constructor when a |= t,
and equivalent to fail when a ̸|= t.

This specific behavior makes it especially convenient for pruning: imagine we have
applied a rule and discovered new leaves to be added to the computation tree currently
under exploration. By applying a filter in all leaves and then flattening each returned set
as new sibling nodes, we will keep states that are safe (as they are returned in a singleton
set) and remove states that are unsafe (as the empty set effectively removes a subtree).
While this pruning operation could be ran on the entire computation tree after it has been
explored to completion, it is generally more efficient to prune iteratively in small steps
in order to avoid spending time exploring potentially big derivations stemming from
unsafe states, only to remove these subtrees with all their children nodes later.

Definition 11. Let {a1, . . . , an} ∈ state(A) be the state assertions of a safety policy. The
lifted state filter F{a1,...,an} for {a1, . . . , an} is defined as Fa1 ; ...; Fan . For simplicity,
Fstate(A) is denoted by FA.

As stated before, when the safety of a state is to be judged w.r.t. to several state asser-
tions, an implicit conjunction exists: a safety policy holds for a state if all state assertions
hold for it. The lifted state filter formally encodes this notion, by naturally extending
state filters to sets of state assertions. This is implemented using the sequential strategy
constructor α ; β because its pipeline semantics cause it to return early as soon as any
of the filters detects unsafety. Each filter in the sequence is applied to the results of the
previous one, and as soon as one of the filters fail with an empty set, then the remaining
filters trivially fail too as they are applied to zero terms. In contrast, if all filters succeed
they will pass a singleton set to each other until the input term is yielded unchanged at
the end of the filter pipeline. Thus, this composition of state filters acts as a filter itself
and preserves the original semantics of conditionally acting as idle or fail.

Proposition 2. Let R = (Σ, E,R) be a rewrite theory. Given a safety policy A, and a term
t ∈ τ(Σ):

JFAK(t) =

{
∅ if ∃a ∈ A s.t. a ̸|= t
{t} otherwise

Proof. Let A be a safety policy with state(A) = {a1, . . . , an}, n ≥ 0. The proof proceeds
by induction on n.

n = 0. state(A) is the empty set. Hence, the proposition is vacuously true.

n > 0. We have state(A) = {a1, . . . , an}. By Definition 11, FA = Fa1 , . . . , Fan . Let t ∈ τ(Σ)
be a term. Two cases can be distinguished:

Case i. All the state assertions a1, . . . , an hold in t. In that case, a1, . . . , an−1 also
holds in t. Hence, by inductive hypothesis JF{a1,...,an−1}K(t) = {t}. Also, by
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Proposition 1, JF{an}K(t) = {t} because an holds in t. Then

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 2)

= JF{an}K(t) (by inductive hypothesis)

= {t} (by Proposition 1)

Case ii. There exists a ∈ {a1, . . . , an} such that a does not hold in t. If a ∈ {a1, . . . , an−1},
then by inductive hypothesis JF{a1,...,an}K(t) = ∅. Hence,

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 2)

= ∅ (by inductive hypothesis)

If a = an, then we have

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 2)

= JF{an}K(t) (by inductive hypothesis)

= ∅ (by Proposition 1)

Corollary 1. Let R = (Σ, E,R) be a rewrite theory. Let A be a safety policy for R. Let
t ∈ τ(Σ) be a term representing a system state of R. Then, JFAK(t) = {t} if an only if
A |= t.

Proof. Direct consequence of Proposition 2 and the definition of safe state w.r.t. a set of
state assertions.

Using a lifted state filter strategy FA for the whole safety policy A, the notion of state
safety has been completely covered from the point of view of one node in the computa-
tion tree. However, it is still necessary to define how a computation tree is unfolded and
pruned using FA.

In Maude, the user may explore the computation tree parting for an initial term t,
TR(t), by using the search command. As introduced in Section 2.3, this command applies
as many rules as possible and then normalises the reached terms in order to recursively
generate the nodes of the tree. The notion of applying all possible rules to a term is
encoded by the trivial strategy all. And it is not only needed to apply all rules, but to
apply rules zero or more times (where the application of zero rules yields the root of the
tree), so it can be deduced that the strategy all * is conceptually equivalent to using
the search command described in Section 2.3, when the command is configured to show
all leaves of the tree, using =>*. In fact, it is possible to empirically prove that both yield
exactly2 the same computation tree comprising the entire search space of R.

Consider the strategy (all ; FA) * . This strategy unfolds the computation tree
as described before but with an important difference: it prunes unsafe leaves iteratively.
After the application of all possible rules has caused the discovery of all the possible child
terms of a node, the children which are not deemed safe w.r.t. the safety policy are simply

2Ignoring the order between sibling nodes, which is an irrelevant implementation detail that does not
affect the notion of structural equality between computation trees.
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removed. If the definition is examined closely, it can be observed that, at each iteration,
all comes before FA, so rule expansions come first, and then the pruning process comes
afterwards. The resulting tree is just as expected and described before, a (potentially)
smaller version with unsafe states removed, where subtrees stemming from unsafe states
are never explored.

There is still one detail that needs to be fixed: what does the tree look like if the initial
term is unsafe? In the first iteration, the initial term will be first expanded, and then
children will be removed. This is not an adequate behavior: in the degenerate case where
the initial term given by the user is already unsafe, the considered strategy will yield safe
states that are reachable parting from that unsafe situation. Intuitively, we should reject
any possible computation and return an empty tree, explicitly denoting the safety policy
does not hold in such inadmissible initial conditions. This can be achieved by running an
additional filtering phase on the initial term, only once at the beginning of the process:
FA ; (all ; FA)* . Note that the first call to FA is not affected by the closure *. We say

this strategy is the safe version of all * w.r.t. A.

3.2.2. Integrating Path Strategies and State Assertions

The definitions presented beforehand, alone, completely cover safety w.r.t. states: given
a term t, T (FA ; (all ; FA) *)

R (t) is a state-wise safe computation tree for t w.r.t. A. There
is, however, another important aspect of safety covered by the semantics of MSPS: safety
w.r.t. transitions. Path strategies can be used to restrict the way in which computations
evolve for terms of certain sorts. If a path strategy Ps is defined for some sort s ∈ S, and
the initial given term t is of that sort, t :: s, then the unfolding strategy that must build
the tree of safe computations is not all * , but the path strategy Ps defined by the user.

Definition 12. Let R = (Σ, E,R) be a rewrite theory and let A be a safety policy for R.
Let P, P′, P′′ ∈ PStr(R) be path strategies in A. The auxiliary safe transformation of the
path strategy P, sa f e′(P), is defined as follows:

sa f e′(P) =


ℓ ; FA if P := ℓ ∧ ℓ ∈ labels(R)

all ; FA if P := all

sa f e∗(P′)• if P := (P′)•, with • ∈ {*, +, !}
sa f e∗(P′) ◦ sa f e∗(P′′) if P := P′ ◦ P′′, with ◦ ∈ {; , |}

Similarly to the natural transformation described for the trivial case all * , a safe
transformation is defined as a helper function (Definition 12) that intertwines filtering
phases FA in the path strategy in order to enforce state-wise safety. Then, a one-time
initial filtering phase is inserted at the head of this intermediate result (Definition 13) to
handle the degenerate case of the initial state being already unsafe, finally yielding the
completed safe version of the path strategy.

Note that the function defined in Definition 12 is called auxiliary because its result is
not the safe version of the provided path strategy P, but is used as intermediate data for
Definition 13. This transformation intuitively adds filtering phases FA in the points that
follow rule applications, as rules cause states to transition and change, and hence may
introduce unsafety w.r.t. states.

Definition 13. Let A be a safety policy and let P be a path strategy. A safe path strategy
w.r.t. A, denoted sa f e(P), is defined as FA ; sa f e′(P).

It can be observed that all * is a special case of path strategy, and that the transfor-
mation formulated before for this strategy is fully generalised by Definition 13.
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Proposition 3. Let R = (Σ, E, R) be a rewrite theory and let A be a safety policy. Let
sa f e(Ps), where s ∈ S is part of Σ, be a safe path strategy for A. For every computation
t0 →R,E . . . →R,E tn in T sa f e(Ps)

R (t0) it is true that:

i. It is also a computation in TR(t);

ii. tn ∈ JPK(t0);

iii. A |= ti for all 0 ≤ i ≤ n; and

iv. ti :: s for all 0 ≤ i ≤ n.

