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Resum
La conducció és una de les formes de transport més comunes i preferides en l’actualitat.

Tanmateix, diferents estudis assenyalen també que hi és una de les més perilloses. Una
solució per augmentar la seguretat a la carretera és aplicar la tecnologia per automatitzar
i prevenir els errors evitables humans. No obstant, malgrat dels esforços per aconseguir
sistemes fiables, encara no hi hem trobat una solució suficientment fiable i segura per resol-
dre aquest repte. Una de les raons és l’entorn de la conducció, amb situacions que disten
molt de les ideals, per condicions d’il·luminació variables i entorns ràpids i imprevisibles.
Aquest projecte desenvolupa i avalua un algorisme que pren l’entrada de sensors de visió
dinàmica (DVS) i executa la seva computació amb xarxes neuronals neuromòrfiques (SNN)
per obtenir un sistema robust de seguiment de carrils a la carretera.

Presentem mètriques quantitatives i qualitatives que avaluen el rendiment del reconei-
xement de carrils en condicions de poca llum, davant d’algorismes convencionals. Aquest
projecte està motivat per la validació de les avantatges dels sensors de visió neuromòrfica:
el reconeixement d’un alt rang dinàmic i la captura d’imatges d’alta velocitat. Un altra
de les millores que s’espera d’aquest sistema és la velocitat de processament i l’eficiència
energètica que caracteritza el hardware neuromòrfic basat en xarxes neuronals d’impulsos.
Els resultats obtinguts mostren una precisió similar entre el nou algorisme en comparació
amb implementacions anteriors en plataformes convencionales. I el que és més important,
realitza la tarea proposada amb menor latència i requisits de potència de càlcul.
Paraules clau: Hardware Neuromòrfic,Sistemes de visió per computadora, Reconeixe-
ment de Carril, Conducció autònoma, Sensors de visió neuromòrfica, Xarxes neuronals
d’Impulsos,Xarxes neuronals de Tercera Generació, Avaluació d’Algorismes

Resumen
La conducción es una de las formas de transporte más comunes y preferidas en la

actualidad. Sin embargo, diferentes estudios muestran que también es una de las más pe-
ligrosas. Una solución para aumentar la seguridad en la carretera es aplicar la tecnología
para automatizar y prevenir los evitables errores humanos. No obstante, a pesar de los
esfuerzos por conseguir sistemas fiables, todavía no hemos encontrado una solución sufi-
cientemente fiable y segura para resolver este reto. Una de las razones es el entorno de la
conducción, en situaciones que distan mucho de las ideales, con condiciones de iluminación
variables y entornos rápidos e imprevisibles. Este proyecto desarrolla y evalúa un algorit-
mo que toma la entrada de sensores de visión dinámicos (DVS) y ejecuta su computación
en redes neuronales neuromórficas (SNN) para obtener un sistema robusto de seguimiento
de carriles en carretera.

Presentamos métricas cuantitativas y cualitativas que evalúan el rendimiento del re-
conocimiento de carriles en condiciones de poca luz, frente a algoritmos convencionales.
Este proyecto está motivado por la validación de las ventajas de los sensores de visión
neuromórficos: el reconocimiento de un alto rango dinámico y la captura de imágenes de
alta velocidad. Otra de las mejoras que se espera de este sistema es la velocidad de pro-
cesamiento y la eficiencia energética que caracterizan al hardware neuromórfico basado
en redes neuronales de impulsos. Los resultados obtenidos muestran una precisión similar
entre el nuevo algoritmo en comparación con implementaciones anteriores en plataformas
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convencionales. Y lo que es más importante, realiza la tarea propuesta con menor latencia
y requisitos de potencia de cálculo.
Palabras clave: Hardware Neuromórfico,Sistemas de visión por computador, Reconoci-
miento de Carril, Conducción autónoma, Sensores de visión neuromórfica, Redes neuro-
nales de Impulsos,Redes Neuronales de Tercera Generación, Evaluación de Algoritmos

Sammanfattning
Att köra bil är ett av de vanligaste och mest populära transportsätten i vårt samhälle.

Enligt forskningen är det också ett av de farligaste. En lösning för att öka säkerheten på
vägarna är att med teknikens hjälp automatisera bilkörningen och på så sätt förebygga
misstag som beror på den mänskliga faktorn. Trots ansträngningarna för att få fram till-
förlitliga system har man dock ännu inte hittat en tillräckligt tillförlitlig och säker lösning
för självkörande bilar. En av orsakerna till det är att många körningar sker under för-
hållanden som är långt ifrån idealiska, med varierande ljusförhållanden och oförutsägbara
miljöer i höga hastigheter. I det här projektet utvecklar och utvärderar vi en algoritm
som tar emot indata från dynamiska synsensorer (Dynamic Vision Sensors, DVS) och kör
datan på neuromorfiska pulserande neuronnät (Spiking Neural Networks, SNN) för att
skapa ett robust system för att läsa av vägbanan.

Vi presenterar en kvantitativ och kvalitativ utvärdering av hur väl systemet läser av
körbanans linjer i svagt ljus, och jämför därefter resultaten med dem för tidigare algo-
ritmer. Detta projekt motiveras av de viktigaste fördelarna med neuromorfiska synsen-
sorer: brett dynamiskt omfång och hög bildtagningshastighet. En annan fördel hos detta
system är den korta beräkningstiden och den energieffektivitet som kännetecknar neuro-
morfisk hårdvara baserad på pulserande neuronnät. De resultat som erhållits visar att
den nya algoritmen har en liknande noggrannhet som tidigare algoritmer på traditionella
hårdvaruplattformar. I jämförelse med den traditionella tekniken, utför algoritmen i den
föreliggande studien sin uppgift med kortare latenstid och lägre krav på processorkraft.
Nyckelord: SpiNNaker, Neuromorfiska hårdvara, neuromorfiska pulserande neuronnät,
Datorseende system, läser av körbanans, självkörande bilar, läser av linjer, dynamiska
synsensorer, Tredje generation neuronnät, utvärdering av algoritmen

Abstract
Driving is one of the most common and preferred forms of transport used in our

actual society. However, according to studies, it is also one of the most dangerous. One
solution to increase safety on the road is applying technology to automate and prevent
avoidable human errors. Nevertheless, despite the efforts to obtain reliable systems, we
have yet to find a reliable and safe enough solution for solving autonomous driving. One
of the reasons is that many drives are done in conditions far from the ideal, with variable
lighting conditions and fast-paced, unpredictable environments. This project develops and
evaluates an algorithm that takes the input of dynamic vision sensors (DVS) and runs on
neuromorphic spiking neural networks (SNN) to obtain a robust road lane tracking system.

We present quantitative and qualitative metrics that evaluate the performance of lane
recognition in low light conditions against conventional algorithms. This project is moti-
vated by the main advantages of neuromorphic vision sensors: recognizing a high dynamic
range and allowing a high-speed image capture. Another improvement of this system is the
computational speed and power efficiency that characterize neuromorphic hardware based
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on spiking neural networks. The results obtained show a similar accuracy of this new algo-
rithm compared to previous implementations on conventional hardware platforms. Most
importantly, it accomplishes the proposed task with lower latency and computing power
requirements than previous algorithms.
Key words: Neuromorphic Hardware; Spiking Neural Network; Computer vision system;
Lane recognition; Autonomous driving; Line Recognition; Neuromorphic Vision Sensors;
Third Generation Neural Networks; Algorithm Evaluation
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CHAPTER 1

Introduction

The development of autonomous driving vehicles represents one of the most significant
challenges for current Artificial Intelligence models, as can be observed by the great num-
ber of studies developed in recent years [2, 3, 4, 5] For this reason, this field represents
a baseline to evaluate the current capabilities and most advanced "state of the art" tech-
nologies. These technologies face the challenge of solving this car driving problem with
accuracy and reliability. The solution motivates the advance of the new technology and
allows using these tasks as an evaluation benchmark for comparing different technologies.
[6]

The first approaches, such as the system created by Thorpe et al., show an initial
strategy for solving this problem. One of the main obstacles was the low computational
power of the available computers, which limited the system’s speed to an average lower
than 30km/h [7]. Nowadays, however, we have access to computing resources character-
ized by their powerful, flexible, and specialized topologies that allow better efficiency and
performance while offering great flexibility to adapt to different use scenarios [8]. These
new architectures provide researchers with a broad range of systems to implement new
solutions to existing problems. For this reason, researchers work on looking for optimiza-
tions for the already available approaches. Another option is to research and evaluate the
use of new emerging platforms and assess their adequacy compared to previous models.
These are also key strategies to obtain more capable systems that improve performance
over previous state-of-the-art research.

Therefore, in this project, we evaluate the development of a system based on a new
computing paradigm for addressing the lane detection problem, in this instance, by using
neurological hardware. This choice is motivated by the results of previous studies, where
we can see how the application of this new hardware in well-known tasks can improve
the accuracy and speed of its output. These systems, also called third-generation Neural
networks, are based on Spiking Neural Networks (SNN), whose foundations are inspired
by the biology of the brain’s neurons, as shown in Figure 1.1. [3, 4]

The working nature of Spiking Neural Networks is based on replicating the network
of connections formed between the brain’s neurons down to the physical level. These
neuronal networks represent a programming paradigm where systems can perform complex
calculations based on many simple neurons that communicate between themselves with
pulses of electricity, also called Spikes. One of the main advantages is achieving a high level
of parallelization on high-scale networks of neurons that define different interconnections
and weights between them. [9]

There exist different devices based on neuromorphic hardware. For this project, we
work on an integral neuromorphic setup composed of an event-based sensor that provides
the input for the system and a processing unit (Spiking Neural Network, SNN) that
performs the computations based on the brain’s architecture. This architecture allows us
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4 Introduction

Figure 1.1: Basic Model of a Neuron [1]

to produce and receive all needed operations in a single computing device, saving power
and space. The board used in this project is the SpiNNaker, developed by the University
of Manchester [10].

