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Comprehensive functional core microbiome
comparison in genetically obese and lean hosts
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Our study provides an exhaustive comparison of the microbiome core functionalities (cap-

tured by 3,936 microbial gene abundances) between hosts with divergent genotypes for

intramuscular lipid deposition. After 10 generations of divergent selection for intramuscular

fat in rabbits and 4.14 phenotypic standard deviations (SD) of selection response, we applied

a combination of compositional and multivariate statistical techniques to identify 122 cecum

microbial genes with differential abundances between the lines (ranging from −0.75 to

+0.73 SD). This work elucidates that microbial biosynthesis lipopolysaccharides, pepti-

doglycans, lipoproteins, mucin components, and NADH reductases, amongst others, are

influenced by the host genetic determination for lipid accretion in muscle. We also differ-

entiated between host-genetically influenced microbial mechanisms regulating lipid deposi-

tion in body or intramuscular reservoirs, with only 28 out of 122 MGs commonly contributing

to both. Importantly, the results of this study are of relevant interest for the efficient

development of strategies fighting obesity.
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Obesity has markedly increased worldwide over the past 40
years, and projections indicate that global obesity pre-
valence will exceed 18% in men and 21% in women by

20251. Overweight and obesity have medical consequences such
as increased risk of diabetes, cardiovascular disease, cancer, or
depression2–4. Therefore, obesity remains a major public health
and also an economic concern. Dietary excesses and also host
genetic factors are the main obesity causes in humans5, with
heritability estimates ranging from 0.40 to 0.70 in humans6 and
farm animals7,8, and some loci already identified for obesity (e.g.,
MC4R, leptin, Fob, and FTO)9–11 and obesity-related metabolic
disorders (NOD1,2

12, apolipoprotein E13,14, and CD14
15).

Numerous studies have demonstrated that microbiota is also a
key contributor to obesity16–23. Bäckhed et al.16 were the first to
report a striking difference in body-fat content observed between
germ-free mice and conventionally raised mice, with the latter
having 40% higher body-fat content16. After that, several studies
have established that microbial pathways can contribute to obe-
sity by altering apetite24, energy extraction from ingesta17–23, and
inflammation and immunity processes via an increased produc-
tion of microbial-derived metabolites12,18,21–23,25–30. At the same
time, the gut microbiome composition is partially determined by
the genes of the host31,32, as for example, host genes regulating
the pH and redox conditions, motility of the intestinal tract,
immune response, or the presence of receptors responding to
metabolites with microbial origin33–38. Given the key role that
microbiota plays in energy expenditure and inflammation pro-
cesses, it is likely that genetically obese hosts carry genes defining
a gut environment that favors the colonization of specific
microbes or microbial functions associated with obesity.
Although the role of microbiota in overall host adiposity is widely
studied from a phenotypic point of view39–41, many of these
studies failed in disentangling which of these microbial
mechanisms are under host genetic control. In their study,
Turnbaugh et al.42 investigated the effect of an obesity-related
host gene (leptin) in the microbiome and showed its potential
effect on the capacity of the microbiome to harvest energy from
the diet. However, lipid deposition is a complex trait and its
genetic background comprises a large set of loci with minor
effects that may influence the gut microbiome. Until now, the
effect of the complete genetic background for lipid deposition on
the functional microbiome has not been studied, mainly due to
the lack of appropriate experimental material under controlled
environmental conditions. Our work attempts to cover this gap of
knowledge, which is paramount for the development of obesity
treatments (e.g., probiotics) in individuals with genetic determi-
nation to develop the condition.

Obesity comprises increased rates of lipid deposition and
enlargement of fat cells2 in body fat and also in intramuscular fat
depots43. Whereas the role of the microbiome composition in the
former has been extensively studied16,17,26,44, published works
about the microbiome influence on intramuscular fat deposition
are restricted to phenotypic studies in livestock species45,46.
During the last few years, our group has developed a successful
divergent selection experiment for intramuscular fat content in
Longissimus thoracis et lumborum (LTL) muscle in rabbits7 with a
response of 4.14 standard deviations (SD) after 10 generations
(Supplementary Figure 1). Rabbits are a more appropriate
experimental model than the most widely used mice for the study
of lipid metabolism in humans, as their lipoprotein metabolism,
cardiovascular system, and obesity-related clinical signs are more
similar to those of human than the same systems of mice47–49.
The divergent genetic lines have been contemporary raised and
kept in the same environment during the whole experiment,
exclusively differing in the genes underlying intramuscular fat
content and genetically correlated traits. The main advantage of

