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Abstract: In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary
conditions emerges when transforming the Navier–Stokes equations to the vorticity–velocity for-
mulation. In the case of problems with a periodic direction, the problem can be transformed into
multiple, independent, two-dimensional fourth-order elliptic problems. An efficient method to solve
these two-dimensional bi-Laplacian operators with Neumann homogeneus boundary conditions
was designed and validated using 2D compact finite difference schemes. The solution is formulated
as a linear combination of auxiliary solutions, as many as the number of points on the boundary, a
method that was prohibitive some years ago due to the large memory requirements to store all these
auxiliary functions. The validation has been made for different field configurations, grid sizes, and
stencils of the numerical scheme, showing its potential to tackle high gradient fields as those that can
be found in turbulent flows.

Keywords: DNS; CFD; turbulence; bi-Laplacian; fourth-order elliptic

1. Introduction

Turbulence is most likely the open subject in physics with the greatest number of
applications in everyday life. Turbulent flows are inherent in practically any flow in
engineering, but they are also critical in meteorology and pollutant dispersion [1]. It is
known that we still lack an existence and uniqueness theorem for the solution of the
Navier–Stokes equations, which govern the behaviour of turbulent flows [2]. Furthermore,
apart from a few trivial examples, these equations cannot be solved analytically [1].

It is also well known that turbulent-flow simulations can be considered in terms
of three levels of detail: RANS (Reynolds-averaged Navier–Stokes) [3], LES (large-eddy
simulation) [4], and DNS (direct numerical simulation) [5,6], each of which corresponds
to a different level of accuracy. Nevertheless, until now, DNS has been the only method
that has been proven to be reliable for investigating the physical properties of flows that
are still poorly understood. On the other hand, DNSs are extremely expensive because
every turbulent scale in the flow, both temporal and spatial, must be properly resolved.
This requires very fine grids and very small temporal steps. Furthermore, as a result of
the evolution of the Kolmogorov scales (the smallest turbulent scale) [7,8], the number of
points required to perform the simulation grows extremely quickly, as Re9/4, where Re
is the Reynolds number. As a result, using DNS to understand turbulent flows requires
considering simple geometries, allowing for very precise and fast numerical tools, such
as the ones described in this paper. Pipe, channel, and flat-plate boundary layers are
examples of canonical wall-bounded flows. A slightly more complex flow case is the square
duct [9–11], which is very relevant due to the presence of Prandtl’s secondary flow of
second kind [12]. The secondary flow in ducts consists of non-vanishing values of the
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mean cross-stream velocity components, sharing some similarities with the ones present
in Couette flows [13–16]. Due to the presence of the side walls, turbulent ducts are more
challenging to simulate [17–19] than channels, pipes, or boundary layers. This method,
like many other high-resolution ones, cannot be used in complex geometries. A hole in the
domain, for example, would render this method inapplicable. See [20] for details.

The behaviour of turbulent flows is described by the Navier–Stokes equations, which
are composed by the continuity and momentum equations:

∂jUj = 0, (1)

∂tUi + Uj∂jUi = −∂iP +
1

Re
∂jjUi, (2)

where Uj are the velocity components (U, V and W in the streamwise, spanwise and
wall-normal directions, respectively), P is the pressure, and Re is the Reynolds number
of the problem. Note that in the following x, y, and z are the streamwise, wall-normal
and spanwise components, respectively. These equations can be transformed for simple
domains [21,22] into the vorticity-Laplacian form, see also [23]. In such geometries, one can
take advantage of the derived formulation in the y component of the vorticity ωy, and the
bi-Laplacian of the wall-normal velocity Φ, as explained in Ref. [21]. The main advantages
of this method are that the pressure does not need to be explicitly computed, removing
staggered grids, and that only these two fields are needed to follow the evolution of the
turbulent flow. The equations become:

∂t∇2V = −hv +
1

Re
∇4V, (3)

∂tΩy = −hg +
1

Re
∇2Ωy, (4)

where hv and hg collect the nonlinear part of the Equations (1) and (2) [22]. For instance,
in turbulent channel flow, there are two periodic directions that allow the use of fast-
Fourier methods in these directions. This method was used in the first large DNS of wall
turbulence [21], and in many more after that [5,22,24]. Using Fourier methods, instead of
solving one large equation one has to solve millions of one-dimensional (1D) equations.

