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Abstract: A common problem in railway engineering is the dynamic of repetitive structures
subject to moving loads. Bridges, rails or catenaries are the most representative periodic struc-
tures, over which the train acts as a moving exciter. Usually, these structures are long enough
to consider that their dynamic response is in permanent regime. To assume the steady-state
regime some features have to be considered: infinite length structure, perfect periodicity and
constant velocity of the moving load. This paper adopts these assumptions and provides the
steady-state solution of a generic periodic structure subject to an arbitrary and also periodic
moving load.

The structure is divided into repetitive blocks modelled by the Finite Element Method. By
applying the periodicity condition it is possible to consider the entire structure dynamics with
only one block. The problem is stated in the frequency domain and moved back to time domain
by means of Discrete Fourier Transform.

1 INTRODUCTION

The study of periodic structures subject to moving loads has a great relevance thanks to the
wide use of high-speed trains. Rails, overhead contact lines or bridges are periodic structures
whose dynamic response produced by the train has been studied under different approaches.
The authors who consider an infinite periodic structure focus on the steady-state solution of the
problem. The early analytic models found in the literature are based on an infinite continuous
periodically supported string/beam [1, 2, 3]. In [1] an infinite periodic Euler-Bernoulli beam
subject to a uniform moving harmonic pressure field is solved. The differential equation is
solved in the domain between two supports and four boundary conditions allow to determine
the coefficients of the solution. Boundary conditions are obtained from the periodicity condition
of two consecutive supports and the momentum and shear equilibrium at these supports. In [2]
a similar model subject to a constant moving load is solved using the modal method. A finite
periodic supported beam is defined by N uncoupled differential equations based on a modal
representation. The limit of the previous solution when N → ∞ is computed for a moving
constant load. The same problem is solved in [3], in which the Fourier Transform is used to
shift to the frequency domain where the periodicity condition is easily formulated. The solution
is obtained in the frequency domain and the Inverse Fourier Transform allows to obtain the
response in the time domain. The presented approaches have in common the consideration of
a periodic solution which allows considering only a single period or block of the string/beam
between two consecutive supports.

The limitation of the previous references is their inability of modelling more complex struc-
tures. Some solutions have been found, for example in [4], in which an extension of the approach
proposed in [3] is presented to solve a catenary model, including two strings and two spatial
periods, one for supports and another for droppers. In [5], the beam is modelled by a two-and-
a-half dimensional (2.5D) Finite Element model which allows to model any cross section of the
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beam. The solution is divided into the response produced by the external load and the response
produced by the reactions of the supports. Fourier Transform respect to position x and time
t is performed to solve the differential equation and the periodicity condition is applied to the
reactions of the supports in the frequency domain. The same authors presented an improved
model in [6] in which the dynamic interaction of multiple wheels with the periodic model is
computed by means of the Fourier Series decomposition of the contact force.

The Finite Element Method (FEM) can be used to model any periodic structure by means
of the so-called Wave Finite Element Method (WFEM). This method allows to compute the
frequency response of finite or infinite periodic structures [7, 8]. The frequency response of
a periodic infinite structure obtained by WFEM can be used to compute the response un-
der a moving load by means of the Fourier Transform [9]. WFEM makes possible to model
finite-length structures and even structures with transition zones [8], but for periodic infinite
structures we present an alternative in which some inconveniences of WFEM are avoided. For
example, some slender structures (as catenaries) present ill conditioning behaviour in WFEM.

In this paper, the periodicity condition is applied on FEM models to obtain the frequency
response of any generic periodic infinite structure. Then, the response to a temporal excitation is
obtained by means of the Discrete Fourier Transform (DFT). Finally, the pantograph-catenary
dynamic interaction is solved with this method.

2 HARMONIC RESPONSE

In this section we obtain the harmonic response of the model as a tool for the computation
of the steady-state response. Let consider an infinite structure with a periodic pattern along
the longitudinal axis as in Fig. 1. The repeated block is called substructure and it is modelled
by the FEM. The dynamic equation of the substructure for a harmonic load can be written as:

D(ω)u = F (1)

in which u is the nodal displacement vector, D(ω) = K + iωC− ω2M is the dynamic stiffness
matrix of the substructure and M, C and K are the mass, damping and stiffness matrices,
respectively. Note that the force vector F includes external forces and the reactions produced
by the adjacent blocks. The nodes of the block can be divided into left (L) and right (R)
boundary nodes and inner (I) nodes according to their positions. Thus, the previous equation
can be split into:  DLL DLI DLR

DIL DII DIR
DRL DRI DRR




uL
uI
uR

 =


FL
FI
FR

 (2)

a1

a3

a2

Figure 1: Periodic infinite FEM structure with moving load.
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It is assumed that the load is repeated at every block so that the response of all blocks is
identical but with a time lag that depends on the length L of the substructure and the velocity
v of the moving load. This condition is called the periodicity condition and for the displacement
u of any point it reads:

u(x, t) = u(x+ nL, t+ nL/v); n ∈ Z (3)

