
Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

The effect of a consistent linearization on the numerical stability of
hydrid-elements for quasi-incompressible hyperelastic solids

P. Schneider1,2,∗, J. A. Schönherr3 and C. Mittelstedt2

1 Deutsches Institut für Kautschuktechnologie e. V. (DIK)
Eupener Straße 33, D-30519 Hannover, Germany

e-mail: patrick.schneider@dikautschuk.de

2 Institute for Lightweight Construction and Design (KLuB)
Technische Universität Darmstadt

Otto-Berndt-Straße 2, D-64287 Darmstadt, Germany
e-mail: patrick.schneider@klub.tu-darmstadt.de, christian.mittelstedt@klub.tu-darmstadt.de

3 Center for Structural Materials, State Materials Testing Laboratory (MPA), Institute for Materials
Technology (IfW)

Technische Universität Darmstadt
Grafenstraße 2, D-64283 Darmstadt, Germany

e-mail: josef.schoenherr@tu-darmstadt.de

Key words: hybrid finite element, mixed formulation, finite deformation, hyperelasticity,
rubber-like material, quasi-incompressible material, discontinuous finite element

Abstract: We revisit the well-known three-field formulation introduced by Simo and Taylor,
[5]. However, while in [5] a semi-discretization is used to eliminate the additional primary
unknowns before the problem is linearized in terms of the not yet discretized displacement field,
we introduce hybrid/mixed elements based directly on the consistent linearization of the three-
field formulation on the continuum-level. In the latter case, static condensation is used to
eliminate the additional unknowns on the element-level after the linearization of the continuum
formulation in order to derive discontinuous hybrid-elements.

A family of Simo-Taylor-Pister (STP) elements, as well as a family of elements based on the
continuum-level linearization (CL3F), designed to coincide in terms of the interpolation schemes,
the number of assembled degrees of freedom and the number of integration points with the Abaqus
hybrid-elements (C3D8H,C3D20H,C3D10H) are compared to those elements by benchmark tests.
Material parameters were obtained by least-square fitting to experimental data of an industrial
NR/IR-blend (natural rubber / isoprene rubber) used for damping applications.

All tested elements are free of volumetric locking. The STP-elements show severe stability
issues. In general the maximum stable step-width of the Abaqus hybrid-elements is higher in
comparison to the STP-elements. However, the CL3F-elements outperform the Abaqus elements
in general without the usage of numerical stabilization. Especially in combination with strongly
nonlinear compression models, the advantage of the CL3F-elements is huge – here the stable
step-width is up to 22 times larger. Details can be found in a contribution which is currently
under review, [7].

1 INTRODUCTION

Irreducible (purely displacement-based) finite element formulations are ill-posed for quasi-
incompressible materials. In addition, these elements tend to be overly stiff which is an effect
known as volumetric locking. To overcome these deficiencies, several so-called mixed and hy-
brid element formulations were developed. Simo-Taylor-Pister (STP) elements were originally
introduced in [4, 5] and played a key role in the history of hybrid-element formulations. Usu-
ally this formulation is augmented in order to overcome numerical stability issues. Recent
hybrid-element formulations often rely heavily on matching numerical stabilization techniques
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as well.

2 STP-ELEMENTS

Simo-Taylor-Pister (STP) are based on the modified potential

Πmod(ϕ, Θ, p) :=

∫
Ω

W̊ (ϕ, Θ) dV +

∫
Ω

p (J(ϕ)−Θ) dV + Πext(ϕ), (1)

where the three (primary) unknown tensor fields are: the configuration ϕ (or alternatively the
displacement U), the dilation Θ and the hydrostatic pressure p. Here J = det(F ) denotes the
Jacobian and W̊ refers to the modified strain-energy density, where the displacement gradient
F is replaced by its modified counterpart F̊ := (Θ/J)1/3F . The associated weak form, i.e.
Gateaux derivative at the current state (ϕ̂, Θ̂, p̂) in the direction (η, ψ, q) (virtual state) is

G
((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
:=

∫
Ω

2
∂W̊

(
ϕ̂, Θ̂

)
∂C̊IJ

ˆ̊
FiI

ˆ̊
FjJ dev

(
ηsym
i,j

)
dV

+

∫
Ω

2ψ

3Θ̂

∂W̊
(
ϕ̂, Θ̂

)
∂C̊IJ

ˆ̊
FiI

ˆ̊
FjJ δij dV +

∫
Ω

p̂ J (ϕ̂) ηi,i − p̂ψ + q
(
J (ϕ̂)− Θ̂

)
dV + δΠext(ϕ̂,η).

