
Automated multilinear parameter
identification from big data of buildings

Master of Science Thesis

Matthias Daniel Escrivá García

May 19, 2022

Master’s thesis submitted as part of the master’s examination
in the master program Renewable Energy Systems -
Environmental and Process Engineering
at the Department of Environmental Engineering,
in the Faculty of Life Sciences
at University of Applied Sciences Hamburg

1. Supervisor : Prof. Dr. Gerwald Lichtenberg
2. Supervisor : Dr.-Ing. Thorsten Müller-Eping

Submitted on May 19, 2022

Abstract

This master thesis proposes a new automated process for the multilinear parameter identification
for anomaly detection in buildings. This is useful for buildings that work with big data since the
amount of data points is in the order of thousands. A data grouping algorithm based on Regular
Expressions is built from scratch in order to complement the low-rank parameter identification
algorithm made a priori. A building that relies on big data located in Hamburg, Germany,
provides a large amount of data points that are used in this thesis as a case study to create the
new automated process, which will rely on as less human action as possible. Furthermore, in
order to design this process, the data point grouping algorithm relies on an existing standardized
scheme for data point tagging.

Keywords: Parameter identification, Big data, Building systems, Data grouping, Regular
expressions

Table of Contents

Acknowledgement vi

1 Introduction 1
1-1 Background . 1
1-2 Object of thesis . 1
1-3 Scope of thesis . 2
1-4 Structure of this document . 2

2 State of the art 3
2-1 Data acquisition in buildings . 3

2-1-1 Building Automation and Control Systems 3
2-1-2 Components of the BACS . 4

2-2 Multilinear models in building systems . 5
2-2-1 CP-decomposed normalized rank-1 MTI model 5
2-2-2 Parameter identification with low-rank multilinear model 6

2-3 Data point tagging . 6
2-3-1 The BUDO scheme . 6
2-3-2 Utility and application of the BUDO scheme 7

2-4 String pattern matching . 8

3 Creation of new automated process 10
3-1 Automation of parameter identification process . 10
3-2 Case study . 11

3-2-1 Multi-use building in Hamburg . 11
3-2-2 Data points from the building . 11

4 Data point grouping algorithm 14
4-1 Structure and format of data point tags . 14
4-2 Output of the data grouping algorithm . 15
4-3 Used Regular Expressions . 16

4-3-1 Structure detection RegExps . 16

Table of Contents iii

4-3-2 BUDO string RegExps . 17
4-4 Implementation with Perl . 17

4-4-1 First phase: tag-transformation code . 18
4-4-2 Second phase: data point-grouping code . 18

5 Parameter identification algorithm 20
5-1 Input sparse matrix . 20
5-2 Parameter identification algorithm process . 21
5-3 Automation of the whole process . 21
5-4 Overview of plot results . 22

5-4-1 Initial analysis and behaviour of data . 22
5-4-2 Plots for anomaly detection . 23

6 Conclusion and outlook 26

A Attached information to the document 28
A-1 Perl metacharacters . 28
A-2 Data points from rooms 3.01 and 3.45 . 29
A-3 Application of BUDO scheme to data points . 32
A-4 Deep look into the structure of the data points . 35
A-5 Data point grouping algorithm codes . 37
A-6 Row numbers of data points . 44
A-7 Plots from the server . 45

B Attached digital files 49

Bibliography 50

Acronyms 52

List of Figures

1-1 Basic scheme of the algorithm in the scope of this master thesis 2

2-1 BACS components and levels diagram [5] . 4
2-2 Visual example of CP tensor decomposition normalization [2] 6
2-3 Structure of the naming of data points in the BUDO scheme 7
2-4 Basic scheme of pattern matching in a string [15] 8
2-5 The Google search engine is a good example of RegExps use 9

3-1 Scheme of the new automated process . 10

4-1 Grouping of the data in the .txt file . 15
4-2 CO2 sensor measurement values as compared to CO2 set-point values 16
4-3 Example of detection of structure in Code A.1 . 18

5-1 Representation of vector f̃ and its angle . 21
5-2 Parameter values for the temperature in room 3.45, for week 51 22
5-3 Parameter values for the CO2 level in room 3.45, for week 42 23
5-4 Influence of the air exhaust parameter on the room 3.01 temperature state 24
5-5 Influence of the occupancy parameter on the room 3.45 power consumption state . . 25

A-1 Type A data point general structure . 35
A-2 Type B.1 data point general structure . 35
A-3 Type B.2 data point general structure . 35
A-4 Type B.3 data point general structure . 35
A-5 Type C data point general structure . 36
A-6 Type D data point general structure . 36
A-7 Comparison of the 3.45 power state (blue) and the occupancy (green) graphically

represented in the server for August 2021 . 46
A-8 Comparison of the 3.45 power state (blue) and the occupancy (green) graphically

represented in the server for December 2021 . 47
A-9 Comparison of the 3.45 power state (blue) and the occupancy (green) graphically

represented in the server for Week 16 of the year 2021 48

List of Tables

2-1 Example of the vocabulary of the BUDO scheme [11] 7

3-1 Data contained within the data points of rooms 3.01 and 3.45 13

4-1 Structure of the main types of data point tags in the server 14

A-1 Main data points from the Weather Station . 29
A-2 Main data points associated to room 3.01 . 30
A-3 Main data points associated to room 3.45 . 31
A-4 Weather Station data points translated into BUDO tags 32
A-5 Room 3.01 data points translated into BUDO tags 33
A-6 Room 3.45 data points translated into BUDO tags 34
A-7 Row numbers of data points from the weather station 44
A-8 Row numbers of data points from room 3.45 . 44

Acknowledgement

I would like to express my gratitude to Prof. Dr. Lichtenberg for supporting me and giving
me advice throughout the whole year to do this master thesis. My deepest thanks to Leona
Schnelle too, who has supported me throughout the whole making of my thesis.

I am very grateful to my family and friends who have also supported me during the year,
specially my parents that have helped me achieve my objective of studying in Germany.

I would also like to thank my supervisors and readers from the HAW Hamburg, to take the
time to read and grade my master thesis, which I consider a great achievement.

Finally, I am grateful to the people from the company that has provided the real data to work
with. They have also been a great help for the research.

Hamburg, Matthias Daniel Escrivá García
May 19, 2022

Chapter 1

Introduction

This Chapter serves as an introduction to the background, the object and the scope of this
master thesis, as well as the structure of this document, where all the research and data has
been recorded.

1-1 Background

Research project SONDE (Supervision and Optimization of New Buildings with Data Explo-
ration) [1] uses parameter identification methods using low rank CP MTI (Canonical Polyadic
Multilinear Time-Invariant) models to detect faults in buildings.

This master thesis comes from the necessity of analysing the big amount of measurement data
coming from a building that relies on big data to work, situated in Hamburg, Germany. A
MATLAB algorithm for CP tensor-based MTI parameter identification in buildings has been
created, but only tested in a simple and small testing room [2].

Moreover, the necessity of a normalized data point naming scheme has increased over the years
since buildings are relying more and more on big data to control the different processes that take
place to generate the necessary indoor comfort, specially in big and multi-use buildings such as
office and conference buildings and shopping centers. These buildings usually have thousands
of data points that generate data at the same time, and it is difficult to keep track of all the
information, specially when it is not identified correctly.

1-2 Object of thesis

The object of this thesis is to create an automated method to perform the multilinear parameter
identification from big data of buildings. This method should rely on one algorithm that can
be run once and performs both the retrieving of the data points from the building and the
parameter identification of the data for fault detection. In order to do so, a new algorithm shall
be created in conjunction with the already-existing low rank CP MTI parameter identification
algorithm.

1-3 Scope of thesis 2

1-3 Scope of thesis

The purpose of this Section is to identify the scope of this master thesis. The retrieving of
the data will be done by a new algorithm built as part of this thesis, while the parameter
identification is done by an already-existing MATLAB algorithm developed by [2].

Figure 1-1: Basic scheme of the algorithm in the scope of this master thesis

To better understand the scope, Fig. 1-1 shows a simple scheme of the whole process. As shown
in this scheme, the algorithm to which the scope is limited is composed by two phases: the
translation of the original tags from the server into a standardized data point naming scheme,
and the grouping of the information into an .txt file to use as an input into the parameter
identification algorithm. Of course, the process is to be automated as much as possible, as
indicated in the object of this thesis.

1-4 Structure of this document

In this Section, a summary of the structure used in this document is described. The document
is structured into 6 Chapters, including this one as the Introduction.

Chapter 2 gathers a summary of the State of the Art so far in the field of Building Automation
and Control Systems (BACS), which are the origin of the real data gathered for this thesis. Fur-
thermore, an overview on multilinear models in building systems and the low-rank multilinear
model that is used in this thesis for parameter identification are presented. Lastly, a review on a
standardized method of labelling data points, known as the BUDO scheme, is shown, together
with an explanation of what string pattern matching consists of, making an introduction to
Regular Expressions which are used in this thesis to create the new algorithm.

After describing the State of the Art of all the items in matter, the new automated process
created in this thesis is presented in Chapter 3. Moreover, the case study building is described
together with the studied data points to which the BUDO scheme is applied manually.

Chapters 4 and 5 have the purpose to extend the details of the new automated process, ex-
plaining how the algorithms work and how they are coupled together. Chapter 6 offers the
conclusions and further improvements and research that could be done.

Chapter 2

State of the art

This Chapter’s purpose is to present the State of the Art so far that is associated to this master
thesis’ object of creating an automated parameter identification process. This includes the
Building Automation and Control Systems, which are the origin of the data obtained from the
case study building; the multilinear models and parameter identification applied to building
systems, which are used for fault detection; and the BUDO standardized scheme for data point
naming, which will also prove useful when applying the Regular Expressions that are also
mentioned in this Chapter.

2-1 Data acquisition in buildings

The increasing complexity and amount of data provided by building automation and control
systems has forced the investigation and development of new methods to evaluate large amounts
of data, as well as to detect faults. SONDE project, led by Prof. Dr. Dirk Jacob and Prof. Dr.
Gerwald Lichtenberg focuses on this matter [1]. A short introduction about BACS is made in
this Section, to explain the origin from which the data used in this project is collected.

2-1-1 Building Automation and Control Systems

According to the standard ISO 16484-2, a Building Automation and Control System or BACS
is defined as follows:

"system, comprising all products and engineering services for automatic controls (includ-
ing interlocks), monitoring, optimization, for operation, human intervention, and man-
agement to achieve energy-efficient, economical, and safe operation of building services"

BACS are used in Europe for mechanical and HVAC systems that are referenced in the standard
ISO 16484, which includes 5 parts and is aimed to provide assistance to achieve an acceptable
environment indoors, as well as energy efficiency, for the design of new buildings and improve-
ment of old buildings. Modern BACS are based on solid-state devices and PLCs, and are also
referred to as Home and Building Electronic Systems (HBES) [3].

2-1 Data acquisition in buildings 4

2-1-2 Components of the BACS

The basic components of a BACS include: sensors, controllers, output devices, data communi-
cation protocols and dashboard [4]. Fig. 2-1 shows an overview of how these components are
organized, which is interesting to better understand how the BACS and data acquisition works.
Of course, the components of a BACS are not limited to the ones appearing in this diagram.

Figure 2-1: BACS components and levels diagram [5]

Sensors and actuators are situated in the first level, and their purpose is to gather the required
data directly from the building or to adjust the behaviour of the different components. This
means that sensors/actuators have to be situated in the building, together with the controllers
that integrate the field level, which are connected physically to the sensors/actuators in order
to monitor and control them.

