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Robust estimation has proved to be a valuable alternative to the least squares estimator for the cases where the dataset is
contaminated with outliers. Many robust estimators have been designed to be minimally affected by the outlying observations and
produce a good fit for the majority of the data. Among them, the redescending estimators have demonstrated the best estimation
capabilities. It is little known, however, that the success of a robust estimation method depends not only on the robust estimator
used but also on the way the estimator is computed. In the present paper, we show that for complicated cases, the predominant
method of computing the robust estimator by means of an iteratively reweighted least squares scheme may result in a local
optimum of significantly lower quality than the global optimum attainable by means of a global optimization method. Further, the
sequential use of the proposed global robust estimation proves to successfully solve the problem of M-split estimation, that is, the
determination of parameters of different functional models implicit in the data.

1. Introduction

'e statistical methods used for the adjustment of observa-
tions rely on several assumptions. Most commonly, the ob-
served data are assumed to follow a normal distribution (also
called Gaussian distribution) and the functional model re-
lating the observed data with the unknown system parameters
is assumed to hold exactly. Under these assumptions, it can be
proved that the least squares (LS) estimator is the best linear
unbiased estimator (Gauss–Markov theorem [1, 2]).

It is not uncommon, however, that the data collected
contain one or several atypical observations, called outliers.
'ey deviate from the general data pattern for some reason:
they may be gross errors (observation values incorrectly
noted down, for example) or pieces of data belonging to
distributions other than the one of the main bulk of data (for

example, due to the occasional unexpected observation of a
different phenomenon concurrent with the main outcome of
the experiment designed). It can also be that the functional
model used to encapsulate the relationship between the
unknown parameters and the observables is incomplete or
simply approximate. In these cases, namely, the appearance
of outliers or the existence of systematic effects in the ob-
servations or the functional model, the LS estimator may be
very adversely influenced and produce a clearly unacceptable
solution for the majority of the data.

While procedures to eliminate gross errors are routinely
used (recent examples in geosciences include [3–5]); unfor-
tunately, on certain occasions, some undesired errors may
remain undetected and slip into the adjustment phase. Robust
estimation techniques were devised in the last decades to
attain a solution for the adjustment problem that is minimally
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affected by the appearance of outliers in the data or systematic
effects either in the data or in the model (inexactness of the
functional model) while producing a solution close to the LS
solution in the case of correct functional model and inexis-
tence of outliers and systematic errors in the data. 'e reader
may consult [6] for a general reference.

Many different robust estimators have been proposed
over the last decades, some showing better performance than
others in coping with undesired errors of different sizes and
distributions. Little attention has gained, however, the
question of how to compute the solution once the robust
estimator has been selected, so that the Iteratively Reweighted
Least Squares (IRLS) scheme is almost universally indicated as
the procedure to follow (e.g., [6–8]). 'is may be due to the
simplicity in recasting the new estimation techniques in an
iterative procedure based on the familiar LS scheme; but, as
we will see, this decision is at the cost of critically under-
mining the robust estimator capabilities, which are essential
to successfully cope with the most complicated cases.

After a quick review of the types and properties of robust
estimators, which will be needed to develop the subsequent
sections, we will summarize the IRLS method to compute a
robust estimator and propose a solution for this compu-
tation problem based on a Global Optimization algorithm
(GO). We discuss then that a GO solution of the robust
estimator is always equal or better than the solution by IRLS
and can be referred to as global robust estimation, in
contrast with the local robust estimation that is achieved by
IRLS. 'e differences will be evident in the application
section, whereas a novel result shows that global robust
estimation efficiently solves the problem of M-split esti-
mation resolved so far in a completely different way (see, for
instance, [9]).

2. Types and Properties of Robust Estimators

We deal now with the so-called maximum likelihood esti-
mators, or M-estimators, that is, the type of estimators that
maximize the corresponding likelihood function over the
parameter space. As Huber [10] proposed, the estimation
problem entails the minimization over the entire parameter
space of a function f of the parameters x and the adjustment
residuals v

􏽢x � argmin
x

f(], x) � argmin
x

􏽘

m

i�1
ρ ]i, x( 􏼁. (1)

'e function f, which is desired to be minimized, can be
called the objective function. It is obtained as the sum of
certain function ρ computed for every residual. 'is ρ
function needs to have some desirable properties for the
solution to be robust against outliers and systematic errors.
'e derivative of this ρ function, sometimes simply referred
to as influence function, can be denoted by ψ(]i)

ψ ]i( 􏼁 �
zρ ]i( 􏼁

z]i

. (2)

'e computation of the robust estimation problem has
been routinely done by means of an IRLS scheme: from early

seminal works, [11], and early computing software packages,
MIT ROSEPACK [12], until the most recent proposals, e.g.,
[13–15], including the general references on robust esti-
mation, e.g., [6]. According to the IRLS scheme, in every
iteration, the residuals of the previous iteration are used to
form weights that are introduced in a new LS adjustment to
obtain a new solution. 'e functions to obtain the corre-
sponding weights ω(]i) to solve the robust estimation
problem by means of IRLS are easily obtained as follows:

