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Abstract: Curved tapered beams have been widely used in many engineering applications.
Their complex geometries pose challenges to the development of robust approaches for the nu-
merical modelling of their mechanical behaviour. The aim of the present contribution is to
introduce a novel, simple and effective, finite element formulation for the quasi-static analysis
of Timoshenko curved tapered beams. This formulation relies on a complementary variational
approach based on a set of approximations that satisfy in strong form all equilibrium condi-
tions of the boundary-value problem, resulting thus in a formulation that is free from both shear
and membrane locking phenomena. The effectiveness of the formulation is numerically demon-
strated through its application to different beam problems and the obtained results are analysed
and discussed.

1 INTRODUCTION

Due to their excellent mechanical performance and structural efficiency, curved beams have
been widely used in many engineering applications, such as: bridge structures, piping systems,
biomedical devices, aerospace and aeronautical structures, etc. Their complex geometries pose
challenges to the development of robust approaches for the modelling of their mechanical be-
haviour.

Among the various approaches available in the literature for their analysis, those that are
based on the finite element method have been the most successful. The simplest finite element
modeling strategy for curved beams is an assembly of relatively short straight beam elements [1].
However, such an approach generally requires a large number of elements to obtain converged
solutions. Furthermore, when applied to Timoshenko based structural models, some of these
finite element approaches, in particular those that rely on the approximation of the displament
fields based on lower-order shape functions, are prone to shear locking when the beam elements
become slender and to membrane locking when their curvature increases [2]. Hybrid-mixed
formulations, in which both displacement and force/bending moment fields are approximated,
with the goal of avoiding the locking phenomena, were also explored [3]. However, most of the
formulations that have been developed for the analysis of curved beams are limited to uniform
cross-section cases. There are a few exceptions in which finite element formulations for curved
beams with non-uniform cross-sections can be found in the literature, see e.g. [4, 5].

The aim of the present contribution is to introduce a novel, simple and effective, finite ele-
ment formulation for the quasi-static analysis of Timoshenko curved tapered beams. Following
the methodology adopted in [6, 7, 8], the proposed formulation relies on a complementary
variational approach, only requiring the approximation of the internal force/bending moment
fields. Such approximations are selected such that they satisfy in strong form all equilibrium
conditions of the boundary-value problem. The formulation is naturally free from both shear
and membrane locking phenomena. The effectiveness of the formulation is numerically demon-
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strated through its application to different beam problems and the obtained results are analysed
and discussed.

2 BOUNDARY-VALUE PROBLEM

Consider a two-dimensional curved beam whose geometry is described by its centroidal axis
denoted by C. The centroidal axis C is parameterized by s ∈ [0, L], with L denoting the length
of the beam in its reference configuration. C is decomposed into an internal part, represented
by Ω =]0, L[, and a boundary part, identified by Γ = ΓN ∪ ΓD = {0, L}, where ΓN and ΓD
correspond to the Neumann and Dirichlet boundaries, respectively, such that ΓN ∩ ΓD = ∅.

Let the beam be subjected to: distributed loads defined per unit length, denoted by p and q,
and bending moments, denoted by m, applied in Ω and assumed to depend on s, concentrated
loads N̄ and V̄ and a concentrated moment M̄ applied on ΓN ; prescribed displacements, ū and
w̄, and a prescribed rotation φ̄ defined on ΓD. While p, N̄ and ū represent axial quantities,
q, V̄ and w̄ represent transverse quantities. m, M̄ and φ̄ represent rotational quantities. The
loads are assumed to act at the centroidal axis of the beam.

The kinematical differential equations of the beam model under consideration are given in
Ω as

εss =
1

1 + z
R

(ε+ zχ) (1a)

γsz =
1

1 + z
R

γ (1b)

in which

ε = u′ − w

R
(2a)

γ = w′ +
u

R
− φ (2b)

χ = φ′ (2c)

with ε being the axial deformation, γ the shear deformation and χ the bending curvature of
the beam. R stands for the radius of curvature of the beam centroidal axis, which, in general,
may depend on s. As the shear deformation γ is not disregarded, the adopted model is based
on Timoshenko’s beam theory.

The Dirichlet (kinematical) boundary conditions of the problem are given as follows

u− ū = 0, on ΓD (3a)

w − w̄ = 0, on ΓD (3b)

φ− φ̄ = 0, on ΓD (3c)

where u and w are the axial and transverse displacements of the beam axis, respectively, and
φ the rotation of the beam cross-section.

The equilibrium of an infinitesimal beam element can be expressed by the following set of
differential equations in Ω

N ′ − V

R(s)
+ p(s) = 0 (4a)

V ′ +
N

R(s)
+ q(s) = 0 (4b)

−M ′ + V +m(s) = 0 (4c)
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representing equilibrium of axial forces, shear forces and bending moments, respectively, where
(·)′ stands for the derivative of (·) with respect to s.