In conclusion, we define the lane detection problem as one of the critical aspects of
accomplishing the autonomous navigation of vehicles. The problem is based on the neces-
sity for accurate perception and translation of the real world into digital data. Thanks to
this system, future car driving algorithms can use the resulting data as input for decision-
making. In this way, we center on solving one of the core tasks for autonomous driving:
obtaining input data from lane detection. The road markings have to be precisely rec-
ognized to model the system’s environment and analyze the car’s current position with
respect to its surroundings. This process also requires the shortest possible computing
time, minimizing the latency to have a responsive system. We base our study on previ-
ous research done in this field ([4, 11, 12]) and expand it by combining the usage of a
neuromorphic system for both obtention and computation of the lane markings.

1.1 Research Question

Development and Evaluation of a new Road Marking Recognition Algorithm implemented
on Neuromorphic Hardware, based on the usage of Event-Based Cameras and Spiking Neu-
ral Networks and compared against previously studied conventional algorithms.
In this project, we implement and evaluate a new algorithm based on the findings of
previous studies made on related topics to create a new system implementing the de-
sired functionality of lane detection. For this reason, this system has no precedent, as
it implements a lane tracking system using exclusively neuromorphic hardware, and its
computation is based wholly on asynchronous events. Finally, we compare the obtained
results with previous studies to evaluate the system’s accuracy and correctness.

1.2 Approach

The approach of this project is divided into three steps. First, review and evaluate other
techniques explored in previous systems [4, 11, 12] to set a comparison baseline from
which we evaluate our development. Secondly, we create the new system, where the
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new algorithm is defined and then implemented based on the constraints and desired
functionalities to be achieved. Therefore, we carry out the implementation followed by
careful study and optimization of the algorithm to ensure we obtain a correct output
directly measured against previous research on the topic.

Finally, after obtaining our working system, we describe the results. We evaluate and
compare the results by applying the same input dataset to our new model and to previous
conventional solutions for the problem. Given this data, we present it visually in this
project and extract different metrics, allowing us to establish an objective comparison
and do a performance study based on the methods explained in the corresponding section.
Results show whether the approach followed in this research leads to a more capable system
than previous approaches used in earlier studies with different conventional methodologies
aiming to solve the same task.

1.3 Scope

In this project, we aim to assess one of the key capabilities of neuromorphic hardware. To
accomplish this goal, we evaluate the algorithm on the scope of lane detection under low
light conditions [13]. We compare the model’s output using a dataset captured by driving
during the night. [5]

This scope selection allows us to show and prove one of the essential characteristics of
neuromorphic sensors: their sensibility to illumination changes, which enables the obten-
tion of meaningful data from their surroundings even in low light portions of the image.
These characteristics also prove the suitability of neuromorphic hardware for autonomous
driving. Use scenarios for autonomous cars often involve far from ideal conditions for
illumination, making it very important to show flexibility to the usage in low luminance.
According to the NHTSA (National Highway Traffic Safety Administration of the USA),
at least 25 % of drives performed in the United States in 2008 were done at night [14].
These situations also involve the highest percentage of crashes, being 68% of the fatal
injuries produced in night drives, as shown by the latest report from NHTSA in 2022 [15].
This data proves it as one of the most challenging use cases for autonomous driving and
remarks on the benefits of applying neuromorphic hardware for this use case to reduce
fatalities and achieve safer driving.





CHAPTER 2

Background

This project is based on two main fields of study: neuromorphic vision sensors and neu-
romorphic computing models. A new approach is explored in the project, aiming to take
advantage of the most highlighted features of using both methods together.

2.1 Neuromorphic Hardware

Neuromorphic hardware represents the primary tool for the development of this project.
Our main goal is to evaluate the performance of this hardware compared to implemen-
tations done on conventional computing platforms. The primary motivation for the de-
velopment of this project is to assess the capabilities of neuromorphic hardware. In our
case, the system will be using two neuromorphic devices, Event-Based cameras, which will
act as input sensors for the model, and use a Spiking Neuronal Computer to perform the
computations.

The architecture of the human brain is the main inspiration followed for the design
of neuromorphic computers. We can define the brain as an extensive array of neurons
connected by synapses. These synapses provide the neuron with specific ways to commu-
nicate by generating short pulses. These pulses, also called spikes, are then propagated so
that the next neuron can produce another output based on the combination of different
input pulses. This modification of the connections and their neuron behaviors in the sys-
tem constitutes the main programming variables available, which we can use to simulate
varying processes and successfully perform a specific task.

The study by Date et al. successfully proved Spiking Neural Networks as a Turing
complete architecture. This study demonstrates how a set of µ-recursive functions can
be computed using neurons on a mathematical model with an infinite number of neurons.
With these results, we can prove the capabilities of neuromorphic computation to solve
any general computing task, as the neurons can emulate any Boolean logic functions [16].

2.1.1. The SpiNNaker Board

In our project, we simulate a neurological network by using the development platform
SpiNNaker[17]. The University of Manchester initially developed this board in 2005 with
funding from the Engineering and Physical Sciences Research Council[18] and in posterior
with the collaboration of other universities and companies, such as the processor designer
ARM. Its main objective is to obtain a computer capable of simulating the neurons in the
brain by following the fundamental structure and elements that make the functioning of
the brain. In this way, it aims to accomplish a high-performance and efficient computing
platform that can be used as a tool in different fields to research the impact of different
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8 Background

architectures instead of using conventional supercomputing methods for the simulation of
neuronal models.

The main fundament on which SpiNNaker bases its working is the research based on
the brain neurons and the synapses between them. According to each project’s computing
necessities and physical space requirements, there exist different variations of the board.
In this project, because of the big parameter space used, we used the SpiNNaker 5 board.
The SpiNNaker 5 board, as shown in Figure 2.1 is formed by 48 nodes, each of them
containing 16 cores for a total of 768 available computing cores. The design of these cores
is motivated to provide a high level of task parallelization. For this reason, all the elements
needed for the computation, such as the 128MB of SDRAM memory per chip, Memory
controllers, and routing elements, are enclosed in the same processor to improve latency
and allow a higher replication by the distribution of these systems.[19, 17] Additionally,
each of these nodes is interconnected using a high-speed bus. The board also provides
a Gigabit Ethernet connection port for handling the communication with the managing
computer for data inputting and programming of the board.[20, 21]

Figure 2.1: The SpiNNaker architecture [19]

2.1.2. Neuron architecture in the SpiNNaker Board

The SpiNNaker architecture is programmed using the standardized PyNN [22] python
library, on top of which resides the lower-level layer in charge of communicating and
sending the corresponding commands from the programming computer to the physical
Spiking board. This library defines several Neuron models that encode different behaviors
and parameters that we can modify to simulate real brain neurons and use them to obtain
the most accurate results depending on the needed task. [21, 22]

The most widely used model is the Leaky Integrate and Fire (LIF), mainly because of
its simplicity and performance. The LIF model is based on the electrical modeling of a
neuron as a circuit with a capacitor and a resistor connected in parallel. This capacitor
simulates the charging of a neuron, where the different electrical pulses received by the
synapses are added until a specific threshold voltage. Once this limit value is reached, the
neuron produces a spike, represented by the capacitor discharging and leaking its charge
over the resistor, which models the time it takes for the capacitor to discharge fully. The
model’s formula that calculates the voltage at a given point in the neuron is presented
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dV

dt
= −V − (El + RmI(t))

τm
If V > V0, V = Vreset (2.1)

Figure 2.2: Formula for the Voltage in the LIF neuron model [21]

in Equation 2.1. In this mathematical equation, we show the resulting potential of the
neuron V based on the input current I, and starting from a leak potential El. We can
observe the relation between the possible parameters of the model, such as the resistance
of the membrane Rm and the leak time constant τm. [1, 23]

We can also observe the threshold condition encoded in Equation 2.1; this models the
neuron’s behavior once it reaches the maximum voltage. In this case, the voltage V of
the neuron is set to the value of parameter Vreset, which encodes the starting voltage of a
neuron after producing a spike. [23]

The PyNN library implements other models apart from the presented LIF neuron.
One of the most important is the Izhikevich Neuron. This model also implements the
simulation of a biological neuron based on the characteristics and results observed in
different studies. This model is based on a quadratic interpretation of the integrate and
fire, mainly inspired by the fundamentals of the LIF neuron mentioned above. The main
difference resides in the behavior and nature of the parameters, which are dimensionless
and decoupled from a physical meaning as opposed to the previous model, which in some
specific tasks may be more performant. [21]

2.2 Event Based Vision Sensors

Event-based vision sensors, also called Dynamic Vision Sensors (DVS) or neuromorphic
cameras, allow us to record the world using an asynchronous, event-driven approach in-
spired by the eye’s retina. This means the system only produces an output in a pixel once
a change in its intensity is detected. The resulting data is presented as a tuple (x, y, t, p)
where we find the coordinates of the pixel (x, y), the time where the event is generated t
and the polarity of the change p, which is either positive (1) or negative (-1). This working
principle is opposed to conventional cameras (CMOS). In event-based cameras, the output
corresponds to an array of pixels generated regularly by following a constant frequency
(e.g. 60fps), regardless of whether the pixels recorded are similar to their predecessors.
[12]

Figure 2.3: Comparison Schema of a conventional camera and an Event vision camera. [24]

The DVS architecture presents advantages that make it especially suitable for the line
detection challenge. On the one side, they are more power-efficient than regular cameras.
Their basis for output generation is based on the changes in the image. The amount of
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power and data generated depends on the changes found in the picture and thus allows
more flexibility to changing environments. This fact also leads to a better time resolution
than conventional sensors, allowing event-based sensors to capture more detail on high-
speed events, equivalent to a resolution of a million frames per second on conventional
cameras. This feat is possible by limiting the tracking of the changes in the sensor where
only the affected pixels generate a signal. [13, 25]