ω ]i( 􏼁 �
ψ ]i( 􏼁

]i

. (3)

For the case of the LS estimator, objective ρ, influence ψ,
and weight ω functions are as follows:

ρ ]i( 􏼁 �
]2i
2

, (4)

ψ ]i( 􏼁 � ]i, (5)

ω ]i( 􏼁 � 1. (6)

'e least L1-norm or least absolute deviation estimator is
significantly more robust against outliers and systematic
errors. Its corresponding functions are as follows:

ρ ]i( 􏼁 � ]i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (7)

ψ ]i( 􏼁 � sgn ]i( 􏼁, (8)

ω ]i( 􏼁 �
1
]i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (9)

It may be worth mentioning that if the estimation
problem consists of obtaining the best value of a single
quantity that has been repeatedly measured, the LS estimator
is the arithmetic mean, and the least L1-norm estimator is
the median.

In general, we can choose values for p other than 1 and 2
and use the corresponding Lp-norm estimator, whose
objective ρ, influence ψ, and weight ω functions are as
follows:

ρ ]i( 􏼁 �
]i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

p
, (10)

ψ ]i( 􏼁 � sign ]i( 􏼁 ]i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p−1

, (11)

ω ]i( 􏼁 � ]i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p−2

. (12)

Noninteger exponents may be used, for example p � 1.5,
and some have even proposed to compute the best p value
adapted to the sample [16].

p �
9
β22

,

β22 �
dof 􏽐

m
i�1 ]

4
i

􏽐
m
i�1 ]2i( 􏼁

2 ,

(13)
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for number of degrees of freedom dof and residuals ]i of an
initial adjustment.

Special combinations with some of these norms can also
be used to obtain robust results (see, e.g., [17, 18]).

'e L1-norm estimator (all Lp-norms in fact) and many
others that have been proposed and used in a relatively
extensive way (e.g., Huber’s estimator) lack, however, a
desirable property that may be key to success in complicated
cases: they are not redescending estimators.

'e theory of redescending estimators originated in the
work by Hampel et al. [19]. 'ese are estimators having ψ
functions that are not only zero in origin (the correct so-
lution) but decrease toward zero far from the origin. 'ey
offer an increase in robustness toward large outliers and have
a high breakdown point (in simple words, they resist the
appearance of a very large proportion of outliers in the
sample).

Some redescending estimators widely used are as
follows:

(i) Geman–McClure estimator [20].

ρ ]i( 􏼁 �
]2i /2
1 + ]2i

, (14)

ψ ]i( 􏼁 �
]i

1 + ]2i􏼐 􏼑
2, (15)

ω ]i( 􏼁 �
1

1 + ]2i􏼐 􏼑
2. (16)

(ii) Welsch estimator [21].
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c
2

2
1 − e
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􏼔 􏼕, (17)
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− ]i/c( )

2
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ω ]i( 􏼁 � e
− ]i/c( )

2

, (19)

where the constant c normally takes a value around
1 to 5.

(iii) Tukey’s biweight estimator [22].
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where the threshold constant c normally takes a
value around 1 to 5. Note that in the following
section, we propose an equivalent redefinition of
these functions that formally avoids piecewise
definitions.

Figure 1 shows the ψ functions of all the above-men-
tioned robust estimators. As it can be seen, only
Geman–McClure, Welsch, and Tukey are redescending
estimators.

In the last years, redescending estimators have been
extensively proved to outperform nonredescending esti-
mators in the most complicated cases (see, e.g., [23]) but, as
they are solved by IRLS, the initial solution used «must be
robust in order to ensure convergence to a “good” solution»
([6], p. 40). Otherwise, the solution achieved is suboptimal.
'at is, it is not the best possible solution (global optimum)
but the best only in the vicinity of the initial solution used for
the IRLS. How to start with a good enough initial solution is
still a case of research as it can be exemplified in the recent
work [24]. 'e underlying problem, however, is indeed the
use of IRLS, an iterative process strongly relying on the
goodness of the starting solution due to the implicit de-
pendence of the procedure on the least squares estimator.

We propose to abandon altogether the solution by IRLS
in favor of a GO method, which eliminates the requirement
of having a “good enough” initial solution. While the dif-
ferences in computing the robust estimator by one proce-
dure or the other (IRLS or GO) may be negligible in
relatively easy problems (e.g., the case of levelling networks,
[25]), in really complicated problems, one can definitely see
a significant difference in favor of GO, which provides the
global optimum and not simply a local optimum close to the
initial solution, as in IRLS.