The Neumann (or static) boundary conditions of the problem are

nN − N̄ = 0, on ΓN (5a)

nV − V̄ = 0, on ΓN (5b)

nM + M̄ = 0, on ΓN (5c)

with

n =

{
1 if x = L
−1 if x = 0

The constitutive equations are taken as the following relationships defined in Ω

σss = Eεss (6a)

τsz = Gγsz (6b)

with E and G denoting Young’s modulus and shear modulus, respectively, of the beam, such
that

G =
E

2(1 + ν)
(7)

with ν standing for Poisson’s coefficient. A linear elastic material behavior is, thus, assumed
in this study. The material properties E and ν are taken as constants in Ω.

The internal forces and bending moment fields correspond to the following stress resultants
on a beam cross-section

N =

∫
A

σssdA (8a)

V =

∫
A

τszdA (8b)

M =

∫
A

σsszdA (8c)

with dA an infinitesimal area element of the beam cross-section. Making use of these definitions,
and upon substitution of (1) and (6), leads to

N = C11ε+ C12χ (9a)

V = C33γ (9b)

M = C12ε+ C22χ (9c)

with

C11 =

∫
A

E

1 + z
R

dA

C12 =

∫
A

Ez

1 + z
R

dA

C22 =

∫
A

Ez2

1 + z
R

dA

C33 =

∫
A

fsG

1 + z
R

dA

where fs stands for the shear correction factor. It is worth noting the coupling between N and
M . Notably, if h

R
� 1, then this coupling disappears.
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3 VARIATIONAL BASIS

The strain energy functional of a beam element assumes the following form

U =
1

2

∫
V

(
Eε2

ss + fsGγ
2
sz

)
dV (11)

with dV an infinitesimal volume element of the beam. Upon substitution of equations (2) and
(6), the strain energy can be recast as

U =
1

2

∫
V

(
E(

1 + z
R

)2 (ε+ zχ)2 +
fsG(

1 + z
R

)2γ
2

)
dV

=
1

2

∫
V

(
E(

1 + z
R

)2

(
ε2 + 2zχε+ z2χ2

)
+

fsG(
1 + z

R

)2γ
2

)
dV

Since dV =
(
1 + z

R

)
dAdΩ, with 1 + z

R
the Jacobian of the transformation, and since the

deformations ε, χ and γ only depend on the curvilinear coordinate s, the strain energy can be
rewritten as

U =
1

2

∫
Ω

((C11ε+ C12χ) ε+ (C12ε+ C22χ)χ+ (C33γ) γ) dΩ (13)

or, making use of (9), as

U =
1

2

∫
Ω

(Nε+Mχ+ V γ) dΩ (14)

The total potential energy of the boundary-value problem under study is, thus, the functional
Πp : Uk(Ω)→ R given by

Πp(u,w, φ) = U(ε(u,w), χ(φ), γ(u,w, φ)) + F (u,w, φ) (15)

where U is the strain energy functional defined in (14) and F represents the external potential
energy given by

F (u,w, φ) = −
∫

Ω

(pu+ qw +mφ) dΩ− [N̄u]ΓN
− [V̄ w]ΓN

− [M̄φ]ΓN
(16)

Uk is the kinematically admissible space defined as

Uk = {(u,w, φ) ∈ H1(Ω)×H1(Ω)×H1(Ω)| u = ū, w = w̄, φ = φ̄ on ΓD} (17)

where H1(Ω) represents a standard Sobolev space.
Inverting relations (9) gives

ε =
C22N − C12M

C11C22 − C2
12

(18a)

γ =
V

C33

(18b)

χ =
C11M − C12N

C11C22 − C2
12

(18c)

On insertion of (18) into the strain energy functional (14) leads to the following complemen-
tary strain energy functional

Uc =
1

2

∫
Ω

(
C22N

2 − 2C12NM + C11M
2

C11C22 − C2
12

+
V 2

C33

)
dΩ (19)
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which only involves the internal forces/bending moment fields.
The associated total complementary energy Πc : Us(Ω)→ R comes out as

Πc(N, V,M) = −Uc(N, V,M) + Πc,ext(N, V,M) (20)

in which Πc,ext represents the external complementary energy given as follows

Πc,ext(N, V,M) = [nNū]ΓD
+ [nV w̄]ΓD

+ [nMφ̄]ΓD
(21)

and Us stands for the statically admissible space defined as

Us = {(N, V,M) ∈ H1(Ω)×H1(Ω)×H1(Ω)|

N ′ − V

R(s)
+ p(s) = 0, V ′ +

N

R(s)
+ q(s) = 0, −M ′ + V +m(s) = 0 in Ω;

nN − N̄ = 0, nV − V̄ = 0, nM + M̄ = 0 on ΓN}

(N, V,M) is said to be a stationary point of Πc if, and only if, the following condition holds