In order to solve these many elliptical problems, compact finite difference (CFD)
schemes [25] have been one of the most important tools. Briefly, the main difference
between compact and normal finite differences is that the former also considers a stencil in
the derivative. Due to their flexibility and high accuracy, CFD schemes have become a very
important tool for solving partial-differential-equation problems [26–28].

However, in the case of square (or rectangular) ducts, only the streamwise direction is
periodic. Thus, fast-Fourier-transform (FFT) techniques can only be used in this direction,
obtaining thousands, instead of millions, of two-dimensional (2D), fourth-order, elliptical
problems. Our objective is thus to obtain a method that uses the power and memory of new
computers for efficiently solving this problem. Moreover, as it is shown below the boundary
conditions (BC) of the problem are both Dirchlet and Neumann homogeneous. We propose
an efficient algorithm to impose Neumann BC, taking advantage of the capabilities of CFD
to compute any kind of derivatives. Note that our methods are general and can be applied
to any other fourth-order elliptic problem, like the bending of beams [29–31].

In the second section, the method is explained in detail: First, we will briefly explain
the one-dimensional CFD methods. Then, we explain the discretization of the problem,
and the boundary value problem. The validation is detailed in the third section. Finally,
conclusions and future work are given in section four.

2. Methods

The geometry of a rectangular duct is shown in Figure 1 (left) together with a sketch
of the two-dimensional plane where we solve the bi-Laplacian problem (right panel). The
flow is periodic in the streamwise direction and at rest at the walls. The dimensions of the
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box are Lx = Dπ/h, Ly = 2h, and Lz = 2g in the streamwise, wall-normal, and spanwise
directions, respectively. D is usually taken large enough to avoid spurious effects due to
the periodicity of the box. Equations (3) and (4) are solved together, but in this case, we
will focus on Equation (3). Using the auxiliary function Φ = ∇2V, the problem becomes:

∂tΦ = −hv +
1

Re
∇2Φ, (5)

∇2V = Φ. (6)

Figure 1. (Left) Sketch of a square duct, and (Right) details of the two-dimensional domain.

In Fourier space, these equations transform into nx problems, where nx is the size of
the transform, which takes the form:

∂tΦ̂k(y, z) = −ĥk
V +

1
Re

(−k2 +∇2)Φ̂k(y, z), (7)

(−k2 +∇2)V̂k(y, z) = Φ̂k(y, z). (8)

In these equations, ĥk
V is the k-th mode of the Fourier transform of the nonlinear term,

which is not usually easy to compute [22]. Note that this allows us to very efficiently
distribute these problems in a large supercomputer, as every node has just a few problems
to solve, generally one. Applying any time-stepper, with explicit linear solver and implicit
non-linear one (see for example Ref. [32]), and removing the hats for simplicity, (7)–(8)
transform into:

Φn+1(y, z)− α∇2Φn+1(y, z) = Fn(y, z), (9)

∇2Vn+1(y, z) = Φn+1(y, z). (10)

In this equation, Fn(y, z) stands for the RHS of the time stepper [32]. Note that α is
a constant, subsuming the Reynolds number, wavenumber k, temporal step ∆, and any
constant coming from the temporal-discretization method. For the case of the duct, the
boundary conditions for V are Dirichlet and Neumann homogeneous. These boundary
conditions come directly from the continuity Equation (1) and the non-slip condition. While
the imposition of the former is relatively easy, the latter cannot be imposed directly in the
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resolution of the problem. Furthermore, note that there are no boundary conditions for Φ.
The final problem, removing the n for simplicity, is then:

Φ(y, z)− α∇2Φ(y, z) = F(y, z), (11)

∇2V(y, z) = Φ(y, z), (12)

V = 0 in ∂Ω = Γ1 + Γ2 + Γ3 + Γ4, (13)

∂nV = 0 in ∂Ω = Γ1 + Γ2 + Γ3 + Γ4. (14)

