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Abstract: In multihead weighers, packaging processes seek to find the best combination of passage
hoppers whose product content provides a total package weight as close as possible to its (nominal)
label weight. The weighing hoppers arranged in these machines dispense the product quantity that
each package contains through computer algorithms designed and executed for this purpose. For
its part, in the packaging process for double-layered multihead weighers, all hoppers are arranged
in two levels. The first layer comprises a group of weighing hoppers, and the second comprises a
set of booster hoppers placed uprightly or diagonally to each weighing hopper based on design of
the machine. In both processes, the initial machine configuration is the same; however, the hopper
selection algorithm works differently. This paper proposes a new packaging process optimization
algorithm for double-layer upright and diagonal machines, wherein the hopper subset combined
has previously been defined, and the packaging weight is expressed as actual values. As part
of its validation, product filling strategies were implemented for weighing hoppers to assess the
algorithm in different scenarios. Results from the process performance metrics prove that the new
algorithm improves processes by reducing variability. In addition, results reveal that some machine
configurations were also able to improve their operation.

Keywords: multihead machines; packaging processes; double layer; hoppers filling strategies; optimization

1. Introduction

Multihead weighers were first used in the 1970s and, since then, they have been
used to improve industrial process performance. Currently, they are used in different
packaging processes for several products, regardless of their shape or size, and have become
particularly essential in the food industry [1,2]. Multihead weighers play a fundamental
role in the industrial process given the accuracy and speed they provide to the packaging
process. Once programmed, they can automatically package several food industry products,
including products with heterogeneous characteristics. This ensures compliance with
current regulatory standards while reducing production costs by maintaining an efficient,
high-volume product flow and preserving process quality. Still, one of the most prominent
process requirements is that package contents must match the weight printed on its label.
This becomes one of the main issues that must be addressed to guarantee high-quality
standards in the final product, with variability being directly related to the quality of the
process [3]. In this sense, authors such as Taguchi [4] claim that product quality depends
on how close its quality features are to their nominal value, in such a way that everything
that deviates from said nominal value is considered as a loss to society. Hence, quality in
the packaging process may be achieved by reducing variability around the target weight
(T) [5]. For these purposes, processes must be streamlined trying to guarantee that package
content weights are as close as possible to the weight specified on the label. Optimization
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techniques, new algorithms, and experiments’ design can be used as quality engineering
tools for the improvement and optimization of industrial processes [6].

Multihead weighing systems are mainly composed of a vibrating feeder system,
n feeding hoppers (HF), n weighing hoppers (HW), and a discharge conduit to a packaging
machine. In a traditional single-layer machine (without booster hoppers), the internal
algorithm combines all the n weighing hoppers in the machine to form a subgroup H of k
hoppers and then selects a subset H′ ∈ HW whose sum of weights is the closest to the target
weight T of the package. In this sense, package content weights are obtained by combining
a subgroup of k hoppers from the n weighing hoppers that the machine contains, with
k ≤ n. However, double-layered (upright and diagonal) weighers contain an additional
layer of hoppers and use a larger combination of hoppers to reach the target weight. In
these double-layered machines, each of the n weighing hoppers (HW) has a booster hopper
(HB) underneath, in which a single product ration can be stored, while the weighing
hoppers receive a new product ration from the feeding hoppers (HF), as illustrated in
Figure 1. For each package, all the hoppers must contain a certain product quantity, and
the machine must combine k hoppers of the 2n so that the system must form a subset H′ of
k hoppers. For double-layered upright systems, this subset H′ can be formed with booster
hoppers or weighing hoppers as long as its corresponding booster hopper is part of the k
hoppers, while, for the double-layered diagonal systems, a weighing and booster hopper
cannot be selected simultaneously for the same k-nuple.
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Figure 1. Weighing and discharge configuration on double-layered machines.

This research study proposes a new optimization algorithm for double-layered upright
and diagonal machines that seeks to select a subset H′ of k hoppers whose total weights
are greater and closer to the target weight T. The algorithm was validated through a case
study for actual products, wherein the performance characteristics of the process were
measured in different scenarios. In numerical experiments, filling strategies designed and
validated for three weighing hoppers in previous studies were tested. Likewise, different
values from previously established k combined hoppers were tested in each filling strategy.

This article is structured as follows: Section 2 presents the state of the art within
the multihead machine packaging process field. In Section 3, the weighing process for
double-layered upright and diagonal multihead weighers is described. Section 4 discusses
the different hopper-filling strategies used in the process. Then, Section 5 explains the
optimization model and the packaging algorithm proposed for double-layered weighers.
Section 6 lists the results and provides a preliminary assessment of the numerical experi-
ments. Next, Section 7 contains the results from the experimental design for the different
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process scenarios evaluated. Finally, Section 8 discussion and Section 9 elucidate our
conclusions from this research study.