our experimental design, in comparison with other genetic stu-
dies, is that direct and correlated responses to selection are the
observed phenotypic differences between lines at the same gen-
eration, independent of any genetic parameters or models. In
previous studies, we demonstrated that the genetic background
underlying intramuscular fat in LTL muscle influences intra-
muscular fat content of several muscles50 and overall body
adiposity (Supplementary Fig. 1 and Supplementary Table 1);
lipogenic activity of muscular, adipose51, and liver tissues52; liver
weight52, adipocyte hypertrophy51, and C16:0 intramuscular
content53, all greater in the high in comparison with the low line,
therefore referred from now as obese and lean lines. Our rigorous
experimental design permits a comprehensive identification of
the microbiome functionalities influenced by the host genetic
background for lipid deposition by comparing the microbiome
metabolism of the obese and lean lines. By using whole-
metagenome sequencing of 89 cecal content samples, here we
provide an extensive description of the functional core micro-
biome of rabbit cecum, until now limited to indirect inferences
based on taxonomy54, or to specific enzymatic activities55. We
quantified the abundances of 3,937 microbial genes (MGs) pre-
sent in all the samples (Supplementary Data 1), 3,395 of them
classified, based on Clusters of Orthologous Groups of proteins
database (COG)56,57, in 23 functional modules (Supplementary
Fig. 2) comprising 94.38% of the total abundance in the cecum.
Our study revealed a strong correlated response to selection
confirming that genetics of intramuscular fat content determines
a gut environment that favors specific microbial core functions
(i.e., MGs) associated with fat-mass accretion in muscle. These
specific MGs were involved in the metabolism of bacterial-origin
metabolites lipopolysaccharides, peptidoglycans, and lipoproteins,
branched-chain fatty acids (BCFAs), propionate and acetate, bile
acid transport, mucin biosynthesis, quorum sensing, or antibiotic
resistance. In addition, we elucidated that a substantial part of the
microbial mechanisms identified do not contribute to lipid
deposition in body-fat depots, suggesting a certain independence
between microbial metabolic pathways regulating fat deposition
in different body sites.

The study of Gloor et al.58 warned about the necessity of using
log-ratio transformations when analyzing data from whole-
genome sequencing as they are compositional, although pro-
posed transformations (e.g., centered or isometric log ratio) dif-
ficult the result interpretation59,60 or are not strictly
subcompositionally coherent61. A further remark from our study
is the application of an innovative strategy62 to select the most
adequate set of additive log ratios (alrs) in order to alleviate the
spurious dependences among compositional microbial abun-
dances, conserve the original isometry of the data, and facilitate
its interpretation.

Results and discussion
The functional capacity of cecal core microbiome was modified
as a response to selection for intramuscular fat content. The
main hypothesis of this study is that genetic determination of the
polygenic trait intramuscular fat content comprises host gut traits
that permanently alter cecal core microbiome functionalities
captured as MG abundances. Studies based on phenotypic asso-
ciations between microbiome and host lipid deposition22,23,39 do
not differentiate between genetic and environmental causes for
the association. Prior to any statistical analysis, the 3,937 relative
abundances of cecum MGs were transformed into 3,936 alrs with
respect to the relative abundance of reference MG RP-S1. Our set
of MG alrs of choice reproduces the exact log-ratio geometry
between the samples (Supplementary Fig. 3), is sub-
compositionally coherent61, and presents clear interpretation
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advantages with respect to other log-ratio transformations59,60

(see “Materials and methods” and Supplementary Fig. 3 for
reference MG selection criteria). We used partial least squares
discriminant analysis (PLS-DA)63 for the divergent lines and
standard partial least squares analysis (PLS)64 for intramuscular
fat content to elucidate which of the 3,936 MG alrs are influenced
by host genes responsible for intramuscular fat content. The
differences between our lines on the microbiome function
(detected by PLS-DA) should be mainly genetic, but to reduce the
risk of obtaining differences due to genetic drift, we corroborate
the findings (in the Karl Popper sense) by performing the linear
association of microbiome function with intramuscular fat con-
tent (detected by PLS). When MG alrs are found to be relevant in
both analyses, it is likely that they should be associated with the
genetics of the trait.

Our hypothesis was confirmed by finding a reduced set of
microbial functionalities with exceptional discrimination abilities
between the lines and substantial prediction abilities for
intramuscular lipid deposition after an internal validation
approach. We identified 240 MG alrs able to discriminate
between obese and lean lines with a cross-validation misclassi-
fication rate of 5% (PLS-DA, Fig. 1a and Supplementary Data 2).
We also found 230 MG alrs that together were able to explain
79% of intramuscular fat-content variability among the indivi-
duals in a cross-validation approach (Q2) (PLS, Fig. 1b and
Supplementary Data 3). Of the 240 and 230 MG alrs identified in
PLS-DA and PLS models, 122 overlapped in both analyses
(Fig. 1c and Supplementary Data 4), which summed a cumulative
relative abundance of 1.40%. We estimated the magnitude of the
correlated responses to selection on these 122 MG alrs by
computing the difference between lines for each of their alr-
transformed abundance and expressing them in units of SD
(Supplementary Data 4 and Fig. 2). Using Bayesian
techniques65,66, we established the actual probability of the
differences between lines in absolute value being higher than zero
(P0), which should not be confounded with a P-value. Of the 122
MG alrs, 86 evidenced differences with a P0 ≥ 0.90, 72 being more