2.1. Compact-Finite-Difference Methods

The CFD method was introduced in a groundbreaking article by S.K. Lele in 1992 [25].
Lele’s idea was to use finite-difference methods to solve problems exhibiting a wide range
of spatial scales, generalizing some Padé schemes that had been used earlier [33,34]. Lele’s
CFD main advantage is that, as opposed to to spectral methods, the location of the points
is free, exhibiting similar accuracy. The most important fact about CFD methods is that
they impose a linear relationship between the values of the derivatives at any order of the
function and the value of the function in the vicinity of all points, i.e., for point xi we have:

∑
j=−d,d

αju(l)(xi+j) = ∑
j=− f , f

aju(xi+j). (15)

In this equation, d and f are the semi-size of the stencil, and u(l)(xi+j) = u(l)
i+j is the

derivative of order l evaluated at xi+j. Using Taylor’s theorem as in Ref. [22], it is possible
to obtain two sparse matrices such that:

A~u(l) = B~u. (16)

However, it is impossible to repeat this procedure for 2D stencils due to a lack of
resolution near the corners of the domain. Thus, the option is to employ 1D discretization
in the two directions. Assuming that ui,j = u

(
yi, zj

)
for i = 1, ..., ny, j = 1, ..., nz the nodes

are distributed in the following way:

u = [ui,j] =



u1,1 u1,2 · · · u1,j · · · u1,nz

u2,1
... · · · u2,j · · · u2,nz

...
... · · ·

... · · ·
...

ui,1 ui,2 · · · ui,j · · · ui,nz
...

... · · ·
... · · ·

...
uny ,1 uny ,2 · · · uny ,j · · · uny ,nz


In this equation, the bold face is used to indicate that the data is distributed as a two-

dimensional array. Using Equation (16), it is possible to define eight matrices such that:

Ayu(y) = Byu, Ayyu(yy) = Byyu,
u(z)(Az)t = u(Bz)t, u(zz)(Azz)t = u(Bzz)t,

(17)

where the superscript indicates a partial derivative in that particular direction.

2.2. Discretization

The discretization of Equations (11) and (12) is similar but, as the former is more
general, we will explain only this one. Expanding Equation (11) yields:

Φ− α(Φyy + Φzz) = F. (18)
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Left-multiplying this equation by Ayy and right-multiplying it by (Azz)t, one gets:

AyyΦAt
zz − α(AyyΦ(yy)At

zz + AyyΦ(zz)At
zz) = AyyFAt

zz. (19)

Using now the properties of these CFD matrices, shown in (17), we get

AyyΦ(yy)At
zz = ByyΦAt

zz, (20)

AyyΦ(zz)At
zz = AyyΦBt

zz. (21)

Using these two equations in (19), the derivatives can be removed from the equation:

AyyΦAt
zz − α(ByyΦAt

zz + AyyΦBt
zz) = AyyFAt

zz. (22)

The next step is to transform this problem into a linear equation of the form A~φ = ~f .
The first step is to define an operator, ⊗, as

GAB ⊗Φ = AΦBt. (23)

Using coordinates we have,[
Gi,j
]
⊗ [Φi,j] = [Bi,j][Φi,j]

[
Cij
]
.

Defining now
[
Hij
]

as

[Hi,j] = [Φi,j]
[
Cij
]
=

[
nz

∑
k=1

Φi,kCk,j

]
,

we obtain:

[
Gij
]
⊗ [Φi,j] =

[
Bij
]
[Hij] =

[ ny

∑
l=1

Bil Hl j

]
=

[ ny

∑
l=1

Bil

(
nz

∑
k=1

Φl,kCk,j

)]
.

Note that this algorithm can (and must) be simplified, as all the involved matrices are
sparse. The problem now becomes

GAyy Azz ⊗Φ− α(GByy Azz + GAyyBzz)Φ = GAyy Azz ⊗ F. (24)

To simplify this equation, we can define an array M = GAyy Azz ⊗ F and a last operator,
G, for the RHS. G is defined as

G⊗Φ = GAyy Azz ⊗Φ− α(GByy Azz + GAyyBzz)Φ, (25)

so the problem (21) becomes
G⊗Φ = M. (26)

Equation (26) still includes the points on the boundary. Given a function Ψ(y, z) that
summarises the Dirichlet boundary conditions, the value of Φ at the boundary is defined as:

Φ∂Ω =


Ψ1,1 Ψ1,2 · · · Ψ1,nz−1 Ψ1,nz

Ψ2,1 0 · · · 0 Ψ2,nz
...