2. Background

The documented research studies of multihead machines propose diverse solutions
for packaging issues. Different algorithms and solution and configuration models have
been presented for these processes. For example, some authors propose an optimal scheme
for determining ideal operation times for vibrating linear feeders in multihead weighers.
In their corresponding studies, they found that the least-squares method can be used
to reduce variability against fixed operating times [7]. A bit-operation-based weighing
algorithm succeeded in proving that operation times can be reduced and that the output
weight from uneven hoppers is closer to the desired target weight [8]. In other research
studies, the product residence time in hoppers was introduced as a second objective.
Hence, the packaging problem was formulated as a bicriteria approximation issue for
discrete weights, and a dynamic programming algorithm was proposed for its solution.
This algorithm aimed to reduce the maximum duration of the product in the packaging
system [9] while assuring that the total weight of each package was as close as possible to
its target weight. Similar work was approached for double-layered upright and diagonal
machines for discrete weights in the hoppers, using a bicriteria dynamic programming
algorithm for these machines [10]. Subsequently, the bicriteria model proposed by [9] was
ultimately improved through algorithms designed to reduce execution times, which makes
the packaging process more efficient [11]. Later, these theories were extended to duplex and
quasi-duplex machines [12]. In the same sense, heuristic algorithms have been proposed to
find better results in the bicriteria packaging process, targeting label weights, and priority
orders [13,14]. Likewise, several optimization algorithms have been proposed to determine
the optimum product flow rate for radial feeders, seeking to minimize expected production
costs per each “compliant” package within a fixed period of time. In this study, the response
surface methodology identified conditions of minimal process variability and lower costs,
compared to an industrial solution [15]. A heuristic optimization model based on a detailed
characterization of what constitutes a near-optimal solution to the multihead weigher
configuration problem has also been proposed. This model reduced hopper combination
response times according to each package weight, in addition to finding the right hopper
feeding points to minimize the mean square error for package weights [16]. Statistical
control of the packaging process has also been addressed. For example, several modified
control charts have been developed and studied to monitor and control the package
production process [17]. Finally, new bio-objective approaches have been developed for
the optimization of actual package weights [18,19], incorporating package target weights
and the priority associated with the product discharge times reported by hoppers into the
model. The innovation proposed by these approaches is that the relative importance of
the objectives is managed and dynamically adjusted in each packaging operation, thus
determining the best operation conditions for each process [20]. These approaches are
extremely useful for packaging fresh or frozen products. As evidenced, hitherto, no
scientific content has been disclosed regarding diagonal and upright machines considering
actual weights in hoppers with previously established k values. Therefore, this study
becomes quite relevant as it proposes a new optimization algorithm for double-layered
upright machines that considers actual weights and preestablished k values.

3. Weighing Process on Double-Layered Upright and Diagonal Weighers

The packaging process in double-layered multihead weighers consists of selecting a
subset H′ from the set H of the 2n machine hoppers to produce each package. Initially, the
product is distributed through the vibrating channels to the feeding hoppers, Then, it is
discharged to the HWi weighing hoppers (i = 1, 2, 3, . . . n), where the product is weighed.
In double-layered upright and double-layered diagonal weighers, each of the weighing
hoppers has a booster hopper, in which the content of the weighed product can be stored.
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For this reason, once the product is weighed, it is discharged into the corresponding HBj
booster hoppers (j = n + 1, n + 2, . . . 2n), and the weighing hopper receives a new portion
of the product, as denoted in Figure 2. Once all the hoppers are full (weighing and booster),
the machine calculates the combinations of all the weights, selecting a subset H′ of k
hoppers whose sum of the weights is greater and closer to the target weight T. Then, the
unloaded hoppers are filled with a new product to repeat the procedure until completing
the Q number of packages required.
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The wi weights in the hoppers are arranged in a normal distribution wi ∼ N(µ, σ) [14–16],
where µ is the average weight of the product to be provided in each weighing hopper HWi, and
σ is the standard deviation. Previous studies have found that σ has a direct correlation with
the mean quantity µ and linearly depends on it, due to vibrating feeding systems, according to
σ = γµ; where γ is a proportionality coefficient and varies according to the characteristics of
the packaging product [14–17,19].

For each discharge, the single-layer machine performs a number of combinations (NC)
determined by Equation (1), where n is the total number of hoppers in the system and k is
the hoppers to be combined. By adding the booster layers, the NCs for the double-layered
upright and diagonal machines increase, being greater in the latter.

NC =

(
n
k

)
(1)

For each package produced, the double-layered upright machine can discharge booster
hoppers or simultaneously discharge the weighing hopper and its corresponding booster
hopper (Figure 3), making the NC greater, thus improving the possibility of finding a
subset of hoppers that meet the target weight requirement. Depending on the number
of weighing hoppers, we have several types of combinations. For example, the system
can combine k booster hoppers or i ≤ k

2 booster hoppers, where i is an integer, with their
corresponding weighing hoppers and the other n− i booster hoppers.
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For k = 2, when combining the booster hoppers,
(

n
2

)
combinations are obtained,

but the weighing hopper with its corresponding booster can also be combined; therefore,
there are n additional cases (see Equation (2)). In the same sense, for k = 3, first, there are(

n
3

)
booster hopper combinations. In addition, the weighing hoppers can be combined

with booster hoppers, and each pair can be associated with n − 1 hoppers, replicated
n times (see Equation (3)). By mathematical induction of Equations (2)–(8), it is deduced
that, in general, the total NC of k ≤ n hoppers is determined by Equation (9), where
〚k/2〛 represents the integer part of k

2 .

k = 2, NC =

(
n
2

)
+ n (2)

k = 3, NC =

(
n
3

)
+

(
n− 1

1

)
·n (3)

k = 4, NC =

(
n
4

)
+

(
n− 1

2

)
·n +

(
n
2

)
·
(

n− 2
0

)
(4)

k = 5, NC =

(
n
5

)
+

(
n− 1

3

)
·n +

(
n
2

)
·
(

n− 2
1

)
(5)

k = 6, NC =

(
n
6

)
+

(
n− 1

4

)
·n + · · ·+

(
n
2

)
·
(

n− 2
2

)
+

(
n
3

)
·
(

n− 3
0

)
(6)

k = 7, NC =

(
n
7

)
+

(
n− 1
7− 2

)
·n + · · ·+

(
n
2

)
·
(

n− 2
7− 4

)
+

(
n
3

)
·
(

n− 3
7− 6

)
(7)

k = 8, NC =

(
n
8

)
+

(
n− 1
8− 2

)
·n +

(
n
2

)
·
(

n− 2
8− 4

)
+ · · ·+

(
n
3

)
·
(

n− 3
8− 6

)
+

(
n
4

)
·
(

n− 4
8− 8

)
(8)