abundant in the obese line. A lack of linearity between MG alrs
and intramuscular fat content, or interactions between MGs,
among other causes, may explain the lack of evidence when
finding differences between lines in the remaining 26. Because of
the almost constant log-transformed relative abundance of
reference MG RP-S1 occupying the alr denominator (its
coefficient of variation is 2.3%), differences between lines in
MG alrs can be strictly associated with different log-transformed
abundances in the numerator. In the following, we take advantage
of this assumption to discuss our findings.

Log-ratio transformations are required when analyzing com-
positional whole-genome sequencing data with multivariate
covariance-based methods to avoid the spurious dependences
among microbial abundances and with the trait of interest58. In
this study, we further tested the importance of applying a
compositional transformation by comparing our results with
those obtained when repeating our DA-PLS and PLS, this time
using MGs expressed in relative abundances (Supplementary
Data 5, 6 and 7). While the discrimination and prediction abilities
of the now MG-relative abundances selected were maintained
(279 MGs showed a 6% cross-validation misclassification rate
between the lines in PLS-DA, and 344 MGs explained a Q2= 73%
of intramuscular fat-content variation); more than half of the 146
MGs overlapping between both analyses (79 out of 146) did not
coincide with those 122 MGs obtained as numerators in the alr
transformation. Our analysis supports that avoiding a composi-
tional transformation when performing covariance-based analysis
(e.g., PLS and PLS-DA) in MG databases of the gut microbiome
may lead to spoiled results.

The abundance of MGs involved in lipopolysaccharides, pep-
tidoglycans, lipoproteins, and mucin components is increased
in hosts genetically determined to accumulate high amounts of
intramuscular fat. The genetic selection process altered the
abundance of 8 MGs involved in lipopolysaccharide biosynthesis
(lpxA, lpxB, lpxK, lpxH, waaF, and waaR) and transport (lptD and
lptF), from which lptD, waaF, and waaR presented strong

Fig. 1 Comprehensive identification of cecal core microbial gene (MG) additive log-ratio (alr) transformed abundances evidencing a correlated
response to selection for intramuscular fat content. Individual plots (n= 89) and observed vs. cross-validation predicted values (with seven validation
groups) obtained from a. Partial least squares discriminant analysis (PLS-DA) (each line is represented by a different color, contoured by 95% confidence
ellipses) and b. Partial Least Squares (PLS) analysis (colored by increased intramuscular fat content, g/100 g of muscle (IMF)). The final models were built
based on 4 latent components in both cases and 240 or 230 MG alrs, respectively. PLS-DA model showed a misclassification rate of 0%, and a cross-
validation misclassification rate of 5%. PLS model showed a goodness of fit (R2) of 91% and a goodness of prediction after cross-validation (Q2) of 79%. c
Venn diagram displays 122 MG alrs selected in both PLS-DA and PLS analysis, while 118 were selected exclusively in PLS-DA, and 108 exclusively in
PLS model.
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evidence (P0 ≥ 0.98) of being more abundant in the obese line
(differences between lines ranging from 0.43 to 0.63 SD, Fig. 2
and Supplementary Data 4). We also observed an increase in the
abundance of 4 MGs involved in the biosynthesis of peptidoglycans
in the obese line: erfK, pbp2A, and mpl (0.63–0.42 SD, P0 ≥ 0.97), and
ftsI with lower evidence (0.12 SD, P0= 0.71). Bacterial lipopoly-
saccharides and peptidoglycans are microbiota-derived endotoxins
mainly found in Gram-negative bacteria30,67 contributing to meta-
bolic endotoxemia25,26 and fat-mass development18,22,23,26 by
boosting intestinal permeability26,41,68,69 and triggering proin-
flammatory responses when binding CD14, TLR427 (lipopoly-
saccharides), and NOD1 and NOD2

12,28–30 (peptidoglycans) host
receptors. Besides, obese line harbored an increased abundance of 2
MGs involved in the metabolism of lipoproteins: apolipoprotein
N-acyltransferase lnt and lipoprotein ygeR (0.41 and −0.38 SD,
P0 ≥ 0.95). Lipoproteins are universally distributed in bacteria70 and
play important roles, including nutrient uptake, transmembrane
signal transduction, antibiotic resistance, and adhesion to host
tissues71. They also function as trigger molecules for the activation of
host innate immune response via TLR272 host receptors, contributing
to obesity-induced inflammation and insulin resistance73,74. Toge-
ther, these results elucidate that microbiome-induced obesity via
lipopolysaccharides, peptidoglycans, and lipoprotein metabolites has
a host genetic component. The presence of TLR4, TLR2, NOD, and
CD14 receptors is regulated by host genes12–15, for which we hypo-
thesize could be a part of the host genetic background modified by
the genetic selection process.