Sensors/actuators and controllers provide a set of data points that go from analog outputs from
sensors (such as temperature, air volume flow or air quality, among others) to set-points that
are used by the controllers in order to monitor and modify parameters such as the position of
variable air volume (VAV) boxes or the frequency at which a motor is working, among many
others.

All of these data points can be monitored and controlled from the server in the management
level, which sends orders to the master controller that acts as an intermediary between the
server and all of the controllers. The server includes an user-interface from which the operator

2-2 Multilinear models in building systems 5

can easily monitor and control the BACS. All the data acquisition for this thesis is done through
the management level.

Data communication protocols are defined in ISO 16484-5, which refers to BACnet, the ASHRAE’s
standard (refer to ASHRAE 135-2016) for a Data Communication Protocol for Building Au-
tomation and Control Networks. Data communication protocols are a set of rules that apply
to the exchange of data in computer networks. Even though the BACnet protocol defines rules
such as fan operating schedules or pump status alarms among many others, it does not provide
a standard way of naming data points, which is a problem when buildings rely on big data to
work (see Section 2-3-1).

2-2 Multilinear models in building systems

The increasing amount of data produced by buildings is making the systems more complex,
and thus increasing the amount of faults [6]. Building systems as well as heating systems,
behave as multilinear [7]. Multilinear Time-Invariant (MTI) models can be represented using
tensors [8], the elements of which increase exponentially with higher orders. Therefore, decom-
position methods are to be used so as tu reduce the computation time. Canonical Polyadic
(CP) decomposition is a good example [8], and it is appropriate for MTI models [9].

It is also important to note that automation systems, described in Section 2-1-1, provide data
using a fixed sampling time, which is why discrete time MTI models are used for this applica-
tion [7].

Taking all of this into account, and as proposed by [2], a CP-decomposed, normalized rank-1
MTI model for parameter identification is used in this thesis for anomaly detection. Depending
on the complexity of the system, this may be enough to capture all the dynamics.

2-2-1 CP-decomposed normalized rank-1 MTI model

The simplified rank-1 MTI model offers a computation time several levels lower than higher-
rank MTI models. Firstly, as an introduction to the explanation of this simplified model,
discrete-time MTI models are summarised [2]. A discrete-time MTI model is given by

x(k + 1) = ⟨ F | M(x(k), u(k)) ⟩ , (2-1)

where M(x, u) is a monomial tensor

M(x, u)=
(

1
um

)
◦ · · · ◦

(
1
u1

)
◦
(

1
xn

)
◦ · · · ◦

(
1
x1

)
, (2-2)

which is a rank-1 tensor with a dimension R×(n+m)2, where x∈Rn is the state vector, and u ∈ Rm

is the input vector.

The dynamics of the system are given by the parameter tensor F, which is given, in CP-
decomposed form, by

F = [FΦ, Fum, · · ·, Fu1,Fxn ,· · ·, Fx1]· λ ∈ Rn×(n+m)2 (2-3)

Using CP tensor decomposition, we are able to normalize the factor matrices (from Fum to Fx1)
in F to column norm of one.

2-3 Data point tagging 6

Finally, a normalized rank-1 MTI model is given by the equation (2-1), but with a parameter
tensor

F̃ = [̃fΦ, f̃um , · · · , f̃u1 , f̃xn , · · · , f̃x1] · λ , (2-4)

where matrix FΦ is reduced to a vector

f̃Φ = (ϕ1 ϕ2 · · · ϕn)T ∈ Rn , (2-5)

and f̃uj ∈ R2 and f̃xi ∈ R2 are vectors with any norm ||̃fuj || = ||̃fxi || = 1 of one.
In this model, each element of the tensor is defined by the value of vector λ and an angle [2].
A visual example can be seen in Fig. 2-2. In this Figure, factor vectors are represented in 2-D,
where the non-normalized vectors (λ = 1) are represented by the dashed-line arrows, and the
normalized vectors (λ = 10) are represented by the continuous-line arrows and all have a length
of 1. The angles (represented by the red lines), as expected, do not change. Parameters denoted
by xi in the vertical axis represent the dependency of a transition on the signal xi.

Figure 2-2: Visual example of CP tensor decomposition normalization [2]

2-2-2 Parameter identification with low-rank multilinear model

The proposed grey box parameter identification algorithm in [2] is used in this master thesis
for anomaly detection. This algorithm uses the simplified MTI model described in Section 2-2-
1, and it is implemented using the programming and numeric computing platform MATLAB,
developed by MathWorks, using the MTI toolbox introduced in [9].

2-3 Data point tagging

In this Section, a tool for data point labelling is introduced, which is going to be used in this
thesis to rename the data points coming from the BACS of the case study, in order to analyse
and group them. An explanation of the utility of this tool in the context of this thesis is also
done in this Section.

2-3-1 The BUDO scheme

Building Unified Data point naming schema for Operation management or BUDO is a tool
created to name data points coming from buildings in a standardised and unified way, based on

2-3 Data point tagging 7

40 standards provided by different operators of BACS [10]. This tool can be found on-line for
free, and uses a spreadsheet to create the new names based on the scheme in Fig. 2-3.

Figure 2-3: Structure of the naming of data points in the BUDO scheme

As seen in Fig. 2-3, it includes two types of labels:

• Non-standardized labels: includes a set of cells to include free categories, both at the
start and at the end of the name. These free categories are useful to identify the specific
buildings that are going to be tagged, so that any operator can use the BUDO tags for
their own buildings.

• Standardized labels: includes a set of cells that have pre-set names. These are located
between the symbols "§", which denote the start and the end of the standardized labelling.

The standardized labels include the following categories in a hierarchical structure: System,
Subsystem, Subsubsystem, Medium/Position, Signal type and Function type. These include a
large variety of specifications that can be selected in the spreadsheet file, as well as optional
designations or numberings to, again, refer to specific data points from the operators’ buildings.

Each one of the standardized labels are automatically translated in the spreadsheet into a new
name that is the BUDO tag. Table 2-1 shows some examples of BUDO vocabulary, which can
all be found in [11].

Assignment Specification BUDO
sensor temperature SEN+T
meter electrical MET+EL

measured value temperature MEA+T
setpoint SP+

volume flow controller CTRL.VF+

Table 2-1: Example of the vocabulary of the BUDO scheme [11]

BUDO considers plenty of standards from operators, technology and research in order to define
the vocabulary and the categories [12]. Specially standards from operators are taken into
account. This not only ensures that vocabularies and categories are correctly designed, but also
contributes to the creation of a standardized method that may one day be officially defined
because of the increasing number of buildings that rely on big data.

2-3-2 Utility and application of the BUDO scheme

Some commercial and industrial buildings come with a high amount of data points, which are
usually named according to specific subjective criteria of the operator. These names do not
always provide well-structured information about what the data points are representing.

2-4 String pattern matching 8

Specially buildings with hundreds or even thousands of data points can benefit from a standard-
ized data point naming [13]. These can provide very useful information for the people that have
to work with the BACS of a specific building to, for example, detect errors, specially for new
possible workers that are not familiar with the system from the start. The SONDE project [1]
is a good example of project that would benefit from this to accomplish an automated anomaly
detection.

There are currently no industry-wide accepted standards for data point tagging, which makes
it difficult to analyse big data volumes, to the point that the purpose of energy saving and
efficiency of the BACS cannot be achieved as a result of poor traceability [14]. This also forces
building operators to rely on their building automation vendors, since they are the only ones
capable of processing the BACS installed in their building [14].

Four case studies are presented in [10], in which real systems’ data point names are translated
into BUDO tags. These examples show that the BUDO scheme can be applied to existing
buildings as well, and it can be done without specialized training via the drop-down menu of
the spreadsheet file. However, when it comes to buildings that have thousands of points, doing
this task manually will take plenty of time. This is why the team that created the BUDO
scheme is working in a machine learning-based program to automatically translate the data
point identifiers into the BUDO standard. This tool is known as Artificial Intelligence based
Key Interface for Data point metadata nOrmalisation or AIKIDO [14].

At the time of realization of this thesis the AIKIDO tool was not available, thus a simpler
solution based on Regular Expressions (see Section 2-4) is used.

2-4 String pattern matching

String pattern matching (Fig. 2-4) occurs in the field of science and information processing, spe-
cially in computer science where processes such as text editing, lexical analysis and information
retrieval occur frequently [15].

Figure 2-4: Basic scheme of pattern matching in a string [15]

The basic problem is to find a keyword as a substring in a sequence of characters. As an ex-
ample, the string "Germany" contains the substring "German". One of the most common uses
of string pattern matching lays in search engines or programs such as e-mail managers or text
editors. In this thesis, the string matching will be done through the use of Regular Expressions
in order to find and group data according to the string information contained within.

2-4 String pattern matching 9

Regular Expressions (RegExps) define regular languages and, in practice, they are used for
string matching [16]. These can express the strings to be matched in a declarative way and,
therefore, RegExps are an algebraic description of the language [17].

As an example, search engines like the one in Fig. 2-5 use the notation of Regular Expressions
so that the user can describe a pattern to be matched and find a specific file or web page.

Figure 2-5: The Google search engine is a good example of RegExps use

As previously stated, since RegExps are an algebraic description of the language, they follow
the pattern of any algebra, which consist on basic expressions such as constants and variables
which are then used to build more expressions with the use of operators [17].

As an example of possible syntax in the RegExp matching, Perl programming language metachar-
acters can be found in Appendix A-1, as shown in the Perl documentation [18]. Not all program-
ming languages use the same operators, but are usually similar. Other programming languages
that include RegExps in the standard library are Java and Python.

Chapter 3

Creation of new automated process

The new automated process for parameter identification designed in this thesis is defined in this
Chapter, together with the description of the real case building to which said process is applied.
The BUDO scheme is also manually applied to some of the data points of the building.

3-1 Automation of parameter identification process

In this Section, the new automated process designed for the parameter identification of buildings
is explained, which is created in accordance to the object and the scope of this thesis (see
Sections 1-2 and 1-3).

Figure 3-1: Scheme of the new automated process

3-2 Case study 11

As shown in Fig. 3-1, the new process consists of two main algorithms that are to be coupled
together:

1. the data point grouping algorithm (see Chapter 4), and

2. the low-rank parameter identification algorithm (see Chapter 5)

The objective of the data point grouping is to gather as many data points from the building as
possible according to the string in the data point names in order to create an output file to use
in the parameter identification process. To group the data in this file, Regular Expressions are
used to match the string data based on the tags proposed by the standardized BUDO scheme.
This is all implemented via an algorithm built from scratch for this thesis.

The file generated in the data grouping algorithm is then introduced in the low-rank parameter
identification algorithm, which belongs to [2]. The parameter identification is then applied more
easily since the data is grouped accordingly into a sparse matrix.

These two algorithms are to be combined together in order to automate the process as much
as possible, so that one algorithm is capable of combining both, with as less human action as
possible (see Section 5-3).

3-2 Case study

In this Section, the case study building that is used for this thesis is presented, together with an
analysis of some data points that belong to some specific rooms. The BUDO scheme is applied
to these data points as an example of use of this standardized naming method. This will be
useful for the first phase of the data grouping algorithm.