This condition allows to state the entire problem only in a single block of the structure, which
is called the reference block. The periodicity condition can be moved to the frequency domain
in which, the response of the next block to the reference one is:

unext = e−
iωL
v u (4)

Both blocks hold the following coupling condition in the common boundary:

uR = unext
L (5)

so that the displacement of the left and right nodes of every substructure are related by:

uL = e
iωL
v uR (6)

Applying this relation to Eq. (2):
DLI DLR + e

iωL
v DLL

DII DIR + e
iωL
v DIL

DRI DRR + e
iωL
v DRL


{

uI
uR

}
=


FL
FI
FR

 (7)

The same procedure can be considered for the nodal forces:

Fnext = e−
iωL
v F (8)

which must satisfy the action-reaction principle in the boundary:

FR = F∂R − Fnext
L (9)

in which F∂R is the external load at the right boundary. By combining Eqs. (8) and (9) the
left and right nodal forces of every substructure can be related by:

FL = e
iωL
v (F∂R − FR) (10)

Introducing this constraint in Eq. (7) it becomes into:
DLI DLR + e

iωL
v DLL

DII DIR + e
iωL
v DIL

DRI DRR + e
iωL
v DRL


{

uI
uR

}
=

 0 e
iωL
v I

I 0
0 0

{ FI
F∂R

}
+

 −e
iωL
v I

0
I

FR (11)

If all the unknowns are moved to the left-hand side,
DLI DLR + e

iωL
v DLL e

iωL
v I

DII DIR + e
iωL
v DIL 0

DRI DRR + e
iωL
v DRL −I




uI
uR
FR

 =

 0 e
iωL
v I

I 0
0 0

{ FI
F∂R

}
(12)
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the displacement and the nodal forces are given by:
uI
uR
FR

 = Ĥ(ω)
{

FI
F∂R

}
(13)

in which

Ĥ(ω) =


DLI DLR + e

iωL
v DLL Ie iωLv

DII DIR + e
iωL
v DIL 0

DRI DRR + e
iωL
v DRL −I


−1  0 Ie iωLv

I 0
0 0

 (14)

Eq. (13) can be rewritten in terms of displacements of the substructure:
uL
uI
uR

 = H(ω)
{

FI
F∂R

}
(15)

in which

H(ω) =

 e
iωL
v ĤR(ω)
ĤI(ω)
ĤR(ω)

 (16)

being ĤI(ω) and ĤR(ω) the two first rows of Ĥ(ω).

3 TIME-FREQUENCY ANALYSIS

To achieve the response to an arbitrary moving load, the excitation is moved to the frequency
domain where the frequency response obtained in the previous section can be used. Then, the
response in the frequency domain is moved back to the time domain.

The structure is excited by a moving load f(t) with period L/v. This moving load causes
the nodal forces FI(t) and F∂R(t) which are evaluated in N discrete times tn = n∆t.{

FI(tn)
F∂R(tn)

}
=
[

N>I (tn)
N>R(tn)

]
f(tn) (17)

NI(tn) and NR(tn) are the shape functions of the inner and right nodes evaluated at time tn.
These functions are used in FEM to transform nodal displacements into point displacements
and it can also be used to transform point forces to nodal equivalent forces.

The Discrete Fourier Transform (DFT) is used to obtain the frequency representation of the
nodal forces: {

FI(ωk)
F∂R(ωk)

}
=

N−1∑
n=0

{
FI(tn)

F∂R(tn)

}
e

−i2πkn
N (18)

in which
ωk = k

2π
N∆t ; k ∈ [0, N − 1] (19)

The DFT considers that the temporal function is N -periodic, thus a long enough sequence (high
N) is necessary to ensure a negligible influence of other periods. Note that the block periodicity
of the moving load is different from the periodicity of nodal forces, which is fictitious, created
by the discrete analysis with Fourier.

As the moving load is repeated in every block, Eq. (18) can be used with times tn in which
the moving load is acting on the reference block, from tn = 0 to tn = tM−1 with M = L/(v∆t).
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At the instants in which n ≥M , the load FI(tn) = 0 and F∂R(tn) = F∂L(tn−M), being F∂L the
external load at the left boundary. Then, Eq. (18) can be written as:{

FI(ωk)
F∂R(ωk)

}
=

M−1∑
n=0

{
FI(tn)

F∂R(tn) + F∂L(tn)e−i2πkM
N

}
e

−i2πkn
N (20)

Eq. (15) allows to obtain the displacements of the substructure in the frequency domain.
Now, the Inverse Discrete Fourier Transform (IDFT) is used to return to time domain, resulting
in: 

uL(tn)
uI(tn)
uR(tn)

 = 1
N

N
2∑

k=−N2


uL(ωk)
uI(ωk)
uR(ωk)

 e i2πknN (21)

In addition, if F(tn) is a real function, F(ωk) = conj (F(ω−k)) and the same applies for
u(ωk) = conj (u(ω−k)) because H(ω) exhibits Hermitian symmetry. Then, the IDFT can be
computed as: 

uL(tn)
uI(tn)
uR(tn)

 = 1
N




uL(ω0)
uI(ω0)
uR(ω0)

+ 2Re


N
2∑

k=1


uL(ωk)
uI(ωk)
uR(ωk)

 e i2πknN


 (22)

It is also possible to truncate and consider only the Nc first frequencies if the effect of higher
frequencies is negligible.