Another interesting result was MG nanM (P0= 1.00) involved
in the synthesis of N-acetylneuraminic acid (Neu5Ac)75—the
most common sialic acid of gut mucins in host mucosal surfaces
—and nahK phosphorylating N-acetylglucosamine and
N-acetylgalactosamine components of mucins76 being greater in
the obese line (0.61 and 0.38 SD, P0 ≥ 0.95). Sialic acid in mucous
regions works as a host–microbiome cross-talk mechanism76

favoring the colonization of bacteria carrying sialic acid
metabolism genes (e.g., mucin degrader Akkermansia)77,78, which
promote the release of host sialic acids76. In this study, we also
identified which microbial taxa harbored the greatest number of
the 122 MGs associated with host genes for intramuscular lipid
deposition. Interestingly, the 10 top microbial taxa contained
between 65 and 167 unique proteins mapping into 46–77 MGs
(Fig. 3 and Supplementary Data 8) and among them, the single
taxa annotated at genera level was Akkermansia and carried in its
genome MGs involved in the biosynthesis of mucin components,
lipopolysaccharides and peptidoglycans, and metabolism of
lipoproteins (nanM, nahK, lpxB, lpxK, waaR, lptF, lptD, pbp2A,
ftsI, mpl, and lnt), suggesting that Akkermansia could be playing a
main role in genetically-induced obesity. However, a higher
abundance of mucin degrader Akkermansia79 residing in the
mucous layer has been suggested to decrease obesity and type-2
diabetes incidence in mice80 and alleviate metabolic syndrome81

and obesity82 in humans. A proper analysis quantifying the
abundance of Akkermansia genera in the genetic rabbit lines and
studying their correlated response to selection will be necessary to
cast light on this point.

Changes in microbial energy production and conversion
pathways in cecum microbiome as a consequence of the
selection for intramuscular fat content. Three different types of
bacterial NADH dehydrogenases are key in the ATP-generating
process by transferring electrons from NADH to quinone, dif-
fering in their catalytic mechanisms and cofactors83. Our results
show that cecum of obese individuals is enriched with H+

pumping NADH:ubiquinone oxidoreductases (nuoE and nuoC
are 0.62 and 0.54 SD more abundant in the obese line, P0 ≥ 0.99,
Supplementary Data 4), while cecum of lean is enriched in
nonpumping NAD(P)H dehydrogenase NQO1 (-0.51, P0= 0.99)
and Na+ pumping NADH:quinone oxidoreductases (nqrD and

Fig. 2 Differences between obese (n= 47) and lean (n= 42) lines in core microbial gene (MG) additive log-ratio (alr)-transformed abundances
presenting a correlated response to selection for intramuscular fat content. Bars represent differences in units of standard deviation (SD) of MG alrs and
highest posterior-density intervals at 95% probability. Colors represent the classification of MGs according to Cluster of Orthologous Groups of proteins
(COG). Full information of the MGs can be found in Supplementary Data 4. The 122 MG alrs commonly identified in partial least squares discriminant
analysis and partial least squares analysis were classified into 20 different COGs, but only the most represented are displayed in the graph: cell wall/
membrane/envelope biogenesis (21 MGs), energy production and conversion (13 MGs), amino acid metabolism (11 MGs), lipid transport and metabolism
(8 MGs), translation, ribosomal structure, and biogenesis (7 MGs), coenzyme transport and metabolism (6 MGs), post-translational modification protein
turnover, chaperones (6 MGs), and signal-transduction mechanisms (5 MGs).
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nqrF −0.12 and −0.18 SD, P0 ≥ 0.70). While nuo and nqr gen-
erate electrochemical gradients (H+ or Na+), NQO1 does not
contribute to the formation of a potential across the respiratory
membrane83. We may speculate the existence of different flows of
reducing equivalents in the cecum of obese vs. lean line as a result
of the selection process, which leads to different bacterial adap-
tation in order to assure their energy conservation according to
the gut environment. Moreover, obese line showed a higher
abundance of citrate-cycle MG sucC (0.68 SD, P0= 1.00) cata-
lyzing the synthesis of succinyl-CoA from succinate, which has
pro-inflammatory properties on lipopolysaccharide-activated
macrophages and contributes to adipose-tissue inflammation84.
SdhB and sdhC encoding different subunits of succinate dehy-
drogenase/fumarate reductase were also altered by the selection
process, although their differential abundance between lines was
not conclusive. In contrary, hdrD involved in methane metabo-
lism was more abundant in the lean line (−0.36 SD, P0= 0.95).
Some studies observed a depletion of ubiquitous Methano-
brevibacter smithii in feces of obese individuals85,86, and a lower
abundance of H2-oxidizing methanogens in obese than lean pig
breeds87, explained by obese individuals minimizing carbon los-
ses by diminishing their methane release. While different breeds
may differ in many different host genes, our study suggest that
this potential mechanism to reduce carbon losses is specifically
associated with host genes for intramuscular fat content.