3-2-1 Multi-use building in Hamburg

The data used for this thesis comes from a multi-purpose smart building located in Hamburg’s
digital innovation district in Germany, which relies on big data to work. The data points of
this building provide a real example of how the information comes with a building of such
magnitude.

The uses of this building include co-working spaces, meeting rooms, event spaces, as well a
restaurant, café, library and other facilities such as a sport room and a music studio. The
amount of purposes for which this building is used needs a complex BACS to manage all the
different requirements for the indoor comfort.

The amount of data points provided by the building, as well as the poor information provided
by the labelling, makes it difficult to analyse the data. The server allows to monitor each data
point in a graphical way, but it requires to manually select the data points to be represented.
This means that previous knowledge about the data points is required, specially in order to
know which ones are related to the zone/room that is being analysed.

3-2-2 Data points from the building

The BACS that is implemented in the building provides numeric data from as much as 17,300
data points simultaneously each minute. Most of the names of the data points provide little or
no information about the data they contain.

3-2 Case study 12

As a first approach, the provided data points can be classified as:

• States: parameters that are affected by the Inputs and Disturbances, and cannot be
controlled directly. These have to be between certain limits in order to ensure the indoor
comfort. For example, room temperature and air quality are classified as States.

• Inputs: these parameters can be controlled by the BACS or the operator and are used to
regulate the States. For example, the air supply and exhaust are classified as Inputs.

• Disturbances: parameters that have an impact on the States but cannot be controlled by
the BACS or the operator. For example, outside temperature and occupancy are classified
as Disturbances.

• Set-points: these are parameters that are used to control Inputs and do not have a direct
impact on the States. For example, upper and lower temperature limit set-points are
classified as Set-points.

This classification is important for both algorithms explained in Section 3-1, and are further
used and explained in Section 4-2. Following up, a set of data points from the building are
provided as an example of how these are displayed in the server.

Data points from rooms 3.01 and 3.45

To simplify the information, this thesis focuses on the data points of room 3.01 and room 3.45.
While room 3.01 is an open space, room 3.45 is used as a co-working office, meaning that they
have different uses and, as a result of this, different energy and indoor comfort requirements.

The main data points associated to these rooms, which have been identified with the help of the
BACS operator, can be seen in Appendix A-2. These are the IDs as shown in the server where
the information is stored. Furthermore, some of the data points that contain information from
the weather station in the building are shown.

A short description of the functionality of the data contained within the represented data points
from rooms 3.01 and 3.45 can be found in Table 3-1.

Object Unit Description

Room temperature ºC Temperature of the room, measured through a tempera-
ture sensor in the room

Air quality ppmCO2 Concentration of CO2 in parts per million, measured
through a sensor in the room

Ceiling temp. ºC Temperature of the room, measured through a tempera-
ture sensor located on the ceiling

Power W This data point measures the power that is consumed only
by the lighting and the smart sensors in the room

Air Supply [real] m3/h
Fan coils distribute the air coming from the air handling
unit into the rooms. The air volume flow controller is
located in the conduct before the fan coil

Air Exhaust [real] m3/h
The exhaust air comes out through ventilation grilles lo-
cated on the wall. The air volume flow controller is located
in the exhaust conduct

3-2 Case study 13

Object Unit Description

Air Supply [target] %
This data point describes the percentage of the maximum
air volume flow that the volume flow controller is letting
in

Air Exhaust [target] %
This data point describes the percentage of the maximum
air volume flow that the volume flow controller is letting
out

Occupancy Binary This data point is a binary input (BI). If the sensor detects
movement in the room, the occupancy data is set to 1

Temp. set-point K This set-point is specified centrally and can be adjusted
by the user in the range from +3 to -3 K

Ventilation set-point -
The ventilation can be controlled in stages. It can take
values from 1 to 3. (boost, aus, auto). This set-point is
always in auto mode

Lighting - The light can be controlled in stages. It can take values
from 1 to 7 (different intensities depending on the value)

Air quality set-point ppmCO2 This set-point is used to set the upper limit of the CO2
concentration in the room

Temp. s-p adjust. ºC The data points associated to this parameter are used to
adjust the temperature set-point in the room

Table 3-1: Data contained within the data points of rooms 3.01 and 3.45

As shown in the Tables in Appendix A-2, the names of the data points do not always provide
information about what they contain, and some of the specific descriptions of Table 3-1 are only
known because the BACS operator has provided the information (see supporting files 2 and 5
from the operator in Appendix B) and/or through the analysis of the data point values in the
server, one by one.

Application of BUDO scheme to the real data

The poor traceability problem can be solved by using a standardized naming method such as
the BUDO scheme (see Section 2-3-1), which is applied manually to the data points from rooms
3.01 and 3.45, as well as for the weather station data points in Appendix A-3. For the rest of
the rooms of the building, the scheme is applied automatically by the first phase of the data
point grouping algorithm. The use of the BUDO scheme is necessary for the second phase of
the data point grouping, which is based on the string information contained within the BUDO
tags. This is all further explained in Chapter 4.

As we can see in Appendix A-3, the BUDO tags for each room consist of a fix part before
the § symbol, which identifies the building and the specific room; and a variable part after
the § symbol which identifies the information contained within the data point. All the BUDO
vocabulary can be found in [11].

Chapter 4

Data point grouping algorithm

This Chapter shows how the data point grouping has been performed, providing information
about the output of this algorithm that is then going to be used in the parameter identification,
and the used Regular Expressions to implement the process using the Perl programming lan-
guage. The Perl codes are also explained in this Chapter. The data point grouping algorithm
can be found in file 3, attached in Appendix B.

4-1 Structure and format of data point tags

There are mainly four types of labelling in the server case study building in Hamburg, as a
result of different controllers being used. These labels include a fix part that identifies from
which controller the data point comes, and a variable part that is unique to each data point.
Table 4-1 shows the label structures using a data point from each type as an example.

Type Fix part Variable part
A DAIKIN MasterStation III No 100050-100050_ RoomTemp_104-AI26633

B
01-101010_Raum_7_13_Licht-MSV42

ISP_Level_ 03-103010_HBK_1a_03_L_RLT01_03_010_VVR40_ST_1-AO40
00-100010_RLT_1_Gesamt_Zaehler_Wirkleistung-AV129

C Level0-smartdirector-D01-100040_ 1923502:3.09_HBK Ceiling Temperature-AI1923502
D pCOWeb 100080-100080_Humidity_Room-AV7

Table 4-1: Structure of the main types of data point tags in the server

At first glance, data points of type A and type D provide only a slight clue of what they
contain, but do not provide data about the zone/room to which they belong. Meanwhile, type
C labels provide both the data they contain and the room number. As for type B labels, the
provided information depends on the different variable parts. A deeper look into the structure
of each of these data points can be found in Appendix A-4.

Data point labels are not consistent, and that is why they need to be transformed first into
BUDO tags in order to work using Regular Expressions systematically. To do so, a program
based on Regular Expressions detecting the structure of the data points has been created to
catch as many tags as possible (see Section 4-4).

Moreover, all the data point names can be downloaded into a .txt file, containing a label per
each row (in total 17,300 rows). For the data grouping algorithm, all of the labels are going to

4-2 Output of the data grouping algorithm 15

be identified by their row number in this .txt file, referred to as the original data point file
(see file 1 in Appendix B). This is done so as to simplify the process, since the data point tags
contain long strings with special characters.

4-2 Output of the data grouping algorithm

The grouping is made to organize the data points so that they can be introduced in the parameter
identification algorithm described in Chapter 5. The chosen format is a .txt file with comma-
separated values.

Figure 4-1: Grouping of the data in the .txt file

The information is grouped in the output .txt file as shown in Fig. 4-1. In this file, for each
identified State, a new row is created. The first column shows the zone/room where the State
signal is located, and the second column shows the identified State. The rest of the columns
display the Inputs, other States, Disturbances and Set-points that could potentially have an
impact on the identified State, based on the zone/room in which these are located. Each data
point is identified by their row number in the original data point file.

It is also relevant to note the order in which each data point is printed. This order is decided
according to the effect that the rest of the parameters may have on each identified State, and
is as follows:

1. Inputs and/or other States

2. Disturbances

3. Set-points

Inputs, other States and Disturbances have a direct effect on the States, since they represent
physical phenomena involved in the building. However, Set-points have an indirect effect on
each State because they are used by the controllers to modify the Inputs. Fig. 4-2 shows the
graphical representation of two data points: one of them is the air quality state (CO2) in room
3.45, while the other one is the set-point that is used to set the desired CO2 level in the same
room. As we can see, the values of the set-point do not vary too much and are usually constant.
Because of this, Set-points have less priority when applying the parameter identification and
thus go at the end of the row.

4-3 Used Regular Expressions 16

Oct Nov

Time

0

200

400

600

800

1000

1200

1400

V
a
lu

e
 o

f
d
a
ta

 p
o
in

t
CO2 sensor

CO2 set-point

Figure 4-2: CO2 sensor measurement values as compared to CO2 set-point values

Note that other States are also signals that can affect each identified State, and this is why they
are also included in the rest of the columns. Of course, these are signals that are not controlled
directly and they change over time (they are do not have a fix behaviour, as we can see in the
CO2 sensor representation in Fig. 4-2), but might have an influence on other signals.

The generated output file in this format is essentially a sparse matrix that is used as an input
into the low-rank parameter identification algorithm. This is further explained in Section 5-1.

4-3 Used Regular Expressions

Two types of RegExps are going to be used in this master thesis in order to achieve the output
file during the data grouping process. In order to show the RegExps, Perl nomenclature has
been used. Perl is the programming language that has been used to create the data grouping
algorithm, composed by two phases (see Section 4-4).

4-3-1 Structure detection RegExps

These are used in the data grouping algorithm to detect the structure of both the original
data points from the server and the BUDO tags. There are two types: number detection and
string detection RegExps. These are written in the nomenclature used by the Perl programming
language as follows:

my $number = /([0-9]+)/; # Number detection: used to detect any number in a ...
... specified position.

my $string = /([^_]+)/; # String detection: used to detect any string composed ...
... by letters/numbers in a specified position.

These expressions are used for the detection of numbers and strings that are not specific, but
rather a possible number/string that can be located in a specified position. The "_" symbol
in the string detection expression is used to tell the program to match a string until it reaches
that symbol. As an example, Code 4.1 shows a simple Perl program that uses these expressions

4-4 Implementation with Perl 17

to detect the number 301 and the string Temperature inside the string data provided by the
variable $data.

Listing 4.1: Simple code to print specified numbers and strings
my $data = "The data point name is 301_Temperature_Building1";

$data =~ /([0-9]+)_([^_]+)/;
my ($number,$string) = ($1,$2);

print $number; # Prints the number "301".
print $string; # Prints the string "Temperature".

So, in short, the point of these RegExps is to match any string or number that has not been
yet specified, in order to catch the data point names to process them further using the specific,
BUDO scheme-based strings, explained in Section 4-3-2.

4-3-2 BUDO string RegExps

These are used to detect the BUDO tags in the data point names in order to group them
accordingly. Different RegExps are used according to the different types of data points, classified
as: States, Inputs, Weather Station data points (considered as the Disturbances) and Set-points.
The Regular Expressions are as follows:

$state =~ /SEN\+T|SEN\+AQ|MET\+EL/; # Matches "SEN+T" or "SEN+AQ" or "MET+EL".
$inputs | $states =~ /MEA/; # Matches "MEA".
$weather =~ /WST_/; # Matches "WST_".
$setpoints =~ /SP|STEP|VAL/; # Matches "SP" or "STEP" or "VAL".