Proof. Claim (i) trivially holds since T sa f e(P)
R (t) includes a subset of the computations of

TR(t) as per Definition 3. Claim (iv) is a direct consequence of the semantics of Maude
regarding rewriting [15, Chapter 5], as rule applications parting from a term t s.t. ls(t) =
s ∈ S can only result in terms {t′} where all t′ :: s. Let us prove the rest of claims:

iii. Let C = (t0 →R,E . . . →R,E tn) be a computation in T sa f e(P)
R (t0), where sa f e(P) = FA

; sa f e′(P). Then, by Definition 3, we have:

tn ∈ Jsa f e(P)K(t0) = JFA ; sa f e′(P)K(t0)

We proceed by contradiction and we assume that there exists a state ti in C such
that ti is not safe w.r.t. A. Hence, by Proposition 2, JFAK(ti) = ∅. We distinguish
two cases: ti is the initial state t0, and ti is any state in {t1, . . . , tn}.

ti = t0. In this case, JFAK(t0) = ∅; hence, by the definition of the sequential
operator ; in Definition 2:

Jsa f e(P)K(t0) = JFA ; sa f e′(P)K(t0) =
⋃

t′∈∅

Jsa f e′(P)K(t′) = ∅

which leads to a contradiction since we assumed tn ∈ Jsa f e(P)K(t0).
ti ∈ {t1, . . . , tn}. In this case, the unsafe state ti has been generated by the rewrite

step ti−1 →R,E ti which has been triggered by some rule label ℓ or the operator
all in the path strategy P. Now note that every occurrence of these operators
in sa f e(P) is followed by an application of the state filter FA, that is, ℓ ; FA
and all ; FA . Since t is not safe w.r.t. A, we have

Jℓ ; FAK(ti−1) = ∅
Jall ; FAK(ti−1) = ∅

Hence, ti is not reachable from ti−1, which leads to a contradiction as we as-
sumed ti−1 →R,E ti.

ii. Let C = (t0 →R,E . . . →R,E tn) be a computation in T sa f e(P)
R (t0). Thus, tn ∈

Jsa f e(P)K(t0). By claim (iii), we know that each ti in C are safe w.r.t. A. Hence,
by Definition 11, JFAK(ti) = {ti}, for i = 1, . . . , n which directly implies that

Jℓ ; FAK(ti) = JℓK(ti) (3.1)
Jall ; FAK(ti) = JallK(ti) (3.2)

By Eqs. (3.1) and (3.2) and Definition 12, it is straightforward to show that
sa f e′(P) = P by trivial structural induction on P. Finally,

tn ∈ Jsa f e(P)K(t0) = JFA ; sa f e′(P)K(t0) (by Definition 13)
= Jsa f e′(P)K(t0) (by JFAK(ti) = {ti})
= JPK(t0) (by sa f e′(P) = P)



32 Safety Enforcement via Programmable Strategies in Maude

Given a rewrite theory R and a safety policy A, safe path strategies combine the no-
tions of safety w.r.t. states and safety w.r.t. transitions and are able to build a computation
tree T sa f e(P)

R (t) that is simultaneously safe from both points of view w.r.t. the policy en-
coded by the user in A. All computations that were safe before are still included in this
new tree, whereas computations including at least one unsafe state in any step (regardless
of whether it is initial, final or intermediate) are entirely discarded. No new computations
are introduced w.r.t. the original program. Roughly speaking, the apparent result is that
the program has been automatically “fixed” as it now behaves as if it was programmed
to never exhibit unsafety from the beginning. In this sense, Jsa f e(P)K(t) can be roughly
seen as a safe equivalent to Maude’s search command when the target pattern is a free
variable as seen in Example 8.

3.2.3. Arranging the Strategy Definitions

The previous sections provide a formal framework for enforcing safety using Maude’s
strategy language. This section aims to provide a bridge between this formal description
of the technique and its actual implementation, which generates a strategy module that
overlays the considered Maude program to be repaired. The generated strategy module
contains a hierarchy of families of named strategy definitions where strategies higher in
the hierarchy use the strategy definitions beneath them.

Let R be a rewrite theory and let A be a safety policy for R. Let T ′
R(t) ⊆ TR(t)

be a computation tree constrained to only safe states (e.g., the tree T sa f e(P)
R (t) for a path

strategy P in A). From top to bottom, this conceptual hierarchy is as follows:

1. Global strategy: encodes how to unfold the safe computation tree T ′
R(t), driving

the control to perform a search of new states and overall making computations
evolve. There is one global strategy that is used in a single computation stemming
from the initial state.

2. Local strategy: encodes how to make one step in the computation tree T ′
R(t) by

pruning unsafe states. There is also one local strategy in a given computation stem-
ming from t.

3. State filter strategies: the state assertions in state(A) encoded as Maude strategies.
These strategies allow judgements regarding the safety of terms to be performed.
There is one state filter strategy per each state assertion in state(A).

Note that the description above corresponds to one computation tree T ′
R(t) and do not

correlate to the output produced by the implementation presented later, which must con-
tain enough definitions to support all possible computation trees, and hence contains
several global and local strategies. This set of definitions is obviously finite, and every
time a safe computation tree T ′

R(t) is to be explored, one global and one local strategy
must be selected.

Linking this logical view with the definitions presented before, when unfolding one
safe computation tree T ′

R(t0) for an initial term t0, the global strategy is the strategy that
controls how computations evolve overall, i.e., a safe path strategy sa f e(Ps). Thus, the
safe computation tree is the computation tree generated by the corresponding path strat-
egy, T ′

R(t0) ≡ T sa f e(Ps)
R (t0), by definition. When given the initial term t0, the selected

global strategy is sa f e(Ps) for the corresponding Ps whose sort s satisfies t :: s. Because
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one safety policy can only contain one path strategy Ps per each sort s ∈ S, and a term
has only one type, this selection is unambiguous. As an added precaution, the correction
of this selection is enforced by Maude, whose type checker will emit an error if using a
safe strategy sa f e(Pu), u ∈ S, for t0 when t0 ̸:: u.

In in Example 8 we have compared the commands search and srew as the unsafe and
safe counterparts of the same conceptual operation, respectively. As seen in the search
command, the effective exploration of a program’s search state may require the user to
specify and limit the number of desired steps between the initial term and the resulting
reachable terms, and this command satisfies such a need by offering the symbols 1, *, +
and ! with the semantics described in [15, Section 5.4.3]. The srew command, however,
has no such notion, and the problem space exploration must be controlled using closures
present inside the strategy provided to said command. For instance, to explore states
reachable using the path strategy P with zero or more steps, such strategy body should
be wrapped with the * closure, P ≡ ζ∗, so that the safe strategy sa f e(P) then equals
FA ; (sa f e′(P)) * . However, this causes the path strategy definition to be directly

coupled to this tree unfolding decision. If we later desire to explore only normal forms
w.r.t. P, we must re-define P as P′ to use the ! closure, P′ ≡ ζ!, so that after the safe
transformation we obtain FA ; (sa f e′(P′)) ! . This is not convenient, as changing the
safety policy requires running the transformation procedure again, for what is basically
a run time decision. We thus provide a mechanism solving this issue, enhancing the
usability of the generated strategies and taking advantage of the existing acquaintance
with the search command.

Definition 14. The search shorthands of a safe path strategy sa f e(P) are a family of strategy
transformations provided for convenience and defined as follows:

sa f e•(P) = FA ; ( sa f e′(P) ) •

where • ∈ {*, +, !}.

Comparing with the flexibility of the search command, we encourage the user to de-
fine path strategies in a way that is completely decoupled from the global tree unfolding
control flow, so that the path strategy only expands one step, in contrast to wrapping the
strategy body with a closure (i.e., preferring P ≡ ζ over P ≡ ζ∗, P ≡ ζ+, etc.). Sev-
eral named strategy definitions are provided so that the user can quickly choose between
sa f e(P), sa f e∗(P), sa f e+(P) and sa f e!(P) as the global strategy for each computation
tree to explore, at run time, having encoded the path strategy P only once and without
repeating the transformation time.

The generated strategy module contains a set of strategy definitions named s-path
and s•, where s is the name of a sort s ∈ S and • ∈ {*, +, !}, which respectively corre-
spond to sa f e(Ps) and sa f e•(Ps). For example, for an initial term of sort Configuration:

• Configuration-path expands to sa f e(PConfiguration),

• Configuration* expands to sa f e∗(PConfiguration),

• Configuration+ expands to sa f e+(PConfiguration) and

• Configuration! expands to sa f e!(PConfiguration).

The strategy module contains enough definitions to cover all possible combinations the
user may need, even though the actual mappings between those publicly exposed names
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and the generated strategy expressions is decided by optimizations and is considered an
implementation detail.

If the initial given term t0 has sort t :: u, u ∈ S, but no corresponding path strategy Pu
has been defined, the default path strategy all • will be used implicitly when calling
the named definition s•.