Genetic selection for intramuscular fat alters the metabolism of
lipids in cecum microbiome. We found specific MGs involved in
glycerophospholipid metabolism (aas), biosynthesis of car-
otenoids (crtB), terpenoid-backbone biosynthesis (gcpE), ubiqui-
none and other terpenoid–quinone biosynthesis (menE), steroid
biosynthesis (FDFT1), and glycoxylate and dicarboxylate meta-
bolism (croR) being more abundant in the obese line (from 0.36
to 0.52 SD, P0 ≥ 0.96). The abundance of poxB encoding for an
enzyme acting in the interconversion of pyruvate into acetate was
also increased in the obese line (0.42 SD, P0= 0.97), acetate being
a major substrate for de novo lipogenesis in rabbit’s liver88. This
result matches with the increased liver lipogenesis rate previously
observed in the obese line52, which was 1.51 SD greater than in
the lean line for glucose-6-phosphate dehydrogenase activity. In
contrast, pccA involved in the degradation of branched-chain
amino acids into BCFAs was more abundant in the lean line
(−0.27 SD, P0= 0.89) and acd and MUT involved in the same
pathway presented the same trend. Several studies noticed lower
levels of BCFAs in the serum of excess-weight individuals than in
the serum of lean89,90, and this parameter increased linearly with
individual’s weight loss86. It is hypothesized that BCFAs are

negatively associated with obesity because they inhibit the liver
synthesis of triglycerides89,91. Enzyme propionyl-CoA carbox-
ylase (pccA) and MUT play a key role in the synthesis of pro-
pionate, another inhibitor of de novo liver lipogenesis92. In
addition, propionate17 promotes leanness increasing energy
expenditure and enhancing the production of satiety anorexigenic
hormones inhibiting appetite via G-protein-coupled receptors
(e.g., GPR43 and GPR41) expressed in gut epithelial cells and
adipocytes18–20. In this line, host gene RAPGEF1 encoding a
protein factor linked to G-protein-coupled receptors has been
recently associated with microbiome composition in humans37.
The putative influence of the microbial propionate synthesis on
our animals’ intake and therefore fat deposition, is supported by
previous data from this experiment, which showed greater feed
intake in the obese line93.

Selection for intramuscular fat alters the microbial metabolism
and transport of amino acids. Two MG abundances presenting a
strong and positive correlated response to selection for high host
lipid deposition: cysH catalyzing the reduction of activated sulfate
in sulfur metabolism (0.73 SD and P0= 1.00); and tyrC in phe-
nylalanine, tyrosine, and tryptophan metabolism (0.65 SD,
P0= 1.00). Sulfate-reduction pathway and aromatic amino-acid
metabolites (i.e., tyrosine and phenylalanine) have been strongly
associated with type-2 diabetic individuals94 or with the devel-
opment of future diabetes95. Arginine metabolism was another
microbial metabolic pathway affected by the selection process as
exhibited by arcA, argAB, and ampS MGs (P0 ≥ 0.99). While arcA
catalyzing the hydration of L-arginine into L-citruline was more
abundant in the lean line (−0.59 SD), argAB and aminopeptidase
ampS, which exhibits a high specificity toward peptides posses-
sing arginine were more abundant in the obese line (both MGs
having a difference between lines of 0.48 SD), elucidating a
complex relationship among arginine metabolism and lipid
deposition. On the other hand, two urea ATP-binding cassette
(ABC) transporters urtA and urtD were more abundant in the
lean line with differences of −0.54 and −0.75 (P0 ≥ 0.99)96. MGs
encoding urea ATP- dependent uptake system have been widely
found in the genome of members from Cyanobacteria phylum97,
which are negatively associated with abdomen-fat weight in
pigs98, although these MGs are only expressed under nitrogen-
limiting conditions99, otherwise passive diffusion is preferred.