These RegExps are based on the information in Section 3-2-2, where the data point names
from room 3.01, room 3.45 and the weather station are translated into the BUDO scheme. The
strings shown above are characteristic of each type of data point, which means that the data
point type can be identified by the string data that the BUDO tag displays. Symbol "\" in the
RegExps is used as an escape sequence so that the math operators (+) are matched as literal
strings.

Note that States also contain the string /MEA/ in the BUDO tag. This string is used in the
algorithm to add other States in each row as data points that may as well have an impact on
each State, as explained in Section 4-2. Moreover, string /VAL/ is added to detect the data
points from heating/cooling valves, considered as set-points due to its nature, caught by the
first phase of the data point grouping algorithm (Section 4-4-1).

As stated above, these RegExps are chosen based on the available information from the case
study and the manual application of the BUDO scheme; therefore, more or less different RegExps
could be used depending on the studied building. All the BUDO nomenclatures mentioned above
together with their meaning can be found in [11].

4-4 Implementation with Perl

The data point grouping algorithm has been implemented with the Perl programming lan-
guage [19], which specializes in Regular Expressions. This language can be downloaded and
used for free without any restrictions.

4-4 Implementation with Perl 18

The algorithm is composed by two phases. The first phase is used to transform as many
original data point tags from the server (named according to the BACS operator criteria) into
simplified BUDO-based labels (Section 4-4-1). Meanwhile, the second phase groups the tags
into the desired output .txt file (Section 4-4-2). The corresponding full Perl codes are available
in the Appendix A-5 and the Perl files together with the .txt files that these use can be found
in file 3 in Appendix B.

4-4-1 First phase: tag-transformation code

In order to catch as many data points as possible, the Code A.1 has been developed, which uses
RegExps to get the data points based on the string data and on previous knowledge provided
by the operator of the BACS. This program detects the structure of the data point names and
simplifies them using BUDO nomenclature.
This code does NOT detect every data point available. Because of the characteristics of each
data point name, this program is able to catch some of the type B, C and D tags (see Table 4-
1). Appendix A-4 shows a deeper analysis of the original data point tags and whether they can
be efficiently caught using Regular Expressions or not.
Code A.1 does not create a full BUDO tag, but rather a simplified one with a structure like the
example: 301§MEA+VF, which includes the room number and the minimal characteristic string
to identify the data point type without the need of the full BUDO name.
As an example, Fig. 4-3 shows in a schematic way how the data point structures are detected
with this code, using the RegExps presented in Section 4-3-1.

Figure 4-3: Example of detection of structure in Code A.1

Note that this program is specifically made to apply on the case study building. However, the
RegExps and the content of each if and elsif can be modified to adapt this program to other
buildings.
It also must be noted that Code A.1 will NOT catch the original data point labels from rooms
3.01 and 3.45 and from the weather station presented in Section 3-2-2 because these have been
replaced manually in the original data point file by the corresponding BUDO tags. This ensures
that these data points are detected correctly by the code in Section 4-4-2 and are added in the
output file to then perform the parameter identification (Chapter 5) and make an overview of
the results. Even so, the code could be modified to catch these tags or more based on the
provided knowledge.

4-4-2 Second phase: data point-grouping code

Code A.2 is used to organise the data points to get the desired output indicated in Section 4-2.
It is based on the use of hashes, which are a set of key-value pairs [18]. As an example, the
following is a hash in which the country names are the keys, and the languages are the values:

4-4 Implementation with Perl 19

my %countries = (England => ’English’,
France => ’French’,
Spain => ’Spanish’,
China => ’Chinese’,
Germany => ’German’);

It is also important to know about the multidimensional hashes, which are essentially hashes
of hashes. An example of a simple multidimensional hash is shown below:

my %continent = (Europe => {
’Spain’ => ’Spanish’,
’France’ => ’French’,
’Germany’ => ’German’,

},
Asia => {

’China’ => ’Chinese’,
’India’ => ’Indian’,
’Iran’ => ’Persian’,

},
America => {

’USA’ => ’English’,
’Colombia’ => ’Spanish’,
’Brazil’ => ’Portuguese’,

},);

In Code A.2, the first section groups all the data points into a multidimensional hash that
contains the room number and the names of the tags as keys, and the row numbers as values.
The row numbers are retrieved from the original data point file by Perl using the $. expression,
while the literal names of the tags are retrieved using the $_ expression. All data points that
are considered States are then grouped into another hash of hashes.

The second section of the Code A.2 is used to create the output multidimensional hashes in
order to print them in the third section. The reason why there is one hash for the Inputs and
another one for the Set-points is because Inputs are going to be printed in each row before the
Set-points, as explained in Section 4-2. Other States are also included inside the same hash as
the Inputs.

All Regular Expressions used to detect States, Inputs, Set-points and Weather Station data
points are described in Section 4-3.

As we can see in the third section of the Code, the information in the output file is organized
as follows:

print OUT (join ’,’,
$room_num,$state,@{$inputs{$room_num}{$state}},@wst,@{$setpoints{$room_num}{$state}});

Order: room number, state, inputs/states, disturbances (weather), set-points.

Weather can have an effect on all the rooms of the building, and this is why weather data points
are directly printed into an array instead of a hash, because they do not belong into a specific
room. All of the weather-related disturbances are taken into account for each row.

Note that this code is made to apply specifically to the case study building, although Regular
Expressions can be modified in order to adapt the code to any desired building which uses a
standardized data point naming scheme.

Chapter 5

Parameter identification algorithm

This Chapter serves the purpose to explain how the data grouping and the anomaly detection
through the parameter identification have been integrated together, as well as how the parameter
identification is performed. Furthermore, interesting plots that could be used for anomaly
detection are presented in this Chapter. The parameter identification algorithm can be found
in file 4 in Appendix B.

5-1 Input sparse matrix

The input sparse matrix

α =

α11 α12 · · · α1(n+m)
α21 α22 · · · α2(n+m)

...
...

αn1 αn2 · · · αn(n+m)

 , (5-1)

into the parameter identification comes from the .txt file defined in Section 4-2.

The data grouping algorithm acts as a first filter so that the parameter identification algorithm
does not have to go through all the data points to check if they have an effect on each identified
State. The idea is to create the sparse matrix as this example

α =

∗ 0 0 ∗ · · · 0
0 0 0 ∗ · · · ∗
...

...
...

...
∗ 0 0 0 · · · 0

 , (5-2)

where the stars (*) represent any value different from 0. As we can see, this matrix would have
mostly 0 since most of the data points of the building do not have an effect on a specific State.
For example, the temperature of room 3.45 will not be influenced by the occupancy of all the
rest of the rooms in the building, so these are already set as 0 thanks to the data grouping
algorithm.

5-2 Parameter identification algorithm process 21

5-2 Parameter identification algorithm process

The parameter vectors as referred in Eq. (2-4) can be represented using their angle (α) as seen
in Fig. 5-1.

cosα

f̃

sinα

α

Figure 5-1: Representation of vector f̃ and its angle

Knowing this, these vectors can be represented using their angle in Eq. (2-1), which results in
the equation in the form

xi(k + 1) = λi ·
∏
j

(cos(αij) + sin(αij) · zj(k)), (5-3)

where z(k) comprises both the states x(k) and inputs u(k) from the monomial tensor (2-2).
When substituting the values from the α sparse matrix (5-1) in the Eq. (5-3), for the values
that are 0, the sums are equal to 1, meaning that these can be neglected in the product and
thus offer no effect on the xi value.
The parameter identification based on Eq. (5-3) is done using the method in [2]. The parameter
identification is realized for each row of the α sparse matrix in order to fill it row by row with
parameters. The algorithm is implemented with MATLAB (see attached file 4 in Appendix B).
For each row of the .txt file, the MATLAB algorithm first identifies the zone and the State (first
and second column), and then, for the identified State, it performs the parameter identification
checking each data point in the rest of the columns.
The algorithm is able to cross-reference each of the row numbers from the input generated file to
the original data point file. This way, it can retrieve the name of the data points that belong to
each row number, and it is able to download the data from the server to perform the parameter
identification.

5-3 Automation of the whole process

Unlike the data grouping algorithm, which is implemented using Perl, the parameter identifica-
tion algorithm from [2] was created using MATLAB. However, other different codes can be run
directly from MATLAB. This way, it is possible to run the whole process of data grouping and
parameter identification with just one click. In order to do so, the isfile function in Matlab
can be used, adding the following lines at the start of the program (or similar, depending on
the file paths and names):

5-4 Overview of plot results 22

if ~isfile(’filepath\PI_input.txt’) % Check if input .txt file exists.

perl(’filepath\tag_transform.pl’); % Run Perl algorithm.
perl(’filepath\tag_group.pl’);

end

With these lines, MATLAB will first check if the input .txt file exists. If it exists, the program
will continue as normal, without running the data grouping algorithms. If it does not exist,
MATLAB will use the perl() command in order to run the .pl files using the Perl language
(which is previously installed in the user’s operative system).

5-4 Overview of plot results

In this Section, a series of plots with the results of the parameter identification are shown.
These are limited to the rooms 3.01 and 3.45. In this case, all the plots correspond to the year
2021, since it is the most recent year in which there is data during the whole 12 months. The
chosen time range for the parameter identification is the week and, therefore, the parameter
identification is performed for each of the 52 weeks of the whole year.

5-4-1 Initial analysis and behaviour of data

As a first analysis of the results, plots for each one of the weeks have been made in which the
value xi is represented against each one of the parameters that affect a specific state. Also, the
lambda (λ) parameter for that week is shown. As an example, the graph in Fig. 5-2 shows the
values of the parameters for the temperature in room 3.45 for week 51 of the year.

State: 3.45 Room temperature - Week: 51

3
0
4
3

3
0
4
4

4
4
1
0

4
4
1
1

4
4
1
2

4
4
1
3

4
4
1
4

4
4
2
1

4
4
2
2

4
4
2
3

4
4
9
8

4
5
0
0

4
5
7
5

4
5
7
6

4
5
7
7

4
5
7
8

4
5
7
9

4
5
8
0

4
5
8
1

4
5
8
2

4
7
5
9

4
7
6
0

4
7
6
1

4
7
6
4

4
7
6
5

4
7
6
6

6
7
0
0

6
7
0
1

6
7
0
3

Parameter

0

0.2

0.4

0.6

0.8

1

1.2

P
a
ra

m
e
te

r
v
a
lu

e
 x

i

Figure 5-2: Parameter values for the temperature in room 3.45, for week 51

In this figure we can clearly see that the parameter that has the most influence on the room
3.45 temperature is the one that belongs in row number 6700 (see Appendix A-6), which is

5-4 Overview of plot results 23

the ceiling temperature. However, the results can vary quite a lot depending on the week, and
using a plot for each week is not efficient nor intuitive (for each identified State, we would need
a plot for each of the 52 weeks of the year). Moreover, with these plots we cannot establish a
threshold within which we can assume a normal functioning of the building. The amount of
parameters also makes it difficult to correctly label de x-axis with longer strings.

Furthermore, some of the plots came out as the one shown in Fig. 5-3, which does not show any
useful information at a first glance.