In addition, and related to the scope chosen for this project, DVS cameras have an
extended dynamic range (120dB compared to 60dB on conventional cameras). This range
results from using a logarithmic function on the sensors that determine when to trigger
the events. Only those events exceeding a brightness difference higher than a predefined
threshold will "fire" and produce an output event. This feature means these sensors can
obtain details from images with a wide exposure range (from very brightly lit to dark
sections), making them suitable for recording road lanes, where there are constant changes
in illumination conditions. Additionally, cases such as night drives suppose an extra
challenge that requires a high sensibility of the sensor to capture the lines in environments
with low illumination. For this reason, using these sensors potentially allows us to obtain a
higher amount of detail, resulting in a more capable and precise system. Results explored
by Hu et al.[5] present a 17% better steering accuracy when using the dataset obtained at
night when compared with the same environment at day, proving how DVS sensors can
significantly obtain more details in poor illumination environments. [12, 5]

2.3 Lane and Line Detection

Lane detection is a well-known application for computer vision, precisely the task of line
recognition to obtain the lanes’ position in an environment. Computer vision research
started in the late 1960s when the first studies explained different methods to translate
geometric objects from the 3D world to a 2D perspective using computing machines.
These methods set a starting point for further developments, soon switching to using
images instead of figures as input. The obtained results led to a period of optimism,
where most researchers considered the problem as easily solvable. However, soon it was
proven how the challenge of computer vision required the analysis and computation of
an extensive amount of data. Studies showed that the available power of computers at
the time was not sufficient for showing any relevant results, and vision became one of the
principal stepping stones that led to the AI winter. With the arrival of the internet and
the development of computing power, studies centered on computer vision began gaining
popularity in 1990.[26]

Current developments focus on training and using neural networks to apply artificial
intelligence for line detection. The research was motivated by the improvement of com-
puting hardware that led to new techniques based on higher amounts of data processing.
Challenges such as the ImageNet Large Scale Visual Recognition Challenge[27] motivated
new developments and allowed the direct competition to advance and obtain better meth-
ods for image recognition. The error rate obtained with each iteration of the models
dropped significantly, opening a new era of optimism and motivating the application of
computer recognition models to more situations and environments. Among them, we find
the field of autonomous driving, where environment recognition has a crucial role in ensur-
ing an accurate system that can obtain a significant amount of information in the shortest
possible time.
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2.3.1. Previous Studies on Lane Detection

To perform the task of lane recognition using DVS, we find previous studies such as the
one made by Everding and Conradt[12]. This study develops an algorithm for multiple
line recognition from scenes captured by event-based sensors. An algorithm is developed
to accomplish the objective of clustering the events into differentiated groups. Then it
is checked whether these clusters can form a plane in a specific time and position. The
results from the study show how this system was capable of obtaining a high precision
recognition of lines. It demonstrated a low latency and surpassed other algorithms based
on CMOS cameras by getting a 10% better accuracy.

Another study carried out by Reverter Valeiras et al.[28] proposes another approach
for line detection on DVS based on the idea of weight applied to the events triggered by the
camera. In this algorithm, the events received are analyzed individually and assigned to a
possible line in the plane. The algorithm checks if the line is closer than a threshold to the
previous guess, then its weight is updated with a mean square error formula to fit the line.
The main reason for this approach is to allow the algorithm to store within memory the
previous events and be able to use them to classify future input based on it. This study
showed high accuracy for the line recognition while presenting some difficulties when the
camera moved in a parallel direction to the detected lines, which can be a problem for the
task researched in this project.

2.4 Spiking Neural Networks and Lane Detection

As expressed before, we can find studies that develop algorithms to detect straight lines
by using spiking neuronal networks [11, 12, 28]. We center our research on those studies
showing the application of this technology for lane recognition on the road. The paper by
Li et al.[4] shows how the use of the Hough Transform for detecting lanes from a captured
set of images of road driving. This study presents an algorithm consisting of three stages.
The first stage consists of RGB image processing to allow more detail and contrast to be
extracted from the raw image. After it, edge detection is performed to obtain the lane
markings boundaries from the pixels showing the lines. The spiking network performs
this operation by setting a layer of four neurons in charge of recognizing the possible pixel
positions representing an edge in an image, with one neuron used to detect each possible
edge and the positions on a square. The information is passed to the output layer in charge
of encoding the positions where an edge has been successfully detected. This image is then
used in the final step of the algorithm that applies the Hough Transform, as mentioned
above, on the detected edges to find a line that represents the lanes of the road (supposing
the camera captures a straight lane with two parallel lines on each side of the camera
stream). This research shows how the system can speed up the detection task compared
to previous algorithms, in this case by being run on a parallel board resulting in a latency
measurement within 100ms. The accuracy obtained resulted in a lane true positive rate
of 92.6%.[4]

2.5 Putting it all together

We define a working guideline for our study using the provided background. This project
aims to evaluate the performance of a lane recognition system implemented exclusively
using neuromorphic hardware. As a complement to the previous studies, we are using both
a capture system based on Event-based sensors and data processing using an algorithm
based on a spiking neural network. This algorithm is then run on a spiking neural network
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board named "SpiNNaker". This fact allows us to inherit all the stated advantages that
these systems provide, allowing a faster and more efficient computation motivated by an
event-based workflow.[10] The number of operations required in this system aligns with
the number of changes found in the environment. This characteristic allows for a reduction
of the standby power consumption and lowers the latency for a real-time system.[29]

Analyzing previous studies, we observe the essential methods we use as the first ap-
proach to a solution based on the usage of weights to map each event produced by the
DVS to a neuron in the model. The model developed by Seifozzakerini et al.[30] proves a
system very similar to the one we aim to obtain in this project, using DVS and Spiking
neural networks to detect straight lines. The basis of its work is to create a network of
neurons with whom we represent the different parameters that define a straight line based
on the Hough Transform. On the basis of this study, we will perform the development of
a new algorithm for the recognition of lanes in a road instead of recognizing straight lines
in synthetic images.
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Methods

A basic definition of the lane detection task involves the following basic steps: the system
obtains its input from a sensor located on the front of a car, capturing the real world from
the view of the driver. This input data is processed by the algorithm, capable of obtaining
the most exact representation of the real world possible. The output obtained represents
the positions of the lane markings by using straight lines in a mathematical description.
In previous research for this topic in the field of neuromorphic hardware, methods such
as edge detection algorithms and the usage of the Hough Transform have been used [30,
4]. We will center our methodology on the Hough Transform algorithm implemented on
a SpiNNaker neuromorphic board.

3.1 Dataset

One of the main tasks to be carried out to evaluate and test a new computer vision
algorithm is to obtain an accurate and representative dataset for testing the algorithm. It
is crucial to ensure this data is obtained with calibrated sensors and has no noise affecting
the information it represents. Hence, it is crucial to invest time and effort in revising and
developing a suitable data capturing system capable of obtaining meaningful inputs that
represent future use cases as tightly as possible.

To carry out this task, we use two sets of recorded data to ensure the correct functioning
of the algorithm. First, we obtain and use a simple dataset that records straight lines
on blank paper with a Dynamic Vision Sensor. This dataset is used to perform a first
evaluation of the algorithm’s correctness with a simple test case. After this step, we use
actual data recorded on real drives. For this, we use a freely available driving dataset.

Analyzing the literature, we find several datasets recorded with different vehicles and in
varying road environments. We will use exclusively datasets that provide a recording using
Dynamic Vision Sensors, which is a requirement for the algorithm. One example is the
DAVIS Driving Dataset (DDD20) developed by the University of Zurich, which provides
data aimed to help develop algorithms for driving assistance [5]. Another dataset, and
the one we have chosen for this project, is the Multi Vehicle Stereo Event Camera Dataset
(MVSEC) provided by Zhu et al.[31] from the GRASP Laboratory at the University of
Pennsylvania. This choice is motivated by the scope of the project. We aim to evaluate
the system’s performance on drives performed at night in a low-light environment. The
chosen dataset was captured on a regular car driving through the city of Philadelphia,
Pennsylvania (US).

13
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3.1.1. Obtention of a Dataset of Simple Straight Lines

The initial dataset for the project consists of recordings of a straight line performing
a controlled translation movement in front of the sensor. The obtention of this same
dataset is performed as part of the project’s research scope. For this end, we use a DVS
event camera DAVIS 346 from iniVation. This camera supports recording events from a
resolution of 346x260 pixels and provides additional data such as a Greyscale frame image
recording and gyroscopic sensor data.

The setup for the dataset is a drawing of a straight line on a blank piece of paper. We
locate this figure in front of the camera to obtain events that correspond to the straight
line and can easily be interpreted by the algorithm. For the recording, we use the Dynamic
Vision Viewer software provided by the manufacturer of the sensor iniVation. The result
is an "aedat4" data file, which contains the events, and can be imported to our algorithm.
The visual output is observed in Figure 3.1. The obtained result allows us to define a
basic input for a use case of the algorithm that reduces noise and distortion, ensuring only
the most relevant data is processed.

(a) Greyscale Frame

→

(b) Events captured by the DVS

Figure 3.1: Process of capturing for DAVIS Sensor

3.1.2. Obtention of a Driving Dataset

Additionally to the basic dataset, we use a more extensive dataset based on a real use case.
In this case, we chose the one by Zhu et al.[31]. This dataset contains recordings performed
by a sensor array as seen in Figure 3.2 consisting of two DAVIS 346B neuromorphic
cameras, which offer a stereo capture with a resolution of 346x260 pixels. Along with these
sensors, we find other devices used for data obtention, such as Visual-Inertial sensors,
GPS, gyroscopes, or Motion capture cameras. These sensors can be helpful in other
applications, such as autonomous driving, where the data obtained can provide ground
truth information about the vehicle’s position and orientation with respect to the actions
taken by the system.[31]
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Figure 3.2: MVSEC Dataset Recording setup

This data is then encoded as a hierarchical file (h5py) accessible from Python and
allows loading only the relevant sensor data on demand. Concerning the available data,
this dataset includes over 10GB of pixel events captured from a drive at night, which
aligns with our goal of evaluating the algorithm’s performance while driving in low-light
environments.

Figure 3.3: Sample of events reconstructed from MVSEC Nightdrive Dataset

3.2 Line Detection

Line detections correspond to one of the fundamental challenges for computer vision. The
task of nature is to obtain a mathematical representation of an object with a known
geometry, which forms part of an image where other different elements are also displayed.
This image has to be analyzed to extract features belonging to a straight line and, therefore,
obtain the parameters defining each of these lines, such as its position, length, and angle.