The genetics of intramuscular fat deposition are associated
with microbial antibiotic resistance. Obese line showed more
abundance of yejA, yejE, and yejB, which encode ATP-binding
cassette transporters of antibiotics (differences= 0.29, 0.55, and

Fig. 3 Top 10 microbial taxa highly enriched with unique proteins classified within KEGG Orthologue groups (or microbial genes) presenting a
correlated response to selection for intramuscular fat content. Color scale represents the number of unique proteins mapping into each KEGG
Orthologue group (or microbial gene) identified within each taxa. Full names of microbial genes are given in Supplementary Data 4.
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0.51 SD, P0 ≥ 0.91); aviRb conferring bacteria antibiotic resistance
(0.42 SD, P0= 0.98); and previously mentioned pbp2A and ftsI
that are involved in the biosynthesis of the peptidoglycans
interacting selectively and noncovalently with penicillin. Recent
studies show that diet-induced obesity leads to greater bacter-
icidal antibiotic resistance40, and that antibiotics incites obesity by
favoring the predominance of microbes with greater capacity of
extracting energy from the diet100. Given that antibiotic effects on
gut microbiota are host dependent101,102, our results reveal that
the antibiotic resistance–obesity association could be also caused
by a host genetic component, independently of the diet.

Other microbial pathways linked to host genes regulating
intramuscular fat deposition. Genetic selection to increase
intramuscular fat content augmented the abundance of further
MGs in folate biosynthesis (folE2, queE, and queD with differ-
ences between lines ranging from 0.35 to 0.55 SD, P0 ≥ 0.95),
thiamine metabolism (THI4 0.51 SD, P0= 0.99), fructose and
mannose metabolism (lra6, 0.72 SD, P0= 0.97), manganese
transport (mntB and ABC.MN.A, 0.33 and 0.57 SD, P0 ≥ 0.93),
and SLC10A7 encoding for a bile acid importer (0.46 SD,
P0= 0.99, Supplementary Data 4). Bile acids metabolized by
microbiota are known as key contributors to host energy-
homeostasis regulation and obesity21 by promoting103 or
impairing104 carbohydrate metabolism when binding to cellular
receptors in various organs of the body (e.g., G-coupled receptor
TGR5103 and farnesoid X receptor104). Another important find-
ing was that the obese line displayed an increasing abundance of 2
MGs in transcription (greA and rho from 0.53 to 0.56, P0 ≥ 0.99)
and 5 MGs in translation, ribosomal structure, and biogenesis
(rlmI, hrpA, miaB, aviRb, and rnd, from 0.36 to 0.62 SD,
P0 ≥ 0.95). Given that protein synthesis is highly coupled with
cellular growth105, our results may indicate higher bacterial
burden in genetically obese individuals, which has been pre-
viously observed in diet-induced obese mice40. In addition, the
fact that these 7 MGs are extensively found in the genome of
bacteria from Firmicutes phyla (Fig. 3 and Supplementary Data 8)
could indicate an increased growth of Firmicutes in the cecum of
the obese line. Finally, our results reinforce the hypothesis of a
reduced interconnectivity within the microbiota in obese
individuals106 and reveal that this association is influenced by
obesity host genes by displaying a greater abundance of MGs
involved in biofilm formation (ppkA, rcsC, and ycbB) and quorum
sensing (crp) in the lean line (differences ranging from −0.21 to
−0.67 SD, P0 ≥ 0.96).

Different microbial functional mechanisms influence lipid
deposition in muscle and in main body depots. The correlated
response to selection for intramuscular fat in body-fat percentage
equivalent to 1.5 SD (P0= 1.00, Supplementary Table 1 and
Supplementary Fig. 1) demonstrates that both traits are partially
regulated by common host genes. After showing that host genes
for intramuscular fat content alter specific metabolic routes of the
microbiome, a question still-to-solve is whether these microbial
pathways also affect body-fat content. To this end, we first
applied PLS to identify 184 MG alrs (Supplementary Data 9),
which explained a substantial proportion of body-fat percentage
variability (Q2= 72%). Then, we compared these 184 with the
122 MG alrs presenting a correlated response to selection for
intramuscular fat content and found that only 28 common in
both analyses played an important role in the lipid-deposition
rate of muscle and body depots. This result was corroborated by
testing the ability of the 156 body-fat percentage-specific MG alrs
to predict intramuscular fat content, and of the 94 intramuscular
fat content-specific MG alrs to predict body-fat percentage, not

obtaining any PLS component with prediction ability in any case.
While the microbial mechanisms commonly associated with
intramuscular and body-fat percentage included, e.g., lipopoly-
saccharide and peptidoglycan biosynthesis (waaR, lpxA, lpxB,
lptD, ftsI, and erfK), NADH dehydrogenases (nqrD and qor),
methane metabolism (hdrD), or branched-chain amino acid
degradation (acd and MUT), the microbiome function specifically
driving lipid deposition in muscle comprises the biosynthesis of
mucin components (nanM and nahK), metabolism of lipoprotein
metabolism (lnt and ygeR), arginine metabolism (argAB, ampS,
and arcA), and transport of bile acids (SLC10A7), among others
(Supplementary Data 9). Taken together, these results suggest a
substantial differentiation between host genetically influenced
microbial mechanisms regulating lipid deposition in intramus-
cular or body-fat reservoirs.