State: 3.45 CO2 level - Week: 42

3
0
4
3

3
0
4
4

4
4
1
0

4
4
1
1

4
4
1
2

4
4
1
3

4
4
1
4

4
4
2
1

4
4
2
2

4
4
2
3

4
4
9
8

4
5
0
0

4
5
7
5

4
5
7
6

4
5
7
7

4
5
7
8

4
5
7
9

4
5
8
0

4
5
8
1

4
5
8
2

4
7
5
9

4
7
6
0

4
7
6
1

4
7
6
4

4
7
6
5

4
7
6
6

6
7
0
0

6
7
0
1

6
7
0
3

Parameter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
a
ra

m
e
te

r
v
a
lu

e
 x

i

Figure 5-3: Parameter values for the CO2 level in room 3.45, for week 42

For these reasons, this plots can be discarded for the analysis of the parameter identification
results. The chosen plots that could be used for anomaly detection are shown in Section 5-4-2.

Finally, the data coming from the server also shows inconsistency in the retrieving of the infor-
mation. This can be due to various reasons such as errors in the server, or even maintenance
of any component of the BACS.

5-4-2 Plots for anomaly detection

In this Section, the plots that have been chosen for possible anomaly detection in the building
are shown. For a chosen State, these plots represent the λ value against the xi values for a chosen
parameter during all the 2021 year. This results in a cloud of points, each point representing 1
of the 52 weeks of the whole year.

Each week is represented in a different shape and colour depending on the season of the year they
belong to. This could be useful since the weather conditions such as the outside temperature
have an important effect on the behaviour of the BACS, which regulates the different inputs in
order to provide the desired indoor comfort.

Using this plots, it could be possible to detect anomalies based on the position of the cloud of
points, and further analysing the weeks that stray further away from the main cloud. A threshold
could then be defined, outside which we can assume an anomalous behaviour. Following up,
some of the plots are shown as examples on how the data can be represented. The further

5-4 Overview of plot results 24

analysis is limited to an overview, which provides a guideline on how the information provided
by the proposed plots could be analysed more deeply to detect the anomalies.

In this case, the analysis of the plots is done manually, looking at the value of each point.
However, classification methods such as the support-vector machines, which are used in [2],
could be used to automatically classify the values accordingly and set a threshold.

Plot for 3.01 Room temperature vs. Air exhaust

Fig. 5-4 shows the influence that one of the air exhaust parameters has on the 3.01 room
temperature from the results of the parameter identification. We can see that the main cloud
of points is located on the left of the plot, most of the points having an xi value of 0 or close.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Parameter value x
i

0

0.2

0.4

0.6

0.8

1

1.2

State: 3.01 Room temperature - Parameter: Air Exhaust

Winter (weeks 51 to 10)

Summer (weeks 25 to 38)

Spring (weeks 11 to 24)

Autumn (weeks 39 to 50)

Figure 5-4: Influence of the air exhaust parameter on the room 3.01 temperature state

Further questions could rise, such as why some of the points stray away from the main cloud,
and why there is a point that is very close the an xi value of 0.8. Further analysis of the data
on the server and how the BACS was working in that moment should be done in order to find
out where these anomalies in the data come from.

Plot for 3.45 Power consumption vs. Occupancy

Fig. 5-5 shows the influence that the occupancy parameter has on the power consumption state
of room 3.45 for the whole year. As stated in Table 3-1, the power data point measures the
consumption of the lighting and the smart sensors, and the occupancy sensor is binary, according
to the BACS operator.

Knowing this, we could expect that occupancy is related to the power consumption since lighting
should be turned on and off depending on the fact that there are people in the room or not.
However, Fig. 5-5 shows two main clouds of points: one on the right, composed by weeks that
belong to summer and spring; and one on the left, composed mainly by weeks that belong to
winter and autumn.

5-4 Overview of plot results 25

This inconsistency could be related to the behaviour of the data collection in the server during
the year, which has been found to give values, during the year 2021, between 0 and 1 for
summer and spring. According to the screen-shots taken directly from the dashboard in server
(see Appendix A-7), we can see that for August (Fig. A-7), the occupancy and power profiles
are more similar to each other; whereas for December (Fig. A-8), the occupancy shows actual
binary values. Lower xi values can be expected from parameters that use binary values as
compared to the analog values of the State.

Moreover, while the summer and spring weeks form the right cloud, there is one week from spring
that is located in the left cloud. This is week 16 of the year, and knowing this information, if
we plot in the server the power and occupancy for this week, we obtain Fig A-9. We can see
that most of the week both values stay constant, which could be the reason of the anomaly.

Further questions, such as why there is one week of winter (week 9) that stays away from the
left cloud and has a negative λ value, can be asked. This week is very close to spring, but since
the weather does not change drastically from the end of one season to the start of the other,
such anomalies could appear in the plots. All of this requires a deeper analysis of all the related
data, that can normally only be accessed by the BACS operator. However, these plots could
already provide guidelines on questions such as where to start looking, and what to expect.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Parameter value x
i

-1

-0.5

0

0.5

1

1.5

2

State: 3.45 Power consumption - Parameter: Occupancy

Winter (weeks 51 to 10)

Summer (weeks 25 to 38)

Spring (weeks 11 to 24)

Autumn (weeks 39 to 50)

Figure 5-5: Influence of the occupancy parameter on the room 3.45 power consumption state

Chapter 6

Conclusion and outlook

A new automated process for multilinear parameter identification has been created. To do so,
a new data grouping algorithm based on Regular Expressions has been built from scratch using
the Perl programming language, which is used in conjunction with the already-existing low-rank
parameter identification algorithm from the SONDE project, implemented with MATLAB. One
only click is required in order to run both algorithms from MATLAB, one after the other. This
automated process is useful for buildings that generate large amounts of data points due to the
complexity of their BACS. Furthermore, the data from a smart building located in Hamburg,
which is composed by around 17,000 data points, has provided a real case scenario to which the
new process has been applied.

Regular Expressions have been successfully used for automatic translation of data point tags
from the server to more standardized BUDO names, although not each of the 17,300 data
points have been able to be translated due to high inconsistency and poor traceability of the
labelling. Thanks to the BUDO tags, it was possible to group plenty of data points to have a
first guess about which parameters affect each identified State, based on the zone/room where
these belong.

Thanks to the data point grouping, the parameter identification algorithm has been run auto-
matically for the case building that has thousands of data points. Some parameters have been
identified that match the previous expectation of having an influence on specific States.

The results from the parameter identification are shown as plots that could be used for anomaly
detection. Different values for each week of the whole year are spotted in these plots, but there is
a tendency that makes these values form clouds of data points, which could be used to establish
thresholds to identify anomalous values that stay out of these limits.

Finally, the use of real data from a building has demonstrated, not only the benefits, but also the
necessity of a standardized data point naming scheme in order to ensure a correct functionality
of the BACS that rely on big data to work. Regular Expressions have shown a big potential to
make a good use of the standardized BUDO scheme thanks to the quality string information
that BUDO tags can provide.

Further improvements could be done, starting with the automatic translation of data point
labels from the server to a standardized scheme. A machine-learning program such as the
mentioned AIKIDO tool could be more efficient to translate the tags, and thus offer more data
points in the output file of the data point grouping algorithm.

27

Further deeper analysis of the data in the server, specially with a good knowledge about the
building’s BACS, could be done in order to find out why the detected anomalies occur. Moreover,
classification methods like support-vector machines could be used to automatically identify the
values according to their position in the plots, instead of doing this automatically.

The application of a standardized scheme to the data points of new buildings could make
a difference and would increase the traceability of the data, thus completely removing the
first step of translating the data point tags in the server to further analyse them. The ideal
situation is that an international standard, published by an official institution like ISO, would
be established.

Appendix A

Attached information to the document

A-1 Perl metacharacters

Perl programming language metacharacters for RegExps:

PURPOSE WHERE
\ Escape the next character Always, except when

escaped by another \
^ Match the beginning of the string Not in []

(or line, if /m is used)
^ Complement the [] class At the beginning of []
. Match any single character except newline Not in []

(under /s, includes newline)
$ Match the end of the string Not in [], but can

(or before newline at the end of the mean interpolate a
string; or before any newline if /m is scalar
used)

| Alternation Not in []
() Grouping Not in []
[Start Bracketed Character class Not in []
] End Bracketed Character class Only in [], and

not first
* Matches preceding element 0 or more times Not in []
+ Matches preceding element 1 or more times Not in []
? Matches preceding element 0 or 1 times Not in []
{ Starts a sequence that gives number(s) Not in []

of times the preceding element can be
matched

{ when following certain escape sequences
starts a modifier to the meaning of the
sequence

} End sequence started by {
- Indicates a range Only in [] interior
Beginning of comment, extends to line end Only with /x modifier

A-2 Data points from rooms 3.01 and 3.45 29

A-2 Data points from rooms 3.01 and 3.45

Tables A-1, A-2 and A-3 show the main data points associated to the weather station and to
rooms 3.01 and 3.45, together with the information they contain and their type.

Original data point ID Data contained Type
ISP_Level_02-102010_WS_Windgeschwindigkeit-AV34 Wind speed Disturbance

ISP_Level_02-102010_WS_Windrichtung-AV35 Wind direction Disturbance
ISP_Level_02-102010_WS_Temperatur-AV36 Outside temperature Disturbance

ISP_Level_02-102010_WS_Globalstrahlung_N-AV43 Solar radiation N Disturbance
ISP_Level_02-102010_WS_Globalstrahlung_O-AV44 Solar radiation E Disturbance
ISP_Level_02-102010_WS_Globalstrahlung_S-AV45 Solar radiation S Disturbance
ISP_Level_02-102010_WS_Globalstrahlung_W-AV46 Solar radiation W Disturbance

ISP_Level_02-102010_WS_Globalstrahlung_Sky-AV47 Solar radiation Sky Disturbance

Table A-1: Main data points from the Weather Station

A-2
D

ata
points

from
room

s
3.01

and
3.45

30

Original data point ID Data contained Type
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_090_LQF01_MW_3-AI55 Room temperature State
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_090_LQF01_MW_1-AI53 Air quality State

Level0-smartdirector-D01-100040_1923402:3.01_HBK Ceiling Temperature-AI1923402 Ceiling temp. State
Level0-smartdirector-D01-100040_1923403:3.01_HBK Power-AI1923403 Power (lighting and sensors) State

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR13_RW_1-AI13 Air supply 1 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR15_RW_1-AI15 Air supply 2 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR14_RW_1-AI14 Air exhaust 1 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR16_RW_1-AI16 Air exhaust 2 [real] Input

Level0-smartdirector-D01-100040_1923405:3.01_HBK Occupancy-BI1923405 Occupancy Disturbance
ISP_Level_03-103010_Raum_01_Licht-MSV15 Lighting Set-point

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR13_ST_1-AO13 Air supply 1 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR15_ST_1-AO15 Air supply 2 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR14_ST_1-AO14 Air exhaust 1 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR16_ST_1-AO16 Air exhaust 2 [target] Set-point

ISP_Level_03-103010_Raum_01_Temp_Sollwertverstellung-AV6 Temp. set-point Set-point
ISP_Level_03-103010_Raum_01_Lueftung-MSV1 Ventilation set-point Set-point

ISP_Level_03-103010_Raum_01_LQ_Sollwert-AV34 Air quality set-point Set-point
DAIKIN MasterStation III No 100050-100050_TempAdjust_039-AV9994 Temp. s-p adjust. 1 Set-point
DAIKIN MasterStation III No 100050-100050_TempAdjust_045-AV11530 Temp. s-p adjust. 2 Set-point