EXAMPLE 8
Consider again the safety policy defined in Example 6, which defines safety for the con-
troller of a space probe. Let us show how we can encode the path strategy shown in
line 6 of Listing 3.1, after undergoing the safe path strategy transformation described in
Definition 13:

path for State : (all-(advance-time) | idle) ; advance-time

⇓
State-state ;

( idle | (gv-notVisible-visible ; State-state) | ... | (pm-slewing-science ; State-state) ) ;
advance-time ;
State-state

Note that State-state here is a call to the lifted state filter FA. The first occurrence
of State-state corresponds to the first appearance of FA preceding sa f e′(P) in Defini-
tion 13, while the rest of the strategy after the first ; is the result of the auxiliary trans-
formation described in Definition 12. The concatenation of rules next to idle using the
choice operator | corresponds to the expansion of the macro all-(advance-time). Fi-
nally, the last call to FA is due to the appearance of the rule label advance-time, which is
explicitly called in the original path strategy.

Recall that, as explained in Section 2.3, the search command allows the Maude user
to explore the computation tree TR of a program R. Using the generated strategies, the
srew command is driven to explore a constrained, safe version of TR where all states and
transitions between states satisfy the safety policy A, thus performing a similar function
where the only difference resides in the fact the later enforces A. Indeed, the strategy def-
initions exposed by our technique leverage the acquaintance with the search command
to carefully expose a conceptually safe equivalent of the search command by means of the
search shorthands introduced in Definition 14.

Given an initial state, the following search command explores the next four states
stemming from it by applying one or more rules, as indicated by =>+.

search [4] { pm: 40 comm, gv: 70 visible, is: 0 idle } =>+ S:State .

Solution 1
S:State --> { pm: 41 comm, gv: 71 visible, is: 1 idle }

Solution 2
S:State --> { pm: 0 earth, gv: 70 visible, is: 0 idle }

Solution 3
S:State --> { pm: 0 maintenance, gv: 70 visible, is: 0 idle }

Solution 4
S:State --> { pm: 40 comm, gv: 0 notVisible, is: 0 idle }

The returned solutions correspond to states which fulfill the basic domain restrictions
explained in Example 5, such as the duration bounds, but that are not necessarily safety
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w.r.t. the safety policy in Example 6. The first solution corresponds to one application of
the time advancement rule. The second solution arises from the transition of the pointing
mode from comm to earth. The third solution results from the transition of pm from comm
to maintenance. There are two ways in which this violates the considered safety policy:
first, in the both transitions of the value of the variable pm (solutions 2 and 3) time had not
advanced, violating the rule that a clock cycle requires the intertwining of state variable
changes and time advancement; and second, the fourth solution corresponds to an unsafe
state because a state assertion in our safety policy explicitly forbids the communication
pointing mode (value(pm) = comm) while the probe is not visible from mission control
(value(gv) = notVisible).

Let us now try to issue the safe equivalent of the previous command, which explores
the next four safe states reachable using one or more transitions, as indicated by the search
shorthand State+, which here corresponds to the =>+ option from the search command.

srew [4] { pm: 40 comm, gv: 70 visible, is: 0 idle } using State+ .

Solution 1
result State: { pm: 41 comm, gv: 71 visible, is: 1 idle }

Solution 2
result State: { pm: 1 earth, gv: 71 visible, is: 1 idle }

Solution 3
result State: { pm: 1 maintenance, gv: 71 visible, is: 1 idle }

Solution 4
result State: { pm: 42 comm, gv: 72 visible, is: 2 idle }

As before, four states are returned, but this time all of them satisfy the safety policy. Note
that in solutions 2 and 3 the state variable change is now accompanied by the correspond-
ing time advancement, as observed in the duration of gv, which increments from 70 to
71. Furthermore, the solution 4, previously explicitly unsafe, has now been suppressed
in favor of a new, different solution that is naturally also safe. This solution was the next
one in the line of solutions to be explored, and hence would have been solution number
5 in the previous search command if it were not limited to only showing its first four
solutions.

As defined in previous sections, global strategies call or use the lifted state filters FA.
These lifted filters act in the scope of one step of the tree, pruning the children nodes of an
application (or set of concurrent applications) of a rewrite rule, and effectively fulfilling
the role of local strategies. In case the user wishes to apply FA on demand in order to
check safety w.r.t. states without building a computation tree, a strategy named s-state
must be invoked, where s ∈ S is the sort of the provided term.

Let A be a safety policy. Finally, and completing the hierarchy, state filter strategies
correspond to the state filters Fa for a state assertion a ∈ state(A). They are used by the
local strategy FA. These strategies are not intended to be called directly, and the names of
the corresponding strategy definitions are an implementation detail.

EXAMPLE 9
Recall the artificial satellite controller, alongside its accompanying safety policy, from
Example 6.
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The resulting transformed program containing the generated strategy module is avail-
able in the companion file satellite_fixed.maude3. We show a formatted excerpt of the
generated strategy module in Listing 3.3.

3This file may be downloaded from https://raw.githubusercontent.com/skneko/strass/master/
core/examples/satellite/fixed/satellite_base.maude

https://raw.githubusercontent.com/skneko/strass/master/core/examples/satellite/fixed/satellite_base.maude
https://raw.githubusercontent.com/skneko/strass/master/core/examples/satellite/fixed/satellite_base.maude
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1 smod SATELLITE-SAFE is
2 protecting SATELLITE .
3 protecting EXT-BOOL .
4 op max : TimeInterval -> Time .
5 eq max([Tmin:Time, Tmax:Time]) = Tmax:Time .
6 --- ...
7 strat State! : @ State .
8 strat State* : @ State .
9 strat State+ : @ State .

10 strat State-path : @ State .
11 strat State-state : @ State .
12 --- ...
13 strat TimeOrInf-state : @ TimeOrInf .
14 strat s1 : @ Time .
15 strat s2 : @ State .
16 strat s3 : @ State .
17 strat s4 : @ State .
18 strat s5 : @ State .
19 strat StateVariable! : @ StateVariable .
20 strat StateVariable* : @ StateVariable .
21 strat StateVariable+ : @ StateVariable .
22 strat StateVariable-state : @ StateVariable .
23 --- ...
24 sd State! := State-state ; (State-path !) .
25 sd State* := State-state ; (State-path *) .
26 sd State+ := State-state ; (State-path +) .
27 sd State-path := (
28 idle
29 | (gv-notVisible-visible ; State-state)
30 | (gv-visible-notVisible ; State-state)
31 --- ...
32 | (pm-slewing-science ; State-state)
33 ; advance-time ; State-state .
34 sd State-state := s2 ; s3 ; s4 ; s5 ; s1 .
35 sd StateVariable! := (all) ! .
36 sd StateVariable* := (all) * .
37 sd StateVariable+ := (all) + .
38 sd StateVariable-state := idle .
39 --- ...
40 sd TimeOrInf-state := s1 .
41 sd s1 := not(amatch T:Time s.t. T:Time >= 0 = false) .
42 sd s2 := not(amatch
43 {pm: Tpm:Time comm,
44 gv: Tgv:Time GV:GroundVisibility,
45 is: Tis:Time IS:InstrumentStatus}
46 s.t. GV:GroundVisibility == visible = false) .
47 sd s3 := not(amatch
48 {pm: Tpm:Time maintenance,
49 gv: Tgv:Time GV:GroundVisibility,
50 is: Tis:Time IS:InstrumentStatus}
51 s.t. IS:InstrumentStatus == idle = false) .
52 sd s4 := not(amatch
53 {pm: Tpm:Time maintenance,
54 gv: Tgv:Time notVisible,
55 is: Tis:Time IS:InstrumentStatus}
56 s.t. true) .
57 sd s5 := not(amatch
58 {pm: Tpm:Time science,
59 gv: Tgv:Time GV:GroundVisibility,
60 is: Tis:Time idle}
61 s.t. Tis:Time <= 2 * max(duration(process)) = false) .
62 endsm

Listing 3.3: Excerpt of the generated strategy module for the space probe controller





CHAPTER 4

STRASS: Strategy-based
Automatic Safety Assurance Tool

The introduced formal framework and correction technique have been efficiently imple-
mented in an interactive tool called STRASS (Strategy-based Automatic Safety Assurance
Tool), which is described in detail in this chapter. The tool features a friendly web user
interface and is publicly available at http://safe-tools.dsic.upv.es/strass.

Following the presented methodology, the tool takes as input a Maude program and
a MSPS safety policy (see Section 3.1), and returns a new Maude program which that
is safe w.r.t. the provided safety policy (see Section 3.2). Optionally, and for the user’s
convenience, a set of auxiliary predicates for defining the safety policy may be provided.
These predicates are a series of Maude definitions (e.g., operators and equations) that
are only brought into the scope of the safety policy. This is required for ensuring the
correctness of the transformation.