Conclusion
Our work casts light on the influence of the comprehensive
genetic background for intramuscular lipid deposition on the
cecal functional microbiome by using metagenomic data from
two rabbit lines divergently selected for intramuscular fat content
during 10 generations and reared under the same environmental
conditions. We revealed a strong correlated response to selection
on the functional microbiome composition of cecum, confirming
that genetics of intramuscular fat content determines a gut
environment that favors specific microbial functions associated
with fat-mass accretion in muscle. Among the microbial func-
tions enhanced in the obese line, we identified the metabolism of
bacterial-origin metabolites lipopolysaccharides, peptidoglycans,
and lipoproteins, known to bind specific host receptors regulated
by host genes (TLR4, TLR2, NOD, and CD14) to trigger inflam-
matory responses. Other microbial functions identified in this
study (e.g., metabolism of BCFAs, propionate and acetate, or bile
acid transport) are known to regulate liver lipogenesis but also
appetite and carbohydrate metabolism in the host. The ATP-
generating strategy preferred by microbes, which is essential for
their colonization success, also differed between the lines, possibly
because of their adaptation to different electrochemical gradients.
A greater bacterial load is expected in the cecum of obese indi-
viduals based on greater abundance of MGs involved in protein
synthesis and antibiotic resistance. Our study also revealed that
host—microbiome interaction mediated by epithelial mucins and
interspecies interactions (e.g., quorum sensing), which are of
particular importance in energy regulation, is influenced by
intramuscular fat genes. Importantly, our study confirms that all
the different microbial functionalities identified concomitantly
differ in the cecum microbiome of hosts with divergent genetic
determination for fat deposition in muscle, which may be of
relevant interest for the efficient development of strategies fight-
ing obesity. In addition, we elucidated that a substantial part of
the microbial mechanisms identified do not contribute to lipid
deposition in body-fat depots, suggesting a certain independence
between microbial metabolic pathways regulating fat deposition
in different body sites.

Methods
Animals. All experimental procedures involving animals were approved by the
Universitat Politècnica de València Research Ethics Committee, according to
council directive 2010/63/EU (European Commission Directive, 2010). A divergent
selection experiment for intramuscular fat content in rabbits was performed during
10 generations. The base population that composed of 13 males and 83 females
came from a synthetic line. From this base population, two divergent lines were
selected for high (obese-line) and low (lean-line) intramuscular fat, each composed
by 10 males and 60 females per generation. Two full sibs of the first parity of each
doe were slaughtered at 9 wk of age and their intramuscular fat content in LTL was
measured. All dams were ranked according to the average of the two phenotypic
intramuscular fat values obtained from their offspring and the 20% best dams
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provided all females for the next generation. Each sire was mated with five does,
and only one male progeny of the sire from the highest-ranked mate was selected
for breeding the next generation to reduce inbreeding. More details of this
experiment can be found in Martínez-Álvaro et al.7. Data for this study were
obtained from 89 animals randomly sampled from the tenth generation of selec-
tion, 47 from the obese line and 42 from the lean line. Sampling took place along
three months during the winter (December 2017–March 2018). During this period,
the farm temperature fluctuated between T°min 11.9 ± 1.1 and T°max 21 ± 2.5 °C.
The farm (located at the Universitat Politècnica de València) has insulated roof and
walls, controlled lightening and ventilation, and a cooling system. Cross-fostering
was not practised. Kits were weaned at 28 days of age and then reared jointly within
litters in common cages until slaughter. During fattening period, animals were fed
ad libitum with the same commercial diet with an average composition of 16.0%
crude protein, 16.5% crude fiber, 2.4% oil and crude fat, 7.6% ashes, 0.80% calcium,
0.60% phosphorus, and 0.26% of sodium, supplemented with vitamin A (10000 UI/
KG), vitamin D3 (900 UI/kg), vitamin E (25 mg/kg), iron (78 mg/kg), cobalt car-
bonate (0.30 mg/kg), manganese (20 mg/kg), zinc (50 mg/kg), selenium (0.05 mg/
kg), potassium iodide (1.0 mg/kg), copper (8 mg/kg), and bacitracin zinc antibiotic
(100 ppm). The last seven days before slaughter at 9 wk of age, bacitracin zinc
antibiotic was removed from the diet.