NC =
Jk/2K

∑
i=0

(
n
i

)(
n− i
k− 2i

)
(9)

Furthermore, for double-layered diagonal machines, only booster hoppers, only weigh-
ing hoppers, or a combination of both levels can be discharged to produce each package,
as long as a weighing hopper and its booster are not simultaneously unloaded, as denoted
in Figure 4.
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n
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)
booster hopper combinations, the mathematical expression to generate

the combinations is shown in Equation (10). For k = 3, only three booster hoppers can be
combined, i.e., two booster hoppers with one of the n− 2 remaining weighing hoppers, one
booster hopper with a combination of two of the n− 1 remaining weighing hoppers, or only
three weighing hoppers. Equations (10)–(13) denote the calculation of the combinations
for k = 2, 3, 4, and 5. In general, by mathematical induction, the total NC of k hoppers with
k ≤ n is determined by Equation (14). Table 1 below presents an example of the NC that
can be generated for each machine type for n = 16 with k = 2 up to k = 8.
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(
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+
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·
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+
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2

)
(10)
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3
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+
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+

(
n
2

)
·
(

n− 2
1

)
+

(
n
3

)
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(
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+
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+
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)
·
(
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1
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+

(
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)
·
(
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(12)

k = 5, NC =

(
n
5

)
+

(
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1

)
·
(

n− 1
4

)
+

(
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2

)
·
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n− 2
3

)
+ · · ·

. . . +
(

n
3

)
·
(

n− 3
2

)
+

(
n
4

)
·
(

n− 4
1

)
+

(
n
5

)
·
(

n− 5
0

) (13)

NC =
k

∑
i=0

(
n
i

)(
n− i
k− i

)
(14)



Mathematics 2021, 9, 1039 7 of 20

Table 1. Number of combinations per package for n = 16 in standard (single-layered), double-layered
upright, and double-layered diagonal machines.

k Single Layered Double-Layered Upright Double-Layered Diagonal

2 120 136 480
3 560 800 4480
4 1820 3620 29,120
5 4368 13,328 139,776
6 8008 41,328 512,512
7 11,440 110,448 1,464,320
8 12,870 258,570 3,294,720
9 11,440 536,640 5,857,280
10 8008 996,216 8,200,192
11 4368 1,665,456 8,945,664
12 1820 2,520,336 7,454,720
13 560 3,465,840 4,587,520
14 120 4,343,160 1,966,080
15 16 4,969,152 524,288
16 1 5,196,627 65,536

As aforementioned, in its initial configuration, the double-layered upright machine
has a restriction in the combination of the k system hoppers (Hm). Specifically, a hopper of
HWi can only be part of a k− nupla of hoppers if and only if the set of the k hoppers contains
HBj, with j = n+ i. However, in the double-layered diagonal machine, all HWi and HBj that
belong to the k− nupla must meet the condition of i 6= j− n. Figure 3 below illustrates the
invalid combinations for each machine. For example, for n = 10 with k = 3, Hopper 3 in a
double-layered upright system is a weighing hopper, while Hopper 13 is a booster hopper.
Here, Hopper 3 may be selected for combination provided that Hopper 13 is also selected,
while, for the diagonal system, they cannot be selected simultaneously. Examples 7 and 8
of Figure 5 denote invalid combinations for the upright machine when trying to combine
weighing hoppers without considering their corresponding booster hopper. Furthermore,
Example 9 illustrates an incorrect combination in the diagonal machine when trying to
simultaneously discharge the weighing hopper with their corresponding booster hopper.
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4. Hopper-Filling Strategies

In the industrial field, the filling configuration of the hoppers during the multihead
weighing process is made based on the experience and skill of the machine operator. This
is since the machine does not have a predetermined configuration strategy for all the types
of existing products that can be packaged in it. To address this fact, the present research
proposes solving the packaging problem through an algorithm for different k hopper com-
binations, with an average feed for each hopper according to the three filling strategies
proposed by [14,19,20] for single-layered weighers (see Table 2, Equations (15)–(17)). Two
of these strategies consider the cases in which each hopper i is filled with a different average
quantity of product µi (instead of a common value µ = T/k). In this sense, and considering
the original concept of each filling strategy, this study will explore the cases in which
hopper feeds are defined so that hopper subgroups may share the same value of µi. These
strategies have been implemented in single-layered machines using single-target and bio-
target algorithms with good results in reducing process variability [14,18–20]. However,
they have not yet been tested on double-layered machines. With the implementation of the
strategies, it is also intended to evaluate if it is more efficient for the process to supply all
hoppers with the same amount of product or uneven amount of product according to the
coefficient of proportionality γ related to the product to be packed. Hopper feed variation
will depend on a change value represented by the δ parameter, which is commonly used
in statistical process control to simulate out-of-control processes. Nevertheless, for the
purposes hereof, it will be used to voluntarily simulate an uneven product supply for
weighing hoppers. Herein, δ will take values from 0 to 3 with increments of 0.5 (these in-
crements are represented by the δmin parameter, as expressed in Equation (15)). In addition,
the average filling value for each hopper will also be influenced by the proportionality
coefficient γ (σ = γµ), which will depend on the type of material to be packaged. In this
document, proportionality coefficients are used for two different pasta products: Fusilli,
with γ = 0.123, and Ravioli, with γ = 0.331, [19,20]. For example, to calculate the standard
deviation for a target weight of 500 g when we want to pack a product such as Fusilli by
combining three hoppers, we will have a theoretical deviation of σ = 0.123· 500 g

3 = 20.5 g.