(2)

Here, the modified strain-energy density W̊ can still be an arbitrary function of the modified
right Cauchy-Green tensor C̊. After the treatment of the weak form, Simo and Taylor assume
an additive split of W̊ into an isochoric and volumetric part, cf. [5], section 3.3. The imple-
mentation of STP-elements is based on the approach originally sketched in section 4.1 of [5],
here referred to as “semi-discretization approach” and recapped below.

The same inter-element discontinuous interpolation for the dilation and the pressure and
their virtual counterparts is utilized, using the same shape functions

Θe ≈
ne Γ∑
l=1

Γe,l (ξ) Θ̂e,l , pe ≈
ne Γ∑
l=1

Γe,l (ξ) p̂e,l . (3)

Regarding just the additive term of the weak form (2) that incorporates the virtual pressure q
and only the contribution of a single finite element Ωe , insertion of the interpolations (3) and

factoring out the coefficients of the virtual pressure q̂e,k leads to a matrix-vector equation that
has to equate to zero. By inversion of the matrix this equation can be solved for the nodal

values of the dilation Θ̂e,l , leading finally to an intra-element interpolation for the dilation

Θ̂e ≈
ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ) Je (ϕ̂) dV with He kl :=

∫
Ωe

Γe,k (ξ) Γe,l (ξ) dV, (4)

that only depends on the current configuration ϕ̂. Hence, (4) can be used to eliminate the
primary unknown Θ on element level. Applying the same procedure on the additive part of
(2) incorporating the virtual dilation ψ, we also obtain an intra-element interpolation for the
pressure

p̂e ≈
ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ)
2

3Θ̂

∂W̊
(
ϕ̂e , Θ̂e

)
∂C̊IJ

ˆ̊
Fe iI

ˆ̊
Fe jJ δij dV, (5)
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that only depends on the current configuration ϕ̂ by the use of (4). The elimination of the
independent pressure and the independent dilation in the remainder of (2) by insertion of the
intra-element interpolations (4) and (5) leads to a variant of the weak form depending solely
on the current configuration ϕ̂

ge (ϕ̂,η) ≈
∫
ϕ( Ωe )

{
σ̂e iso
ij + p̂e δij

}
ηsym
i,j dv + ϕ∗ {δΠext(ϕ̂,η)} . (6)

(Here it is crucial to note that p̂e is not the independent pressure anymore, but instead a
shorthand notation for the insertion of (5), which also applies for Θ̂e below.) Since (6) only
depends on the current configuration ϕ̂, i.e. not on the independent dilation and pressure
anymore, it can be linearized by derivation of the Gateaux derivative in the direction of the
displacement increment u only. The final spatial representation of the linearization reads

δ ge ((ϕ̂,η) ,u) =

∫
ϕ( Ωe )

ui,j σ̂
e
ijηi,l

+ ui,jηk,l
[
p̂e
(
δijδkl − δilδjk − δikδjl

)
+ ĉe iso

ijkl

]
+
∂2W̊

(
ϕ̂e , Θ̂e

)
∂Θ2

Θ̂e 2

Ĵe
div η divu dv, (7)

where

divu =
1

Θ̂e (ϕ̂)

ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ) Je (ϕ̂)ui,i dV (8)

is the so-called “discrete divergence operator”, cf. [5]. Finally, the introduction of an inter-
element continuous interpolation for the not yet discretized displacement field leads to STP-
elements. Since only the remaining displacement degrees of freedom are assembled, the im-
plementation is very similar to the procedure for purely displacement-based elements. Due to
the used inter-element discontinuous pressure and dilation interpolation (3) STP-elements are
classified as “discontinuous-type” hybrid elements.