...
. . .

...
...

Ψi,1 0 · · · 0 Ψny−1,nz

Ψny ,1 Ψny ,2 · · · Ψny ,nz−1 Ψny ,nz

,

thus, it is possible to decompose Φ = ΦΩ + Φ∂Ω as follows:
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Φ =


Ψ1,1 Ψ1,2 · · · Ψ1,nz−1 Ψ1,nz

Ψ2,1 0 · · · 0 Ψ2,nz
...

...
. . .

...
...

Ψi,1 0 · · · 0 Ψny−1,nz

Ψny ,1 Ψny ,2 · · · Ψny ,nz−1 Ψny ,nz

+


0 0 · · · 0 0
0 φ2,2 · · · φ2,nz−1 0
...

...
. . .

...
...

0 φny−1,2 · · · φny−1,nz−1 0
0 0 · · · 0 0

.

Returning to Equation (26), we have:

G⊗Φ = M, (27)

G⊗ (ΦΩ + Φ∂Ω) = M, (28)

G⊗ΦΩ = M− G⊗Φ∂Ω = f, (29)

where only the equations at the inner points make sense. This system can easily be transformed
into a sparse algebraic problem of dimension [(ny − 2)(nz − 2), (ny − 2)(nz− 2)].

2.3. The Boundary Problem

The resolution of the problem (11)–(14) is straightforward in the case of Dirichlet
boundary conditions. Moreover, the matrix G does not depend on the boundary conditions.
The method proposed here generalizes the method proposed in Ref. [21]. The value of
the normal derivative is built up using several auxiliary functions. In 1D problems, two
auxiliary functions are enough. However, in 2D, many more are needed. Due to this,
problems like the square duct have never been addressed using this technique. In this case,
the solution is constructed as a linear combination of 2(ny + nz) + 1 fields:

V = Vp + c1V1 + c2V2 + ... + c2ny+2nz V2(ny+nz). (30)

The first field in the RHS is the particular solution of the system (11)–(14), with
equations: 

Φ− α∇2Φ = f
∇2Vp = Φ,
Vp = 0 in ∂Ω.

(31)

Here, Vp is Dirichlet homogeneous, but does not satisfy the Neumann condition. For
any point Xl on the boundary, the homogeneous solution Vl is defined as:

Φ− α∇2Φ = 0,
Φl(Xl) = 1,
∇2Φl = Φ,
Vl = 0 in ∂Ω.

(32)

As V is identically 0 on the boundary, eight of these functions, four corners and two
directions, are identically zero, thus only Ntot = 2ny + 2nz − 8 fields need to be solved.
Note that as these fields are solution of a homogeneus equation, we only need to compute
them once at the beginning of the program and use them for every time step. This needs a
constant time step ∆t, as the parameter α usually depends on ∆t.

One of the main advantages of the CFD methods is that any derivative can be com-
puted with very high accuracy. This allows us to compute the normal derivatives of the
Vl functions:

∂nV = ∂nVp + c1∂nV1 + ... + cNtot ∂nVNtot . (33)

Therefore, we obtain Ntot equations, once for each point:

∂nV(Xl) = ∂nVp(Xl) + c1∂nV1(Xl) + ... + cNtot ∂nVNtot(Xl). (34)
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Applying now the boundary condition and solving for cl , we obtain:



∂nu1(x1) . . . ∂nuNtot(x1)
...

...
...

∂nu1(xl) . . . ∂nuNtot(xl)
...

...
...

∂nu1(xNtot) . . . ∂nuNtot(xNtot)





c1
...
cl
...

cNtot

 =



−∂nup(x1)
...

−∂nup(xl)
...