Table A-2: Main data points associated to room 3.01

A-2
D

ata
points

from
room

s
3.01

and
3.45

31

Original data point ID Data contained Type
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_450_LQF02_MW_3-AI58 Room temperature State
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_450_LQF02_MW_1-AI56 Air quality State

Level0-smartdirector-D01-100040_1927902:3.45_Co Working Ceiling Temperature-AI1927902 Ceiling temp. State
Level0-smartdirector-D01-100040_1927903:3.45_Co Working Power-AI1927903 Power (lighting and sensors) State

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR17_RW_1-AI17 Air supply 1 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR19_RW_1-AI19 Air supply 2 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR18_RW_1-AI18 Air exhaust 1 [real] Input
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR20_RW_1-AI20 Air exhaust 2 [real] Input

Level0-smartdirector-D01-100040_1927905:3.45_Co Working Occupancy-BI1927905 Occupancy Disturbance
ISP_Level_03-103010_Raum_45_Licht-MSV28 Lighting Set-point

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR17_ST_1-AO17 Air supply 1 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR19_ST_1-AO19 Air supply 2 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR18_ST_1-AO18 Air exhaust 1 [target] Set-point
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR20_ST_1-AO20 Air exhaust 2 [target] Set-point

ISP_Level_03-103010_Raum_45_Temp_Sollwertverstellung-AV32 Temp. set-point Set-point
ISP_Level_03-103010_Raum_45_Lueftung-MSV14 Ventilation set-point Set-point

ISP_Level_03-103010_Raum_45_LQ_Sollwert-AV35 Air quality set-point Set-point
DAIKIN MasterStation III No 100050-100050_TempAdjust_046-AV11786 Temp. s-p adjust. 1 Set-point
DAIKIN MasterStation III No 100050-100050_TempAdjust_047-AV12042 Temp. s-p adjust. 2 Set-point

Table A-3: Main data points associated to room 3.45

A-3 Application of BUDO scheme to data points 32

A-3 Application of BUDO scheme to data points

Tables A-4, A-5 and A-6 show the data points from the weather station and rooms 3.01 and
3.45, together with their translation into the BUDO scheme.

Original data point ID BUDO tag
ISP_Level_02-102010_WS_Windgeschwindigkeit-AV34 B-HBK§WST_SEN+WIND.SPE

ISP_Level_02-102010_WS_Windrichtung-AV35 B-HBK§WST_SEN+WIND.DRCN
ISP_Level_02-102010_WS_Temperatur-AV36 B-HBK§WST_SEN+T

ISP_Level_02-102010_WS_Globalstrahlung_N-AV43 B-HBK§WST_SEN+SOL.RADI-N
ISP_Level_02-102010_WS_Globalstrahlung_O-AV44 B-HBK§WST_SEN+SOL.RADI-E
ISP_Level_02-102010_WS_Globalstrahlung_S-AV45 B-HBK§WST_SEN+SOL.RADI-S
ISP_Level_02-102010_WS_Globalstrahlung_W-AV46 B-HBK§WST_SEN+SOL.RADI-W

ISP_Level_02-102010_WS_Globalstrahlung_Sky-AV47 B-HBK§WST_SEN+SOL.RADI-SKY

Table A-4: Weather Station data points translated into BUDO tags

A-3
Application

ofBUD
O

schem
e

to
data

points
33

Original data point ID BUDO tag
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_090_LQF01_MW_3-AI55 B-HBK_R+LIV.HALL-301§SEN+T-ROOM_MEA+T
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_090_LQF01_MW_1-AI53 B-HBK_R+LIV.HALL-301§SEN+AQ_MEA+CO2

Level0-smartdirector-D01-100040_1923402:3.01_HBK Ceiling Temperature-AI1923402 B-HBK_R+LIV.HALL-301§SEN+T-CEIL_MEA+T
Level0-smartdirector-D01-100040_1923403:3.01_HBK Power-AI1923403 B-HBK_R+LIV.HALL-301§MET+EL_MEA+POW

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR13_RW_1-AI13 B-HBK_R+LIV.HALL-301§CTRL.VF-13_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR15_RW_1-AI15 B-HBK_R+LIV.HALL-301§CTRL.VF-15_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR14_RW_1-AI14 B-HBK_R+LIV.HALL-301§CTRL.VF-14_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR16_RW_1-AI16 B-HBK_R+LIV.HALL-301§CTRL.VF-16_MEA+VF

Level0-smartdirector-D01-100040_1923405:3.01_HBK Occupancy-BI1923405 B-HBK_R+LIV.HALL-301§SEN+PRES_MEA+PRES
ISP_Level_03-103010_Raum_01_Licht-MSV15 B-HBK_R+LIV.HALL-301§LI_COM.POS+LI.INT+7.STEP

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR13_ST_1-AO13 B-HBK_R+LIV.HALL-301§CTRL.VF-13_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR15_ST_1-AO15 B-HBK_R+LIV.HALL-301§CTRL.VF-15_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR14_ST_1-AO14 B-HBK_R+LIV.HALL-301§CTRL.VF-14_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_010_VVR16_ST_1-AO16 B-HBK_R+LIV.HALL-301§CTRL.VF-16_COM.POS+VF+SP

ISP_Level_03-103010_Raum_01_Temp_Sollwertverstellung-AV6 B-HBK_R+LIV.HALL-301§AHU_COM.POS+T+SP.ADJ
ISP_Level_03-103010_Raum_01_Lueftung-MSV1 B-HBK_R+LIV.HALL-301§AHU_COM.POS+VF+3.STEP

ISP_Level_03-103010_Raum_01_LQ_Sollwert-AV34 B-HBK_R+LIV.HALL-301§AHU_COM.POS+AQ+SP
DAIKIN MasterStation III No 100050-100050_TempAdjust_039-AV9994 B-HBK_R+LIV.HALL-301§AHU_COM.POS+T+SP+1
DAIKIN MasterStation III No 100050-100050_TempAdjust_045-AV11530 B-HBK_R+LIV.HALL-301§AHU_COM.POS+T+SP+2

Table A-5: Room 3.01 data points translated into BUDO tags

A-3
Application

ofBUD
O

schem
e

to
data

points
34

Original data point ID BUDO tag
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_450_LQF02_MW_3-AI58 B-HBK_R+OFFI.OP-345§SEN+T-ROOM_MEA+T
ISP_Level_03-103010_HBK_1a_03_L_RLT01_03_450_LQF02_MW_1-AI56 B-HBK_R+OFFI.OP-345§SEN+AQ_MEA+CO2

Level0-smartdirector-D01-100040_1927902:3.45_Co Working Ceiling Temperature-AI1927902 B-HBK_R+OFFI.OP-345§SEN+T-CEIL_MEA+T
Level0-smartdirector-D01-100040_1927903:3.45_Co Working Power-AI1927903 B-HBK_R+OFFI.OP-345§MET+EL_MEA+POW

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR17_RW_1-AI17 B-HBK_R+OFFI.OP-345§CTRL.VF-17_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR19_RW_1-AI19 B-HBK_R+OFFI.OP-345§CTRL.VF-19_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR18_RW_1-AI18 B-HBK_R+OFFI.OP-345§CTRL.VF-18_MEA+VF
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR20_RW_1-AI20 B-HBK_R+OFFI.OP-345§CTRL.VF-20_MEA+VF

Level0-smartdirector-D01-100040_1927905:3.45_Co Working Occupancy-BI1927905 B-HBK_R+OFFI.OP-345§SEN+PRES_MEA+PRES
ISP_Level_03-103010_Raum_45_Licht-MSV28 B-HBK_R+OFFI.OP-345§LI_COM.POS+LI.INT+7.STEP

ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR17_ST_1-AO17 B-HBK_R+OFFI.OP-345§CTRL.VF-17_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR19_ST_1-AO19 B-HBK_R+OFFI.OP-345§CTRL.VF-19_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR18_ST_1-AO18 B-HBK_R+OFFI.OP-345§CTRL.VF-18_COM.POS+VF+SP
ISP_Level_03-103010_HBK_1a_03_L_RLT03_03_450_VVR20_ST_1-AO20 B-HBK_R+OFFI.OP-345§CTRL.VF-20_COM.POS+VF+SP

ISP_Level_03-103010_Raum_45_Temp_Sollwertverstellung-AV32 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP.ADJ
ISP_Level_03-103010_Raum_45_Lueftung-MSV14 B-HBK_R+OFFI.OP-345§AHU_COM.POS+VF+3.STEP

ISP_Level_03-103010_Raum_45_LQ_Sollwert-AV35 B-HBK_R+OFFI.OP-345§AHU_COM.POS+AQ+SP
DAIKIN MasterStation III No 100050-100050_TempAdjust_046-AV11786 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP+1
DAIKIN MasterStation III No 100050-100050_TempAdjust_047-AV12042 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP+2

Table A-6: Room 3.45 data points translated into BUDO tags

A-4 Deep look into the structure of the data points 35

A-4 Deep look into the structure of the data points

This Section of the Appendix serves the purpose to analyse the information contained within
the tags presented in Table 4-1. This will show whether the presented data points have enough
information to be caught with the first phase of the data grouping algorithm efficiently.

Type A data points

Fig. A-1 shows the general structure of the Type A data points, with the information that is
included within.

Figure A-1: Type A data point general structure

This tag includes information about what the data point contains, but the code does not show
any clue of which room it belongs to, it is a simple enumeration code. Because of the amount
of data points with this structure, it would take a long time to figure out the zones to which
each of these data points belong, so these are not considered in the data grouping algorithm.

Type B data points

Figures A-2, A-3 and A-4 show the general structure of the Type B data points (separated in
types B.1, B.2 and B.3) with the information that is included within.

Figure A-2: Type B.1 data point general structure

Figure A-3: Type B.2 data point general structure

Figure A-4: Type B.3 data point general structure

Type B.1 and B.2 data points do show both room number and data contained, so these can
be easily caught by the data grouping algorithm. In the example for Type B.1 we can see
the string "Licht", which means "Light" in German; and the string "Raum", which stands for
"Room". Moreover, as assumed by the information provided by the operator for rooms 3.01 and

A-4 Deep look into the structure of the data points 36

3.45, "VVR" stands for "Variable Volume Ratio" and is used to define the data points related
to the Variable Air Volume controller. Together with the following string "ST" for Set-points
and "RW" for real Inputs, we can catch and define Type B.2 data points using BUDO tags.

Type B.3 data points do not show the room number, but they show the number of a specific Air
Handling Unit, as shown by the German abbreviation RLT, which stands for "Raumlufttechnik",
referring to the ventilation system. Each RLT has been chosen to be considered another zone to
take into account in the parameter identification. Lastly, "Gesamt Zaehler Wirkleistung" stands
for "total counter active power".

Type C data points

Fig. A-5 shows the general structure of the Type C data points, with the information that is
included within. Type C data points clearly show the data contained within as well as the room
number they belong to, so they can be caught efficiently by the data grouping algorithm.

Figure A-5: Type C data point general structure

Type D data points

Fig. A-6 shows the general structure of the Type D data points, with the information that is
included within.