Global robust estimation, robust estimation where the
estimator is computed by a GO method guaranteeing that
the global optimum is attained, succeeds where the use of
IRLS (local robust estimation) fails, as it will be shown. 'is
applies to complicated examples in terms of large con-
tamination by outliers and includes the possibility of suc-
cessfully performing M-split estimation with no other tool
than global robust estimation.

3. Methods

Let us solve the overdetermined system of observation
equations

Ax � k + ], (23)

where x is the vector of unknown parameters, A a coefficient
matrix, k the vector of independent terms, and ] the vector of
adjustment residuals. 'e system of equations is assumed to
have been previously reduced to the unit weight.
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3.1. Robust Estimation by IRLS. 'e LS solution for the
system of equations above, equation (23), is as follows:

x � A
T
A􏼐 􏼑

−1
A

T
k, (24)

and the adjustment residuals can be computed by intro-
ducing the x vector obtained into

] � Ax − k. (25)

'ese residuals can be used to obtain the weights for
computing every robust estimator as an IRLS problem, using
the corresponding previous equations (9), (12), (16), (19), or
(22). 'e new solution for the system of weighted equations
(having included the W weight matrix with weights ωi in the
diagonal) is as follows:

x � A
TWA􏼐 􏼑

−1
A

TWk, (26)

and the new residuals

] � Ax − k, (27)

which are used to compute new weights and new adjustment
solutions in an iterative procedure that is stopped when no
significant difference between iterations is found.

3.2. Robust Estimation by GO. Alternatively to the use of
IRLS for computing the robust estimator, we propose the use
of a GO method, which, as shown in the next section, will
produce a global optimum, sometimes significantly different
from the mere local optimum achievable by IRLS for
complicated estimation problems.

'e GO method searches in a prescribed orderly way for
the x vector minimizing the value of the objective function
equation (1) using the corresponding expression ρ for the
estimator (note this is also applicable to the LS estimator),
say equations (4), (7), (10), (14), (17), or (20).

In the robust estimator function definitions above, note
that Tukey’s biweight estimator is piecewise-defined in terms
of the residual achieved in the previous iteration. We want a
unique expression and desire not to call values from pre-
vious iterations, so we propose the redefinition of equation
(20) as follows:

ρ ]i( 􏼁 � 1 − 1 −
]i

c
􏼒 􏼓

2
􏼢 􏼣

3

H c − ]i( 􏼁H c + ]i( 􏼁, (28)

where we have omitted the constant factor c2/6 for sim-
plicity, since it has no influence on the final result, and we
have introduced the Heaviside step function H(x), which
returns 0 for x< 0 and 1 for x> 0, and is customarily in-
cluded in standard computation software (e.g., Matlab).
With this definition, if either ]i> c (then c−]i< 0 and
H(c−]i)� 0) or ]i< -c (then c+]i< 0 and H(c+]i)� 0), then
the second summand vanishes as required.

Now, we describe an algorithm for computing any ro-
bust estimator by using the Simulated Annealing (SA)
method, a GO method that has recently found many suc-
cessful applications in the field of geosciences, e.g., [25–29].
'e method is based on the analogy with the process of self-
construction of crystalline networks. 'e interested reader
should consult more detailed references (e.g., [30, 31]); here,
we only show a particular adaptation to solve the problem at
hand.
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Figure 1: ψ functions of several robust estimators. (a) Least square estimator, (b) least L1-norm estimator, (c) least L1.5-norm estimator,
(d) Geman–McClure estimators, (e) Welsch estimators (c� 5), and (f) Tukey estimators (c� 5).
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Step 1. A search domain should be defined and a point in it
be taken as starting point. To this end, we can make use, for
example (although this is not important), of the initial LS
solution of the problem x0 as the starting solution and define
x0± kσ as the search domain

x ∈ x0 − kσ , x0 + kσ􏼂 􏼃, (29)

with k being an arbitrarily large value that guarantees (with a
large degree of certainty) that the global optimum is inside
the search domain and σ a vector with the standard devi-
ations of every parameter, which are obtained as the square
root of the values in the diagonal of the covariance matrix Cx

Cx �
]T]
dof

A
T
A􏼐 􏼑

−1
, (30)

where dof denotes the number of degrees of freedom in the
adjustment (equal to the number of equations,m, minus the
number of unknowns, n).

It is essential to note that unlike the case of IRLS, where
the initial solution causes the final solution to be the closest
local optimum, in the SA method, the starting point may be
completely arbitrary since the final solution obtained will be
independent of the initial point used. Also, we can take
k� 20 or the larger the value we may desire at the only risk of
increasing the computational burden. In other words, the
use of the initial LS solution (or any other sensible alter-
native) to define both the starting value and the search
domain is completely uncritical.

An initial movement amplitude, σ0, needs to be defined.
It can be taken as a fraction of the search space half-width
mentioned above so that it enables to comfortably explore
the entire search space in a few iterations, for example,

σ0 �
k

5
σ. (31)

'is initial movement amplitude σ0 is taken as the
current movement amplitude σcurrent.

