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Abstract: The evolution of the neutronic power inside of a nuclear reactor core can be ap-
proximated by means of the diffusive time-dependent simplified spherical harmonics equations
(SPN). For the spatial discretization of these equations, a continuous Galerkin high order finite
element method is applied to obtain a semi-discrete system of equations that is usually stiff. A
semi-implicit time scheme is used for the time discretization and many linear systems are needed
to be solved and previously, preconditioned. The aim of this work is to speed up the convergence
of the linear systems solver with a multilevel preconditioner that uses different degrees of the
polynomials used in the finite element method. Furthermore, as the matrices that appear in this
type of system are very large and sparse, a matrix-free implementation of the preconditioner is
developed to avoid the full assembly of the matrices. A benchmark transient tests this method-
ology. Numerical results show, in comparison with the block Gauss-Seidel preconditioner, an
improvement in terms of number of iterations and the necessity of computational resources.

1 INTRODUCTION

Inside the reactor core, the evolution of the neutronic power can be modelled by means of
the multigroup simplified spherical harmonics equations (SPN). Different time formulations for
this approximation of the neutron transport equation can be developed [15]. This work uses
a formulation where the partial derivative of the even moments of the flux are neglected such
that it can be seen as a generalized diffusive system with derivatives of order two in the space.

Spatially, the problem is discretized by applying a continuous Galerkin high order finite
element method. Two sets of time-dependent differential equations are obtained, that for usual
reactor systems are stiff. One related to the neutron moments and other related to the delayed
neutron precursor concentrations. Therefore, implicit time schemes must be used [7] that
require to solve large linear systems at each time-step. Krylov solvers such as the Generalized
Minimal Residual (GMRES) [13] have been shown to be very efficient to solve such large sparse
linear systems, if they are applied with a reasonable preconditioner.

Different preconditioners can be applied to these linear systems. First, one can apply classical
preconditioners based on an incomplete matrix factorization, such as the ILU decomposition
or the ICC decomposition. The linear systems associated with the SPN equations have a block
structure that also permits to apply block preconditioners such as the block Jacobi or the
block Gauss-Seidel preconditioner [13]. Although these types of preconditioners are efficient,
its implementation implies to store the matrices, or one part of them, in memory, which is very
demanding.
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Recently, multilevel methods are successfully applied to a wide range of problems. The
levels are obtained either from different finite element discretizations on the original grid [5],
from a hierarchy of coarser meshes [14] or from several levels of energy groups [6]. In this
type of problems, the multigrid preconditioner can be applied, but the initial spatial meshes
used in the computation are taken as coarse meshes and homogenized cross-sections must be
redefined on each cell. That leads to an expensive application of the preconditioner [4]. Using
a preconditioner based on several levels of energy groups is good option to integrate problems
with a high number of energy groups. In this work, a two-level preconditioner based on different
degrees of the polynomials used in the finite element discretization is applied.

On the other hand, the spatial discretization of a realistic nuclear reactor system with a
high-order FEM produces huge algebraic matrices that require high demands of computational
memory. Thus, a matrix-free technique can be used where the matrices are not allocated in
memory and matrix-vector products are computed on the fly by using a cell-based interface.
This technique does not only reduce the computational memory, but also it can reduce the
matrix-vector multiplication runtimes in some computer architectures [10]. The main inconve-
nience of this technique is that algorithms to solve linear systems only can use matrix-vector
products, since it is very difficult to access to particular elements of the matrices. In this work,
a matrix-free implementation of the multilevel preconditioner is provided.

The rest of the paper is organized as follows. Section 2 presents the simplified spherical
harmonics equations. Section 3 briefly exposes the finite element method used for the spatial
discretization and the backward method used for the time-discretization. Section 4 explains
the multilevel preconditioner. Section 5 describes some details about the implementation, in
particular, about the matrix-free technique. Section 6 contains the numerical results obtained
to test the proposed methodology. Finally, Section 7 collects the main conclusions of this work.