Figure A-6: Type D data point general structure

Type D data points contain clear information of the data contained within, but do not show the
room number where they belong. However, they include codes that are repeated several times
and, according to the information in the server, represent the different RLTs in the building.
The RLTs are also considered as zones in this thesis since it could be interesting to analyse
them too. The codes and the associated RLT are shown below:

• Code 100060: RLT01

• Code 105010: RLT02

• Code 105020: RLT03

• Code 105030: RLT04

• Code 100080: RLT06

• Code 100090: RLT07

• Code 100100: RLT08

A-5 Data point grouping algorithm codes 37

A-5 Data point grouping algorithm codes

In this Section of the Appendix, the tag-transformation (Code A.1) and data point-grouping
(Code A.2) codes created using Perl programming language are displayed. These are further
explained in Chapter 4.

A-5
D

ata
point

grouping
algorithm

codes
38

Listing A.1: First phase: Perl code to transform tags
use warnings;
use strict;
use Data::Dump qw(dd);

my $input = ’HBK_all_datapoints.txt’; open(IN,’<’,$input) or die $!;
my $output = ’HBK_datapoints_simplified.txt’; open(OUT,’>’,$output) or die $!;

while (<IN>) {
chomp;

if (my ($level,$code1,$code2,$room_num,$state,$tag,$id) = /0([0-9]+)\-([0-9]+)_([^_]+)_([0-9]+)_([^_]+)_([^_]+)\-([^_]+)/) {

Gets tags with structure like: ISP_Level_0//1-101010_Raum_09_Temp_Sollwert-AV19//

$tag = "T_SP" if ($state =~ /Temp/ && $tag =~ /Sollwert/);
$tag = "AQ_SP" if ($state =~ /LQ/ && $tag =~ /Sollwert/);

print OUT "$level$room_num\§$tag_$id";
}

elsif (($level,$id,$code2,$room_num,$tag,$id) = /0([0-9]+)\-([0-9]+)_([^_]+)_([0-9]+)_([^_]+)\-([^_]+)/) {

Gets tags with structure like: ISP_Level_0//1-101010_Raum_10_Lueftung-MSV7//

$tag = "VF_SP" if ($tag =~ /Lueftung/);
$tag = "LI_STEP" if ($tag =~ /Licht/);

print OUT "$level$room_num\§$tag_$id";
}

elsif (($level,$room_num,$tag) = /\:([0-9]+)\.([0-9]+)_([^_]+)/) {

Gets tags with structure like: Level0-smartdirector-D01-100040_1923403//:3.01_HBK Power//-AI1923403

$tag = "SEN\+T_MEA\+T" if ($tag =~ /Ceiling Temperature/);
$tag = "MET\+EL_MEA\+EL" if ($tag =~ /Power/);

A-5
D

ata
point

grouping
algorithm

codes
39

$tag = "MEA\+PRES_MEA\+PRES" if ($tag =~ /Occupancy/);

print OUT "$level$room_num\§$tag";
}

elsif (($level,$room_num,$tag,$id,$code1) = /0([0-9]+)_([0-9]+)0_([^_]+)_([^_]+)_1\-([^_]+)/) {

Gets tags with structure like: ISP_Level_03-103010_HBK_1a_03_L_RLT03_//03_010_VVR14_ST_1-AO14//

$tag = "MEA\+VF" if ($tag =~ /VVR/ && $id =~ /RW/);
$tag = "VF_SP" if ($tag =~ /VVR/ && $id =~ /ST/);

print OUT "$level$room_num\§$tag_$code1";
}

elsif (($level,$code1,$tag,$id) = /pCOWeb([0-9]+)\-([0-9]+)_([^_]+)_([^_]+)/) {

Gets tags with structure like: //pCOWeb100090-100090_Temperature_Exhaust//_Air-AV4

$tag = "RLT01§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100060/ && $id =~ /Exhaust/);
$tag = "RLT01§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100060/ && $id =~ /Supply/);
$tag = "RLT02§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105010/ && $id =~ /Exhaust/);
$tag = "RLT02§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105010/ && $id =~ /Supply/);
$tag = "RLT03§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105020/ && $id =~ /Exhaust/);
$tag = "RLT03§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105020/ && $id =~ /Supply/);
$tag = "RLT04§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105030/ && $id =~ /Exhaust/);
$tag = "RLT04§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /105030/ && $id =~ /Supply/);
$tag = "RLT06§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100080/ && $id =~ /Exhaust/);
$tag = "RLT06§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100080/ && $id =~ /Supply/);
$tag = "RLT07§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100090/ && $id =~ /Exhaust/);
$tag = "RLT07§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100090/ && $id =~ /Supply/);
$tag = "RLT08§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100100/ && $id =~ /Exhaust/);
$tag = "RLT08§SEN\+T_MEA\+T" if ($tag =~ /Temperature/ && $level =~ /100100/ && $id =~ /Supply/);

$tag = "RLT01§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100060/ && $id =~ /Exhaust/);
$tag = "RLT01§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100060/ && $id =~ /Supply/);
$tag = "RLT02§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105010/ && $id =~ /Exhaust/);

A-5
D

ata
point

grouping
algorithm

codes
40

$tag = "RLT02§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105010/ && $id =~ /Supply/);
$tag = "RLT03§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105020/ && $id =~ /Exhaust/);
$tag = "RLT03§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105020/ && $id =~ /Supply/);
$tag = "RLT04§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105030/ && $id =~ /Exhaust/);
$tag = "RLT04§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /105030/ && $id =~ /Supply/);
$tag = "RLT06§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100080/ && $id =~ /Exhaust/);
$tag = "RLT06§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100080/ && $id =~ /Supply/);
$tag = "RLT07§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100090/ && $id =~ /Exhaust/);
$tag = "RLT07§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100090/ && $id =~ /Supply/);
$tag = "RLT08§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100100/ && $id =~ /Exhaust/);
$tag = "RLT08§MEA\+VF" if ($tag =~ /Volume/ && $level =~ /100100/ && $id =~ /Supply/);

print OUT "$tag_$id";
}

elsif (($level,$code1,$tag,$id,$code2) = /pCOWeb([0-9]+)\-([0-9]+)_([^_]+)_([^_]+)_([^_]+)/) {

Gets tags with structure like: pCOWeb//105010-105010_Signal_Valve_Cooling//-AV29

$tag = "RLT01§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100060/ && $code2 =~ /Heating/);
$tag = "RLT01§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100060/ && $code2 =~ /Cooling/);
$tag = "RLT02§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105010/ && $code2 =~ /Heating/);
$tag = "RLT02§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105010/ && $code2 =~ /Cooling/);
$tag = "RLT03§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105020/ && $code2 =~ /Heating/);
$tag = "RLT03§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105020/ && $code2 =~ /Cooling/);
$tag = "RLT04§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105030/ && $code2 =~ /Heating/);
$tag = "RLT04§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /105030/ && $code2 =~ /Cooling/);
$tag = "RLT06§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100080/ && $code2 =~ /Heating/);
$tag = "RLT06§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100080/ && $code2 =~ /Cooling/);
$tag = "RLT07§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100090/ && $code2 =~ /Heating/);
$tag = "RLT07§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100090/ && $code2 =~ /Cooling/);
$tag = "RLT08§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100100/ && $code2 =~ /Heating/);
$tag = "RLT08§VAL_COM\.POS\+VF" if ($id =~ /Valve/ && $level =~ /100100/ && $code2 =~ /Cooling/);

print OUT "$tag_$code2";
}

A-5
D

ata
point

grouping
algorithm

codes
41

elsif (($code1,$tag) = /RLT_([0-9]+)_Gesamt_Zaehler_([^_]+)/) {

Gets tags with structure like: ISP_Level_00-100010_//RLT_1_Gesamt_Zaehler_Wirkleistung//-AV129

$tag = "RLT01§MET\+EL_MEA\+EL" if ($code1 =~ /1/ && $tag =~ /Wirkleistung/);
$tag = "RLT02§MET\+EL_MEA\+EL" if ($code1 =~ /2/ && $tag =~ /Wirkleistung/);
$tag = "RLT03§MET\+EL_MEA\+EL" if ($code1 =~ /3/ && $tag =~ /Wirkleistung/);
$tag = "RLT04§MET\+EL_MEA\+EL" if ($code1 =~ /4/ && $tag =~ /Wirkleistung/);

print OUT "$tag";
}

else {
print OUT $_;

}
print OUT "\n";

}

close(IN); close(OUT);

A-5
D

ata
point

grouping
algorithm

codes
42

Listing A.2: Second phase: Perl code to group data points
use warnings;
use strict;
use Data::Dump qw(dd);

my $input = ’HBK_datapoints_simplified.txt’; open(IN,’<’,$input) or die $!;
my $output = ’PI_input.txt’; open(OUT,’>’,$output) or die $!;

------------------------------1.GET TAGS FROM THE ORIGINAL DATA POINT FILE-----------------------------
my (%states , %room , @wst);

while (<IN>) {
chomp;
if (my ($room_num,$tag) = /([0-9]+)§([^_]+)/) {

$room{$room_num}{$_} = $.;

if(my $tag = /SEN\+T|SEN\+AQ|MET\+EL/) {
$states{$room_num}{$_} = $.;

}
}

if ($_ = /_WST_/) {
push @wst, $.;

}
}

--------------------------------------2.CREATE THE OUTPUT HASHES---------------------------------------
my (%outformat , %inputs , %setpoints);

while(my($key, $value) = each %room) {
while(my($kii, $vii) = each %{ $states{$key} }) {

while(my($ki, $vi) = each %{ $room{$key} }) {
push @{ $outformat{$key}{$vii} }, $vi if ($vi ne $vii);
push @{ $inputs{$key}{$vii} }, $vi if (($vi ne $vii) && ($ki =~ /MEA/));
push @{ $setpoints{$key}{$vii} }, $vi if (($vi ne $vii) && ($ki =~ /SP|STEP|VAL/));

}
}

A-5
D

ata
point

grouping
algorithm

codes
43

}

-----------------------3.PRINT INTO THE OUTPUT FILE WITH COMMA-SEPARATED VALUES------------------------
foreach my $room_num (keys %outformat) {

foreach my $state (keys %{ $outformat{$room_num}}) {
if (exists $setpoints{$room_num}{$state} && $inputs{$room_num}{$state}) {

print OUT (join ’,’,
$room_num , $state , @{$inputs{$room_num}{$state}} , @wst , @{$setpoints{$room_num}{$state}});

print OUT "\n";
}

elsif (exists $inputs{$room_num}{$state}) {
print OUT (join ’,’,

$room_num , $state , @{$inputs{$room_num}{$state}} , @wst);
print OUT "\n";

}

elsif (exists $setpoints{$room_num}{$state}) {
print OUT (join ’,’,

$room_num , $state , @wst , @{$setpoints{$room_num}{$state}});
print OUT "\n";

}

else {
print OUT (join ’,’,

$room_num , $state , @wst);
print OUT "\n";

}
}

}

close(IN); close(OUT);

A-6 Row numbers of data points 44

A-6 Row numbers of data points

In this Section of the Appendix, Tables A-7 and A-8 shows the data points from the weather
station and 3.45 together with the row number they belong to in the original data point file.
This Appendix supports the information of the plots in Section 5-4-1. The BUDO tags are
used for more traceability to the data point functions. Row numbers 4764 and 4765 belong to
temperature set-points that have been caught by the tag-transformation code.