Step 2. 'e initial solution x0 is taken both as the current
solution xcurrent and the best solution xbest. Using these
values, we compute the corresponding adjustment residuals
], equation (25), and the corresponding value for the ob-
jective function

f(]) � 􏽘
m

i�1
ρ ]i( 􏼁. (32)

To this end, we make use of the desired form of the ρ
function: equation (7) if the LS estimator is desired, equation
(10) if the minimum L1-norm estimator is desired, etc. 'e
value initially obtained is stored both as the best (fbest) and
the current (fcurrent) value of the f function.

Step 3. 'e current solution vector and the current objective
function value are stored as the corresponding previous
values: xcurrent⟶ xprevious, fcurrent⟶ fprevious

A new tentative solution is generated from the previous
solution xprevious and the current movement amplitude
σcurrent as taken from the Normal distribution

x1 ∼ N xprevious, σcurrent􏼐 􏼑. (33)

We can do this computation element by element that is,
for the first element of vector x1, we draw a value from a
normal distribution of mean, the first element of xprevious,
and standard deviation, the first element of σcurrent, and
analogously for the rest of the elements.

If the solution x1 obtained is located inside the search
domain, equation (29), it is a feasible solution. Otherwise, it
is discarded and a new solution is drawn from the Normal
distribution, equation (33).

'e feasible solution may be accepted or not as the
current solution for subsequent iterations, depending on
certain conditions (akin to the process observed in nature by
which crystalline networks are self-constructed) which are
studied in the following step.

Step 4. We compute the residuals ] corresponding to so-
lution x1 and evaluate therein the objective function f
analogously as done before in Step 2. 'is becomes the
current value for f function, fcurrent.

(i) If the solution is better than the previous one, that is, if
fcurrent< fprevious, the solution is accepted, that is, x1 is
stored as xcurrent: x1 ⟶ xcurrent. It must also be
checked whether the current value of the objective
function is the best value so far and rename variables
if this is the case (fcurrent⟶ fbest and xcurrent⟶ xbest)

(ii) If the solution is not better than the previous one,
that is, if fcurrent≥ fprevious, the solution is only ac-
cepted with a very low probability p as to emulate the
very rare cases observed in nature where worse
energy states are occasionally accepted in the process
of crystalline network self-construction. In short, if a
number drawn at random from the uniform dis-
tribution [0,1] is below, say, 0.01 (which only hap-
pens with 1% of probability); then, x1⟶ xcurrent;
otherwise, xcurrent is taken from the previous itera-
tion (also fprevious⟶ fcurrent).

Step 5. Cooling process. 'e amplitude of movement is
reduced as emulating the cooling process during which the
crystalline network is created.'e cooling equation can be as
simple as follows:

σcurrent � βiterNoσ0, (34)

where σ0 is the initial movement amplitude, iterNo the it-
eration number, and β a number sufficiently close to unity
(e.g., β� 0.99999), taking into account the fact that the closer
to the unity, the slower the cooling and the corresponding
computational process.

If the current movement amplitude can be considered
negligible for the problem at hand, the algorithm stops.
Otherwise, we return to Step 3.
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It can be demonstrated that the SA method converges to
the global optimum in probabilistic terms [30], and for this,
we need a sufficiently slow cooling scheme (β sufficiently
close to one). Although there can be no complete certainty
that the solution attained is indeed the global optimum, a
pair of hints reinforce the credibility of the solution: first, the
final current solution must be coincident with the best
solution attained all along the iterations; second, and im-
portant to check, subsequent executions of the algorithm
(which use different numbers due to the intrinsic random
nature of the algorithm) may produce the same result: the
expected global optimum. In addition, we can also execute
the algorithm with different initial solutions than the LS
solution to verify that it also converges to the same result.

4. Application

4.1. Robust Estimation in the presence of Outliers. As said
before, the computation of the robust estimator as an IRLS
problem is the procedure customary found in the literature,
also for application to geodetic problems: examples of dif-
ferent types include [32–34].

Depending on the problem complexity, the solution
obtained by IRLS may already be the global optimum (thus
coincident with the one obtained by GO). 'is is the case
when the initial solution to start the IRLS process—the LS
solution—is not extremely affected by the existing undesired
errors and is relatively close to the correct solution. As
shown in [25], the case of levelling networks appears to be
one of such problems where robust estimation in the
presence of outliers is equally well solved by IRLS and by GO
since both are chiefly limited by the relatively low redun-
dancy of the problem.

We turn our attention now to a problem where IRLS and
GO behave very differently. It is a linear adjustment taken
from Maronna et al. ([6], p.147 Table 5.6) based, in its turn,
on a work by Jalali-Heravi and Konouz [35].'e experiment
consists of the observation of different chemical compounds
of two quantities (heat and Krafft point), which are in theory
linearly related, where a significant proportion of outlying
observations exists. In fact, some of the outliers correspond
to a different structure than the principal one, whereas
others may be gross errors.