Table 2. Number of hoppers for each group according to the S1, S2, and S3 strategies and distribution of hoppers.

Distribution Strategy n1 n2 n3 n4 n5 a=mod( n
5 )

Equal
S1

n/5 n/5 n/5 n/5 n/5 a = 0
〚n/5〛 〚n/5〛 〚n/5〛+ a 〚n/5〛 〚n/5〛 a = 1

〚n/5〛+ 1 〚n/5〛 〚n/5〛 〚n/5〛 〚n/5〛+ 1 a = 2
〚n/5〛+ 1 〚n/5〛 〚n/5〛+ 1 〚n/5〛 〚n/5〛+ 1 a = 3
〚n/5〛+ 1 〚n/5〛+ 1 〚n/5〛 〚n/5〛+ 1 〚n/5〛+ 1 a = 4

S2 〚n/3〛 n− 2·〚n/3〛 〚n/3〛
S3 n

Central

S1 1 1 n− 4 1 1

S2
1, i f n ≤ 8
2, i f n > 8 n− 2n1

1, i f n ≤ 8
2, i f n > 8

S3 n

Extreme
S1 (n− 2)/2 1 0 1 (n− 2)/2
S2 (n− 2)/2 2 (n− 2)/2
S3 n

In this way, to assess the algorithm proposed for double-layered machines, the three
strategies will determine the average product supply for hopper subgroups and the to-
tal number of hoppers in each subgroup. The first strategy (S1) proposes dividing the
n weighing hopper into five groups, (n1, n2, n3, n4, n5, where ∑5

i=1 ni = n) and feeding
different average quantities to each subgroup (µ1, µ2, µ3, µ4, µ5), establishing the filling
configuration during the packaging process according to Equation (15). The second strategy
(S2) proposes diving the n weighing hopper into three groups, (n1, n3, n5) and feeding
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different average quantities to each subgroup (µ1, µ3, µ5), as per Equation (16). Finally, in
the third strategy (S3), the n weighing hoppers are filled with the same amount of product,
µ = T

k for each hopper, as expressed in Equation (17).

wi ∼ N
(
µj, σ = γµj

)
=


µ1 = µ− δσ

µ2 = µ− (δ− δmin)σ
µ3 = µ = T

k
µ4 = µ + (δ− δmin)σ

µ5 = µ + δσ

 (15)

wi ∼ N
(
µj, σ = γµj

)
=


µ1 = µ− δσ

µ3 = µ = T
k

µ5 = µ + δσ

 (16)

wi ∼ N(µ, σ = γµ) =

{
µ =

T
k

}
(17)

In addition to the S1, S2, and S3 filling strategies, in which an average product supply
is established for each subgroup, we must define a distribution of hoppers, in particular,
the number of hoppers that are assigned to each subgroup (see Table 2). In this sense, three
types of distributions are proposed: equal, central, and extreme. In the equal distribution
strategy, each group includes approximately the same number of hoppers. For example,
for the S1 filling strategy, the total number of hoppers (n) is divided among the five groups( n

5
)
. Each of the ni (i = 1, . . . 5) is assigned a number of hoppers equal to the largest

integer multiplied by 5 that is closest to n (integer part 〚 n
2 〛). If the remainder of the division(

mod
( n

5
))

is 1, the central group (n3) will have one more hopper. If it is 2, a hopper
will be assigned to each extreme group. For mod

( n
5
)
= 3, they are distributed between

n1, n3, and n5. If mod
( n

5
)
= 4, the n3 group will have one less hopper than the rest.

The central distribution consists of assigning as many hoppers as possible to the
central set of hoppers. For example, in strategy S2 for n ≤ 8 and n > 8, one and two
hoppers will be assigned, respectively, to each end, and the surplus is assigned to the
central group. Finally, the extreme distribution assigns the largest number of hoppers to
the extreme subgroups n1 and n5, and the least amount to n3. Tables 3 and 4 illustrate
an example of the number of hoppers for each subgroup according to the S1, S2, and S3
strategies with n = 16 weighing hoppers, and the average supply values for central, equal,
and extreme subgroup distributions.

Table 3. Number of hoppers for each group according to the S1, S2, and S3 strategies for equal,
central, and extreme distributions with n = 16.

Distribution Strategy n1 n2 n3 n4 n5

Equal
S1 3 3 4 3 3
S2 5 6 5
S3 16

Central
S1 1 1 12 1 1
S2 2 12 2
S3 16

Extreme
S1 7 1 0 1 7
S2 7 2 7
S3 16
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Table 4. Average filling weight according to the S1, S2, and S3 strategies for equal, central, and extreme distributions
with n = 16.

Distribution Strategy Average Filling Weight

Equal
S1 µ1 µ1 µ1 µ2 µ2 µ2 µ3 µ3 µ3 µ3 µ4 µ4 µ4 µ5 µ5 µ5
S2 µ1 µ1 µ1 µ1 µ1 µ3 µ3 µ3 µ3 µ3 µ3 µ5 µ5 µ5 µ5 µ5
S3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3

Central
S1 µ1 µ2 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ4 µ5
S2 µ1 µ1 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ5 µ5
S3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3

Extreme
S1 µ1 µ1 µ1 µ1 µ1 µ1 µ1 µ2 µ4 µ5 µ5 µ5 µ5 µ5 µ5 µ5
S2 µ1 µ1 µ1 µ1 µ1 µ1 µ1 µ3 µ3 µ5 µ5 µ5 µ5 µ5 µ5 µ5
S3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3 µ3

Weighing hoppers: HW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Booster hoppers: HB 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

5. Optimization Model and Packaging Algorithm

This section presents the mathematical model and the packaging algorithm for the
process in double-layered upright and diagonal machines. In this work, an adaptation of
the well-known backpack problem is used. For each package, a deterministic knapsack
problem is solved. Some researchers have optimized this way of determining the final
weight of the package [21–23].