2 SIMPLIFIED PN EQUATIONS

The diffusive time-dependent simplified harmonics (SPN) equations can be written as [15]

V ∂
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and the equations for delayed neutron precursor concentration are
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The variable φn
g = φn

g (x, t) denotes the nth-moment of the neutron flux for the energy
group g (g = 1, . . . , G). Ck denotes the delayed neutron precursor concentration of group k
(k = 1, . . . , K). The value of Σt is the total cross-sections that is approximated by the transport
cross-section Σtr. Σf is the fission cross-section. The value of Σn

s is the nth-component of the
scattering cross section in the spherical harmonics expansion. In this work, Σn

s = 0,∀n > 0
because it is assumed that the scattering is isotropic. ν denotes the mean number of neutrons
produced by fission. vg are the neutron velocities. The spectrum of the prompt and the
delayed neutrons are denoted by χp

g and χd,k
g . The fraction of the delayed neutrons is βg

k such

that βg =
∑K

k=1 β
g
k . The neutron precursor delayed constants are λdk.

The linear change of variables proposed in [9] is applied to the Equation (1). In the case of
the SP3 equations, the change of variables is

U1 = φ0 + 2φ2 , U2 = 3φ2 , (4)

to obtain a system of the form

VVV
∂

∂t
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(
DDD~∇U

)
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and the coefficients matrix, c(m) and vector d are
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1 −2

3
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3

4
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0 5
9

)
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(
1

−2
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)
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3 SPATIAL AND TIME DISCRETIZATIONS

A high-order continuous Galerkin Finite Element Method (FEM) for the spatial discretiza-
tion of the problem (5) is used. The discretization yields an semi-discrete time-dependent
problem of the form

V
d

dt
Ũ + TŨ = FŨ + d

K∑
k=1

MkCk , (9)

d

dt
PCk = −LkCk + Rkφ̃

0, (10)

where V, T, F, Mk, Lk and Rk are the discretized operator of the VVV, −~∇ ·DDD~∇ + SSS, FFF, Mk,
Lk and Rk, respectively. The form of these operators will depend on the formulation. The
mass matrix P is not the identity matrix because the basis of the FEM, that is composed of
Lagrange polynomials, is not orthonormal. Vectors Ũ and Ck contain the discrete version of the
moments U and the delayed neutron precursor concentration CCCk. The finite element method
is implemented using deal.II library [3] and its structures. More details about FEM can be
found in [19, 18]. Generally, these matrices are not symmetric, but they have a block structure
provided by the different energy groups and neutronic field moments.
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Given a configuration of a nuclear reactor, the time-dependent semi-discrete system (9) is
generally stiff. Thus, implicit methods are used for its time discretization. In this work, a
semi-implicit scheme is used where each type of equation is integrated independently.

The time interval [0, T ] is divided into several subintervals [th, th+1] where ∆th = th+1 − th.
The equation for the moments at t = th+1 (Equation (9)) is integrated by applying a backward
difference of first order to the time derivative. The other magnitudes are substituted by its
value at time th+1, excluding the concentration of neutron precursors that is substituted by its
value at th. In this way, the solution of the linear system(

1

∆th
Vh+1 + Th+1 − Fh+1

)
Uh+1 =

1

∆th
VhUh + d

K∑
k=1

Mh+1
k Ch

k , (11)

gives an approximation of the moments at time th+1.
This linear system has a size of (N+1)×Ndofs×G/2, where Ndofs are the degrees of freedom

of the FEM. It is solved with the GMRES method provided by the PETSc library [2]. This
work is devoted to study a multilevel preconditioner (described in Section 4) to precondition
this system.

The concentration of delayed precursors equation is also integrated by using a one-step
implicit scheme. The rest of the magnitudes are substituted by its value at th+1. Thus, the
concentration of precursors can be approximated by solving the linear system(

1

∆th
P + Lh

k

)
Ch+1 =

1

∆th
PCh + Rh

kφ̃
0,h+1 . (12)

The matrices of this system are much smaller than the previous ones with a size equal to
Ndofs. Thus, it is simply solved with the GMRES method and the ILU(0) preconditioner from
the PETSc library [2].