Figure 2 and Tables 1 and 2 show the results obtained by
the estimators presented before (those whose ψ functions
were depicted in Figure 1). For GO, they were obtained by
the SA method with the following parameters: cooldown
factor β� 0.99999, low probability p � 0.01, and for each
unknown: search space half-width kσ with σ from the LS
estimation and k� 300, initial movement amplitude σ0 � kσ/
5 (with the same values for σ and k), and final movement
amplitude σ0/10000. 'e following results were obtained
with the same values for all the decimal places shown after
several runs (indeed with negligible discrepancies of the
order of the tuneable final movement amplitude only). For
the starting solution, we used the LS estimation values, al-
though, as expected, it was checked in several test runs that
the starting values do not affect the final results either.

'e LS estimator computed by IRLS is simply the standard
computation of LS since the equivalent weights are 1, recall
equation (6). 'is result completely coincides with the com-
putation of LS by GO, as it can be seen in the corresponding
columns of Table 1.'is is also the reason why only a solid line
can be seen in the LS subplot in Figure 1 (the discontinuous line
is superimposed on the solid one). As expected, the LS esti-
mator is strongly affected by the existing outliers and is unable
to make a good fit for the main bulk of the data.

'e situation is quite similar for the minimum L1 and
minimum L1.5 norms: in this problem, they are unable to
provide a satisfactory solution for the majority of the data,
and they produce a compromise solution. In both cases, the
IRLS and the GO methods yield the same results despite
minimum, negligible discrepancies. LS, minimum L1, and
minimum L1.5 norms produce relatively similar solutions
among them, all incapable of distinguishing the main bulk of
the data from their outlying observations.

'e situation changes with the Geman–McClure esti-
mator. We can see, first, that the solution is completely
different if computed by IRLS (discontinuous line in Fig-
ure 2) or by GO (solid line). 'e Geman–McClure estimator
computed by IRLS is not really different from LS or the
previous estimators: it fails to fit the line to the majority of
the data. 'e Geman–McClure estimator computed by GO,
however, performs more sensitively to the main linear
substructure. Looking at the corresponding best values of the
Geman–McClure objective function f obtained by IRLS and
GO, 14.245 and 13.009, respectively, it is clear that the IRLS
method has produced a suboptimal result, that is only a local
optimum in the neighborhood of its starting solution,
whereas the GO method has produced a better result
(presumably the global optimum).

In the case of the Welsch estimator, we also see that the
solution is poor if computed by IRLS (only a local optimum
of the objective function f: 23.755), whereas it is very sat-
isfactory if computed by GO (global optimum of the ob-
jective function f: 20.899).

'is is analogous to the case of Tukey, where the robust
estimator successfully captures the main linear substructure in
the data but only if properly computed as GO, the IRLS scheme
only producing a local optimum for Tukey’s objective function.

In summary, we have experienced that, under a relatively
high degree of contamination of the observations (by gross
errors or minor substructures in the data), only the
Geman–McClure (to a moderate extent), Welsch, and Tukey
estimators succeed in finding a good fit to the majority of the
data, and only as long as they are computed by GO (while
they fail if computed by IRLS). Recall from Figure 1 that
these are redescending estimators, having better estimation
capabilities, as expected, but also strongly dependant on the
starting solutions for their IRLS schemes.

Consequently, for cases where there is a large proportion of
outliers with respect to the main bulk of the data, we propose
not only the use of the best robust estimators, that is, redes-
cending robust estimators likeWelsch and Tukey, but also their
computation in a GO scheme, inasmuch as their computation
by means of IRLS may yield a local optimum only.
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4.2. Sequential Robust Estimation to SolveM-Split Estimation.
After having examined the previous example, one may
wonder whether the main structure could be eliminated
from the data after its successful identification and addi-
tional searches for minor substructures be performed then
by the same procedure. 'is suggests the possible use of
global robust estimation for what is known as M-split

estimation: the estimation of parameters of two or more
unknown functional models from the observation of some
existing mixed data (see, e.g., [9, 36]).

We study an example with possible interest in geomatics,
especially in the processing of terrestrial laser scanning data:
the adjustment of data to several circles whose number,
origin, and radius are unknown. 'e idea, as well as the size
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Figure 2: Lines fitted to the data by different estimators: the solid line is the result of the computation by GO and the discontinuous line by
IRLS. (a) Least Squares, (b) Least L1 norm, (c) Least L1.5 norm, (d) Geman -McClure, (e) Welsch, (f ) Tukey.

Table 1: Defining parameters (a and b) of lines y� ax+ b fitted to the data obtained with different nonredescending estimators computed by
GO and by IRLS and corresponding best values of the objective function f.