The symbology, decision variables, target function, and constraints for each process
are also presented.

5.1. Symbology

Q : number of packages;
` : iteration in which the package is packed, where ` ∈= {1, 2, 3.Q};
HWi : set of n weighing hoppers, i = {1, 2, 3.n};
HBj : set of n booster hoppers, j = {n + 1, n + 2, . . . 2n};
Hm =

{
HWi ∪ HBj

}
: set of the 2n hoppers m = {1, 2, 3, . . . , 2n};

H′ : subset of combined hoppers;
T : target label weight;
k : number of hoppers to combine;
wi : actual weight of each hopper i = {1, 2, 3, . . . 2n} based on filling strategy (S1, S2, or S3);
W` : sum of the weights of the k hoppers in the ` iteration.

5.2. Target Function

The target function for the packaging processes in double-layered machines seeks to
minimize the difference between the effective content of the package and its target weight
T. The binary vectors are defined for the weighing hoppers (Equation (18)) and Yj for
the booster hoppers (Equation (19)), whose components xi or yj take the value of 1 if the
hopper weight Hm was selected, or else it takes the value of 0 (Equations (20) and (21)).

Xi = (x1, x2, x3, x4, . . . xn) (18)

Yj = (yn+1, yn+2, yn+3, yn+4 . . . y2n) (19)

xi =

{
1, if HWi is the selected hopper
0, otherwise

(20)

yi =

{
1, if HBi is the selected hopper
0, otherwise

(21)
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To select the hoppers, whose sum of the weights are the closest and greatest to the
package weight, the function will be minimized, f = W` − T ≥ 0.

minimize f (x, y) =

[
n

∑
i=1

xiwi +
2n

∑
j=n+1

yjwj

]
− T (22)

The problem restrictions will be directly determined by hopper selection restrictions.
For the double-layered upright machine, the operating restriction of the system is that an
upper hopper cannot be selected if its corresponding booster hopper has not been selected,
which means that Equation (23) must be used. For the double-layered diagonal machine, a
weighing hopper and its booster cannot be selected simultaneously, which is guaranteed
by Equation (24).

xi − yi ≤ 0 (23)

xi + yi ≤ 1 (24)

In each ` iteration, the best combination of k hoppers from the 2n available must be
selected. If Equation (22) and the restrictions Equations (20), (21), and (23) for the double-
layered upright machine are satisfied simultaneously for the whole set of k combined
hoppers and Equations (20), (21), and (24) for the double-layered diagonal machine, then
the combination is valid.

As an example of the description of the mathematical model adjusted to the S2, first,
the vectors are defined for each subgroup (Equations (25)–(30)) according to Equations
(31)–(36). The mathematical model is expressed as a function to minimize (Equation (37)),
subject to the restrictions from Equations (38)–(40) for the double-layered upright machine
and from Equations (41)–(43) for the double-layered diagonal.

XS
n1
2

i =
(

xS2
i , . . . , xS2

n1

)
(25)

XSn2
2

m =
(

xS2
n1+1, . . . , xS2

n1+n2

)
(26)

XS
n3
2

r =
(

xS2
n1+n2+1, . . . , xS2

n

)
(27)

YS
n1
2

j =
(

yS2
1+n, . . . , yS2

n+n1

)
(28)

YSn2
2

t =
(

yS2
n+n1+1, . . . , yS2

n+n1+n2

)
(29)

YS
n3
2

u =
(

yS2
n+n1+n2+1, . . . , yS2

2n

)
(30)

xi =

{
1, if HS

n1
2

Wi is chosen
0, in other case

(31)

xm =

{
1, if HSn2

2
Wm is chosen

0, in other case
(32)

xr =

{
1, if HS

n3
2

Wr is selected
0, in other case

(33)

yj =

{
1, if HS

n1
2

Bj is selected
0, in other case

(34)

yt =

{
1, if HSn2

2
Bt is chosen

0, in other case
(35)
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yu =

{
1, if HS

n3
2

Bu is selected
0, in other case

(36)

[
n1

∑
l=1

x1
l w1

l +
n1+n2

∑
m=n1+1

x2
mw2

m +
n

∑
r=n1+n2+1

x3
r w3

r +
n1+n

∑
j=l+n

y1
j w1

j +
n1+n2+n

∑
t=n1+n

y2
t w2

t +
2n

∑
u=n1+n2+n

y3
uw3

u

]
− T ≥ 0 (37)

xi − yj ≤ 0 (38)

xm − yt ≤ 0 (39)

xr − yr ≤ 0 (40)

xi + yj ≤ 1 (41)

xm + yt ≤ 1 (42)

xr + yr ≤ 1 (43)

5.3. Algorithm

In this subsection, we present the algorithm designed for the packaging process for
double-layered upright and diagonal machines. The step-by-step process is generic for any
of the k combinations of the 2n hoppers of the system, with initial constants adjustable to
the type of product packaged.

• Step 1. The initial values and conditions are defined.
Q : Total number of packages processed;
n : Number of weighing hoppers;
k : Number of hoppers to combine 2 ≤ k ≤ n;
T : Target weight > 0.