4 MULTILEVEL PRECONDITIONER

The linear systems of Equation (11) need to be preconditioned to integrate the SPN equations
with a reasonable CPU demand. In this work, we study a multilevel preconditioner based on
the finite element method. This multilevel preconditioner is based on the classical V-cycle
multigrid method [8]. In general, multigrid methods are designed to accelerate the convergence
of a simple iterative method (known as smoothing, which reduces the short frequencies error)
by a correction obtained when a coarse problem is solved (which is cheaper to solve). To
solve this coarse problem, also a smoother and a coarser problem can be used, obtaining in
this way a hierarchy of problems, known as levels of the multigrid method [14]. For nuclear
reactor computations, using different meshes is not feasible because it does not require very
refine meshes, and constructing coarse meshes implies homogenizing the reactor materials at
each level. To avoid this problem, smaller problems are defined by considering a degree of
the polynomial in the FEM, p∗, smaller than the original value p. The same spatial mesh is
considered, but the simplified problem associated has a smaller number of degrees of freedom.
This method only makes sense if p > 1. For these applications, we use a two-level method with
one problem associated with each level because a degree in the FEM equal to 3 is enough to
obtain accurate results. However, in other applications where higher degrees in FEM would
be necessary, a multilevel preconditioner with more than two levels can be applied following a
similar process than the multigrid method.

It is assumed that we want to define a preconditioner to solve the discrete SPN problem
using a degree p in the FEM (first level),

Ax = b , (13)
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and we define the smaller problem with degree p∗ in the FEM (second level)

A∗x∗ = b∗ . (14)

The two-level preconditioner smooths the iteration error on the original level and correct the
iterate by a second level correction in a two-level setting. Recurrent applications on a sequence
of levels lead to a multilevel procedure. The multilevel preconditioner can be used without
smoothing [12]. In that case, the coarse level solve damps the low-frequency error of the fine
problem, but not high-frequency errors. In a more physically sense, the smoother is applied to
approximate the finer details.

To apply the multilevel preconditioner, we need to define a restriction operator, R, that in-
terpolates vectors defined on the problem of FEM with degree p into a smaller vector associated
with the problem with degree p∗. The values at the nodes of the FEM with degree p (original
problem) are interpolated into the nodes associated with FEM with low degree of polynomial.
This interpolation is made element by element through a transfer matrix, tres, between the
nodes associated with degree p of one element and the nodes associated with degree p∗ of such
element. The elements of such transfer matrix are given by

tresij = N p
j (η∗i ), j = 1, . . . , p+ 1, i = 1, . . . , p∗ + 1, (15)

where N p
j are the Lagrange shape functions of the expansion which characterize the finite

element method of degree p such that N p
j (ηk) = δjk, k = 1, . . . , p+1, being δjk the Kronecker

delta function and ηk the position of the k-th node in the element associated with a degree p.
η∗i denotes the position of the i-th node in the element of the FEM with degree p∗.

In the other way, one can define the prolongation operator, P , also through a interpolation
process. However, in this case, the elements of the transfer matrix, tpr, that interpolates the
nodes of one element associated with degree p∗ into the ones associated with degree p, are given
by

tprij = N p∗

j (ηi), j = 1, . . . , p∗ + 1, i = 1, . . . , p+ 1, (16)

where N p∗

i are the Lagrange shape functions of the expansion which characterize the finite
element method of degree p∗ and ηi is the position of the i-th node in the element associated
with a degree p. Figure 1 shows a scheme of these operators for a two-dimensional problem.

p = 3 p
∗
= 2

Restriction

Prolongation

Figure 1: Restriction and prolongation operator of a element associated with degree p = 3 and p∗ = 2 in the
FEM.

The smoothing can be done with a Gauss-Seidel iterative method, but it needs to access
to the matrix elements [4]. Therefore, Chebyshev polynomial smoothers are recommended for
parallel computations and matrix-free implementations [1]. In particular, the implementation
of the deal.II library is used [3]. The number of iterations for the smoother, itsch, is set to
itsch = 5. To estimate the largest eigenvalue to apply the Chebyshev polynomial, ten iterations
of the GMRES method preconditioned with the inverse diagonal of A are used.
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To solve the small problem (14), the GMRES method is applied of the PETSc library [2]. To
precondition the coarse problem, two type of strategies are tested. First, the coarse problem is
assembled with a semi-matrix-free allocation and the block Gauss-Seidel preconditioner is used
to solve this ‘small’ problem. Second, the matrix of the coarse problem is not assembled and
the inverse of the diagonal elements is used to preconditioner the ‘small’ linear system. Note
that to solve this small problem, if p∗ > 1, we can also use a smaller degree to construct a
smaller problem and repeat the process to obtain a three-level preconditioner.