There are different options available throughout the literature of past studies to carry
out the line detection task. One of the most effective and efficient algorithms, and for
that reason, the one we have chosen as a principle for our project, is the use of the Hough
Transform. [32]

3.2.1. Hough Transform

The usage of the Hough Transforms was first presented in the paper by Duda and Hart[32].
This method’s main objective is to find and characterize mathematically concurrent lines
visible in pictures. It is based on applying a mathematical operation that translates a
stream of pixels belonging to a line into a single point in a polar parameter space that
represents this same. This 2-dimensional parameter space, also called polar coordinates,
encodes the straight line as the angle of the perpendicular line from the origin (θ in
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radians), and the distance from the origin (ρ in pixels) with the following relation between
them:

ρ = x cos θ + y sin θ (3.1)

Figure 3.4: Formula of the Hough Transform [32]

If we apply this transformation to the image, we obtain a periodic curve representing
each of the points of the line to the parameter space (Figure 3.5). Each of the points in
the curve represent the possible lines that can be formed passing through each individual
input point. Given these different input points, if they form a same straight line on the
input, the different periodic curves on the output will intersect in a coincident point in
the polar space. The parameters resulting of this intersection point represent the detected
line’s basic features, as can be seen in Figure 3.6. In this figure, we see a crossing point at
(2.034 rad, 0 px), successfully defining the original line, which had an angle of θ = 26.6◦

(the perpendicular line is of 116.6◦ = 2.034rad) and a distance from the origin of ρ = 0
px. [32]
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Figure 3.6: Result in Parameter Space

Given this equation, we can define the different straight lines shown in the image. The
algorithm performs this task by analyzing the points of the parameter space (θ,ρ) where
there have been more coincidences after applying the transform in Equation 3.1 to the
active pixels of the image. These points will then represent the line in polar coordinates,
which we can then translate back into cartesian coordinates that define the detected line.

3.2.2. Applying Hough transform to Spiking Neural Networks

This same idea presented in the previous section has also been applied to the case of
Spiking Neurons, as shown by Wu et al.[11]. This paper shows how the mathematical
expression of the Hugh Transform can be translated to a network of neurons. For this
end, it is proposed to use a grid of neurons, representing in a 2D space the possible polar
parameter values resulting from the transform. Then, a specific connection weight is used
between each pixel of the picture and each neuron of the parameter space. In this way,
when a certain number of points show a change, the weight for the neuron encoding the
line increases and results in a spike being registered on the corresponding neuron. As a
result, we observe a spike with the highest potential on the specific point representing the
angle θ and the distance to the origin ρ.

We use the work by Wu et al. as a starting point for developing our algorithm. Our
algorithm differs mainly from the one presented in the cited paper in obtaining the input
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points from the stream of a Dynamic Vision Sensor. The proposed architecture forces the
system to process the input sequentially and consider new parameters for the computation,
such as the time of each event and its polarity. Additionally, our system needs to perform
the desired task when applied to a real car driving scenario.

3.2.3. The implemented algorithm

Based on the previous references, we develop our model to implement the Hough Transform
using Spiking Neural Networks to process the input of Event-Based Sensor cameras. The
model’s basic structure is based on two layers (populations) of neurons, as pictured in
Figure 3.7. One layer acts as the input layer, representing the spikes obtained by the
events generated by the DVS camera. When a pixel on the camera detects a change, it
will produce a spike on the corresponding neuron for that pixel in the input layer.

Figure 3.7: Schema for the implemented Neuronal model, based on the model by Wu et al.[11]

Each neuron in the input is connected to the output layer by using a series of connec-
tions defined in the connection array. The array’s connections are determined based on
the Hough Transform in Equation 3.1. For its creation, we use the algorithm presented in
Algorithm 1. We traverse the pixels in the input layer and the parameters in the output.
When the location of the pixel (x,y) matches the parameters of the output (θ, ρ) according
to Equation 3.1, we add the connection from the input neuron encoding that pixel to the
output neuron encoding the parameters.
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Algorithm 1 Connection Creation Algorithm
1: connectionArray ← [] {Contains tuples (input, output, weight)}
2: for (x,y) in InputLayerPixels do
3: for (θ, ρ) in OutputParameters do
4: if ρ == x · cos(θ) + y · sin(θ) then
5: connectionArray.append([(x,y), (θ, ρ)])
6: end if
7: end for
8: end for

Finally, we have the output neuron layer. This layer is formed by a grid representing
all the possible parameter values for the lines in the input space. Each of these neurons
representing a line will be connected to all the possible pixels in the input based on the
connection array. When several points form a straight line on the input layer, they will
have a coincident connection targeting a neuron in the output layer. If the sum of all
the receiving connections is higher than the specified threshold, then the output neuron
produces a spike. The neuromorphic board will then forward each of the output spikes
and record them. Each of the resulting spikes defines the parameters of the detected lines
in the image.

3.2.4. Accessing and interfacing with the Spiking Neural Hardware

Access to the Spiking Neural Network board is provided by the Neuro Computing Sys-
tems (NCS)laboratory of the Kungliga Tekniska Högskolan (KTH) of Stockholm. The
hardware, as defined in section 2.1.1, consists of a SpiNNaker 5 board with 48 computing
chips. The board is managed and programmed through an Ethernet connection by a gate-
way computer to which we connect through a remote Secure Shell (SSH). The input and
output of data to the spiking board are performed through a Gigabit Ethernet connector,
which is accessed by the same gateway computer after loading the program specification
into the board’s controller.

The programming of the script is done in Python 3.8, using the spynnaker8 [21] library
for communicating with the SpiNNaker board. For accessing the files encoded by the
Event-Based Sensor, we use the Dynamic Vision (DV) library provided by the camera
manufacturer iniVation.

3.3 Evaluating the obtained data

After developing the algorithm, we face one of the crucial challenges of the project, proving
that the results obtained are meaningful and accurate for the objective of this report, which
is evaluating a new algorithm for lane detection. To accomplish this evaluation task, we
need to use a verified model that can serve as the ground truth for the comparison. With
the results from both models, we can compare and establish an objective measurement of
the accuracy and performance of our new model.

After evaluating different alternatives of lane detection models, we choose the algo-
rithm proposed in the library OpenCV 4.5.5 [33] for the Hough Transform. We motivate
this choice because this algorithm represents a similar implementation to the one carried
out in our project but uses a direct application of the mathematical formula. The OpenCV
implementation is based on counting votes for each parameter in the polar coordinates of
the Hough Transform. That differs from our algorithm that implements a similar process
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using a specific set of connections between layers in a Neuronal Network. The main differ-
ences reside in how the data is inputted into the algorithm. Another difference is that the
OpenCV algorithm is based on analyzing static frames obtained from conventional cam-
eras. The algorithm presented in this report uses events in a neuromorphic environment,
from whose it extracts the detected lines’ parameters.

To compare both algorithms, we will analyze the results obtained after processing the
input of two datasets of different nature. As presented in section 3.1 The two datasets
used to assess the algorithm are:

First, we study the dataset consisting of simple straight lines, recorded as part of the
scope of this report and used to evaluate the algorithm’s performance in an easy and
predictable scenario. The results from analyzing this dataset serve as a preliminary idea
for the performance we expect to obtain when assessing the more complex input of the
real-driving dataset. Additionally, it helps establish a baseline for an objective measure
of the accuracy against the results obtained by the other algorithm that also implements
the Hough Transform.

The second part of our study results examines the results of applying the same model
used previously for detecting road markings in a driving dataset recorded in a real scenario
(MVSEC Dataset [31]). The same techniques explored in the previous case are applied
again in this section to compare our model’s performance against other implementations
already available.

Furthermore, we use two techniques to evaluate the two datasets described in this
section: a visual evaluation based on the representation of the lines and an analytical
evaluation of the parameters. We will introduce and detail these processes in the following
two sections.

3.3.1. Visual evaluation

We perform an initial evaluation of our model’s results by using a visual representation of
the resulting data after analyzing the datasets to compare them against other models. To
accomplish this goal, we implement a script that represents the parameters obtained as a
result of applying the Hough Transform (θ,ρ) 3.1. We draw a straight line from the polar
coordinate space into the cartesian grid that represents the predicted result with these
parameters. This line is then overlapped on the extracted frame by the CMOS camera.
The line representation operation is based on the formulas of Figure 3.8 for obtaining a
straight line defined by an origin point (x, y) and its slope m.(
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Figure 3.8: Equations defining the parameters of a straight line on cartesian coordinates given
the polar coordinates (Hough Transform parameters)

We created a script using the formula in Figure 3.8 so that we can represent for each
image frame recorded by the dataset the lines representing the values resulting from each
Hough Transform model. In the case of the OpenCV model, we plot the line with the
most votes for each analyzed frame of the input.

In the case of the neuromorphic model, we note that the lines obtained by the model
have no direct translation over a specific frame of the dataset, as the DVS generates the
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events asynchronously as the changes are detected. For this reason, to represent the lines
along with the captured images in a meaningful way, we grouped the events that occurred
between the timestamps of two captured frames. We represented each range of resulting
events in a single line by averaging the value of the parameters belonging to the same
group.

3.3.2. Analytical Evaluation of Performance

One key result we aim to obtain from the study is a quantifiable and objective measurement
of the accuracy of our model. This is needed to assess the suitability of the algorithm for
solving the given task with the highest efficiency and precision. To that end, we use an
analytical approach based on the numerical analysis of the statistical parameters resulting
from the analysis of the dataset.

The evaluation of the results is done by comparing the parameters (θ,ρ) obtained by
the model against the ground truth, from which we measure the error deviation of each
result. The ground truth is established as in the previous section by using the result of
applying the OpenCV Hough Transform algorithm to the frames captured in the dataset
by the conventional grayscale camera.

The analytical parameters are obtained by comparing each frame’s results of both
algorithms with the ground truth. In order to obtain a single metric that represents the
performance for the whole dataset, we accumulate the differences along the frames to
result in an averaged value along the length of the dataset. For this reason, it is essential
to ensure the length of the dataset is large enough to obtain a statistically meaningful
sample when analyzing the accuracy.