δΠc = 0, ∀ (δN, δV, δM) ∈ Vs (22)

where Vs represents the homogeneous statically admissible space defined as

Vs = {(δN, δV, δM) ∈ H1(Ω)×H1(Ω)×H1(Ω)| δN ′ − δV

R(s)
= 0, δV ′ +

δN

R(s)
= 0,

− δM ′ + δV = 0, in Ω;nδN = 0, nδV = 0, nδM = 0, on ΓN}

A novel finite element formulation for the quasi-static analysis of Timoshenko curved tapered
beams will be developed in the following on the basis of the complementary variational approach
introduced above.

4 FINITE ELEMENT FORMULATION

As a starting point, let us define H0
h and H1

h as families of closed finite-dimensional sub-
spaces of H0 and H1, respectively. A finite element approximation of (22) consists of seeking
(Nh,Mh, V h) ∈ Uhs such that (22) holds for all (δNh, δMh, δV h) ∈ Vhs , where Uhs ⊂ Us and
Vhs ⊂ Vs represent the discretized statically admissible spaces.

Let us assume that the entire domain Ω is partitioned in subdomains Ωe ⊂ Ω, such that
Ω = ∪ne

e=1Ωe in which ne represents the number of beam elements. If the inter-element equi-
librium conditions and Neumann boundary conditions are relaxed within the framework of the
complementary energy principle, then, the following augmented Lagrangian, or hybrid comple-
mentary energy, has to be considered

Lc =
ne∑
e=1

Πc,e +

nint∑
i=1

(
λNi [[N ]]Γi

+ λVi [[V ]]Γi
+ λMi [[M ]]Γi

)
(23)

where nint represents the number of inter-element boundaries and Γi stands for the inter-element
boundary i. [[(·)]] stands for the jump of (·) on Γi. λ

N
i , λVi and λMi are the Lagrange multipliers,

defined on Γi, that are energy-conjugate of N , V and M , respectively.
Without loss of generality, and only for the sake of simplicity, let us consider the case of

beams with zero distributed loads, i.e., p(s) = q(s) = 0 and m(s) = 0. Then, the solutions to
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the equilibrium differential equations (4) are as follows

N(s) = c2 sin(k(s)) + c1 cos(k(s)) (24a)

V (s) = c2 cos(k(s))− c1 sin(k(s)) (24b)

M(s) = c3 + c2

∫
cos(k(s)) ds− c1

∫
sin(k(s)) ds (24c)

where c1, c2 and c3 are constants and k(s) is defined as

k(s) =

∫
1

R(s)
ds (25)

It is worth noting that, if, additionally, the beam radius of curvature R is constant, then
k(s) results as

k(s) =
s

R
(26)

and, therefore, the internal forces/bending moment functions (24) come out as

N(s) = c2 sin
( s
R

)
+ c1 cos

( s
R

)
(27a)

V (s) = c2 cos
( s
R

)
− c1 sin

( s
R

)
(27b)

M(s) = c3 + c2R sin
( s
R

)
+ c1R cos

( s
R

)
(27c)

These functions are taken as the trial finite element approximations and a Galerkin approach
is adopted, i.e., the problem is numerically approached assuming the same trial and test ap-
proximation function spaces within the framework of the augmented Lagrangian given by (23).
The involved integrals are numerically computed using a 5-point Gaussian quadrature rule.

Differentiation of Lhc with respect to all the unknown parameters gives rise to a governing
system of linear equations that involve the element constants ci and the Lagrange multipliers
as fundamental unknowns.

5 NUMERICAL TESTS

5.1 Quarter-Circular Cantilver Uniform Beam Under Shear Force at its Free End
- Shear and Membrane Locking Tests

Figure 1: Quarter-Circular Cantilver Uniform Beam Under a Shear Force at its Free End

The classical problem of a quarter-circular uniform cantilever beam subjected to a shear force
at its the free end as is illustrated in Figure 1 is analyzed first in order to test the capability
of the proposed formulation to overcome the shear- and membrane-locking phenomena. The
applied shear force, the cross-section width and the beam curvature radius were set to V̄ = 1kN ,
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Figure 2: Quarter-Circular Cantilver Uniform Beam Under a Shear Force at its Free End - Shear and Membrane
Locking Tests

b = 0.4m and R = 4m. The analysis was carried out varying the slenderness ratio R/h of the
beam. The beam was modeled using only one finite element. It is worth mentioning that
finer finite element discretizations would exactly lead to the same results. The transverse
displacements of the free end of the beam were computed and normalized with respect to their
corresponding Euler-Bernoulli solutions, wEBf , for different values of the slenderness ratio, where

wEBf =
πV̄ R3

4EI
+
πV̄ R

4EA
(28)

The obtained results are shown in Figure 2. As it can be seen, as the slenderness ratio R/h
increases, or, in other words, as the beam becomes thinner, the transverse tip displacements
tend to the Euler-Bernoulli solutions. This shows that the proposed formulation does not suffer
from either shear or membrane locking.