3 CL3F-ELEMENTS

We propose hybrid/mixed elements – closely related to STP-elements – we call CL3F-elements,
which can be of either the discontinuous or the continuous type. A detailed contribution
including the full length derivation is currently under review, cf. [7]. The elements are based
on the continuum-level linearization of the three-field potentials weak form (2) rather than the
semi-discretization approach used for STP-elements recapped above.

We assume an isotropic, hyperelastic, quasi-incompressible, material of type

W̊ = W̊iso

(
¯̊
I1,

¯̊
I2

)
+ W̊vol (Θ) , (9)

where
¯̊
I1 and

¯̊
I2 refer to the first two isotropic invariants of C̊. The isochoric and volumetric

part of the stress are given by

σiso
ij = 2 J−1 ∂W̊iso

∂C̊IJ
F̊iI F̊jJ , σvol

ij (Θ) = 2Θ−1 ∂W̊vol

∂C̊IJ
F̊iI F̊jJ =

∂W̊vol

∂Θ
δij , (10)

and the (isochoric) stiffness is given by

ciso
ijkl = 4 J−1 ∂2W̊iso

∂C̊IJ ∂C̊KL
F̊iI F̊jJ F̊kK F̊lL. (11)
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With (10) and (11) the weak form (2) pushed to the spatial configuration reads

g
((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
=

∫
ϕ(Ω)

(
σ̂iso
ij + p̂ δij

)
ηsym
i,j dv

+

∫
ϕ(Ω)

ψ

Ĵ

(
1

3
σ̂vol
ij

(
Θ̂
)
δij − p̂

)
dv

+

∫
ϕ(Ω)

q

(
1− Θ̂

Ĵ

)
dv + ϕ∗ {δΠext(ϕ̂,η)} . (12)

Computing the Gateaux derivative of the weak form (2) for a material of type (9) at the current
state (ϕ̂, Θ̂, p̂) in the direction (u, ω, γ) (state increment), we obtain the consistent (continuum-
level) linearization of the weak form, which reads pushed to the spatial configuration

δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))
=

∫
ϕ(Ω)

{
ĉiso
ijkl I

sym,dev
ijab Isym,dev

klcd ηa,b uc,d

+σ̂iso
jl

(
2 Isym,dev

ijab Idev
ilcd − I

sym,dev
jlad δbc

)
ηa,b uc,d

+p̂ (δab δcd − δcbδad) ηa,b uc,d

+
ω ψ

Ĵ

∂2 ˆ̊
Wvol

∂Θ2
+ γ ηi,i −

γ ψ

Ĵ
+ q

(
ui,i −

ω

Ĵ

)}
dv

+ ϕ∗ {δ (δΠext(ϕ̂,η),u)} , (13)

where we introduced

Idev
ijab := δiaδjb −

1

3
δijδab ⇒ dev(tij) = Idev

ijab tab,

Isym,dev
ijab :=

1

2
δiaδjb +

1

2
δibδja −

1

3
δijδab ⇒ dev(tsym

ij ) = Isym,dev
ijab tab.

Note that already the mathematical structure of (7) differs from (13): In the STP-linearization
the dilation increment ω and pressure increment γ are missing by design, since the independent
dilation and pressure variables were removed from the weak form before the linearization.
The linearization (7) of the semi-discretization approach used for the STP-elements is not the
consistent (continuum-level) linearization of the three-field potentials weak form (2) – it is the
consistent linearization of (6).

The linearized problem of finding an incremented equilibrium state is

0
!