The previously mentioned operations will be performed using the Pandas Python li-
brary for data manipulation. This tool allows us to access and statistically aggregate the
results obtained from the data analysis to evaluate the results obtained by each algorithm
by comparing the parameters obtained in each frame of the picture. This aggregation of
the event data to frames is a limitation imposed by using the OpenCV Hough Formula
based on the analysis of images, which has an output cadence lower than the outputs of
the event algorithm. As a result, we effectively lose temporal resolution on the algorithm’s
output parameters.

3.4 Power efficiency

This study looks to motivate the advantages and prove de adequacy of the neuromorphic
hardware for being applied to new algorithms. One of the main advantages of the devel-
opment using this platform is the low power consumption of the computing boards as well
as the high processing speed allowing real-time computation. As part of our results, we
provide an estimation of the power consumption of our system.

Due to the limitations of our project, the implementation of a physical device for the
experimental measurement of the power drawn by the system falls out of our scope. For
this reason, we use the results from previous studies performed on the same SpiNNaker 5
board that we use in our research. The paper by Painkras et al.[34] shows experimental
figures detailed to the lowest chip level that we will use as a base to approximate our
consumption calculations scaled to the resources used in our implementation. As well, we
base our figures on the efficiency analysis for high-performance computing of SpiNNaker
studied in the paper by Sugiarto et al.[35]
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The SpiNNaker 5 board is formed by 48 chip multiprocessors, each of those capable of
simulating up to 1800 neurons (18 cores with 1000 neurons per core). Each chip is rated
at a peak 950 mW power consumption when operating at 250MHz, and 250 mW when
idle [35]. Additionally, we consider the figures for the SDRAM consumption, which is 170
mW per chip, and the off-chip connections, being 6.3mW for each of them.[34]

We will also consider the power specification for the event vision sensor used in our
project, which consists of the DAVIS 346 from iniVation[36]. In the specification sheet,
we can find the power consumption for the DVS to be in the range of 10 to 30mW without
taking into account the pixel sensor (which is not necessary for obtaining the event data).
To simplify our study, we consider the higher end of the consumption range as the reference
value for our results.

With these figures, we use the resource usage calculated for our spiking neural network
to scale an approximate measure of the power in Wh required to analyze the whole stream
of events contained in the MVSEC dataset for a real driving environment. We will use the
obtained result against the calculated power usage by other production platforms devoted
to the task of lane recognition.

3.5 Time latency evaluation

Another metric we include in our results is the evaluation of the latency for the outputs of
our system. In this case, we obtain an approximation for the measurements by employing
an indirect analysis of the spike stream. This method is based on analyzing the output
from a data synthetic data stream that we have generated based on the previously analyzed
straight line dataset.

To obtain a precise measure of the latency, we create a new dataset based on a slice
of events from the previous dataset where the line moves at a constant speed in a unique
direction. This slice is duplicated but inverting its direction and appended after the
original slice. The resulting dataset shows a symmetrical event stream where we can
pinpoint precisely the exact time when the line changes direction.

Using this dataset, we can know precisely the timestamp when the line changes its
parameters to the opposite angle. Then, by analyzing the output from the spiking neuronal
network, we can look for the point where this change is located and compare its timestamp
against the breakpoint we used when creating the dataset, from which we have its exact
time stamp. The difference between these timestamps is an approximation for the time it
takes to obtain the output of a line since it is first seen on the input stream of the Spiking
Neuronal Network.

3.6 Optimizations

One of the key aspects we need to ensure for our algorithm to be competitive against other
previous implementations is its ability to produce a correct and accurate output in the
shortest time possible. Ensuring that we achieve the highest possible efficiency in every
step of the computation is essential. Using the optimization techniques presented in this
section, we allow the algorithm to result in its full potential and increase the efficiency
concerning the number of calculations and connections in the model.
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3.6.1. Reduce input space

To ensure a faster computation, we reduce the size of the data inputted to the algorithm.
The process is based on cropping the image to reduce the number of pixels from the DVS
sensor that can generate events. By removing the parts of the image where we don’t expect
to find road markings, we ensure the computer analyzes only the relevant data. This also
leads to a lower probability of obtaining a false positive originating from another object
in the image resembling a road marking while we reduce the time and clock cycles needed
to analyze in a given period.

Furthermore, we minimize the overhead of establishing each required connection be-
tween layers of neurons. This is an important measure in our project as we are using two
layers with an input of 89960 neurons. To recognize the road marking lines, we just need
a slice of the whole image input, which contains the lanes of the road. By reducing our
input space by cropping the upper and lower parts of the image, we reduce the number of
connections down by a 90% while still being able to perform an accurate lane detection
task. We can observe the resulting frames from the reduction in Figure 3.9.

(a) Original Input Space

→

(b) Resulting input space after cropping

Figure 3.9: Comparison of original and reduced input

Thanks to this optimization, we ensure faster running times without sacrificing ac-
curacy and avoiding noise originating from other image features that can difficult the
obtention of a valid result.

3.6.2. Temporal subsampling of the input data

Another technique that also helps to process the extensive amount of events produced by
the DVS camera is the use of temporal subsampling for the event stream. The temporal
subsampling reduces the number of events given a specific time by just using a subset of
the original stream of events. In our case, the datasets consist of more than a million events
per ten seconds of recording. This fact makes it much more difficult for the computing
board to keep up with the processing of each of these potential spikes in real time, causing
the loss of data by the overflowing of input queues in the processors and time delays on
the output.

To avoid this problem, we perform simple temporal downsampling of the input stream.
This method is based on taking one sample for every group of 10 events. In this way, we
reduce by 90% the number of packets sent to the computer while still keeping the main
features in the image, as can be seen in Figure 3.10, where the road lines still represent a
dense cloud of points that the neurons can recognize.
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Figure 3.10: Result of x10 downsampling of the input

3.6.3. Output Data processing for the Real Driving Dataset

The analysis of the MVSEC requires additional post-processing of the results to obtain a
meaningful result that reduces the noise and ensures we get a significant and comparable
system when compared against the OpenCV implementation.

When using a real-life recording, we face an additional challenge in processing the
output data of the dataset to classify and filter the most relevant information captured
from the scene. This processing was not required in the previous cases as we had a
reduced input with a smooth background (blank sheet of paper). For the case of the
driving dataset, we find a more significant amount of elements on the input, which have
to be tracked accordingly and selected to obtain the desired results.

For this reason, we will use a clustering algorithm on the output parameters of the
model, as presented by Seifozzakerini et al.[30]. This procedure consists of grouping those
events produced sequentially as belonging to the same line. Additionally, we establish
a threshold for considering a line on the output, filtering noisy points generated by ob-
jects from the environment different from the lane markings. The clustering we used is
illustrated in Algorithm 2. In this algorithm, we use a tuple (θ,ρ, expiryTime, numberOf-
Spikes) representing each of the lines of the clusters. Once we receive a spike, we classify
it based on the shortest Euclidean distance between its parameters to those of each line.
If the difference is smaller than a threshold, we consider the spike belongs to the line with
the smallest distance. Then we update the parameters of the cluster by adding a weighted
sum (based on the parameter α) of the spike’s coordinates. If the distance is larger than
the threshold, we consider the spike belongs to a new cluster. The parameter (expiryTime)
keeps track of the last time a cluster received a spike so that the cluster can be removed
after a specific time. Finally, the parameter (numberOfSpikes) stores the number of spikes
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included in a cluster. This parameter is used as a threshold for choosing the best line as
an output in the results.

Algorithm 2 Event clustering algorithm
1: clusterLine ← [ (lineClusterTuple) lines to detect]
2: for spikesFrame in frames do
3: for spike in spikesFrame do
4: • Delete all clusters in clusterLine such that the Expiry time is previous to the

current
5: rho, theta ← [spike.rho, spike.theta]
6: distance ← EuclideanDistance[(rho, theta), clusters]
7: minDistance, indexMinDistance ← MinimumArg[distance]
8: if minDistance > threshold then
9: # If the distance is greater than the threshold, create a new cluster

10: clusters[EmptyIdx] = [rho, theta, currentTime, 1]
11: else
12: # If the distance is less than the threshold, update the cluster
13: closestCluster ← clusters[indexMinDistance]
14: closestCluster.rho ← closestCluster.rho*α+rho*α
15: closestCluster.rho ← closestCluster.theta*α+theta*α,
16: closestCluster.expiryTime ← currentTime
17: closestCluster.numberOfSpikes += 1
18: end if
19: end for
20: end for
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Results

This chapter presents and evaluates the results from running the model on the proposed
datasets. For this task, we implement the methodologies explained in Chapter 3. The
results are divided into two sections, covering the performance observed by the algorithm
when run on the two different datasets. The same model parameters are maintained
through all analyses to establish an accurate and reliable comparison between both meth-
ods. The basic parameters that we can use to tweak our model are based on the biological
properties of the neurons, in this case, a neuron following the Leaky Integrate and Fire
(LIF) model. The parameters used for the neurons are presented in the table Table A.1
and model the basic behavior of the neurons after receiving an input from the vision sensor
data stream.

With the resulting data from both dataset evaluations, we further analyze the power
consumption and the latency shown by the model on the processing of the Driving Dataset
to establish a complete comparison against conventional algorithms performing the same
task.

4.1 Results from Test Cases

4.1.1. Straight Line

The first dataset we analyze is formed by a straight line drawn on a white sheet of paper.
This serves as calibration and proof of work for our algorithm and allows us to tweak the
parameters to be used later to analyze the real MVSEC driving dataset.