Row nº Data point (BUDO tag)
4422 B-HBK§WST_SEN+WIND.SPE
4423 B-HBK§WST_SEN+WIND.DRCN
4421 B-HBK§WST_SEN+T
4410 B-HBK§WST_SEN+SOL.RADI-N
4411 B-HBK§WST_SEN+SOL.RADI-E
4412 B-HBK§WST_SEN+SOL.RADI-S
4414 B-HBK§WST_SEN+SOL.RADI-W
4413 B-HBK§WST_SEN+SOL.RADI-SKY

Table A-7: Row numbers of data points from the weather station

Row nº Data point (BUDO tag)
4500 B-HBK_R+OFFI.OP-345§SEN+T-ROOM_MEA+T
4498 B-HBK_R+OFFI.OP-345§SEN+AQ_MEA+CO2
6700 B-HBK_R+OFFI.OP-345§SEN+T-CEIL_MEA+T
6701 B-HBK_R+OFFI.OP-345§MET+EL_MEA+POW
4575 B-HBK_R+OFFI.OP-345§CTRL.VF-17_MEA+VF
4579 B-HBK_R+OFFI.OP-345§CTRL.VF-19_MEA+VF
4577 B-HBK_R+OFFI.OP-345§CTRL.VF-18_MEA+VF
4581 B-HBK_R+OFFI.OP-345§CTRL.VF-20_MEA+VF
6703 B-HBK_R+OFFI.OP-345§SEN+PRES_MEA+PRES
4759 B-HBK_R+OFFI.OP-345§LI_COM.POS+LI.INT+7.STEP
4576 B-HBK_R+OFFI.OP-345§CTRL.VF-17_COM.POS+VF+SP
4580 B-HBK_R+OFFI.OP-345§CTRL.VF-19_COM.POS+VF+SP
4578 B-HBK_R+OFFI.OP-345§CTRL.VF-18_COM.POS+VF+SP
4582 B-HBK_R+OFFI.OP-345§CTRL.VF-20_COM.POS+VF+SP
4766 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP.ADJ
4761 B-HBK_R+OFFI.OP-345§AHU_COM.POS+VF+3.STEP
4760 B-HBK_R+OFFI.OP-345§AHU_COM.POS+AQ+SP
4764 345§T_SP-AV14
4765 345§T_SP-AV33
3043 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP+1
3044 B-HBK_R+OFFI.OP-345§AHU_COM.POS+T+SP+2

Table A-8: Row numbers of data points from room 3.45

A-7 Plots from the server 45

A-7 Plots from the server

This Appendix shows a series of plots that support the information of Section 5-4-2.

A-7 Plots from the server 46

Figure A-7: Comparison of the 3.45 power state (blue) and the occupancy (green) graphically
represented in the server for August 2021

A-7 Plots from the server 47

Figure A-8: Comparison of the 3.45 power state (blue) and the occupancy (green) graphically
represented in the server for December 2021

A-7 Plots from the server 48

Figure A-9: Comparison of the 3.45 power state (blue) and the occupancy (green) graphically
represented in the server for Week 16 of the year 2021

Appendix B

Attached digital files

Attached to the main document of this master thesis, a series of digital files supporting the
information are included. These are the following:

1. HBK_all_datapoints.txt - Contains the mentioned original data point file, with all the
17,300 data points, row by row, from the studied building.

2. Datapoints_3.01and3.45.pdf - Contains the tables of the data points from rooms 3.01,
3.45 and weather station, provided by the operator with other useful information.

3. DataGrouping_algorithm.zip - Contains only the data point grouping algorithm imple-
mented with Perl. To run it, Perl must be installed in the PC, and it must be run with
the Perl programming language.

4. ParameterId_algorithm_bySONDEproject.zip - Contains the Matlab parameter identifi-
cation algorithm. To run the algorithm, the file "mainPIinit.m" must be run. The data
point grouping algorithm is integrated inside, in the folder named "Info", which means
that this algorithm runs the whole process. After running the algorithm, the results can
then be checked in MATLAB data file "Model.mat".

5. HamburgBuilding_data.zip - This compressed file contains 7 Excel spreadsheets with
information from the operator related to the data points, which are useful to identify the
function of each data point.

• 200930_VSR_Gesamt_mit_AKS.xlsx - Information about data points related to
volume airflow.

• HBK_EDE-Files.xlsx - BACnet data from the server saved into the Engineering
Data Exchange (EDE) file.

• ISP_Level_00.xlsm to ISP_Level_04.xlsm - Provide lists of data points organized
by type of values, together with some information that can be useful to identify the
utility of the data points. One Excel spreadsheet per each level.

Bibliography

[1] F. M. of Education and Research, “Supervision and Optimization of New Buildings
from Data Exploration - FaF Forschung an Fachhochschulen.” [Online]. Avail-
able: https://www.forschung-fachhochschulen.de/fachhochschulen/shareddocs/projekte/
en/fhprofunt/sonde.html

[2] L. Schnelle, G. Lichtenberg, and C. Warnecke, “Using low-rank multilinear parameter
identification for anomaly detection of building systems,” 11th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes, 2022, status: accepted.

[3] L. Martirano and M. Mitolo, “Building automation and control systems (bacs): a review,”
in 2020 IEEE International Conference on Environment and Electrical Engineering and
2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe),
2020, pp. 1–8.

[4] D. Rigamonti, “Building automation and control system bacs - Designing Buildings,
The Construction Wiki.” [Online]. Available: https://www.designingbuildings.co.uk/wiki/
Building_Automation_and_Control_System_BACS

[5] M. A. Niazi, “The layers of modern building automation system architecture
- Control Automation.” [Online]. Available: https://control.com/technical-articles/
the-layers-of-modern-building-automation-system-architecture/

[6] N. Djuric and V. Novakovic, “Review of possibilities and necessities for building
lifetime commissioning,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp.
486–492, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1364032107001591

[7] G. Pangalos, A. Eichler, and G. Lichtenberg, “Tensor systems : multilinear modeling and
applications,” in 3rd International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, SIMULTECH, Reykjavik, Iceland, 29 - 31 July, 2013, 2013,
pp. 275–285. [Online]. Available: http://hdl.handle.net/11420/5869

[8] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review,
vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available: https://doi.org/10.1137/07070111X

[9] K. Kruppa, “Comparison of Tensor Decomposition Methods for Simulation of Multilinear
Time-Invariant Systems with the MTI Toolbox,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
5610–5615, Jul. 2017.

https://www.forschung-fachhochschulen.de/fachhochschulen/shareddocs/projekte/en/fhprofunt/sonde.html
https://www.forschung-fachhochschulen.de/fachhochschulen/shareddocs/projekte/en/fhprofunt/sonde.html
https://www.designingbuildings.co.uk/wiki/Building_Automation_and_Control_System_BACS
https://www.designingbuildings.co.uk/wiki/Building_Automation_and_Control_System_BACS
https://control.com/technical-articles/the-layers-of-modern-building-automation-system-architecture/
https://control.com/technical-articles/the-layers-of-modern-building-automation-system-architecture/
https://www.sciencedirect.com/science/article/pii/S1364032107001591
https://www.sciencedirect.com/science/article/pii/S1364032107001591
http://hdl.handle.net/11420/5869
https://doi.org/10.1137/07070111X

51

[10] F. Stinner, A. Kornas, M. Baranski, and D. Müller, “Structuring building monitoring and
automation system data,” in The REHVA European HVAC Journal - August 2018, ser.
The REHVA European HVAC Journal, REHVA, Ed., 2018, pp. 10–15. [Online]. Available:
https://www.rehva.eu/fileadmin/user_upload/10-15_RJ1804_WEB.pdf

[11] “Vocabulary of budo - RWTH University - EBC - Last edited by: Flo-
rian Stinner.” [Online]. Available: https://github.com/RWTH-EBC/BUDO/wiki/
Documentation-BUDO-vocabulary

[12] “List of considered standards for the BUDO scheme - RWTH University - EBC -
Last edited by: Florian Stinner.” [Online]. Available: https://github.com/RWTH-EBC/
BUDO/wiki/Considered-standards

[13] J. F. Butler and R. Veelenturf, “Point naming standards - ASHRAE Journal, 2010.”
[Online]. Available: http://www.bacnet.org/Bibliography/BACnet-Today-10/Butler_
2010.pdf

[14] F. Stinner, P. Neißer-Deiters, M. Baranski, and D. Müller, “Aikido: Structuring
data point identifiers of technical building equipment by machine learning,” Journal
of Physics: Conference Series, vol. 1343, p. 012039, 2019. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/1343/1/012039/pdf

[15] A. V. AHO, “Chapter 5 - algorithms for finding patterns in strings,” in
Algorithms and Complexity, ser. Handbook of Theoretical Computer Science, J. VAN
LEEUWEN, Ed. Amsterdam: Elsevier, 1990, pp. 255–300. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780444880710500102

[16] M. Sičák, “Higher order regular expressions,” in 2015 13th International Conference on
Engineering of Modern Electric Systems (EMES), 2015, pp. 1–4.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman, in Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Ed., 1979.

[18] “Perl documentation - Perl.org official webpage.” [Online]. Available: https://perldoc.perl.
org

[19] “Perl programming language official webpage.” [Online]. Available: https://www.perl.org/

https://www.rehva.eu/fileadmin/user_upload/10-15_RJ1804_WEB.pdf
https://github.com/RWTH-EBC/BUDO/wiki/Documentation-BUDO-vocabulary
https://github.com/RWTH-EBC/BUDO/wiki/Documentation-BUDO-vocabulary
https://github.com/RWTH-EBC/BUDO/wiki/Considered-standards
https://github.com/RWTH-EBC/BUDO/wiki/Considered-standards
http://www.bacnet.org/Bibliography/BACnet-Today-10/Butler_2010.pdf
http://www.bacnet.org/Bibliography/BACnet-Today-10/Butler_2010.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1343/1/012039/pdf
https://www.sciencedirect.com/science/article/pii/B9780444880710500102
https://perldoc.perl.org
https://perldoc.perl.org
https://www.perl.org/

Acronyms

BACS Building Automation and Control System
BUDO Building Unified Data point naming schema for Operation management

CP Canonycal Polyadic
ISO International Organization for Standardization
MTI Multilinear Time-Invariant

RegExp Regular Expression
SONDE Supervision and Optimization of New Buildings with Data Exploration

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgement

	Main Matter
	Introduction
	Background
	Object of thesis
	Scope of thesis
	Structure of this document

	State of the art
	Data acquisition in buildings
	Building Automation and Control Systems
	Components of the BACS

	Multilinear models in building systems
	CP-decomposed normalized rank-1 MTI model
	Parameter identification with low-rank multilinear model

	Data point tagging
	The BUDO scheme
	Utility and application of the BUDO scheme

	String pattern matching

	Creation of new automated process
	Automation of parameter identification process
	Case study
	Multi-use building in Hamburg
	Data points from the building

	Data point grouping algorithm
	Structure and format of data point tags
	Output of the data grouping algorithm
	Used Regular Expressions
	Structure detection RegExps
	BUDO string RegExps

	Implementation with Perl
	First phase: tag-transformation code
	Second phase: data point-grouping code

	Parameter identification algorithm
	Input sparse matrix
	Parameter identification algorithm process
	Automation of the whole process
	Overview of plot results
	Initial analysis and behaviour of data
	Plots for anomaly detection

	Conclusion and outlook

	Appendices
	Attached information to the document
	Perl metacharacters
	Data points from rooms 3.01 and 3.45
	Application of BUDO scheme to data points
	Deep look into the structure of the data points
	Data point grouping algorithm codes
	Row numbers of data points
	Plots from the server

	Attached digital files

	Back Matter
	Bibliography
	Acronyms