Figure 4.1: High level view of the inputs and outputs of STRASS
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4.1 Architecture Overview

STRASS is divided into three components that are implemented using appropriate tech-
nologies that are better suited for their purposes. The implementation consists of about
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800 lines of Java source code; 1200 lines of Maude1 code and 2000 lines of combined
HTML, CSS, TypeScript [7] and Svelte [5].

The first component is a web client which is automatically downloaded and rendered
by the user’s web browser when accessing the URL of STRASS website. This web client
takes the responsibility of offering a friendly graphical user interface and conducting the
interaction with the user. As this interaction dynamically occurs, this web client sends
asynchronous AJAX requests through the network [1] to an HTTP RESTful API exposed
by our server. This API is implemented using a Java web service running on an Apache
Tomcat [6] server instance.

Figure 4.2: Overview of the architecture of STRASS
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The described technique is implemented entirely in Maude using its meta-level ca-
pabilities, which allow for efficient and ergonomic program analysis and repair. The
exposed Java service uses operating system utilities for process-to-process communica-
tion with a Maude interpreter instance running STRASS. We call this component holding
our domain logic the core of the tool.

The tool follows RESTful principles and is entirely stateless, so it does not feature
any type of persistence. However, the web client component holds some transient state,
scoped to the duration of one session, to provide for basic functionality of the graphical
user interface.

4.2 Web Client

The web client component has been implemented using a technology made for build-
ing complex web applications called Svelte. Svelte is a reactive, high-performance pro-
gramming language and system embedding a custom derivative of JavaScript into HTML
and CSS. Svelte source code can be compiled into a bundle of standard HTML, CSS and
JavaScript that can be distributed using a static server; the application runs entirely in
the user’s browser. In order to benefit from static typing, Svelte optionally accepts the
partial or total use of TypeScript instead of JavaScript for driving the application’s logic.
STRASS is using this option and features exclusively TypeScript for the user interface
logic.

Regarding styling and layout, the web client uses the popular library Bootstrap [2],
which includes a wide variety of CSS classes for quickly annotating the HTML mark-
down with styling rules, alongside custom CSS definitions.

Usability has been an important focus during the development of the tool. The user
experience design is based upon the well-known concept of assistant or “wizard”, pre-
senting a sequence of dialog boxes that lead the user through a series of three predefined

1We use a developer version of Maude implemented in C++ called Mau-Dev [3].
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steps. Two buttons, Next and Previous, consistently appear in the same section during the
whole session, allowing the user to proceed or go back to a previous step, respectively.
In order to enhance usability and prevent loss of information, the web client explicitly
preserves and restores all the introduced information and view state when necessary, so
that going back to a previous step or finding a validation error will redraw the dialog box
exactly as it was left by the user.

The interface features several text editors where the user may input and edit the dif-
ferent inputs provided for the tool, such as the safety policy. Those editors are powered
by Monaco[4], a free and open-source framework for making web text editors developed
by Microsoft that is used as a base for Visual Studio Code. This provides a rich set of
advanced editing techniques: the user may insert several cursors for concurrent editing
by holding down the Alt key and clicking, or may jump automatically to the next error
by pressing Shift + F8 . Pressing the F1 key while using an editor shows a command
palette listing all available actions with their corresponding key associations. Further-
more, the provided inputs are validated for errors using a complete Maude interpreter
instance, to then add hints and markings providing rich diagnostic information and ad-
vice in the text editors, resulting in an experience comparable to the one of IDE programs.

4.3 Web Service

In order to provide the service for the web client, a server exposes a RESTful API based
on the industry standard practice of using the HTTP protocol for carrying JSON data
payloads. The component we call the web service refers to the definitions that describe
the API and its methods, stating the arguments and the responses associated to the dif-
ferent endpoints. A web server acts an an underlying and necessary component, receiving
the HTTP requests and transferring the already processed and decoded data to the web
service, to finally build and send appropriate HTTP responses according to the decisions
taken by the service.

This implementation of the web service uses Jakarta RESTful Web Services (JAX-RS),
a technology originally developed by Sun Microsystems and now maintained by the
Eclipse Foundation. It is an API specification for the Java language that empowers the
programmer to quickly and effectively define web services that follow the Representa-
tional State Transfer (REST) architectural pattern. An API can be defined with JAX-RS by
using functions with specific annotations. This annotated Java code can then be compiled
and bundled alongside some assets as a WAR file, to then be deployed in any web server
compatible with this specification. The specific JAX-RS compatible web server used to
power STRASS is Apache Tomcat.

In order to communicate with the underlying Maude interpreter instance, the web
service uses an operating system independent API provided by Java’s standard library
in order to launch a shell spawning this interpreter as a new process. The service also
uses the standard input and output streams, which are also exposed by this Java API
and are transparently provided by the underlying operating system. The data going
to (resp., coming from) Maude through the standard streams undergoes a marshalling
(resp., unmarshalling) process, suffering minimal transformations that make it suitable
for direct processing by the corresponding tools.
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4.4 Domain Logic Core

The core component of the tool implements the correction technique and formal frame-
work. The whole domain logic is entirely programmed in this component, with the other
components only performing the minimal amount of transformations on data that are
needed to progress through the different tools and environments involved.

This component is entirely implemented in Maude. The Maude language has a pow-
erful and wide set of reflection capabilities that make it especially suitable for inspect-
ing and modifying other Maude programs: using Maude code, a user may take some
module and then ascend it into the meta-level obtaining a meta-module, i.e., converting it
to a rich data structure containing all required definitions and metadata, which can be
read using a set of functions defined in Maude’s prelude. Also, a user may construct a
meta-module either from scratch or from modifying an existing one, to then descend from
the meta-level again into runnable source code. These capabilities are used as the basic
foundation of the implementation of STRASS: first, meta-level constructs (meta-modules,
meta-terms, meta-operations...) are obtained from the given input code, then methodi-
cally read in order to extract data, and finally new meta-level elements are generated so
they can eventually descend into the new program source code.

We summarize the actions taken by the core logic of STRASS as four phases that are
executed in order:

Phase 1. Meta-Level Ascent: the input program is transformed into rich meta-level data
structures using functions defined in the prelude (standard library).

Phase 2. Static Analysis: the input program is analysed to extract data and derive new
information.

Phase 3. Parsing: the safety policy is processed using a custom parser and then vali-
dated.

Phase 4. Generation: the new strategy module and its contained definitions are gener-
ated at the meta-level.

Phase 5. Formatting (meta-level descent): the generated constructs are converted into a
string of pretty-printed, distributable source code.

The subsequent sections describe all of the phases in detail.

4.4.1. Initialization Steps

The first phase consists on a small sequence of straighforward calls to function upModule
available in Maude’s prelude, providing the input source code of both the provided pro-
gram and the auxiliary predicates (which, contrary to the MSPS safety policy, are just
regular Maude code). Recall that Maude modules may “import” other modules, and so
the upModule function allows choosing whether to load a self-contained, flattened meta-
module with all the transitive dependencies included, or a module that is accurate w.r.t.
the the original one, with the import directives left unresolved. This tool loads the pro-
vided source code using the former mode of operation, ascending into a flattened meta-
module in order to support multi-module programs accurately.

Right after Maude meta-level capabilities have reflected the provided source code
into tractable rich data structures, the second phase performs a static analysis procedure
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which is limited in scope but not trivial. The objective of this analysis is extracting use-
ful data by processing the obtained meta-module, which can be later consumed in the
following phases of the procedure.

4.4.2. Parsing the Safety Policy

The next phase consists on the parsing of the provided safety policy, which is written in
our custom language MSPS as defined in 3.1. STRASS includes a custom parser that
leverages Maude meta-level commands in order to support all the features the user
would expect from Maude’s parser, such as mixfix operators or custom precedence at-
tributes [15, Section 3.9]. This custom parser takes (i) the entire signature Σ of the input
program, (ii) the auxiliary predicates provided by the user and (iii) the automatically
generated custom definitions. Together, they form are used to generate a transient meta-
module we call the parsing context, including all operators that should be taken into ac-
count for parsing. These custom definitions define the different syntactic constructs of
MSPS, instantiated for the specific sorts contained in the provided program. Recall that
state assertions have the form Π # φ where Π ∈ τ(Σ,V) is a pattern term and φ is a

logic formula, and that path strategies have the form path for s : ζ where s ∈ S is a
sort and ζ is a strategy expression. The following is an example illustrating two of the
custom definitions added to this parsing context:

op _#_ : k [Bool] -> __STRASS_MonomorphizedConstraint [ctor prec(0) gather(& &)] .

op path‘for_:_ : __STRASS_SortName __STRASS_Action -> __STRASS_MonomorphizedConstraint [ctor prec(0) gather(& &)] .

where k ∈ {[s] | s ∈ S} is a kind in S. Several copies of the first operator are included
for the different kinds the variable k may take. Specifically, after collecting all the sorts
of the patterns of the provided state assertions, there will be as many copies as differ-
ent kinds appear from lifting such sorts, that is, there are as many copies as kinds in
{[ls(Π)] | Π#φ ∈ states(A)}, where A is the provided safety policy and ls(t) returns the
least sort of a term t. In order to construct and support these definitions and others that
are not shown here, some retrieved information from the static analysis phase is used,
such as the set of sorts S and the set of existing rule labels labels(R), where R is the set of
rewrite rules encoded by the provided input program.