Visual Evaluation

The results observed from the evaluation of the sample dataset can be evaluated with
two main approaches, as explained in the methodology. In the first step, we plot the
obtained data visually and overlay its results against the data obtained by the algorithms
used in previous studies. We observe this comparison in Figure 4.1, consisting of two
visualizations extracted from a specific frame of the dataset, where the predicted straight
line is overlaid in red over the corresponding frame (with the line in dark blue). In
Figure 4.1a, corresponding to the OpenCV 4.5.5 [33] implementation, we can see how
the line fits entirely over the line. In contrast, in Figure 4.1b, corresponding to the
neuromorphic model results, the resulting line is slightly skewed to the right with respect
to the input throughout its full extension. However, one remarkable finding we can extract
from the analysis is that the detected angle for the line matches in both cases, as we show
in the next section.
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(a) Line obtained with OpenCV Hough Transform
algorithm

→

(b) Line Obtained with our Hough Transform model
using Spiking Neural Networks

Figure 4.1: Visual comparison between OpenCV’s Hough Transform algorithm for straight line
detection (red line on 4.1a) against the implementation using neuromorphic hardware on SpiNNaker
(red line on 4.1b). Results from using a single straight line dataset recording(green background

and blue marked lines). Animated video can be accesed at B

As can be observed in Figure 4.1, the accuracy obtained for our algorithm is similar to
the one obtained by the Hough Transform applied to a visual static frame in the Python
OpenCV. This preliminary visual observation of the results of the problem shows the
correctness of the results obtained by our model. This result gives a baseline of what we
can expect from the numerical analysis performed in the next section.

Analytical evaluation

After a first visual approach to the evaluation, we perform an analytical study of the
results obtained by the model. To this end, we extract the numerical parameters that
constitute the results for each algorithm to establish the accuracy of our model. With
this study, we settle an objective statistical measure for the resulting values and evaluate
how the metrics differ on average, as presented in the methodology (3.3). We obtain the
averaged values by accumulating the parameter’s results along the length of frames of the
dataset, in this case, consisting of 473 images that correspond to 20 seconds of recording.

We obtain the main variables for our study from the model’s output parameters, con-
sisting of the angle (θ) and displacement (ρ) of the line. These values are compared to the
ground truth, generated using the OpenCV 4.5.5 [33] library. The results can be seen in
Table 4.1:

Mean difference Std Deviation Quantile 90
Theta (θ) º deg 0.5134 0.3703 1.1598
Rho (ρ) pixels 2.2957 1.7686 4.6441

Table 4.1: Analytical results of the averaged parameter difference between the Spiking algorithm
and the OpenCV implementation of the Hough Transform over 473 frames for each model. Ani-

mated video can be accesed at B

We start our study by centering on the angle of the line detected by our algorithm.
As we anticipated in the visual inspection Figure 4.1, we can confirm from the analytical
data (Table 4.1) that the model was indeed successful in the task of recognizing the line
angle on the input space. The neuromorphic-based model obtained values for the angle
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of the lines in the image that differed by less than 1 degree from the baseline established
by the OpenCV algorithm. This error represents a 0.28% over the parameter space for θ
(180 degrees).

Observing other statistical parameters, such as the standard deviation of the angle
difference, we see how the error between the models has not a significant dispersion. This
figure motivates that the results are consistent, showing a predicted line similar to the one
obtained by conventional methods. Analysis of the quantiles also shows that 90% of the
difference values are lower than 1.15 degrees, proving the results’ accuracy and correctness.

Furthermore, suppose we study the variation obtained on the displacement of the line,
represented by the parameter Rho (ρ). In that case, we can observe how the variation
is, in this case, higher than the one obtained for the angle. This result is also visible on
the previous Figure 4.1, as the line is slightly displaced to one side of the image and does
not fall directly over the detected frame. Analyzing the dispersion of the model, we can
observe that the standard deviation shows a reliably contained range of results, which
still can represent and successfully detect the position of the line in a given space. These
results have to be taken into the context of the range of values for the parameter Rho,
which expands from the origin (0) to the furthest pixel distance (433); in this way, the
error obtained represents a 0.5 % error over the possible parameter space.

Analyzing these results together, we can see how the numerical results obtained by our
model to track a straight line do not have a significant deviation when compared to the
results established as a baseline by the OpenCV implementation of the Hough Transform.
This result further encourages the usage of the Spiking Neural Networks, as in this case,
the outputs obtained by the algorithm were given in real-time, with a negligible delay, as
analyzed in section 4.2.4.

4.1.2. Two Angled Lines

After proving in the previous section the ability of the algorithm to successfully track a
single line in a sheet of paper, we move forward in complexity by using a sample dataset
that represents more accurately the inputs expected in the real driving dataset. For this
reason, we analyze a dataset consisting of two straight lines situated in a white paper sheet
and with an inclined angle in between them. This setup tries to represent the view of the
road lane markings in the same way they can be seen from the dash of a car.

This dataset represents a much higher complexity that results from the fact that the
algorithm has to be capable of separating the two valid outputs representing the two
lines on the paper. This task needs to be performed while avoiding other multiple points
generated in the output space due to noise that comes, for example, from the fact that
the thickness of the lines makes them occupy several pixels from the input. To deal with
this challenge, we divided the output space into two clusters, based on the parameter
rho (distance from the origin to the line), to effectively obtain a unique point in space
representing each line without the other one interfering with the result.

Visual Evaluation

As we did in the previous case, we will start our study by analyzing the visual output
of the algorithm and comparing it with the result obtained by the OpenCV model. An
example frame extracted from the model can be seen in Figure 4.2. In this case, we can
observe how the lines represented do not show a straight line, but because of the distortion
of the lens, the lines are slightly arched inwards on the top of the image. This fact brings
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the dataset closer to reality while still maintaining a controlled environment and allows us
to match the expected results from the analysis of the real driving dataset’s recordings.

(a) Lines obtained with OpenCV Hough Transform
algorithm

→

(b) Lines Obtained with our Hough Transform model
using Spiking Neural Networks

Figure 4.2: Visual comparison between OpenCV’s Hough Transform algorithm for straight line
detection (red line on 4.2a) against the implementation using neuromorphic hardware on SpiN-
Naker (red line on 4.2b). Results from using a dataset recording showing two angled straight line
representing road markings (background in grayscale). Video of the output available in Annex B

The preliminary analysis of the results for this dataset extracted from the visual com-
parison shows us how the accuracy of the model’s prediction is now significantly lower
than in the previous case. Examining the line’s features in Figure 4.2b, corresponding
to the output of our neuromorphic algorithm, we can observe how the detected left line
closely overlays the line in the frame. However, the right line shows a more significant
difference between the resulting line and the actual position of the line in the frame.

We can further analyze these results by observing the performance given by our baseline
algorithm on Figure 4.2a. In this frame, we can observe how the line tracking of the
OpenCV algorithm slightly diverges from the actual result in the case of the left line. If
we pay attention to the right line, we can see how each algorithm has taken different points
as references for drawing the result. In the case of OpenCV (4.2a), the points taken for
drawing the line belong to the lower half, resulting in an almost vertical line. Meanwhile,
the result obtained by the spiking model (4.2b) has taken as reference the top points of
the right line.

Analytical evaluation

As we did in the previous case, after the visual analysis of the results, we will study
the analytical parameters obtained from the results for each model. For a more detailed
study, we will analyze the resulting parameters for both lines in the pictures to establish
an individualized comparison with each line in the dataset. The obtained results are
presented in Table 4.2 for the left line and Table 4.3 for the right line of the image.

Mean difference Std Deviation Quantile 90
Theta (θ) º deg 0.9653 0.6869 2.0962
Rho (ρ) pixels 5.0771 3.9066 12.6869

Table 4.2: Analytical results of the left line using the averaged parameter difference between
the Spiking algorithm and the OpenCV implementation of the Hough Transform over 219 frames

for each model
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From the analysis of the figures in table Table 4.2, we can observe a very similar result
to the difference one obtained for the single straight line in the previous section 4.1. Both
the angle (θ) difference and the distance from the origin (ρ) show to be within the same
specs as in the previous study, showing a slightly higher error in both parameters. We can
further conclude that the results are robust and maintained along the analyzed dataset’s
length by analyzing the dispersion values for both parameters.

Mean difference Std Deviation Quantile 90
Theta (θ) º deg 7.0305 1.0700 8.5783
Rho (ρ) pixels 19.7749 8.1947 36.9787

Table 4.3: Analytical results of the right line using the averaged parameter difference between
the Spiking algorithm and the OpenCV implementation of the Hough Transform over 219 frames

for each model

Analyzing the table from Table 4.3, we can observe how the difference for the results of
the Spiking algorithm grows even further than in the previous case. This fact is also seen
clearly in the visual study of the results Figure 4.2 where both algorithms find difficulties to
precisely track the line belonging to the right side of the image. Furthermore, analyzing
the animated video depicting the evolution of the tracking, we can observe that both
algorithms lose track of the line at some point in the stream due to the lack of contrast
with the background.

We can motivate this observation by the fact that the marking of the right line is
noticeably lighter than the left one. This slight difference leads to difficulties for both
algorithms to be capable of obtaining enough data points to trigger the parameters for
the line according to the Hough Transform.

In conclusion, we obtain another example of the performance of the algorithm, in
this case, when applied to two angled lines. We have shown how the performance of the
implemented algorithm remains constant for the case of the left line. On the right line
of the image, we have proven the tracking is still being successfully done but obtaining a
higher margin of error.

4.2 Results from Experimental analysis

After studying the results of the application of the algorithms to the basic datasets and
concluding its ability to track the lines in a controlled and simple environment successfully,
we test the capabilities of the model in a broader and realistic setup. For this reason, we are
going to use the recordings of the MVSEC dataset [31]. From this dataset, we will select
the drives regarding the scope of nighttime driving. The used drive recording consists of
a file with more than 87 million recorded events showing a car driving down a street in a
city and surrounded by other vehicles at night. We motivate this choice to prove one of
the advantages of using dynamic vision sensors when recording low lit environments.

For this study, we will follow the same structure as the previous cases, first visually
analyzing the obtained results and then centering on the analytical parameters. To reduce
the computing time while getting meaningful results, we analyze the first 20 million events
produced by the event camera, corresponding to the initial 2 minutes and 15 seconds of
the recording.
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4.2.1. Visual Analysis

As stated in the methodology 3, we will make an input space reduction to be able to process
the vast amount of events generated by the dynamic vision sensor. We can observe an
extract of the process taken by the algorithm in 4.3. Figure 4.3b presents the preliminary
raw output obtained from the Spiking neural network when given as input the events
corresponding to the recording of a real driving dataset. This output shows the spikes
produced by the neural network according to the parameters of the Hough Transform.
The horizontal axis shows the distance from the origin (ρ), and the vertical axis is the
angle of the line (θ).