5.2 Clamped-Clamped Circular Beam with Tip Load

To validate and assess the accuracy and effectiveness of the proposed finite element for-
mulation, a clamped-clamped circular beam with rectangular cross-section under tip loads as
depicted in Figure 3 is herein analyzed. A uniform (constant h) beam is considered first and,
afterwards, a tapered beam is studied. The following numerical parameters were considered for
both situations: radius of curvature R = 4m, cross-section width b = 0.4m, shear correction
factor fs = 5/6 and opening angle θo = 2π/3.

Figure 3: Clamped-Clamped Circular Beam
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5.2.1 Clamped-Clamped Circular Uniform Beam with Tip Load - Accuracy test

In order to assess the accuracy of the proposed formulation, a uniform beam with a tip load
is herein analysed. In this case, the cross-section height was set to h = 0.6m and the Young’s
modulus and Poisson’s ratio were set to E = 30GPa and ν = 0.17. The tip loads were assumed
as N̄ = V̄ = 1kN and M̄ = 1kNm. The beam was modeled using two finite elements. The
accuracy of the proposed formulation is assessed by comparing the obtained results with the
reference ones given in [4].

As it can be seen from the analysis of Table 1, the results produced by the proposed formu-
lation are essentially the same as the reference ones.

Load Case ×10−6 Ref. Sol. [4] Present Study

N̄ = 0, V̄ 6= 0, M̄ = 0 w
Rθo

0.248781 0.248781

N̄ 6= 0, V̄ = 0, M̄ = 0
u
Rθo

0.12522 0.125221
φ
θo

-0.379642 -0.379642

N̄ = 0, V̄ = 0, M̄ 6= 0
u
Rθo

-0.09491 -0.094910
φ
θo

1.08224 1.082238

Table 1: Clamped-Clamped Circular Uniform Beam with Tip Load - Accuracy test

5.2.2 Clamped-Clamped Circular Tapered Beam with Tip Load

A tapered beam with a transverse tip load as illustrated in Figure 4 is now analysed. In this
case, the initial cross-section height was set to h0 = h(0) = 0.6m and the Young’s modulus and
Poisson’s ratio were set to E = 70GPa and ν = 0.3. The tip load was set to V̄ = 1kN . The
beam was modeled firstly using two finite elements. The variation of the cross-section height
was taken as h(s) = h0

(
1− s

1.1L

)
, which corresponds to a beam with a cross-section height at

s = L given by h(L) = h0
11

.
The obtained diagrams of axial force, shear force and bending moment are shown in Figures

5, 6 and 7, respectively. As expected, neither the axial force nor the bending moment diagrams
exhibit symmetry with respect to a vertical axis crossing the mid-span of the beam. Likewise,
the shear force diagram is not anti-symmetric with respect to the mentioned axis. This is in
opposition to what would be obtained if a uniform beam would have been considered. It is
also interesting to note that the bending moment at s = L is considerably lower than that at
s = 0. This is clearly a consequence of the lower bending stiffness of the beam at s = L when
compared to that at s = 0.

Finally, a mesh convergence study was performed, in which the tip transverse displacement
was computed using 2, 4, 8 and 16 finite elements. The obtained results are provided in Table
2, showing that the finite element formulation converges to a solution.

6 CONCLUSIONS

• A novel finite element formulation for the quasi-static analysis of Timoshenko curved
tapered beams was proposed.

• The formulation relies on a hybrid complementary energy variational principle leading to
statically admissible solutions.

• The formulation proved to be effective and naturally insensitive to the shear and mem-
brane locking phenomena.
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Figure 4: Clamped-Clamped Circular Tapered Beam with Tip Load

Figure 5: Clamped-Clamped Circular Tapered Beam with Tip Load - Axial Force Diagram

Figure 6: Clamped-Clamped Circular Tapered Beam with Tip Load - Shear Force Diagram

Figure 7: Clamped-Clamped Circular Tapered Beam with Tip Load - Bending Moment Diagram
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ne
w×10−6

Rθo

2 0.904064
4 0.938990
8 0.941257
16 0.941300

Table 2: Clamped-Clamped Circular Tapered Beam with Tip Load - Mesh Convergence Study
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