• Step 2. The empty weighing hoppers HWi are loaded with randomly assigned weights
wi, i ∈ {1, 2, . . . n} according to S1, S2, or S3 and according to the number of hoppers
in each group.

• Step 3. The contents of the weighing hoppers HWi are discharged into their corre-
sponding empty booster hoppers HBj, with wn+i = wi and wi = 0.

• Step 4. The weighing hoppers previously discharged are reloaded.
• Step 5. The hoppers that meet the criteria from Equation (23) or Equation (24) are

combined for the upright or diagonal machines, respectively.
• Step 6. The difference between the sum of the weights of each combination and the

target weight is calculated (Equation (22)).
• Step 7. The subset H′ of k hoppers whose difference with T is minimal, from those

calculated in the previous point, is selected.
• Step 8. The product is discharged and packed.
• Step 9. If the required number of Q packets has been completed, the process ends.

Otherwise, it returns to Step 2.

6. Preliminary Analysis

To validate the algorithm, we used proportionality coefficients of γ = 0.123 for Fusilli
and γ = 0.331 for Ravioli [20]. In addition, a number of n = 16 weighing hoppers were
assessed, at k = 2, 3, 4, 5, and 7, δ = 2, δmin = 0.5, and a target weight of T = 250 g.
The number of hoppers in each subgroup is shown in Table 3. Combinations generated
for the different values of k assessed are presented in Table 1. The performance measures
calculated were the average weight of the packages produced (µpaq), the standard devi-
ation of the packages produced (σpaq), and the coefficient of variation of the packages

produced
(

CVpaq =
µpaq
σpaq

)
, all above for Q = 10,000 packages.

Results for the double-layered upright and diagonal machine are presented in
Tables 5 and 6. Here, we observe that at γ = 0.123, for the double-layered upright machine,
the S3 strategy produces a weight closer to T and lower values of σpaq and CVpaq, when
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k = 7. However, this strategy offers the highest values for µpaq and σpaq, thus becoming
the least favorable for the process. In S1 and S2, the average weight closest to T and lower
values of σpaq and CVpaq were obtained at k = 7. However, their values were similar to k = 6.
These last strategies seem to be the most convenient in terms of reducing process variability.
This behavior of the strategies is maintained for the double-layered diagonal machine,
which also denotes lower values when compared to those obtained in the double-layered
upright machine.

Table 5. Results of S1, S2, and S3 strategies, for k = 2, 3, 4, 5, 6, and 7, and γ = 0.123.

FUSILLI

Vertical Diagonal

k µpaq σpaq CVpaq µpaq σpaq CVpaq µ1 µ2 µ3 µ4 µ5

2 254.158 2.855 0.0110 253.650 2.869 0.0110 94.25 101.94 125.00 148.06 155.75

S1

3 250.231 0.208 0.0008 250.063 0.049 0.0002 62.83 67.96 83.33 98.71 103.83
4 250.031 0.029 0.0001 250.005 0.004 1.62e-05 47.13 50.97 62.50 74.03 77.88
5 250.006 0.006 2.36e-05 250.001 0.001 2.48e-06 37.70 40.78 50.00 59.23 62.30
6 250.002 0.002 6.51e-06 250.000 1.36e-04 5.47e-07 31.42 33.98 41.67 49.35 51.92
7 250.001 0.001 2.42e-06 250.000 5.10e-05 2.04e-07 26.93 29.13 35.71 42.30 44.50
2 253.928 2.82 0.0111 253.319 2.691 0.001 94.25 125.00 155.75

S2

3 252.181 2.158 0.0086 250.056 0.044 0.0002 62.83 83.33 103.83
4 250.031 0.028 0.0001 250.004 0.004 1.34e-05 47.13 62.50 77.88
5 250.006 0.006 2.42e-05 250.001 0.001 2.02e-06 37.70 50.00 62.30
6 250.002 0.002 6.68e-06 250.001 1.21e-04 4.85e-07 31.42 41.67 51.92
7 250.001 0.001 2.04e-06 250.000 4.21e-05 1.68e-07 26.93 35.71 44.50
2 253.405 2.662 0.0105 252.615 2.392 0.0095 125.00

S3

3 250.414 0.82 0.0033 250.170 0.673 0.0027 83.33
4 250.161 0.657 0.0026 250.070 0.482 0.0019 62.50
5 250.138 0.725 0.0029 250.107 0.720 0.0029 50.00
6 250.166 0.885 0.0040 250.060 0.556 0.0022 41.67
7 250.084 0.623 0.0024 250.071 0.609 0.0024 35.714

Table 6. Results of the S1, S2, and S3 strategies, for k = 3, 4, 5, 6, and 7, and γ = 0.331.

RAVIOLI

Vertical Diagonal

k µpaq σpaq CVpaq µpaq σpaq CVpaq µ1 µ2 µ3 µ4 µ5

2 254.527 2.929 0.0120 254.138 2.854 0.0110 42.25 62.94 125.00 187.06 207.75

S1

3 252.231 2.215 0.0088 251.915 2.199 0.0087 28.17 41.96 83.33 124.71 138.50
4 250.102 0.104 0.0004 250.028 0.038 0.0002 21.13 31.47 62.50 93.53 103.88
5 250.018 0.017 0.0001 250.002 0.002 7.47e-06 16.90 25.18 50.00 74.83 83.10
6 250.005 0.005 1.85e-05 250.000 4.29e-04 1.69e-06 14.08 20.98 41.67 62.35 69.25
7 250.002 0.002 6.86e-06 250.000 1.12e-04 4.84e-07 12.07 17.98 35.71 53.45 59.36
2 254.587 2.867 0.0113 254.154 2.857 0.0112 42.25 125.00 207.75