LS L1-norm L1.5-norm
IRLS GO IRLS GO IRLS GO

a −0.05626 −0.05626 −0.06074 −0.06074 −0.04952 −0.04952
b 45.1045 45.1045 47.6074 47.6074 43.2558 43.2555
fbest 3618.175 3618.175 388.227 388.227 1084.595 1084.595

Table 2: Defining parameters (a and b) of lines y� ax+ b fitted to the data obtained with different redescending estimators computed by GO
and by IRLS and corresponding best values of the objective function f.

Geman–McClure Welsch Tukey
IRLS GO IRLS GO IRLS GO

a −0.06036 0.22425 −0.06338 0.49127 −0.06766 0.48653
b 47.3326 −48.6879 49.8820 −133.7073 52.2803 −131.4851
fbest 14.245 13.009 23.755 20.899 26.353 24.530
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and location of the circles, has been taken from [37], but the
data generated are different in our example since they in-
clude their particular random errors. 'e interested reader
can find the data used in the Supplementary Information file.

'ese data correspond to the (x, y) coordinates in meters
of 1050 points belonging to 7 circles with the same centers
and radii as those in [37]. Here, the number of points
computed for every circle has been selected so that it is
proportional to the circumference length and, in order to
make the problem a bit more complicated, the distribution
of points in every circle is not equally spaced but taken with
azimuth at random, as well as the corresponding radius
being modified by a Gaussian noise of zero mean and
0.04 cm standard deviation. Figure 3 shows the generated
data points and Table 3 the corresponding 7 circles.

All points (xi, yi) belonging to a circumference of center
(xc, yc) and radius r satisfy the following equation:

xi − xc( 􏼁
2

+ yi − yc( 􏼁
2

� r
2
, (35)

which can be transformed into the equivalent equation:

P1xi + P2yi + P3 � − x
2
i + y

2
i􏼐 􏼑, (36)

with

P1 � −2xc, (37)

P2 � −2yc, (38)

P3 � x
2
c + y

2
c − r

2
, (39)

where the circumference is now described by its parameters
(P1, P2, P3) instead of (xc, yc, r) with the advantage that the
model equation (36) is linear in the parameters to estimate.

We perform the adjustment of the 1050 data points to
the model equation (36) in order to obtain the parameters of
the circle (or circles) by means of the same estimators as in
the previous example and obtain the results displayed in
Tables 4 and 5.

As with the previous example, the LS, minimum L1
norm, and minimum L1.5 norm estimators, computed both
by IRLS and by GO, fail to produce a result that fairly
represents any of the existing circles while discarding the rest
of the observations. Only the redescending estimators
(Geman–McClure, Welsch, and Tukey) produce a successful
result as long as they are computed by GO (they also fail
otherwise): they yield the parameters of circle No. 2, pre-
sumably because it is the existing substructure having more
data points.

It is important to note that since the data points be-
longing to the circles were generated using the theoretical
radius plus Gaussian noises of standard deviation 0.04m, the
parameters expected are not exactly those in Table 3 but
others relatively close to them. We must therefore be sat-
isfied with the P1, P2, P3 values in Table 5 obtained by GO for
Geman–McClure, Welsch, and Tukey estimators, which, in
this case, correspond to circle No. 2. For the P1, P2, P3
parameters obtained for circle No. 2, we can easily get the
corresponding center (xc, yc) and radius r via equations

(37)–(39). 'e comparison could also be made in terms of
these xc, yc, r, as it will also be provided in subsequent tables.

Now we propose to discard all points in the dataset that
can be ascribed to circle No. 2. It is worth noting that, due to
the existence of a large number of redundant observations,
we will prefer to delete a few points that possibly do not
belong to circle No. 2 rather than to leave points of this circle
that will not be able to be correctly ascribed to any of the
remaining circles in subsequent computations.

To this end, for any point (xi, yi) in the dataset, we analyze the
following condition derived from equation (35) for the values of
center (xc, yc) and radius r previously obtained:

������������������

xi − xc( 􏼁
2

+ yi − yc( 􏼁
2

􏽱

− r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 10σ, (40)

where the standard deviation σ is 0.04m as before. If this
condition is fulfilled, the point is assumed to belong to the
circumference whose parameters have been obtained and is
eliminated from the dataset to be analyzed in subsequent
computations. Recall that, as explained above, we want to
eliminate all points belonging to the first circle at the risk of
eliminating others too, which would constitute no problem
due to a large number of redundant observations. 'is is the
reason for using such a high threshold as 10σ in equation
(40). For lower values, like 3σ or 5σ, we observed that a very
small percentage of the data points underwent the entire
process with no ascription to any solution.

For all the remaining points in the dataset, the process is
repeated.'at is, a system of equations of the type of equation
(36) is again formed and solved by the redescending esti-
mators (Geman–McClure, Welsch, and Tukey) by means of
GO. Obviously, the other estimators computed either by GO
or IRLS or the redescending estimators computed by IRLS are
no longer considered since they were already unable to yield
the parameters of the first circle. 'is computation is iterated
until the dataset is empty or has a very low number of points
(say less than 0.1% of the original total number of points).