If Eq. (17) is introduced in Eq. (20) and the result in Eq. (15), then in Eq. (21) and finally
in Eq. (22), a condensed formulation is obtained.

u(tn) =
M−1∑
n̂=0

I(n, n̂)f(tn̂) (23)

in which

I(n, n̂) = 1
N

Nc−1∑
k=0

akRe
(

H(ωk)
[

0 I 0
e

−i2πkM
N I 0 I

]
e
i2πk(n−n̂)

N

) N>L (tn̂)
N>I (tn̂)
N>R(tn̂)

 (24)

being ak = 2 if k 6= 0 or ak = 1 if k = 0. Note that the variable n̂ is used to distinguish the
instant of application of the load from the instant of evaluation of the displacement n.

To reduce the computational cost, I(n, n̂) can be written as:

I(n, n̂) = J(λ)N(tn̂) (25)

in which
J(λ) = 1

N

Nc−1∑
k=0

akRe
(

H(ωk)
[

0 I 0
e

−i2πkM
N I 0 I

]
e
i2πkλ
N

)
(26)

and λ = n− n̂.

4 NUMERICAL EXAMPLE

In this section, a numerical example of application of this method is analysed. The pantograph-
catenary dynamic interaction is solved under the hypothesis of steady-state behaviour. The
infinite catenary is composed of repetitive blocks as shown in Fig. 2 and the pantograph applies
a vertical load fc on the contact wire.
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a2

a1
a3

a4

Figure 2: Pantograph interaction with the periodic catenary.

To solve the problem, Eq. (23) is only evaluated at the contact point instead of at all the
degrees of freedom of the block. That is:

uc(n) =
M−1∑
n̂=0

Ic(n, n̂)fc(tn̂) (27)

in which Ic(n, n̂) is obtained from a simple transformation of I(n, n̂). This formulation provides
a discrete matrix operator Ic(n, n̂) that relates the M values of the moving load with the M
values of the contact point vertical displacement. The total height of the contact point is
composed of the displacement produced by the load and the initial height profile of the contact
wire:

zc(n) = zcw(n) + uc(n) (28)

A linear pantograph is considered whose dynamic response is defined by the frequency re-
sponse function Hp(ω) of its contact point. This contact point is excited by an M -periodic
force −fc(n) due to the action-reaction principle. The displacement zc(n) of the pantograph
contact point can be also obtained by using the DFT:

zc(n) = zext −
M−1∑
n̂=0

Ip(n, n̂)fc(tn̂) (29)

in which zext is the displacement produced by a constant external load (produced by the bellow
of the uplift mechanism) and:

Ip(n, n̂) = 1
M

M/2∑
k=0

akRe
(
Hp(ωk)e

i2πk(n−n̂)
M

)
(30)

being:
ωk = k

2π
M∆t (31)
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The contact force can be obtained imposing the same displacement zc(n) of the pantograph
contact point (Eq. (29)) and the catenary contact point (Eq. (28)) at the M instants of time.
That is:

zext −
M−1∑
n̂=0

Ip(n, n̂)fc(tn̂) = zcw(n) +
M−1∑
n̂=0

Ic(n, n̂)fc(tn̂) (32)

with n = 0, ..,M − 1. This system of M linear equations allows to compute the contact force
fc(tn).

As an example of a particular solution in which the dynamic interaction is produced at 300
km/h and the catenary model has 5 droppers per span, Fig. 3 gives a comparison between the
solution obtained from the proposed method and the solution obtained from a FEM simula-
tion performed with a long enough catenary to achieve the steady-state regime. The perfect
coincidence shown gives validity to the proposed algorithm.
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Figure 3: Solution of the infinite periodic model (PFEM) and a long conventional FEM model.

5 CONCLUSIONS

• The periodicity condition allows to compute the dynamic response of infinite periodic
structures subject to a moving load combined with a FE model and discrete Fourier
analysis.

• The repeated block is modelled by the Finite Element Method so that the proposed
algorithm can be applied to any generic linear structure.

• The proposed method can be divided into two parts: the first devoted to compute the
discrete operator that relates the load with the displacement of the structure and the
second in which this operator is applied at different problems. The second part has a
very low computational cost which makes it very suitable to perform (Hardware In the
Loop) HIL tests or pantograph optimisation within the frame of pantograph-catenary
dynamic interaction.
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• A pantograph-catenary dynamic interaction problem is solved in this work to exemplify
the proposed formulation. This has allowed us to validated the obtained results with
a conventional FEM simulation, in which a long catenary must be used to ensure the
steady-state interaction with the pantograph.
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