S2

3 252.539 2.421 0.0096 251.638 2.086 0.0083 28.17 83.33 138.50
4 250.113 0.118 0.0005 250.017 0.016 0.0001 21.13 62.50 103.88
5 250.018 0.017 0.0001 250.002 0.002 6.85e-06 16.90 50.00 83.10
6 250.005 0.004 1.72e-05 250.000 3.39e-04 1.35e-06 14.08 41.67 69.25
7 250.001 0.001 5.95e-06 250.000 1.22e-04 4.88e-07 12.07 35.71 59.36
2 254.422 2.867 0.0113 253.58 2.715 0.0107 125.00

S3

3 250.887 1.376 0.0055 250.245 0.597 0.0024 83.33
4 250.318 0.960 0.0038 250.102 0.501 0.0020 62.50
5 250.170 0.691 0.0028 250.053 0.410 0.0016 50.00
6 250.160 0.793 0.0030 250.049 0.443 0.0017 41.667
7 250.069 0.505 0.0020 250.064 0.565 0.0022 35.714

However, the results of the tests for γ = 0.331 show that the average weight of
the packages closest to the target weight and the lowest values of σpaq and CVpaq are
presented for k = 6 and 7 in both machines, being lower in S1 and S2. In general terms, we
observe that when the value of the proportionality coefficient is increased to γ = 0.331, the
µpaq, σpaq, and CVpaq values also increase. However, the behavior (operation) of the process
is similar for both products. Based on these results, the design of experiments presented in
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Section 7 was proposed to determine which conditions decrease process variability and
provide higher values and as close as possible to the target weight.

7. Experiment Design

To follow up on our preliminary analysis, an experiment design (DOE) of fixed effects
factors [24] was conducted to determine the best combination of treatments that provides
the least process variability. For the design, the factor levels that evidenced the best
performance in their coefficient of variation are considered, discarding those that yielded
the lowest levels of process variability reduction. The multifactorial design consists of
eight factors, as shown in Table 7, for a total of 1512 treatments in each machine, each of
them with three replicates, finally obtaining 12,096 runs. The response variable studied is
the coefficient of variation obtained in each run of 10,000 packages since it is a measure
that may be used to compare different target weights T. In addition to analyzing the best
factor combination, the upright and diagonal machines are compared against each other
to determine which offers less process variability. Here, the first factor encompasses two
levels, which refer to the double-layered upright or diagonal machine. A second factor
is associated with the number of weighing hoppers. In this case, machines with 10, 14,
and 16 weighing hoppers were assessed. The third factor is the number of hoppers to
combine with values from k = 5 to k = 7. Another factor to consider is the target label
weight, which is set at two levels: 250 g and 500 g. In addition, two packaging products,
Fusilli and Ravioli, constitute the two levels of the sixth factor. The S1 and S2 strategies
determine hopper subgroups, grouped by equal, central, and extreme levels. The filling
position constitutes the eighth factor with seven levels δmin = 0, 0.5, 1, 1.5, 2, 2.5, and 3,
which simulate an out-of-control process when δmin > 0.

Table 7. Experiment design factors and levels.

Factors Factor Levels

Machine type Upright Diagonal
Number of weighing hoppers: n 10 14 16
Number of hoppers to combine k 5 6 7

Target weight: T 250 500
Material type: gamma (γ) Fusilli = 0.123 Ravioli = 0.331

Strategy: Number of subgroups 3 5
Hopper distribution Central Equal Extreme

Filling position: Delta (δ) 0 0.5 1 1.5 2 2.5 3

Given that the data of the response variation coefficient variable (CVpaq) are asymmet-
ric, with a lower target weight, adjusted box plots are used to compare the levels within the
same factor, as shown in Figure 6. To assess the experiment design, a transformation of the
variable CVpaq by Johnson’s method [25] is used to standardize the data, thus obtaining
the transformed coefficient of variation (CVpaqT) as the response variable.

Results from the experiment design were analyzed using analysis of variance (ANOVA).
Table 8 denotes the results of the ANOVA. As it may be observed, no significant differences
were found in the product type and number of subgroups factors for the hopper distribu-
tion. Figure 7 denotes the significant factors. When analyzing the interactions, significant
p-values were found for Machine Type Target Weight, Machine Type· k, Target Weight·n, n·k, n
k, n·Delta, n·Gamma, n·Hopper Distribution, k·Delta, k·Number of Subgroups, k·Hopper Distribu-
tion, Delta·Gamma, Delta·Number of Subgroups, and Number of Subgroups·Hopper Distribution.

Based on the results of the significant interactions between the design factors
(Figures 8 and 9), we can infer that when comparing machine performances according to the
number of weighing hoppers, n = 16 provides greater accuracy, and it is even better when
the target weight is 500 g. For the number of hoppers combined, significant differences
were found between the mean values of the coefficient of variation. Figures 6 and 7 denote
that for almost all interactions, k = 7 is the ideal number of hoppers to reach the target
weight, except at δ = 1.5, which suggests the use of six hopper combinations. Significant
differences were also found for CVpaqT, according to the target weight, exhibiting better
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behaviors if T = 500 g. Regarding the S1 and S2 filling strategies, five subgroups provided
better results at δ = 2.5. In addition, significant differences were found regarding the
product type. In this aspect, better results were found when the proportionality coefficient
is the lowest because lower values of γ introduce less variability in the weights supplied
to the weighing hoppers. Here, Fusilli (γ = 0.123) reported less process variability with
an optimum point at δ = 2.5. Regarding the hopper distribution for each group, the
central strategy denotes better behavior for both machines. Hence, we can conclude that
the optimal process uses the diagonal machine at k = 7, n = 16 T = 500, S1 = 5, central
distribution, δ = 2.5 (δ = 1.0 for Ravioli), and γ = 0.123.
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Table 8. ANOVA for CVpaqT - sum of squares type III.