For the Geman–McClure estimator, the results obtained
in the subsequent iterations are shown in Table 6, and the
misfits, left-hand side of equation (40), for the corre-
sponding datasets in each iteration are shown in Figure 4. As
expected, in every iteration, the solution produces close-
to-zero misfits for a group of observations, those of the
corresponding circle.
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Figure 3: Generated data points.
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As it can be seen, the Geman–McClure estimator
computed by GO produces along the sequential adjustments
the circles No. 2, 4, 7, 1, 5, 3, and 6. Quite expectedly, they are
obtained in the order of higher to lower number of corre-
sponding points in the dataset.

'e results are quite similar for the Welsch estimator by
GO, Table 7 and Figure 5. Although the circles sequentially
obtained are now circles No. 2, 7, 4, 1, 5, 3, and 6, they are still
obtained from higher to the lower number of points in the
dataset (circles 4, 7, 1, and 5 have the same number of points).

Finally, the results obtained for the Tukey estimator are
shown in Table 8 and Figure 6. Although the parameters
obtained for the circles are very similar to the ones

obtained by the previous two estimators, it is unknown
why the order in which they are sequentially obtained is
now circles No. 2, 1, 7, 6, 4, 3, and 5, which does not strictly
correspond to the highest-to-lowest number of points in
the dataset. 'is has little importance, however, inasmuch
as the seven functional models which are implicit in the
data have been revealed.

In summary, only the three redescending estimators
(Geman–McClure, Welsch, and Tukey) computed by GO
have succeeded in revealing the different functional models
implicit in the data, that is, the seven circles, yielding their
corresponding parameters within their expected accuracy of
the order of a few cm.

Table 6: Circles and corresponding parameters obtained with the Geman–McClure estimator computed by GO: for each solution (Solution
No.), xc and yc are the coordinates of the center, r the radius, L the circumference length, No. Points: the number of points generated for the
circle, and P1, P2, P3 are the circle parameters. Circle No. is the corresponding circle number in Table 3.

Solution no. xc yc r P1 P2 P3 Circle no.
1 19.997 9.996 7.999 −39.995 −19.992 435.833 2
2 19.996 31.996 5.003 −39.992 −63.993 1398.593 4
3 39.971 18.025 7.489 −79.942 −36.049 1866.502 7
4 9.967 9.974 5.027 −19.934 −19.947 173.534 1
5 55.000 28.000 4.998 −110.001 −56.000 3784.077 5
6 20.038 20.003 4.987 −40.075 −40.006 776.755 3
7 44.994 27.993 3.004 −89.987 −55.987 2799.023 6

Table 3: Circles and corresponding parameters: for each circle (circle no.), xc and yc are the coordinates of the center, r the radius, No. Points
the number of points generated for the circle, and P1, P2, P3 the circle parameters explained below.

Circle no. xc yc r No. points P1 P2 P3
1 10.0 10.0 5.0 136 −20.0 −20.0 175
2 20.0 10.0 8.0 219 −40.0 −20.0 436
3 20.0 20.0 5.0 136 −40.0 −40.0 775
4 20.0 32.0 5.0 136 −40.0 −64.0 1399
5 55.0 28.0 5.0 136 −110.0 −56.0 3784
6 45.0 28.0 3.0 82 −90.0 −56.0 2800
7 40.0 18.0 7.5 205 −80.0 −36.0 1868
All points (xi, yi) belonging to a circumference of center (xc, yc) and radius r satisfy the following equation:

Table 4: Circle parameters (P1, P2, and P3) fitted to the data obtained with different nonredescending estimators computed by GO and by
IRLS and corresponding best values of the objective function f.

LS L1-norm L1.5-norm
IRLS GO IRLS GO IRLS GO

P1 −63.096 −63.096 −60.860 −60.862 −61.924 −61.924
P2 −38.620 −38.620 −38.072 −38.047 −38.755 −38.755
P3 1043.74 1043.74 1004.87 1004.53 1031.39 1031.38
fbest 25766225 25766225 185947 185947 2003060 2003060

Table 5: Circle parameters (P1, P2, and P3) fitted to the data obtained with different redescending estimators computed by GO and by IRLS
and corresponding best values of the objective function f.

Geman–McClure Welsch Tukey
IRLS GO IRLS GO IRLS GO

P1 −63.136 −39.995 −62.921 −39.998 −62.882 −39.998
P2 −38.527 −19.992 −38.626 −20.010 −38.632 −19.996
P3 1043.73 435.83 1038.20 436.06 1036.38 435.92
fbest 522.05 436.80 1039.69 826.86 1041.64 836.92
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Figure 4: Misfits in the sequential adjustments with the Geman–McClure estimator computed by GO. (a) Solution 1, (b) Solution 2,
(c) Solution 3, (d) Solution 4, (e) Solution 5, (f ) Solution 6, and (g) Solution 7.