The task of parsing becomes more complex when we factor in scopes, i.e., which def-
initions should be visible from different points of the program. In the pattern Π of a state
assertion we wish to use the operators and sorts defined in the considered theory R, al-
lowing for the unbounded definition of any kind of term that can be constructed in the
domain of R. Regarding the formula φ, we not only wish to include all operators of R
(so operators acting as functions can be used as part of the invariant condition), but the
auxiliary predicates as well. It is important to keep this distinction because the safety pol-
icy A models the safety of R only, and allowing definitions from the auxiliary predicates
to permeate into the patterns Π would break this semantic mapping between A and R,
enabling the definition of state assertions that parse without error yet have no translation
nor effect in the final transformed program. These diverging needs are approached by
using two different parsing contexts, one including the auxiliary predicates and the other
one excluding them.

On top of that, and enhancing the parsing function further, the parser has been en-
dowed with the capability of tracking line numbers and error codes for the different
syntactic constructs in the safety policy, allowing for a rich API response that accurately
identifies which specific state assertions or path strategies are erroneous instead of out-
right rejecting the entire safety policy as a whole.
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4.4.3. Generating the New Strategy Module

Once parsing is complete, we have both the input program and the safety policy available
as programatically tractable data structures, and hence the strategy module generation
phase can begin. Strategy modules may contain all varieties of definitions acceptable in
a system module together with the generated strategy definitions. A series of functions
take control of this phase by filling a new strategy module with a series of contained def-
initions, without polluting the name space of the original program, which will remain
isolated and unmodified in its original module. Let us recall that this new strategy mod-
ule will then be appended to the original program, simply extending it.

Remember that named strategy definitions in Maude are defined using two different
syntactic constructs that use the keywords strat and sd, and are analogous to op and eq,
respectively. We generate such constructs in a pairwise manner, maintaining a strict one-
to-one relation. First, we encode the provided state assertions as state filter strategies
F Π # φ, Π # φ ∈ states(A), and wrap the newly created expressions in named strategy
definitions which use the name si, i ≥ 1. This is, for each state assertion Π # φ ∈ state(A)
the following definitions are added to the strategy module:

strat si : @ ls(Π) .
sd si := F Π # φ .

Note that the subject type of the strategy at hand is mainly derived from the pattern Π of
the corresponding state assertion, as this pattern determines which terms are subject to
the invariant check of φ. Thus, the type signature of the strategy is defined by using the
least sort of Π.

Secondly, the lifted state filter FA is generated, which enforces all state assertions for
any given term of the provided input program. As stated in Definition 11, this strategy
will call all of the state filter strategies si: s1 ; s2 ; . . . ; sn. Let us temporarily use
the identifier all-state to refer to the corresponding named strategy definition:

strat all-state : @ τ .
sd all-state := FA .

where τ represents a type. What should this type τ be? It is important to remember that
this strategy may be applied to any term of the rewrite theory R, and that the different
state filter strategies si may have any subject type with no specific or predictable relation
between them. With enough background knowledge of the Maude language, it could
be natural to use the polymorphic sort Universal for τ, hence expressing that we wish
this strategy to apply to any term regardless of its type. However, this is not allowed
in Maude version 3.2.1. Thus, this all-state named strategy definition is not gener-
ated, and it is necessary to engineer a semantically equivalent method that can satisfy the
type safety guarantees being enforced by Maude leveraging the type checking instead of
trying to unsafely override it.

Our approach is based on monomorphization [24, Section 2]: an automatic process that
is conceptually contrary to generalization, in which polymorphic constructs of some lan-
guage (usually functions) are replaced by many monomorphic, specialized instances un-
til the result is concrete enough for some implementation purpose, e.g., for generating
concrete machine code in a compiler. In this case, a series of clones of the given strategy
definitions are created to satisfy all the possible type signatures that are necessary for the
input program and safety policy tandem:

strat si-state : @ s1 .
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sd si-state := Fs1
A .

. . .
strat sn-state : @ sn .
sd sn-state := Fsn

A .

where 0 < i ≤ n, si ∈ S are sorts in the rewrite theory R encoded in the provided input
program.

The purpose of this technique is twofold: it allows us to generate a valid strategy
module whose contained type signatures are guaranteed to satisfy Maude’s type checker;
and it also allows optimizations that benefit from knowing the specific type that will be
affected by a strategy, while having room for modifying the strategy as several indepen-
dent copies exist. In particular, monomorphization enables the optimization technique
we have called sort-dependence filter erasure: in each individual named strategy definition
si-state, the wrapped lifted state filter strategy Fsi

A is simplified by conditionally remov-
ing calls to filter state strategies F Π # φ when it is possible to statically ensure that Π # φ
vacuously holds because Π does not match subterms of any term of sort s ∈ S. For in-
stance, if no term of sort System contains a natural number then FSystem

A may safely omit
the state filter strategies that are only relevant to natural numbers. In order to formalize
this optimization, we define a new notion of “sort dependency”.

Definition 15. Let S be the set of sorts of the rewrite theory R encoded in the input
program. We say a sort s ∈ S is dependent upon another sort u ∈ S, denoted s ⇚ u, if
there exists a term t and a position w such that t :: s and t|w :: u.

Roughly, this concept of sort dependency encodes whether a sort may be “constructed
from” terms of other sorts. For example, consider a sort NatList that is the type of terms
describing valid lists of natural numbers, e.g., if the infix operator _::_ : Nat NatList
-> NatList is a list constructor, then the term 1 :: 2 :: 3 is a NatList. We say this
sort depends on the sort Nat, NatList ⇚ Nat, because it may (and in this case, is) “con-
structed from” natural numbers such as 1, 2 and 3. If we made the sort Nat disappear
by removing all of its constructors, the number of terms of sort NatList that could exist
would be reduced, e.g., 1 :: 2 :: 3 would not be a valid term anymore. This notion
is useful to determine which state assertions are relevant for terms of a given sort, as
explained later.

One of the specific steps performed by our static analysis is finding and storing sort
dependencies. If S is the set of sorts of the rewrite theory R, this step generates a data
structure called the sort dependency map (SDM), associates each sort to the set of sorts it
transitively depends upon:

(∀u ∈ S) SDM(s) = {u | s ⇚+ u} ⊆ S

where ⇚+ denotes the transitive closure of the relation ⇚.

EXAMPLE 10
Consider again the space probe controller from Example 5. A possible example excerpt
of the sort dependency map (SDM) of the program is as follows:

SDM(GroundVisibilityState) = {GroundVisibility, Int, Nat, NzInt, NzNat, Time, Zero}
SDM(InstrumentStatusState) = {InstrumentStatus, Int, Nat, NzInt, NzNat, Time, Zero}

SDM(State) = {GroundVisibility, GroundVisibilityState,
InstrumentStatus, InstrumentStatusState, Int, Nat,
NzInt, NzNat, PointingMode, PointingModeState, Time, Zero}

SDM(StateVariable) = {GroundVisibility, InstrumentStatus, PointingMode}
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For instance, we can see that GroundVisibilityState transitively depends on Time, that
is, GroundVisibilityState⇚+ Time. For this specific case, if we examine Listing 2.6 we
can observe in line 7 an operator explaining this dependence:

7 op gv:__ : Time GroundVisibility -> GroundVisibilityState .

It is possible to obtain the entire SDM using STRASS from a command line, by loading
it alongside the file containing the satellite controller program like this:

maude strass/core/src/main.maude satellite.maude

and then executing this command:

Maude> reduce in STRASS : arrangedSortDependencies(upModule('SATELLITE, true)) .
result SortDependencyMap: 'Bool |-> ('GroundVisibility ; 'Infinity ; 'InstrumentStatus ;
'Int ; 'Nat ; 'NzInt ; 'NzNat ; 'PointingMode ; 'StateVariable ; 'Time ; 'TimeInterval ;
'TimeOrInf ; 'Universal ; 'Zero), 'GroundVisibilityState |-> ('GroundVisibility ; 'Int ;
'Nat ; 'NzInt ; 'NzNat ; 'Time ; 'Zero), --- ... result truncated ...