Source Sum of Squares Df Mean Square F-Ratio p-Value

MAIN EFFECTS
Machine type 1.72e14 1 1.72e14 327.78 0.0000
Target weight 2.28e14 1 2.28e14 434.55 0.0000

n 5.14e14 2 2.57e14 488.73 0.0000
k 1.90e14 2 9.52e13 181.24 0.0000

Delta 2.35e14 6 3.92e13 74.68 0.0000
Gamma 4.10e11 1 4.10e11 0.78 0.3771

Number subgroup strategy 6.17e11 1 6.17e11 1.17 0.2785
Distributions 1.25e14 2 6.26e13 119.06 0.0000

INTERACTIONS
Machine type target weight 2.83e13 1 2.83e13 53.82 0.0000

Machine Type·k 3.95e14 2 1.98e14 376.23 0.0000
Target weight·n 4.20e12 2 2.10e12 4.00 0.0184
Target weight·k 1.71e13 2 8.54e12 16.26 0.0000

n·k 8.94e13 4 2.23e13 42.53 0.0000
n·Delta 3.62e14 12 3.02e13 57.44 0.0000

n·Gamma 6.04e12 2 3.02e12 5.74 0.0032
n·Distributions 1.30e13 4 3.26e12 6.20 0.0001
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Table 8. Cont.

Source Sum of Squares Df Mean Square F-Ratio p-Value

k·Delta 2.69e14 12 2.24e13 42.58 0.0000
k·Number subgroup strategy 8.68e12 2 4.34e12 8.26 0.0003

k·distributions 1.46e13 4 3.65e12 6.95 0.0000
Delta·gamma 1.42e14 6 2.37e13 45.09 0.0000

Delta·number subgroup strategy 5.05e13 6 8.41e12 16.01 0.0000
Number subgroup strategy·Distributions 5.04e12 2 2.52e12 4.80 0.0083

Residual 6.32e15 12,018 5.25e11
Total (corrected) 9.19e15 12,095
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8. Discussion

Multihead machines for their proper operation require two processes: packaging and
machine configuration. The packaging process is linked to the problem of the backpack,
that is, how to select the hoppers whose sum of the weights is greater and closest possible to
the target weight. The new software, implemented for upright and diagonal double-layer
machines with real weights according to the preliminary results (Tables 5 and 6), shows
that it is capable of responding to the problem by finding the optimal value in each package,
complying with the requirements. On the other hand, the configuration of the machine
is related to the amount of product that each weighing hopper receives, and in this sense,
the filling strategies focus on evaluating the performance of the machine according to the
amount of product supplied to each hopper. The S3 strategy provides each hopper with
the same amount of product, while the S2 divides the hoppers into three groups and in
the same way, S1 into five groups, which guarantees an unequal supply of product to each
subset of hoppers. The preliminary results of Tables 5 and 6 show that the configuration of
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the machines with the lowest performance in terms of the target weight and the variation
of the process is the S3 strategy, which supplies the same quantity of product to all the
hoppers; therefore, it is not taken into account for the design of the experiment (Table 7).
Likewise, in the configuration process, distribution strategies (central, equal, and extreme)
were tested with the number of hoppers for each subset determined in each strategy S1
and S2, according to the group to which the largest number of hoppers is assigned. In the
results of the design of experiments (Table 8), it is observed that there is no difference
between the strategies S1 and S2 (p-value = 0.27); however, when contrasting them in the
presence of other factors, for example, the number of hoppers to combine (k) and the delta
value (δ), we find that in the presence of these factors, there is a significant difference
between them. In the same sense, for the type of product, significant p-values are found
in the presence of a second factor such as the case of delta and the number of hoppers in
the system. In accordance with the above, the type of product is an important factor to
take into account when configuring the machine. When analyzing the interactions of the
other factors with the delta value (δ) (Table 8, Figures 8 and 9), we find that the process
presents less variability in values of δ = 1.5, which suggests a group of hoppers receive
content that is far away plus 1.5 standard deviations of the average content according to
the target weight and the type of product to be packed. Finally, the results suggest that for
k = 7, hopper combinations the packaging process achieves its optimal value.

9. Conclusions

The multihead weighing process is characterized by high product packaging perfor-
mance and accuracy. The optimization of this process guarantees material savings and
high levels of productivity in terms of the number of packages produced. In this document,
a new packaging algorithm and its corresponding optimization model for double-layered
upright and diagonal multihead weighers have been presented, considering actual weights
in the weighing hoppers and a predefined number of hoppers to be combined. The algo-
rithm was validated using three product feeding strategies (S1, S2, and S3) and different
numbers k of hopper combinations. To assess the performance of the process, two products
(Ravioli and Fusilli) were tested at different coefficients of proportionality (γ), and then
an experiment design was approached to establish a comparison between different factor
levels. The performance metrics used were the average weight of the packages produced,
the standard deviation of the packages produced, and the coefficient of variation of the
packages produced. Results revealed that the best filling configuration to reduce the pro-
cess variability is the S1 strategy, particularly with the five subgroups of hoppers, assigning
the largest number of hoppers to the group. In addition, the number of hoppers to be
combined at k = 7 offered the least variability in the total weight of the packages produced
in both processes. The study also concluded that process behavior or operation is better
at minimum values of γ (γ = 0.123). Finally, the diagonal machine offers a greater NC
for the weighing hoppers when selecting the package weight, which is reflected in lower
process variability.
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