(a) Events recorded by DVS Sensor and cropped
according to section 3.6.

→

(b) Results from the parameter space (ρ, θ) ob-
tained by the Spiking Neural Network from the

events

Figure 4.3: Data processing carried out by the algorithm from the obtention of the events from
the DVS Sensor to the output generated by the Neural Network according to the parameters of

the Hough Transform equation 3.1

From the Figure 4.3, we can observe how the algorithm is capable of producing a
cleanly structured stream of spikes out of the stream of events recorded by the cameras.
We can state that the algorithm can detect several features corresponding to straight lines
in the images. The next step to obtaining a valid and comparable output is to divide the
points into groups (clusters) so that we can successfully represent different individual lines
present on the input.

After verifying the output resulting from the algorithm, we move on to represent the
lines by translating the points in the polar coordinates of the parameter space into the
cartesian coordinates that define the detected lines. Furthermore, we match the spikes
obtained along the duration of a recorded frame to establish a visual result to evaluate the
algorithm’s accuracy. In the following Figure 4.4, after applying the clustering algorithm
explained in the methodology 3.6.3, we can obtain the stream of frames with the detected
lines overlaid above the frames (in grayscale). In this image, we can directly compare the
results obtained by the analysis of the static images by OpenCV against our neuromorphic
model.
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(a) Resulting detected lines with OpenCV Hough
Transform algorithm

→

(b) Resulting detected lines with the Hough Trans-
form model using Spiking Neural Networks

Figure 4.4: Visual comparison between OpenCV’s Hough Transform algorithm for MVSEC line
detection (red line on 4.4a) against the implementation using neuromorphic hardware on SpiNNaker
(red line on 4.4b). Results from using a dataset of night drive recording (black an white frames).

Video with side by side comparison available at the Annex B

Observing the extract of a frame of the video presented in Figure 4.4, we observe
the red lines that represent the detected lines for each analyzed algorithm. For the case
of the OpenCV Figure 4.4a, we find a general trend in the recording where the number
of detected lines tends to be lower than with the spiking neural implementation of the
algorithm, shown in Figure 4.4b. This fact is explained by one of the main advantages we
wanted to prove from the usage of event-based cameras. The higher dynamic range these
sensors offer makes the sensibility to elements in low lit portions of the image much higher
than the information obtained from a black and white recording.

Additionally, as expected, the spiking algorithm seen in the figure 4.4b shows a higher
error than the previous "clean" datasets. The error can be seen in the frame succession
for the tracking of the right-hand line’s angle (seen in the video presented in Annex B).
This result can be motivated by the nature of the situation where there are many objects
presented simultaneously. The line is also occluded during a significant proportion of
time by cars passing on the right side, which complicates the obtention of a large enough
amount of events to define the line.

4.2.2. Analytical Evaluation

As done in the previous cases, we now analyze the differences between both algorithms
based on the analytical parameters obtained by the computation of the Hough Algorithm.
The following Table 4.4 shows the results extracted from the parameters detected for the
left and right lanes, as shown visually in Figure 4.4.

Observing the left lane results (first section of Table 4.4), we can conclude that the
difference obtained in the angle (θ) of the line is significantly higher than the one obtained
in previously studied datasets. However, it still represents a 2.28% error accounting for the
whole parameter space for the angles. The distance of the line to the origin (ρ) also shows
a significant difference from the one experimentally obtained in the previous sections, with
a lower increase than the one observed in the angles, leaving it in a 1.01% of the entire
distance range of 433 pixels.

On the other side, analyzing the results from the right lane, we can observe an even
greater difference. The obtained values still show a tracking being performed by our
algorithm and dispersion figures that show a robust detection of the parameters. The error
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\textbf{} \textbf{Mean difference} \textbf{Std Deviation} \textbf{Quantile 90}
Left Lane

Theta (θ) º deg 3.8733 6.8962 14.0000
Rho (ρ) pixels 3.0753 6.8687 22.0000

Right Lane
Theta (θ) º deg 10.6240 3.2888 14.0000
Rho (ρ) pixels 33.9864 10.6515 45.000

Table 4.4: Analytical performance results for the detection left lane using the averaged parameter
difference between the Spiking algorithm and the OpenCV implementation of the Hough Transform

over 1400 frames for each model

on the angle (θ), in this case, represents a 5.91 % of the space parameter, and the error
of the distance (ρ) is 7.84 % with respect to the parameter’s possible values. Additional
analysis of the dispersion figures for the parameters corroborates how the obtained output
in the results of this dataset is considerably less robust and concentrated than in the
previous cases.

We can further study the progression of the errors for both lanes in a graphical plot,
corresponding to Figure 4.5. This plot shows the differences for each lane and the param-
eters studied along the succession of frames that form the driving dataset.

(a) Differences between Spiking model and OpenCV along the captured frames for the left lane

(b) Differences between Spiking model and OpenCV along the captured frames for the right lane

Figure 4.5
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Observing these plots, we confirm the results shown in the analytical figures. Fig-
ure 4.5a shows how the error in both theta and rho matches the averaged values while
also showing some outlier values, especially at the start and middle section, where we can
see how both parameters are affected by the higher error. On the other side, comparing
this plot to the right line results in Figure 4.5b, we observe how the average and the max-
imum error values are significantly higher than the previous plot, especially for the error
concerning the parameter ρ, where we find an overall higher mean value. We will further
motivate the meaning of these outlying results in the Discussion section 5.

4.2.3. Power efficiency

One of the main advantages of neuromorphic computation shown in previous research was
that the systems offered low latency and high power efficiency for the obtained results. In
our studies, we have observed similar results in the computations obtained by our model.
As stated before, we used a single SpiNNaker 5 board as the main computing platform.
For the MVSEC dataset detection, our system used 99190 neurons (21250 input neurons
and 77940 neurons on the output layer).

The SpiNNaker 5 board parameters are described in 3.4. Given the number of used
neurons in our model’s layer, we use 6 of the 48 chips available on the board. Each chip
has a power draw of 950 mW, adding up to 5.7 W of power used by the active chips.
The leftover 42 chips will be idle, using a total of 10.5 W. Aditionally, we consider the
number of connections between the neurons, consisting of one connection per chip, as all
the neurons from the input layer will have at least one synapse with the output so that
the power usage will be 0.37 W for the six chips. Finally, we also take into account the
0.03 W used by the vision camera (DAVIS 346 from iniVation) to record the events.

The total approximation from the previous data is 16.23 W of power, which along
with the simulation time of 135.88 seconds, results in total power consumption of 0.61
Wh for the processing of 20 Million events from the MVSEC dataset with the Spiking
Neural Network. To put the results in perspective, the specifications given by Tesla for
their current self-driving computer in August 2019 show a power draw of 72 W [37]. This
figure results in 2.712 Wh of power consumption considering the same time is taken (as
the analysis is done in real-time as in our system). This value represents a tenfold increase
in consumption compared to the system we researched in this report.

4.2.4. Latency Evaluation

Other interesting data that we can obtain from our study is the latency, in ms, that it
takes for our algorithm to process an input and get the corresponding spike. For this
end, we will use the method proposed in section 3.5, where we analyze a newly created
synthetic dataset to evaluate the time when our algorithm detects the change of direction
of a line.

For this case, we obtained a slice of 62.4 ms from the Straight Line dataset of the
previous subsection 4.1.1. This slice of events is then duplicated and appended to the
original to obtain a symmetrical stream of events with a breaking point at 120 miliseconds.
We then analyzed the dataset with the spiking neuronal model and evaluated the stream of
spikes resulting from its output. We observed the ρ parameter of the output and checked
that at time position 125.1 ms it reaches its minimum point, after which the parameters
have the opposite descending tendency, marking the break-up point at this position. From
this result, we can conclude that the latency measured for the system is approximately
5.1 ms.
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The value for the latency obtained from our system is 51 ms. This result can be com-
pared to the measurement from running the OpenCV script on a conventional computer
(i7-8550U processor with 8GB of RAM with Python 3.8 and OpenCV 4.5.5 [33]). The
average time taken by the conventional method is 38 ms, a slightly lower value than the
results taken by the spiking neural network.



CHAPTER 5

Discussion

The previous examined results obtained different metrics to evaluate the algorithm’s per-
formance. This metrics analysis plays a crucial role in developing the Spiking Neural
Network model, as it constitutes a new research line that has no precedence in the litera-
ture.

This project is centered on evaluating the efficiency and suitability of Neuromorphic
Hardware applied for the task of road lane detection. For this reason, the results play a key
role in assessing whether or not the newly developed model can be compared to previous
algorithms dedicated to the same task. One of the key factors of this project resides in its
novelty. Up to the date, there have not been any other implementations of a neuromorphic
system for detecting lines using both Dynamic Vision sensors and Spiking Neural Networks
for performing the computational task. For this reason, it is important to notice that the
results obtained here are not trying to prove better accuracy and performance than the
conventional models. However, we aim our work to demonstrate the capabilities and
confirm the suitability of this new computing platform for performing complex tasks such
as straight-line recognition.

For this reason, we can consider that the main objective of the work has been ac-
complished, as we successfully proved that a system implemented using Neuromorphic
Hardware is capable of obtaining an accuracy comparable to the results of previous algo-
rithms such as OpenCV. This fact has been observed in the three analyzed datasets. On
the first dataset studied, we got an average error lower than 0.28% when comparing the
angle of the detected line and 0.5 % of the parameter space when comparing the differences
between the position of the line.

Looking at the two straight lines dataset, we can also conclude that the error difference
rate was comparable to the single straight line. However, it is worth noticing that the error
was slightly higher than in the previous case. This error is visible in the analysis of the
right line of the image, where the worst results were obtained. This result can be motivated
because of the characteristics of the line in the recording, where we can see how the line is
more faint and distorted by the camera, preventing it from being shown as a completely
straight figure. These characteristics represent a greater difficulty for the algorithm to
track the parameters of the line, which increases the error.