C
C C
C C
C

Having laid down Definition 15, the sort-dependence filter erasure optimization can
be described as follows. Let R be the rewrite theory encoded by the provided input
program, let S be the set of sorts in R and let A be the provided safety policy. Having
that the lifted filter state strategy FA is equal to the sequential concatenation Fa1 ; . . . ;
Fan of the set {F Πi # φi | (Πi # φi) ∈ states(A)}, then each monomorphized filter state
strategy expression Fs

A, s ∈ S, is equal to the sequential concatenation of the (sub)set

{F Πi # φi | (Πi # φi) ∈ states(A) ∧ ls(Πi) ∈ SDM(s)}

If this set is empty, the generated strategy Fs
A defaults to idle, which is the neutral ele-

ment of the sequential operator ;.

EXAMPLE 11
Consider again our driving example of the artificial satellite controller originally de-
scribed in Example 5, and the generated strategy module in Listing 3.3. We use this
listing to show the typical outcomes caused by the implemented optimizations in a real-
istic example. The effects of the sort-dependence erasure optimization can be observed
in line 40, where the lifted state filter monomorphized for terms of sort TimeOrInf only
uses the filter s1 and ignores the others because they are not relevant (i.e., they always
vacuously hold) for said terms. Furthermore, from line 34 to 37, in all of the search short-
hands for the sort StateVariable, StateVariable•, the body has been reduced to the
simplified form all • because of the inlining optimization.

This optimization is useful because it generates simpler strategies that may be easier
to understand and modify by the final user, may he ever want to undergo such optional
task. Also, removing safety checks in a semantically safe manner may potentially im-
prove performance, as the overall run time burden required to ensure safety is reduced
to strictly fewer strategy operations.

The next step consists in generating the definitions of safe path strategies for the pro-
vided path strategies in the safety policy. Let s ∈ S be a sort in R and let ζ be a strategy
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expression. For each path strategy Ps, which is denoted by indicating the sort s explicitly
using the syntax path for s : ζ , the following definitions are generated:

strat s-path : @ s .
sd s-path := sa f e(Ps) .

In the expression created by the transformation sa f e(Ps), recall the state filter FA is s-state.

Finishing the strategy generation step, a series of search shorthands are generated
according to Definition 14:

strat s* : @ s .
strat s+ : @ s .
strat s! : @ s .
sd s* := sa f e∗(Ps) .
sd s+ := sa f e+(Ps) .
sd s! := sa f e!(Ps) .

where sa f e•(Ps) defaults to FA ; ((all ; FA) •) if Ps has not been defined for sort s
(i.e., if no path strategy has been defined for s).

An additional, cross-cutting optimization called inlining is applied as follows. This
optimization leads to simpler strategies in certain cases. For example, consider that
search shorthands have been generated for a sort s but the corresponding monomor-
phized state filter Fs

A uses its default value because no state assertion is relevant for such
a sort s. Then, the inlining transformation consists of the sequence:

sd s-state := idle .
sd s• := s-state ; ((all ; s-state) •) .

⇓
sd s-state := idle .

sd s• := idle ; ((all ; idle) •) .

⇓
sd s-state := idle .
sd s• := all • .

where • ∈ {*, +, !} is used as a compact notation for denoting the three corresponding
strategies as one. We say the strategy s-state has been inlined into the strategies s•.

As an additional detail, the generated strategies may need to use operators encoded
in the auxiliary predicates in φ at run time, so the auxiliary predicates provided by the
user are directly inserted into the new strategy module, effectively exposing them to all
of the the generated strategies but not to the original program.

4.4.4. Finishing Up

Finally, by executing the process described so far we obtain a strategy module contain-
ing all the necessary monomorphized and optimized strategy definitions, alongside their
auxiliary predicates. However, this strategy module is actually a meta-strategy module,
a data structure in the domain of Maude’s interpreter. Just like we ascended the source
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code provided by the user into the meta-level, we now need to descend the generated
module from the meta-level into plain, distributable Maude source code.

While Maude’s prelude contains operators for descending meta-level structures into
source code tokens (e.g., downModule), the provided functionality is too limited in scope
for the specific needs of STRASS. Hence, a custom descent library has been created, con-
sisting of a functional module whose definitions leverage the existing operators in the
prelude as far as possible in order to generate pretty-printed source code preserving the
semantics of the meta-level structure at hand. The resulting source code is indented and
formatted according to the usual style conventions of the Maude ecosystem, enabling the
user to easily read and audit the automatically generated declarations. The generated
source code is simply appended to the unmodified original source code.

4.5 Features

From a high level user’s point of view, the features of the STRASS tool are as follows:

Figure 4.3: Graphical outline of the STRASS usage process

Code your

Maude
program

1
Specify a
safety policy


2
Repair your
program using
STRASS

3
Execute the
repaired
program


4

• Efficient and easy to use: a program may be fixed with only three steps using a
friendly assistant-style user interface.

• Fast and performant: most programs can be fixed in milliseconds of transformation
time.

• Support for an extremely wide variety of complex, multi-module Maude programs
making use of advanced language features.

• Includes several representative examples that can be rapidly selected from a drop-
down list.

• Bleeding edge built-in editor based on Monaco [4], a technology developed by Mi-
crosoft and featuring advanced text editing capabilities such as multiple cursor
editing and code unfolding.

• Complete syntax highlighting for both Maude and MSPS.

• Detailed error messages with in-editor hints and markings, resembling an IDE.

• Performs automatic, transparent optimizations to simplify the generated strategy
module.

• Ability to upload Maude source code files from the local storage.

• Allows the user to avoid modifications on the original program by means of the
auxiliary predicate system, making it easier to reason about the properties of the
transformed program w.r.t. the original program.

• Includes all empirical evaluation results (benchmark) and artifacts for download.



50 STRASS: Strategy-based Automatic Safety Assurance Tool

Overall, this set of features make STRASS a compelling and useful tool which can
positively contribute to the Maude community.

4.6 A Typical Repair Session

Let us illustrate how STRASS works in practice by showing a typical safety enforcement
session for our space probe specification of Example 5.

The tool first presents a landing page, where the user must press Start in order to
proceed. Then, as a first step, the tool requires the user to provide the Maude input pro-
gram. Input programs can be provided directly by using the dedicated editor area, by
uploading an existing .maude file pressing the Upload file button, or by selecting one of
the preloaded representative examples included in the tool for demonstration purposes.
In this case, we select the example named Satellite Controller from the collection of exam-
ples (see Fig. 4.4), whose SATELLITE module encodes the space probe controller program
RSATELLITE described in Example 5.

After pressing the Next button, the following phase allows the user to specify the
safety policy to enforce by writing into a dedicated editor area, as well as the optional
auxiliary predicates it may rely on (see Fig. 4.5). In this case, because the Satellite Controller
example has been selected, the corresponding areas are already prefilled with the safety
policy ASATELLITE and predicates of Example 6.

After pressing Next a second time, STRASS will automatically compute and generate
the strategy module SATELLITE-SAFE encoding ASATELLITE as shown in Listing 3.3, which
is overlaid on top of the original program RSATELLITE, resulting in a new corrected pro-
gram R′

SATELLITE that is entirely self-contained and may stored and provided to a Maude
interpreter instance running in the user’s device. This fixed program is given to the user
inside the read-only dedicated text area (see Fig. 4.6). Using the resulting program, the
user can replicate the behavior shown in Example 8 by issuing the appropriate srew com-
mands using the included strategy definitions.
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Figure 4.4: Loading the SATELLITE module in STRASS
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mod SATELLITE is
    protecting EXT-BOOL .
    protecting TIME .

    sorts PointingMode PointingModeState .
    ops earth slewing science comm maintenance : -> PointingMode [ctor] .
    op pm:__ : Time PointingMode -> PointingModeState [ctor format(m! oys os o)] .

    sort GroundVisibility GroundVisibilityState .
    ops visible notVisible : -> GroundVisibility [ctor] .
    op gv:__ : Time GroundVisibility -> GroundVisibilityState [ctor format(m! oys os o)] .

    sort InstrumentStatus InstrumentStatusState .
    ops idle warmup process turnoff : -> InstrumentStatus [ctor] .
    op is:__ : Time InstrumentStatus -> InstrumentStatusState [ctor format(m! oys os o)] .

    eq +inf >= T = true .
    eq +inf > T = true .
endfm

    eq T - +inf = +inf .
    eq +inf < T = false .
    eq +inf <= T = false .

    sort State .
    op {_,_,_} : PointingModeState GroundVisibilityState InstrumentStatusState -> State [ctor format(m os m s m s ms o)] .

    sort StateVariable .
    subsorts PointingMode GroundVisibility InstrumentStatus < StateVariable .

    op duration : StateVariable -> TimeInterval .
    eq duration(earth) = [ 1, +inf ] .
    eq duration(slewing) = [ 30, 30 ] .
    eq duration(science) = [ 36, 58 ] .
    eq duration(comm) = [ 30, 50 ] .
    eq duration(maintenance) = [ 90, 90 ] .

    
    eq +inf + T = +inf .
    eq +inf - T = +inf .
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Figure 4.5: Loading the safety policy ASATELLITE in STRASS

STEP 2  Specify the safety policy for your program

 Back Next 

Auxiliary Predicates
Optionally, add the extra predicates that will be used in the safety policy provided below:
mod SATELLITE-PREDICATES is

    protecting SATELLITE .

    protecting EXT-BOOL .

endm

1
2
3
4

var Tmin Tmax : Time .

op max : TimeInterval -> Time .
eq max([Tmin, Tmax]) = Tmax .