−∂nup(xNtot)

. (35)

The matrix of this system is not sparse anymore, but has a relatively small size.
The largest simulations of wall turbulence have around 2000 points in the wall-normal
direction [35], so this matrix has a maximum estimated dimension of 8000× 8000. This can
be solved in seconds in a state-of-the-art computer. Notice also that due to the symmetries
of the domain, many of the Vl fields can be computed using these symmetries instead of
solving the system (32). In the case of a square domain, only 1/8 of the fields are needed,
as every other can be computed from these ones.

3. Results

The use of high-order numerical schemes such as CFD in fluid dynamics is essential
when complex flow structures characterised by high gradients in the magnitudes being
calculated appears. Accuracy is then, together with efficiency, the main objective pursued
with the numerical method described in this work.

As noted in Section 2.3, the methodology applied to impose the Neumann boundary
conditions to a 2D domain and solve the bi-Laplacian operator requires the solution of many
linear systems of equations. The only variation among them is the boundary conditions,
which end up being part of the right-hand side of the system, remaining the matrix of the
system unvaried. The extent to which one can take advantage of this characteristic will
significantly determine the computational cost necessary to solve the bi-Laplacian operator.
Moreover, the accuracy of the CFD method is defined by the employed stencil, which
results in a specific truncation order of the Taylor expansion. The number of non-zero
elements of the system matrices changes with the stencil dimension: for a stencil dimension
J the number of non-zero elements increases as J2. As the computational cost increases
with the non-zero elements existing in a sparse matrix, a balance between truncation order
and computational cost must be found.

Among the different methodologies available to solve the non-symmetric linear sys-
tems of equations resulting from the spatial discretization and the implementation of the
CFD schemes, the preconditioned generalized minimal residual (GMRES) method has been
found to be the most suitable for the study case. This method is included in the SPARSEKIT2
package [36], which contains many preconditioners that vary in computational cost and
that fit different matrices according to their conditioning. In this study, the preconditioners
that best fit the generated matrices are, on the one hand, the incomplete factorization
ILU(0) for preconditioning matrices Ay and Az. On the other hand, the incomplete LU
factorization with standard dropping strategy (ILUD) for the G matrices when solving the
Laplacian operators. The main advantage of the ILU(0) preconditioner is its simplicity
and low computational cost, suitable for matrices with good conditioning. For matrices
with worse conditioning, the ILUD preconditioner offers a good ratio convergence/cost.
An important advantage is that it provides the possibility to adjust the element-dropping
tolerance for prioritizing the preconditioning cost or the convergence speed.

To test the precision with which the system (11)–(14) is being solved, a group of 2D
solutions satisfying the Neumann and Dirichlet boundary conditions are set out:

Vtest(y, z) = {cos[mπ(y− 1)]− 1}{cos[nπ(z− 1)]− 1}, (36)

where m, n are the function wave numbers.
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This product of cosines guarantees that for any m, n ∈ Z\{0}, the value of Vtest and its
first wall-normal derivatives are null. This group of solutions is used to compose a suitable
field Ftest:

Φtest(y, z) = ∇2Vtest(y, z) (37)

Ftest(y, z) = Φtest(y, z)− α∇2Φtest(y, z), (38)

in such a way that when increasing the wave numbers, the gradients in the solution Vtest
and in the field Ftest increase as well, see Figure 2.

(a) (b)
Figure 2. Function Ftest for (a) m, n = 4 and (b) m, n = 16. In both cases, α = 0.01.

For sufficiently high wave numbers, Vtest and Ftest adopt a chaotic-like distribution
similar to that of Gaussian white noise, thus emulating the gradients that could be found
in a ducted flow at relatively high Reynolds numbers. System (31) is solved for Ftest and
the numerical solution, V is compared to Vtest. To analyse this error, two different norms
have been used: L2-norm relative error:

‖e‖2 = ‖V −Vtest‖2/‖Vtest‖2. (39)

The relative error evolution with respect to α, as shown in Figure 3, follows very similar
trends among the different wave number, mesh resolution and stencil configurations. In
all the configurations proposed, the increment of the relative error with α is significant in
the range analysed, with about two orders of magnitude difference between the minimum
value of α = 10−7 and the maximum one of α = 10−1. In this range, there is a perceptible
change of tendency; for α > 10−5, the trends seem to be linear in a log-log representation,
which is indicative of fitting a power function trend, while for α < 10−5, the error reduction
is less significant. These variations in the errors with α are directly related to the gradients
that appear in Ftest when applying the two Laplacian operators to the imposed solution
Vtest . When reducing the coefficient multiplying the second Laplacian, the effect of this is
damped smoothing the gradients in Ftest.