= g
((
ϕ̂+ u, Θ̂ + ω, p̂+ γ

)
, (η, ψ, q)

)
≈ g

((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
+ δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))
. (14)

Choosing the displacement field U as the first primary unknown (rather than the configuration
ϕ) and introducing a standard Lagrange interpolation

Ue i ≈
ne k∑
k=1

Ne,k i(ξ) ê,k,iU (15)
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for U as well as different (potentially non Lagrange-type) interpolations for the dilation and
pressure (3) with matching interpolations for all of the associated virtual quantities η, ψ, q and
introducing a quadrature scheme for a specific element Ωe , allows us to factor out the nodal
values of the virtual quantities as usual to obtain the linear equation system


u
↓

ω
↓

γ

↓

η→ Ke uu 0 Ke up

ψ→ 0 Ke ΘΘ Ke Θp

q→ Ke pu Ke pΘ 0

 ·
 ue

ωe

γe

+

 Re u − Pe u

Re Θ

Re p

 = 0, (16)

on the element level from (14). By selecting (different) inter-element continuous interpolation
schemes (3) and (15), we obtain continuous-type mixed elements by assembling all state vari-
ables (displacement, dilation and pressure). Although the element tangent stiffness matrix in
(16) is singular (due to the diagonal element which is zero) the global tangent stiffness matrix
assembled from (16) is regular.

To obtain discontinuous-type hybrid elements that are comparable to the original STP-
elements, we choose an inter-element discontinuous interpolation scheme (3) for the dilation
and pressure and an inter-element continuous one for the displacement (15). Eliminating the
dilation and pressure increments from (16) (static condensation) leads to the equation system(

Ke uu + Ke up

[
Ke Θp

]−1
Ke ΘΘ

[
Ke pΘ

]−1
Ke pu

)
ue

+ Re u − Pe u + Ke up

[
Ke Θp

]−1
Ke ΘΘ

[
Ke pΘ

]−1
Re p − Ke up

[
Ke Θp

]−1
Re Θ = 0, (17)

ωe = −
[
Ke pΘ

]−1 (
Ke pu u

e + Re p

)
, (18)

γe = −
[
Ke Θp

]−1
( Ke ΘΘ ωe + Re Θ) . (19)

Only the displacement degrees of freedom (DOFs) are assembled to the global system using the
element tangent stiffness contributions and residual vector contributions according to (17). In
contrast to the STP-approach, the current state values of the independent dilation Θ̂ and the
pressure p̂ are needed in order to compute the element stiffness and residual vector contributions.
Hence, we need to keep track of these quantities, and it is mandatory that every instance of a
finite element has internal state variables for the eliminated dilation and pressure DOFs. Once
the global equation system – assembled from (17) – is solved, the nodal displacement increments
for every element are known and the dilation and pressure increments are computed from (18)
and (19) on element level. There is no need for such a secondary variable update scheme in the
original STP-approach, since – in contrast to the increment-to-increment relations (18) and (19)
used in the CL3F-approach – the current states dilation and pressure follow directly from the
current displacement, cf. (4) and (5), and thus we have a purely displacement-based approach.
The differences in the update schemes are illustrated by the algorithms 1 and 2.
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repeat

assemble KT from Ke T

(
Ûe , Θ̂e , p̂e

)
, cf. (13), (17)

solve KT u = λPu −R
(
Ru,RΘ,Rp

)
for u, cf. (17)

foreach element e do
compute ωe ( ue ) , γe ( ue ), cf. (18), (19)

update Θ̂e := Θ̂e + ωe , p̂e := p̂e + γe

end

update Û := Û + u

assemble R from Re u

(
Ûe , p̂e

)
, Re Θ

(
Ûe , Θ̂e , p̂e

)
, Re p

(
Ûe , Θ̂e

)
, cf. (12), (17)

until ‖λPu −R‖ ≤ tol

Algorithm 1: CL3F equilibrium iterations at load level λ ∈ [0, 1]

repeat

assemble KT from Ke T

(
Ûe
)

, cf. (4), (5), (7)

solve KT u = λPu −Ru for u

update Û := Û + u

assemble Ru from Re u

(
Ûe
)

, cf. (4), (5), (6)

until ‖λPu −Ru‖ ≤ tol

Algorithm 2: STP equilibrium iterations at load level λ ∈ [0, 1]

Since the equation systems of both approaches differ from each other, the discontinuous
type CL3F-elements differ from the original STP-elements, even if we choose the exact same
interpolation schemes (3) and (15) in order to achieve a fair comparison. Comparing the
equation systems on an element-level, it is interesting to observe that the element residual of
the STP-approach equals the term Re u− Pe u in the CL3F-approach (compare (6) and the first line
of (12)), if we ignore the differences between the pressures in both approaches stemming from
the secondary variable update scheme. The additional summands of the vector residual of (17)
stemming from Re Θ and Re p are missing in the STP-approach due to the semi-discretization. On
the other hand, the transformation from the system (17), (19), (18) used by the discontinuous
CL3F-elements to the discretized consistent linearization (16) (used for the continuous type
CL3F-elements) is an equivalence transformation on element level.