Safety Policy
Specify one statement per line. Statements may be state assertions (pattern # guard) or path strategies (path for sort: strategy).

1
2
3
4
5
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T:Time # T:Time >= 0
{ pm: Tpm:Time comm, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus } # GV:GroundVisibility == visible
{ pm: Tpm:Time maintenance, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time IS:InstrumentStatus } # IS:InstrumentStatus == idle
{ pm: Tpm:Time maintenance, gv: Tgv:Time notVisible, is: Tis:Time IS:InstrumentStatus } # false
{ pm: Tpm:Time science, gv: Tgv:Time GV:GroundVisibility, is: Tis:Time idle } # Tis:Time <= 2 * max(duration(process))
path for State : (all-(advance-time) | idle) ; advance-time

Figure 4.6: The resulting Maude module computed by STRASS
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    strat Bool-state : @ Bool .
    strat GroundVisibilityState! : @ GroundVisibilityState .
    strat GroundVisibilityState* : @ GroundVisibilityState .
    strat GroundVisibilityState+ : @ GroundVisibilityState .
    strat GroundVisibilityState-state : @ GroundVisibilityState .
    strat InstrumentStatusState! : @ InstrumentStatusState .
    strat InstrumentStatusState* : @ InstrumentStatusState .
    strat InstrumentStatusState+ : @ InstrumentStatusState .
    strat InstrumentStatusState-state : @ InstrumentStatusState .
    strat PointingModeState! : @ PointingModeState .
    strat PointingModeState* : @ PointingModeState .

    strat Bool+ : @ Bool .
    strat Bool* : @ Bool .

    eq max([Tmin:Time, Tmax:Time]) = Tmax:Time .
    strat Bool! : @ Bool .

    protecting EXT-BOOL .
    op max : TimeInterval -> Time .

    protecting SATELLITE .
smod SATELLITE-SAFE is

)
    Generated by STRASS -- safe-tools.dsic.upv.es/strass
***(

endm
    crl [is-turnoff-idle] :         is: T turnoff     => is: 0 idle        if canChange(T, turnoff) .
    crl [is-process-turnoff] :      is: T process     => is: 0 turnoff     if canChange(T, process) .
    crl [is-process-idle] :         is: T process     => is: 0 idle        if canChange(T, process) .
    crl [is-warmup-process] :       is: T warmup      => is: 0 process     if canChange(T, warmup) .
    crl [is-warmup-idle] :          is: T warmup      => is: 0 idle        if canChange(T, warmup) .
    crl [is-idle-process] :         is: T idle        => is: 0 process     if canChange(T, idle) .
    crl [is-idle-warmup] :          is: T idle        => is: 0 warmup      if canChange(T, idle) .

    strat PointingModeState+ : @ PointingModeState .
    strat PointingModeState-state : @ PointingModeState .
    strat State! : @ State .

    crl [gv visible notVisible] :   gv: T visible      > gv: 0 notVisible  if canChange(T, visible) .
    crl [gv-notVisible-visible] :   gv: T notVisible  => gv: 0 visible     if canChange(T, notVisible) .



CHAPTER 5

Empirical Evaluation

We experimentally evaluate the performance and the outcomes of the STRASS system
with a set of benchmarks. We have coupled several Maude programs with safety poli-
cies, and we used STRASS to generate the corresponding safe versions of the programs.
We benchmarked STRASS on the following collection of Maude programs, which are all
available and fully described within the STRASS web platform:

(i) Blocks World, a Maude encoding of the classical AI planning problem that consists
of setting one or more vertical stacks of blocks on a table using a robotic arm;

(ii) Containers, a Maude specification that models the cargo manipulation in a container
terminal;

(iii) Dam Controller, the controller system of a dam that opens and closes gates to regulate
water flow and volume;

(iv) Maze, a non-deterministic maze exploration algorithm;

(v) Space Invaders, a Maude specification of a classic computer game of the 70’s; and

(vi) Satellite Controller, the controlling system for an unmanned space probe used as our
leading example.

For each benchmark, we considered the original program R and its safe version RS
computed by STRASS. Each program has been designed or modified so that, given a
term t0 containing some arbitrary bound b, its search space TR(t0) is limited in depth by
a monotonically increasing function of this bound, i.e., increasing b causes the computa-
tion tree TR(t0) to have an increased depth. A representative initial term t0 has been cho-
sen for the particular domain of each benchmarked program. Then, three depth bounds
{b1, b2, b3} have been chosen for each program, and consequently three executions have
been made per program replacing the bound b in t0 by its corresponding value. Note
that, because the bound b is expressed as a finite quantity (in our case, a natural number),
the resulting bounded search spaces are also finite, and thus the program execution is
also necessarily terminating.

As explained before, having enforced a safety policy A with STRASS, using the com-
mand srew it is possible to explore the safe search space for an initial term t0 of sort
s ∈ S, i.e., the constrained computation tree T sa f e(Ps)

R (t0) where t0 :: s. We used the search
shorthand s* to explore this tree. However, this command is not adequate for the execu-
tion of benchmarks because its execution time is heavily influenced by I/O tasks, as the
command prints each solution found to the standard output and provides no option to
suppress such functionality. We have hence followed another method that leverages the
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information provided by srew to then launch a custom metaSrewrite execution at the
meta-level guiding the Maude interpreter to compute the desired results with no inter-
ference or burden from secondary functionality such as I/O.

In order to explain our method, it is important to note that the srew command yields
the found solutions, which are just terms, alongside a sequentially increasing natural
number which uniquely identifies each solution: the solution index. The index of the
first solution or term is 1, the next solution is labelled 2, and so on. Knowing that the
finite bound b implies termination, we have left the interpreter finish the execution of the
issued srew commands in order to obtain the entire bounded search space of safe terms.
Then, we have noted what is the biggest solution index, which corresponds to the latest
solution found by the interpreter.

Finally, we have ascended the initial term t0 into the meta-level in order to issue a
metaSrewrite call. This operator is the meta-level equivalent of the srew command, with
the difference it accepts more options which enable a finer control of the specific work-
load performed by Maude. In particular, we can use this operator to request Maude to
directly compute one specific solution identified by its unique index. The operator is
declared as follows:

op metaSrewrite : Module Term Strategy SrewriteOption Nat ~> ResultPair?

Given a generic call metaSrewrite(m, t0, s, o, i):

1. The first argument of sort Module, m, corresponds to a meta-module encoding the
rewrite theory under benchmark;

2. the term t0 corresponds to the initial term;

3. the strategy s is the same as the one used in the srew command, s*;

4. the strategy rewrite option o is set to breadthFirst in order to emulate the behavior
of the srew command; and

5. the last argument, a natural number (Nat), corresponds to the desired solution in-
dex.

The execution of a given call to metaSrewrite using the biggest possible solution index1

for argument i yields the last solution found by srew, but the running time now essen-
tially corresponds to the computation of the solution. We denote this time as TRS .

In order to obtain the time of the original program in a fair way, we perform the same
procedure using the same term and bounds, but this time using the uncorrected program
R and the trivial strategy all *, which is equivalent to a complete search of the entire
bounded search space of potentially unsafe terms. Again, we use the index of the last
solution obtained to launch a meta-level metaSrewrite computation that yields the time
TR.

All of the experiments were conducted on an Intel Xeon Silver 4215R 3.3GHz CPU
with 378GB of RAM. Table 5.1 summarizes our results. Column Depth corresponds to
the bound b set to the depth of the computation trees that are generated for R and RS,
while SizeR and SizeRS respectively measure the sizes of the search spaces for R and RS
as the number of states in their corresponding computation trees. Execution times for
the generation of the computation trees of depth n are respectively shown in Columns

1Because the metaSrewrite operator uses zero-based indexes and the srew command provides indexes
starting at one, we offset the index by subtracting one in order to refer to the same solution.