The implementation of the particular case of two-level preconditioner is described in Algo-
rithm 1.

Algorithm 1 Two-level preconditioner

Input: Vector x, matrices A and A∗.
Output: Vector y = Px with P ≈ A−1 preconditioner of A.

1: Pre-smooth Ay = x with itsch = 5 (Initialize the iterative method with y0 = 0)
2: Restrict the residual r = Ay − x to the second level by r∗ = R(r)
3: Solve A∗e∗ = r∗

4: Prolongate e∗ by e = P(e∗)
5: Correct y = y + e
6: Post-smooth Ay = x with itsch = 5 (Initialize the iterative method with y0 = y)

The multilevel preconditioner is compared with the block Gauss-Seidel preconditioning
(BGS). The number of moments and energy groups of the equations lead to a block struc-
ture of the matrices of the linear systems. In the block Gauss-Seidel preconditioner (BGS),
each diagonal block is (approximately) solved with the conjugate gradient method and the in-
complete Cholesky preconditioner. This preconditioner allows to save only the diagonal blocks
and to use a semi-matrix-free implementation of the matrices [17].

5 MATRIX-FREE STRATEGY

A matrix-free strategy for the matrix A is applied to remove the computational cost of saving
the matrices in memory. Nowadays, there are supercomputers without computational memory
problems of capacity to solve this type of problem. In practice, they are available for some
researching groups. In industrial sectors, such as nuclear engineering, there is a great interest
in simulating the behaviour of the reactor without requiring high computational demands. On
the other hand, this technique does not only reduce the computational memory, but also it can
reduce the matrix-vector multiplication runtimes in some computer architectures [10]. Matrix-
vector products are computed on the fly in a cell-based interface. For instance, we can consider
a finite element Galerkin approximation, that leads to the matrix A, that takes a vector u as
input and computes the integrals of the operator multiplied by trial functions to obtain the
output vector is v. The operation can be expressed as a sum of Nc cell-based operations,

v = Au =
Nc∑
c=1

PT
c AcPcu, (17)

where Pc denotes the matrix that defines the location of cell-related degrees of freedom in the
global vector and Ac denotes the submatrix of A on cell c. This sum is optimized through
sum-factorization. Details about the implementation are explained in [10].

This type of implementation does not permit access to the matrix elements, which inabilities
to use typical preconditioners such as ILU preconditioner. In this work, two types of alloca-
tions are used. First, the full matrix-free implementation (Full-MF) where any element of the
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matrices are saved in memory. Second, a semi-matrix-free implementation (Semi-MF) where
only the diagonal blocks of the matrices are assembled. The rest are implemented with the
matrix-free technique.

6 NUMERICAL RESULTS

This Section tests the performance of the multilevel preconditioner in a transient defined
from the movement of two banks of control rods in the tridimensional Langenbuch benchmark
reactor [11]. The geometry of the reactor is modelled with 1170 cells. The transient is followed
during 30 s.

The methodology has been implemented in C++ based on data structures provided by the
libraries deal.II [3] and PETSc [2]. It has been incorporated to the open-source neutronic
code FEMFFUSION [16]. For the computations, a computer with an Intel R© CoreTM i7-4790
@3.60GHz×8 processor with 32Gb of RAM running on Ubuntu 18.04 has been used.

Numerical results are presented to obtain the solution of the SP1 and the SP3 equations.
Degree p = 3 in the polynomial of the FEM is used for the spatial discretization. Time-step
for the backward method is set to ∆tn = 0.1 s to obtain a sequence of 300 linear systems. The
two-level preconditioners are defined from small problems obtained by considering a degree in
the FEM of the coarse problem (FEDC) equal to p∗ = 1 and p∗ = 2.

Table 1 shows the size of the matrices (Size(A)) for the different type of equations and
degrees in the finite element method (FED). This Table shows as the full matrix-free imple-
mentation largely reduces the CPU memory required by the matrices. This property becomes
more relevant as the problem is larger.

Table 1: Size of matrices associated with the linear systems and computational memory for the Full and Semi
matrix-free implementations.