4 NUMERICAL BENCHMARK

We implemented several types of discontinuous hybrid elements in a finite element program
build from scratch following the CL3F as well as the original STP approach. In order to compare
the formulations all elements are implemented without extrapolation or any numerical stabiliza-
tion. We always combine a Lagrange-type displacement interpolation with a polynomial-type
dilation/pressure interpolation. The prefixes in the element names below indicate which ap-
proach was used. The interpolation schemes are selected to match the ones used for the Abaqus
hybrid elements, cf. [6], whose names always start with C3D and end with H. In turn the num-
ber of assembled DOFs coincide. Also the quadrature schemes for STP and CL3F-elements are
selected to match the number of integration points of the Abaqus elements. The Abaqus hybrid
elements are used with default parameters, which includes the per default extrapolation.

In particular, we compare the following discontinuous hybrid elements:

• Hexahedral elements with linear Lagrange-type (8 node) displacement interpolation and
constant dilation/pressure ansatz, 24 assembled DOFs: C3D8H, STP-H1G8-P0, CL3F-H1G8-P0
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• Hexahedral elements with quadratic, serendipity-type Lagrange (20 node) displacement
interpolation and linear dilation/pressure ansatz, 60 assembled DOFs: C3D20H, STP-H2sG27-P1,
CL3F-H2sG27-P1

• Tetrahedral elements with quadratic Lagrange-type (10 node) displacement interpola-
tion and constant dilation/pressure ansatz, 30 assembled DOFs: C3D10H, STP-T2G4-P0,
CL3F-T2G4-P0

Also we implemented the following continuous type CL3F-elements for a comparison:

• CL3F-H2sG27-L1: A hexahedral element with quadratic, serendipity-type Lagrange (20
node) displacement interpolation and linear Lagrange-type (8 node) dilation/pressure
ansatz, 76 assembled DOFs

• CL3F-T2G4-L1: A tetrahedral element with quadratic Lagrange-type (10 node) displace-
ment interpolation and linear Lagrange-type (4 node) dilation/pressure ansatz, 38 assem-
bled DOFs

To benchmark the influence of the strength of the nonlinearity in the material model, we com-
bine the Neo-Hooke model for the isochoric part of the strain energy density (µ0 = 1.0316 MPa)
with three different compression models. Sorted by the strength of the uplift from weakest to
strongest nonlinearity, the compression models are:

• Ogden compression model, cf. [2], W̊vol = K0

β2

(
β lnΘ +Θ−β − 1

)
, K0 = 2781 MPa, β =

−2

• Standard compression model, W̊vol = 1
2
K0 (Θ − 1)2, K0 = 2816 MPa

• Hartmann-Neff model, cf. [1], W̊vol = K0

2β2

(
Θβ +Θ−β − 2

)
, K0 = 2290 MPa, β = 41

All compression models are (least-square) fitted to the same experimental data obtained by
confined axial compression testing of an industrial NR/IR-blend (natural rubber / isoprene
rubber) with strongly nonlinear compression behavior used for damping applications, cf. [3].

The benchmark geometry, boundary conditions and the load-case are adapted from the well
known block locking test, described in detail in [8, pp. 458].