When comparing grid sizes and truncation orders through the stencil size J, in the
range studied, increasing the grid size produces a decrease in the relative error of a
similar order of magnitude to that of the increase in the truncation order. However, when
comparing the error distributions for Ny, Nz = 383; J = 5 and Ny, Nz = 251; J = 7, as the
field gradients steepen, the lack of mesh resolution cannot be overcome by the truncation
order. However, when the grid resolution is not excessively low with respect to the field
gradients, the use of higher-order stencils leads to an important increase in accuracy.
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(a) m, n = 4 (b) m, n = 8

(c) m, n = 16 (d) m, n = 32
Figure 3. Evolution of the bi-Laplacian operator solution errors with α.

The spatial distribution of the error is shown in Figure 4. Here, we can see that the
error is a heterogeneous field where the higher errors are found mainly in the interior part
of the field, decreasing as getting closer to the boundaries. This heterogeneous and non-
symmetric error field obtained when solving the bi-Laplacian operator for a symmetric field
Ftest is presumably related to the accuracy with which the system in (35) is solved when
obtaining the constants that will weigh each one of the homogeneous solutions. In this
regard, a comparison between homogeneous solutions of Φ and V is provided in Figure 5.
The damping of the homogeneous solution is much higher for Φ, making imperceptible the
transition from the imposed boundary condition to the unaffected near field. In the case of
V, the gradients are smaller, extending the contribution of the homogeneous solution all
over the field.
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Figure 4. Spatial distribution of the error metric error = log10(| V −Vtest | /‖Vtest‖2) for a
gridNy, Nz = 383× 383, m = 4, n = 6 and α = 0.01.

The high number of homogeneous solutions needed to guarantee that Neumann-
homogeneous boundary conditions are satisfied implies saving fields in which a high
percentage of elements are close to zero. In order to reduce these memory requirements,
that increase with the number of boundary nodes, a filtering of the values that fall below a
determined threshold, followed by a sparse storage of the surviving elements of the field
could reduce these requirements. However, as shown in field V, the effect of homogeneous
solutions spreads all over the field. Therefore a reduction in the accuracy of the method can
be expected. In case memory resources constitute an impediment to complete a simulation,
deeper studies must be performed to evaluate the accuracy reduction associated to this
procedure applied to the specific problem.

Figure 5. Cont.



Mathematics 2021, 9, 2508 11 of 13

Figure 5. (Left column) Φ and (right column) V distributions for α = 0.01 on a 383× 383 grid, for m = 4, n = 6. (Top)
Particular solution, Equation (31); (Middle) homogeneus solution, Equation (32) for Xl = 7 (the logarithm of Φ is shown to
improve readability); and (Bottom) solution, Equation (30).

4. Conclusions

In this paper, we have presented a methodology to solve the main equations of a
turbulent-flow problem, the turbulent duct. This methodology allows one to solve a
fourth-order elliptical problem with Dirichlet and Neumann homogeneous conditions. The
main idea behind this method is to take advantage of the high accuracy of compact finite
differences to compute derivatives. In the case of temporal integration, all the homogeneous
solution can be stored in memory. Then, the bi-Laplacian can be efficiently computed at the
cost of two 2D sparse problems and a relatively small full matrix. Thus, a parallel solver
for square ducts based on FFT transforms and our method can be efficiently implemented,
being a promising alternative for the methods existing right now.

The method has been validated using an ad hoc function presenting an oscillatory
behaviour. Using a 7 × 7 stencil, we are able to solve high oscillatory problems with
excellent accuracy. This method can be applied to any fourth-order elliptical problem to
solve second- or third-order derivatives at the boundary.
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