55

R Depth SizeR SizeRS TR TRS Speedup

30 511,921 1,205 9,668 40 241.70
Blocks World 40 2,004,332 2,568 41,384 87 475.68

50 5,841,540 4,689 139,198 171 814.02

15 350,391 53,624 40,967 7,635 5.37
Containers 20 1,465,829 88,097 166,614 13,289 12.54

25 4,172,116 122,538 549,430 19,518 28.15

15 139,948 220 4,198 14 299.86
Dam Controller 30 2,271,930 505 82,845 30 2,761.50

45 9,581,406 790 392,157 48 8,169.94

4 196 23 8 2 4
Maze 6 133,225 78 59,553 9 6,617

8 >3,154,238 303 >1,236,722 53 >23,334.38

15 518,379 88,680 21,679 4,985 4.35
Space Invaders 20 1,797,799 268,115 120,930 19,609 6.17

25 5,024,516 720,649 515,246 65,345 7.89

40 648,965 8,585 35,776 1,508 23.72
Satellite 45 1,687,605 9,924 216,781 3,097 70.00

50 3,496,645 11,289 894,733 6,308 141.84

Table 5.1: Experimental results of the safety enforcement technique.

TR and TRS and are measured in milliseconds. We recorded the total speedup TR/TRS in
Column Speedup.

We set a timeout of 60 minutes for the generation of the computation trees that is
only overrun by the original program of the case of Maze. We use > to denote the corre-
sponding time measured at the moment the computation was halted due to timeout. The
transformation time is negligible (less than 0.1 milliseconds) in all cases and is hence not
included.

All speedup relations are positive, in some cases by several orders of magnitude,
denoting the fact the safe versions of the program are notably faster at run time than
their uncorrected counterparts. This may be, at a first glance, surprising, as our correc-
tion technique introduces a run time overhead as additional actions need to be taken in
order to ensure the safety of the results w.r.t. the safety policy. However, the safe ver-
sions are faster because their search space is comparatively smaller, and this difference
is big enough to offset the introduced run time overhead entirely. Given the fact that
unsafe states are pruned iteratively and early, entire subtrees of the search space are pre-
emptively removed as computations advance and need not to be explored, as safe states
reached through an unsafe state are considered equally undesirable. The final result is
that the search spaces are reduced notably, as evidenced by the columns SizeR and SizeRS .

The obtained results justify the claim that STRASS efficiently implements a mecha-
nism for the run time enforcement of a safety policy. The posed programs exhibit typi-
cal features of Maude, showing the potentiality of our framework for synthesizing safe
versions of complex, industrial size programs encoded in the Maude language, such as
controllers of safety-critical systems.





CHAPTER 6

Conclusions

We have introduced an automatic program transformation technique that enables the ef-
ficient enforcement of invariants at run time in order to ensure the safety of a Maude
program R w.r.t. a safety policy A. We have defined a new language called MSPS that
allows the specification of a safety policy A by means of state assertions and path strate-
gies, covering the notions of safety both from the points of view of the admissibility of
states and the admissibility of state transitions. We have also defined the correction tech-
nique as a composition of Maude strategy constructions which are then simply overlaid
on the original program as an additional control layer which respects the separation of
concerns principle. Finally, we have detailed the implementation of the STRASS tool and
we have empirically assessed its efficiency and scalability.

6.1 Discussion of Results

The proposed framework leverages an existing Maude mechanism, the strategy lan-
guage, to implement a safety enforcement mechanism elegantly: the frontier between the
original source code and the automatically generated code is clear, as the transformed
program simply extends the original one by appending an extra, separate module. The
usage of a superimposed strategy module ensures a high degree of compatibility with
many Maude features that have native, first-class support in the C++ implementation
of the Maude interpreter. The use of a custom language dedicated to express the safety
policy, MSPS, enables the user to quickly, expressively and easily convey what safety
constraints are to be imposed on a system.

The original objective in the conception of STRASS and its underlying formal frame-
work was to obtain a method that could enforce safety at run time with an acceptable
overhead, and so performance has been a continuous, transversal focus though the entire
research and development process. The experimental results show that STRASS not only
avoids causing unacceptable slowdowns, but can in many cases result in performance
gains as unsafe states are systematically pruned and left unexplored. This fact surpasses
all our initial expectations, proving the potential of our technique in complex scenar-
ios and opening new possibilities where safety enforcement could be used not only as a
means to ensure correction, but as a method for performance optimization or improve-
ment.

By choosing a dynamic technique, it is possible to specify and enforce the invariants
of interest in an straightforward manner, this being especially useful and applicable in the
singularly complex domain of concurrent and reactive systems that are often employed
in safety-critical contexts. The scalability and ease of use of an equivalent static technique
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could be jeopardized by the underlying difficulty of proving certain complex properties
for many states, which in some realistic scenarios may be still unfeasible in practice [19].

A series of extensive efforts on user experience have resulted in the development
of a friendly, accessible web-based tool that enables non-expert Maude users to enjoy
the benefits of run time safety enforcement for safety-critical contexts. Features such as
detailed, high quality IDE-style error messages have required cross-cutting support in all
of the involved components, and witness the fact that Maude is a language and system
where not only complex tooling can be efficiently implemented, but it can also serve as
the underlying core platform for user-facing software.

6.2 Related Work

We use the technique described in [8, 9] as our main frame of reference. The technique in
question also enforce invariants for Maude programs at run time, but does so by essen-
tially transforming the original rules into new conditional rules whose conditions ensure
the satisfability of all of the provided assertions by means of new equationally-defined
functions. Both this and our technique avoid the need to rely on an external system
monitor, which could have a significant negative performance impact. This technique,
however, only applies to topmost rewrite theories (i.e., programs where terms can only be
rewritten at the root position), while our technique covers a wider range of admissible
programs that are not necessarily topmost, and that optionally make use of advanced
Maude language features previously unsupported, such as the existence of strategies
in the input module. Our proposal is also conceptually simpler, leveraging the pro-
grammable Maude strategy language to avoid depending on ad-hoc, hard-coded safety
checks that are intertwined with the existing code, leaving the underlying equational the-
ory unchanged. The generated strategies are integrated alongside the original program
but kept separate in its own module, which results ina benefit regarding code tracing
and maintenance [21]. Also, this clear separation allows for incremental refinement to be
built by simply appending new logical constraints, and ultimately to code that is easier
to understand and maintain.

We also consider the technique presented in [21], which is the closest to our work
since it defines a generic “strategy” to impose state invariants that can be expressed
in different logics. As this technique predates the Maude strategy language, which is
efficiently supported by the native C++ implementation of the Maude interpreter, this
“strategy” is actually implemented as a parametric system module that follows the con-
cept of an iterator of terms, thus effectively implementing the run time safety checks fully
in Maude. Furthermore, safety enforcement in [21] is achieved by imposing an ad-hoc
strategy (programmed in Maude) that dynamically drives the system’s execution in such
a way that some state transitions are avoided so that every system state complies with the
constraints. In contrast, our methodology is static and enforces the system assertions by
transforming the program code in such a way that the imposed constraints are verified
by construction without resorting to any ad-hoc strategies.

6.3 Future Work

The MSPS language enables the user to specify safety w.r.t. transitions by means of path
strategies, which in turn contain a strategy expression. This, however, requires the user to
be familiar with the basic constructs of the Maude strategy language to a certain degree.
An additional, novel construct could significantly enhance the expressivity of the MSPS
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language further by denoting the safety of a transition from a state t to another state t′ by
means of a Boolean formula capable of reasoning with variables from both t and t′ jointly.
For instance, if a tank of water containing a volume V cannot lose more than 20 liters per
transition, this can be naturally expressed as Vt −Vt′ ≤ 20. This approach builds upon the
acquaintance with state assertions, which also use a Boolean formula, and removes the
need for previous exposure to the Maude strategy language. Such a construct, however,
would be unable to reason about transitions from the point of view of rule applications,
and is hence considered complementary to path strategies.

The use of our technique in combination with static invariant enforcement techniques,
and more generally, static software verification, is a challenging idea yet to be explored.
Consider a safety policy detailing a series of invariants, some of which may be checked
statically, e.g., by means of a model checker. In order to reduce the run time overhead
derived from safety enforcement, the user could gradually attempt to statically check as
many invariants from the given safety policy as possible, so that when a certain invariant
is statically proven to be satisfied for all states, the safety policy is accordingly relaxed in
the sense that the assertion is removed from the run time checks. This allows for a form
of hybrid safety enforcement process where the user can incrementally improve perfor-
mance as invariants are gradually proven statically. The STRASS tool could be extended
to support such a process. This could be achieved by achieving the seamless integration
with static verification tools together with a superset of MSPS containing annotations
marking whether a state invariant is to be enforced statically or dynamically.

In conjunction with the raised lines of future work, it would be ultimately desirable
to extend the MSPS language with temporal formulas that could be expressed in CTL or
LTL. This would provide a more powerful framework for safety enforcement covering
for a wide range of different scenarios and needs.
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