Standard tests for finite element performance are usually mesh convergence studies: To asses
an elements stiffness, the load-case is fixed and the mesh is refined in several steps towards the
point where the solution does not change anymore within a certain tolerance. Usually one plots
the maximum displacement vs. the mesh size for illustration. For each of the three groups of
comparable discontinuous hybrid elements (and for each compression model), we see the same
mesh convergence behavior. Here we only provide the plot for quadratic hexahedral elements
for brevity, cf. Figure 1. The displacements fields coincide beside small round-off errors for
different, comparable elements – even in the regime where the displacement is still mesh de-
pendent. Especially all tested discontinuous elements are free of volumetric locking, like the
original STP-elements, judged by the displacement-field. The continuous CL3F-elements have
a different mesh convergence behavior, if compared to discontinuous elements with the same
displacement ansatz. They need a slightly finer mesh to converge, but still the elements are free
of volumetric locking. Their convergence is non-monotonic in contrast to the discontinuous ele-
ments. Also it is noteworthy that each equilibrium iteration is computationally more expensive
than for comparable discontinuous elements due to the increased number of DOFs for a fixed
mesh size. These disadvantages are however to some extent counterbalanced by the fact that
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Figure 1: Mesh convergence study: quadratic hexahedral elements

the continuous elements need significantly less equilibrium iterations than the discontinuous
elements in general.

The similarity in the mesh convergence behavior for the discontinuous STP- and CL3F-
elements was expected since the semi-discretization approach eliminates variables from the
weak form so that we did not expect pronounced differences for converged (i.e. equilibrium)
states. However, due to the differences in the tangent stiffness matrix and right-hand side the
elements differ in terms of the numerical stability. Under numerical stability (or robustness)
we understand the maximum load-step size that can be applied (for a specific combination
of hybrid-element and material model) so that the (only locally converging) Newton-Raphson
scheme still converges. As a benchmark test we increase the total load, which is always applied
in five equidistant steps, until for one of the five load steps the equilibrium iterations diverge.
The maximum load for each combination of hybrid element and material model is displayed
in Figure 2. It should be mentioned at this point, that a stability benchmark like this is in
contrast to mesh convergence studies not at all a standard test in the literature, although the
ability to apply large load-steps is obviously a desirable property.

In Abaqus only the standard compression model is readily available. Therefore, in combi-
nation with the standard compression model we tested the Abaqus elements (in red) twice: In
combination with the internal material model and with the same material model implemented
by a UMAT. (The nonstandard models are both implemented by UMATs for the testing of the
Abaqus hybrid elements.) Interestingly, the internal standard model performs slightly better
than the UMAT implementation. Comparing only UMAT implementations, the Abaqus elements
perform worse for compression models with stronger nonlinearity. Especially for the Hartmann-
Neff model, the stable step-width of the Abaqus elements is significantly reduced. The original
(not augmented) STP-elements (in gray) perform worse than the Abaqus elements and suffer
from severe stability issues in general. In contrast, the (not augmented) CL3F-elements (in
blue) perform better than the Abaqus hybrid elements in general. Furthermore, in contrast to
the Abaqus elements, all CL3F-elements achieve the same stable step-width (within the margin
of error of the test) independent of the used compression model. In turn, the advantage of
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Figure 2: Numerical stability benchmark

the CL3F-elements is huge for the strongly nonlinear Hartmann-Neff model. (Here, the stable
step-width is up to 22 times larger.) Another observation is that within the margin of error,
we observe no difference in terms of the numerical stability between continuous CL3F-elements
and comparable discontinuous CL3F-elements.

5 CONCLUSIONS

Comparing the Abaqus hybrid elements to the STP- and CL3F-elements it should be emphaz-
ized that the Abaqus/Standard default settings, especially the default extrapolation was used
for the Abaqus hybrid elements, i.e. a method to determine the first guess to the incremental
solution. In contrast the initial value of the incremental solution for the implementation of the
STP- and CL3F-elements was simply zero. Also, no stabilization techniques were used for the
STP- and CL3F-elements. Hence, the Abaqus hybrid elements (which are used as provided) have
a huge advantage in the stability benchmark. Therefore, it is remarkable that the CL3F-elements
overcome the stability issues of the STP-elements to an extend that they outperform the pro-
duction stage Abaqus elements, especially since recent hybrid-element formulations often rely
heavily on matching numerical stabilization techniques.
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