FED=1 FED=2 FED=3

Equations Size (A) CPU Memory Size (A) CPU Memory Size (A) CPU Memory

Full-MF Semi-MF Full-MF Semi-MF Full-MF Semi-MF
SP1 3080 0.07 MB 1 MB 21 546 0.16 MB 18 MB 69 440 0.34 MB 115 MB
SP3 6160 0.14 MB 2 MB 43 092 0.23 MB 33 MB 138 880 0.40 MB 214 MB

First, we test the preconditioner used to solve the coarse problem in the multilevel precon-
ditioner. Two types of implementation are compared: the BGS preconditioner with Semi-MF
allocation and the inverse diagonal preconditioner with Full-MF allocation. Table 2 shows the
mean number of iterations to solve the coarse problems with each preconditioner and the total
CPU Time. The results are displayed to compute the sequence associated with the SP1 equa-
tions if FEDC is equal to p∗ = 1 and p∗ = 2. Table 2 shows that the application of the BGS
preconditioner solves the linear systems with much less iterations than using the inverse of the
diagonal as preconditioner. However this preconditioner requires the assembly of the matrices
and preconditioner. Numerical results shows that if FEDC is p∗ = 1, the total CPU time of
both implementations is similar. The CPU time of iterations is compensated by the assembling
time. However, if FEDC is p∗ = 2, the CPU time with the inverse diagonal is a bit higher,
because in this last case the number of iterations needed by the inverse diagonal is 3 times
higher than if BGS preconditioner is applied.
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Table 2: Performance of the multilevel preconditioner to compute the sequence associated with the SP1

equations.

FEDC (p∗) Type of preconditioner Mean Number of Iterations Total CPU time

1 BGS 8.12 1108 s
1 Inverse Diagonal 14.49 1096 s

2 BGS 19.31 1367 s
2 Inverse Diagonal 73.87 1602 s

Now, the multilevel preconditioner is compared with the BGS to solve the sequence of linear
systems associated with the SP1 and SP3 equations. To apply the BGS and the multilevel
preconditioner, the semi-matrix-free implementation and the full matrix-free implementation
are used, respectively. The coarse problems in the multilevel preconditioner are solved with a full
matrix-free implementation of the matrices and the inverse diagonal to have a full matrix-free
implementation for the integration of the equations. Figure 2 shows the number of iterations
(left) and the CPU time (right) needed by each type of preconditioner for every system in the
sequence of the SP1 equations. One can observe that the multilevel preconditioner reduces
considerably the number of iterations required by the BGS, especially if the coarse problem
is defined from a p∗ = 2. However, in the CPU time, the most efficient preconditioner is
the multilevel preconditioner with FEDC equal to p∗ = 1, because the coarse problems are
much smaller than the coarse problems with FEDC equal to p∗ = 2 (Table 1). Figure 3
displays the results obtained in the sequence of systems associated with the SP3 equations.
Similar conclusions as the ones obtained for the SP1 equations are obtained, even though the
differences between the multilevel and FEDC equal to p∗ = 1 and the BGS are not as high.
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Figure 2: Comparison of the multilevel preconditioner where the second level is obtained from p∗ = 1 (MUL-
FE1) and p∗ = 2 (MUL-FE2), and the BGS preconditioner for the solution of the time-dependent SP1 equations.
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Figure 3: Comparison of the multilevel preconditioner where the second level is obtained from p∗ = 1 (MUL-
FE1) and p∗ = 2 (MUL-FE2), and the BGS preconditioner for the solution of the time-dependent SP3 equations.

7 CONCLUSIONS

This work has proposed a two-level preconditioner based on different degrees in the polyno-
mials of the finite element method to integrate the SPN equations.

Numerical results have been shown the competitiveness of this multilevel preconditioner
when it is compared with the block Gauss-Seidel preconditioner. Different coarse problems
with degree p∗ = 1 and p∗ = 2 in the FEM are tested. Coarse problems with degree p∗ = 2 are
more convenient to reduce the number of iterations needed for the linear solver to converge.
However, from a CPU time point of view, it is recommended to define the coarse problem from
degree equal to p∗ = 1. On the other hand, this two-level preconditioner can be applied by
only using matrix-vector products allowing a full matrix-free implementation that removes the
time to assembly the sparse matrices involved in the linear systems and reducing the necessary
memory to allocate the matrices.
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