5.1 Driving Dataset

Finally, we analyzed the model results in a practical use case. We inputted the events
recorded from a drive performed by a car in a real environment and studied the obtained
results. In this case, we could observe how a lower accuracy was obtained. Nevertheless,
the model could still track the lines on the road and output a valid result.
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One of the reasons that we motivate for the deterioration of the results with the
MVSEC dataset analysis is the fact that the OpenCV algorithm used as a comparison was
not able to reliably track the lines on the image. This can be based on different factors,
such as the difficulty for the algorithm to obtain enough information due to the low light
environment in which the recording is done. This further motivates the advantages of the
spiking neural network; as we can see in the visual comparison between the algorithms in
4.4, the Spiking Neural network was able to track and follow the lines of the road more
accurately and with more stability than the compared algorithm.

The errors found in the OpenCV dataset also motivate the outlying error spikes found
when plotting the differences between both algorithms. In this case, the result given by
the spiking neural network would have been correct. Still, as the OpenCV implementation
showed less reliable tracking, the comparison resulted in a significant error between both
algorithms, which does not correlate with our output being far from the optimal values.

For this reason and to avoid these outlying results, other measurements such as manual
labeling of the input data could be used to establish a baseline for comparing different
outputs. In this way, we could avoid adding up the error by the OpenCV algorithm to our
results. However, in the averaged value of the comparison, we still can consider OpenCV
as a valid ground truth that also represents a case where we can show how the output
of the Neuromorphic Model is superior in some cases to the accuracy of the conventional
methods.

5.2 Latency and Power

Additionally, it is interesting to comment on the results obtained from the evaluation of
the consumption of the neuromorphic system. We have obtained a power consumption
ten times lower than other state-of-the-art systems available in the industry. However, it
is important to notice these compared systems lack the power scalability of Neuromorphic
Computers, so the amount of power will account for other algorithms running on top of the
line detection task. In any case, this result proves the suitability of this new platform for
its application on autonomous cars, where the power consumption is relevant to developing
more efficient vehicles, also allowing these systems to need less cooling, which is a critical
constraint on embedded systems.

We can also comment on the latency obtained by our implemented algorithm, which
resulted in a time delay of 51ms, being slightly longer than the result obtained by the
conventional camera-based algorithm of the OpenCV library of 38ms. We can consider this
result brings both methods to comparable time proportions, backing up the low latency
claim expected by using neuromorphic hardware. We can motivate this result by noting
some of the constraints presented in more detail in the next paragraph. Additionally, it
is also remarkable to notice that the measurements for the latency, to avoid adding too
much complexity, are based on an indirect computation that results in an estimated value
with a higher margin of error. Better metrics could be developed by creating a set of
synthetic events representing a line that appears at specific time intervals and comparing
the resulting lines’ time delays, but that implementation falls outside of the scope of this
report.

Regarding the challenges for our algorithm that could affect the latency measured,
we remark how data inputting into the spiking neural network board has proven to be
a challenge. This issue limited the speed at which we could send the stream of events,
becoming a bottleneck that affected the latency of the results. One possibility to obtain
even lower latency would be to change the input method to a different interface, such as
the FPGA (Field Programmable Gate Arrays) in development by the research group at
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the Neuro Computing Systems (NCS) lab in KTH. This new communication hardware will
allow the system to receive more significant amounts of data per unit of time and thus
reduce the latency of the results significantly.

5.3 The novelty of the Neuromorphic Systems

One of the main points of this project is to analyze the current state-of-the-art technol-
ogy and apply it to a new use case that has not been explored before. This fact comes
with the inherent challenge that resides in the state of development of the Neuromor-
phic platform. The nascent state of many of the required components for neuromorphic
computation became an additional challenge for the development of the algorithm. KTH
university has a research group focused on addressing this issue and providing more tools
for future developments on this very same platform. Unfortunately, this development is
still underway, and we could not use it for this project. One of the main challenges that
we faced during the development of this algorithm was motivated by the communication
of the input data with the Spiking Neuronal Boards. The existing protocols, topping off
at 100MB/s of Ethernet connection, became a bottleneck for the data connections when
treating millions of events. This project becomes one example where this limit is not
sufficient. The events resulting from the recordings performed by the event-based cameras
in our algorithm consist of inputs of more than a million events per every 10 seconds of
recording. These streams of events need to be communicated in real-time to the develop-
ment board and afterward outputted with the resulting spikes representing the lines. Our
experimental evaluation with the available communication interfaces showed losses in the
resulting spikes and buffer overflows that prevented the computation in some of the cases.

For this reason, several workarounds were used that resulted in reduced efficiency and
increased the latency of the obtained results, not because of the hardware’s inability to
process the data but because of the limitations of the input and output protocols currently
available for the SpiNNaker platform.

A future improvement that could effectively improve the model’s performance would
be to use more capable sockets that can manage the required amounts of data without
affecting the algorithm’s performance or causing data losses. This new socket implementa-
tion would reduce the delay shown between the frame recording and the predicted line and
allow more data to be inputted into the machine to increase the accuracy of the results.





CHAPTER 6

Conclusions

6.1 Archieved results

The usage of neuromorphic hardware is now experiencing an increase in the number of
projects devoted to finding new applications where this system can replace and improve
previous implementations using conventional hardware. And this fact is motivated by the
need for better models that at the same time are portable and don’t require a considerable
amount of power. For this reason, the use of Spiking Neural Networks and hardware such
as the SpiNNaker board prove that it is possible to create capable systems that fulfill these
conditions. This is the reason why these Neuronal Networks are called Third Generation
Neuronal Networks.

After developing the algorithm, we evaluated its performance by analyzing different
datasets consisting of a representation of a controlled environment for calibration of the
system. The errors obtained from the analysis of the initial datasets show a promising rate
of error of 0.28 % of the detected line’s angle parameter space and 0.5 % for the distance of
the detected line to the origin when compared to the OpenCV detection algorithm. This
analysis proves that this system can fulfill the objective of detecting the parameters that
define a straight line in a plane.

Once we fulfilled this task, we moved into applying a new dataset belonging to a real
scenario. The results, in this case, showed a higher error than the previous analysis. The
errors for the driving dataset obtained by our model against conventional methods are 4%
for the angle and 4.5% for the distance of the detected line. As stated before, these results
are affected by the poor performance of the OpenCV algorithm used as a comparison.
Observing the results visually, we notice how our model was able to track the lanes more
reliably when compared with the conventional method. This result concludes the adequacy
of the algorithm for its application to the recognition of lane markings.

With this study, we prove a new use application and model for which the use of neu-
romorphic hardware can be beneficial and represent a valid alternative when compared to
previous implementations of similar algorithms. This goal is accomplished by the neuro-
morphic system while also using significantly lower resources, both in power consumption
and computing time (lower latency), as shown in our analysis.

6.2 Further Research

Using this motivation as a starting point, we worked on developing an algorithm capable of
tracking lanes present on the road and obtaining a valid numerical output that can be fur-
ther used in subsequent systems. This system could be further applied to an autonomous
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car system, where the whole data processing could be done by using neuromorphic hard-
ware, then benefiting from its main advantages such as the low latency of the results and
the minimal power consumption when compared to conventional computing systems.

Further work could be done on the system to reduce the number of events produced by
the output layer so that the algorithm only returns those points that confidently represent
a straight line. This work can be done by implementing a second neuronal layer to allow
the model’s output to be further processed and avoid false positives. The implementation
could be based on considering the previous outputted spikes to encourage the detection of
lines that follow a sequential path on the output. This improvement could allow a more
accurate result which would be more resilient to noise in the image and false positives
generated by objects that resemble the markings on the road.

Additionally, other techniques for processing the data, such as inhibitory neurons,
could further improve the accuracy of the results. This method, developed by Li et al.[4]
is based on deactivating the neurons that surround a recently fired one. In this way, if
a line has a width of multiple pixels, we can ensure that the result will only represent
this line on a single output point instead of obtaining very close points in the output
parameters. The implementation of this technique is based on deactivating those neurons
surrounding one that has recently spiked. As shown in the cited study, the output of the
system was significantly reduced in size while maintaining accuracy by using this technique.
However, current platform constraints for the Spiking Neural network disregard the direct
manipulation of the neurons, so a different strategy would have to be followed.

To sum up, we have successfully developed and evaluated a new working use case for
the incipient neuromorphic hardware platform. This feat pushes further the boundaries
of the capabilities of this hardware while inspiring new paths of research to be taken in
future studies.
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APPENDIX A

LIF Neuron Parameters

Parameter Value
cm 1
i_offset -1
tau_m 20
tau refraction 0
tau excitatory synapse 1
tau inhibitory synapse 1
reset voltage -55
rest voltage -65
threshold voltage -10

Table A.1: Parameters used for the obtention of the results in the neuron output layer of the
SpiNNaker Board
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APPENDIX B

Results in Video

Video Ouput results from Straight Line Dataset Available in: https://youtu.
be/5tJUv-gndrE .

The annexed video shows a side-by-side comparison of the outputs obtained after
analyzing the events recorded of a straight line moving on a white paper sheet. The
sensor’s black and white image frames are used as background to compare the line accuracy.
Superimposed on the frames, we plot the red lines representing the detected lanes by
each algorithm, on the left using the OpenCV implementation, and on the right the
Neuromorphic system’s output.

Video Ouput results from Two Angled Lines Dataset Available in: https://
youtu.be/2E4TlXuS8qo .

Video Ouput results from MVSEC Dataset Available in: https://youtu.be/
YzJfCZah2bk .

The annexed video shows a side-by-side comparison of the outputs obtained after
analyzing the first 20 Million events on the MVSEC dataset, corresponding to the " outdoor
night data " recording. Superimposed on the frames, we can find the red lines denoting
the detected lanes by each algorithm, using clustering to obtain the most relevant lines
corresponding to the lanes.
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