Table 7: Circles and corresponding parameters obtained with the Welsch estimator computed by GO: for each solution (Solution No.), xc
and yc are the coordinates of the center, r the radius, L the circumference length, No. Points is the number of points generated for the circle,
and P1, P2, P3 are the circle parameters. Circle No. is the corresponding circle number in Table 3.

Solution no. xc yc r P1 P2 P3 Circle no.
1 19.999 10.005 8.000 −39.998 −20.010 436.060 2
2 40.002 18.040 7.499 −80.004 −36.081 1869.377 7
3 20.063 32.008 4.973 −40.127 −64.015 1402.286 4
4 10.006 9.988 4.986 −20.012 −19.976 175.026 1
5 55.008 28.010 4.997 −110.016 −56.019 3785.429 5
6 20.000 20.001 4.998 −40.001 −40.002 775.079 3
7 44.994 27.996 3.004 −89.987 −55.993 2799.210 6

M
isfi

t 50

0

Observation number
0 200 400 600 800 1000

(a)

M
isfi

t 50

0

Observation number
0 200 400 600 800 1000

(b)

M
isfi

t

0

50

0 200 400 600
Observation number

(c)

M
isfi

t 50

0

Observation number
0 100 200 300 400 500

(d)

Figure 5: Continued.
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Figure 5: Misfits in the sequential adjustments with the Welsch estimator computed by GO. (a) Solution 1, (b) Solution 2, (c) Solution 3,
(d) Solution 4, (e) Solution 5, (f ) Solution 6, and (g) Solution 7.

Table 8: Circles and corresponding parameters obtained with the Tukey estimator computed by GO: for each solution (Solution No.), xc and
yc are the coordinates of the center, r the radius, L the circumference length, No. Points is the number of points generated for the circle, and
P1, P2, P3 are the circle parameters. Circle No. is the corresponding circle number in Table 3.

Solution no. xc yc r P1 P2 P3 Circle no.
1 19.999 9.998 8.000 −39.998 −19.996 435.917 2
2 10.001 9.994 4.995 −20.003 −19.988 174.963 1
3 39.987 17.994 7.498 −79.974 −35.989 1866.540 7
4 44.970 27.980 3.018 −89.940 −55.960 2796.056 6
5 19.997 31.998 5.001 −39.994 −63.995 1398.704 4
6 20.000 20.000 4.999 −39.999 −40.000 774.998 3
7 55.003 28.003 4.997 −110.006 −56.005 3784.475 5
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Figure 6: Misfits in the sequential adjustments with the Tukey estimator computed by GO. (a) Solution 1, (b) Solution 2, (c) Solution 3,
(d) Solution 4, (e) Solution 5, (f ) Solution 6, and (g) Solution 7.
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5. Conclusions

In the present paper, we have shown that the success of a
robust estimation method depends not only on the robust
estimator used but also on the way the estimator is com-
puted. We have shown that in problematic cases, the pre-
dominant method of computation by means of IRLS may
result in a local optimum of poor quality.

'is problem, which is a current topic of research, has
been proposed to be solved in the literature by requiring a
robust initial solution for the first iteration of the IRLS
method. We have proposed here a different alternative: the
computation of the robust estimator by a GO method. A
particular implementation of the SA method has also been
given for this purpose.

For cases where there is a large proportion of outliers
with respect to the majority of the data, the use of the best
robust estimators, redescending estimators like
Geman–McClure, Welsch, and Tukey estimators, were
proposed along with their computation in a GO scheme,
inasmuch as their computation by means of IRLS yielded
local optima only. We also propose an original, equivalent
redefinition of some estimators, like Tukey’s biweight esti-
mator, in order to avoid the use of piecewise definitions for
the sake of an easier implementation in a GO method.

'e sequential use of these three redescending estima-
tors—Geman–McClure, Welsch, and Tukey estima-
tors—computed by GO was proved to successfully solve the
M-split estimation, that is, the determination of parameters
of different functional models implicit in the data. 'ese
estimators failed if computed by IRLS, in the same way, that
other nonredescending robust estimators (least L1 and least
L1.5 norms) as well as the LS estimator, irrespectively of the
computation method, failed too when asked to determine
any of the different functional models underlying the data
sample.

In short, for an adjustment problem where the dataset is
highly contaminated with outliers or there are several un-
derlying functional models for the observations, we propose,
as an original, novel alternative not to be found in the lit-
erature so far, the use of redescending estimators computed
by GO as the best alternative to attain a good fit to the
majority of the data. If desired, sequential adjustments may
also reveal the corresponding parameters of the existing
different functional models. As a future work, the effec-
tiveness of this technique should be further analyzed in more
challenging problems also with the application of other
methods for GO apart from SA.
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