Lipid-content measurements and cecal sample collection. Animals were
slaughtered after 4 h of fastening by exsanguination, prior electric stunning. Cecal-
content samples were collected in the slaughterhouse, immediately after slaughter.
The intestinal tract was removed from the abdominal cavity; cecum content was
collected in 50-mL sterile Falcon tubes, homogenized, and aliquoted in 2-mL
cryogenic tubes, obtaining samples that are representative of both solid and liquid
phases. The aliquots were immediately submerged in liquid nitrogen and then
stored at −80 °C, until the DNA extraction. After slaughter, carcasses were chilled
for 24 h at 4 °C. The reference carcass weight, defined by the World Rabbit Science
Association as the weight of the carcass without the head, liver, lungs, thymus,
esophagus heart, and kidneys109, was registered. The two main body-fat reservoirs
in rabbit scapular and perirenal fat depots were excised and weighted. Body-fat
content was estimated as the sum of their weights divided by the reference carcass
weight. Muscle LTL was excised from chilled carcasses, ground, freeze-dried, and
scanned by near-infrared spectroscopy (model 5000, FOSS NIRSystems INC.,
Hilleroed, Denmark) to measure intramuscular fat content (g of lipids/100 g of
muscle in a fresh basis) applying the calibration equation previously developed by
Zomeño et al.110.

Microbial gene-abundance measurements. Bacterial genomic DNA was isolated
from the frozen cecal samples using the DNeasy PowerSoil Kit (QIAGEN Inc,
Hilden, Germany) using the manufacturer’s instruction with the following mod-
ifications. Cecal samples (0.1 g) were disrupted with three glass beads in a bead
homogenizer (BeadMill 4, ThermoFisher) in the presence of buffer C1, and
incubated at 95 °C for 5 min. These steps were repeated twice. Sample tubes were
spun at 10,000 g for 30 s and the supernatant was transferred to a new tube to
follow with the manufacturer’s instructions. In the final step, the DNA was eluted
from the column in a volume of 100 µl. DNA concentration and purity were
estimated first by spectrometry in a Nanodrop ND-1000 and by fluorometry in a
Qubit 4 Fluorometer (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA)
with the DNA dsDNA HS Assay kit (Invitrogen). Thirty-three microbial DNA
samples (16 from obese and 17 from lean line) were sequenced at the facilities of
the Sequencing and Bioinformatic Service of FISABIO (Valencia, Spain), while the
remaining 56 cecal samples (31 from the obese and 25 from the lean line) were
sequenced in Sistemas Genómicos (Valencia, Spain). One ng of each sample
(0.2 ng/µl) was used for the shotgun library preparation, using the Nextera XT
DNA Library Preparation kit (Illumina, Inc., San Diego, CA, USA) or the Sur-
eSelectQXT library preparation kit (Agilent Technologies, Inc., Santa Clara, CA,
USA) for samples sequenced by FISABIO or Sistemas Genómicos, respectively, in
both cases following the manufacturer protocol. Samples were sequenced by
NextSeq 500 (FISABIO) or NextSeq 550 (Sistemas Genómicos) Illumina with
150 bp paired-end chemistry, with an average coverage of 4 million pair reads per
sample with a minimum of 2 million. Raw sequencing data obtained were pre-
processed to remove the reads that belong to the genome of the host by mapping
them against the rabbit reference genome (OryCun v2.0.101) using the
Bowtie2 software106. The bioinformatic analysis on the clean reads was performed
using the SqueezeMeta107 automatic pipeline. The first step consisted in the
assembly of the reads to obtain longer contigs using the coassembly mode of the
SequeezeMeta. This strategy performs the assembly pooling the reads from all the
samples, which will result in longer contigs that can give better annotations. The
second step consisted in the prediction of the open-reading frames (ORFs) inside
the contigs using Prodigal111. The functional annotation of each ORF was then
obtained by homology searching with sequences in the Kyoto Encyclopedia of
Genes and Genomes database108 using Diamond program112. The defined e-value
and identity parameters for the homology search were 1 × 10−3 and 50%,
respectively. No hits below those parameters were considered. The functional ID of
the highest-scoring hit was finally assigned to the ORF (best-hit approach of the
SqueezeMeta pipeline). The last step consisted in the abundance estimation of the
annotated ORFs (referenced as MG) in each sample, which was done by mapping

the individual reads against the corresponding MGs, using the Bowtie2 software106.
We identified a total of 4,726 MGs in both groups. Among those, we kept 3,937
MGs present in all the samples equivalent to 99.7% of the total number of counts
initially identified in the database. Biological information about each MG based on
KEGG and Clusters of Orthologous Groups of proteins (COGs)56 databases were
obtained by KEGGREST113 R package. To describe the cecal MG composition in
rabbits, we estimated the relative abundance of each MG within each sample, i.e.,
its counts divided by the total sum of counts within a sample, also referenced as
relative abundances. We used COG database to classify 3,395 out of the 3,937 MGs
into 23 functional modules. To simplify their classification, we used only the first
classification module when a MG was assigned to more than one module.

Statistics and reproducibility
Compositional transformation of metagenomic data. MG counts from high-
throughput sequencing studies are not independent among one another because
the sequencing instruments can deliver reads only up to the capacity of the
instrument58. These constrained databases, referred to as compositional data,
exhibit spurious correlations among the microbial variables and different corre-
lation structure than the underlying count data in the original sample58. Nor-
malizing the microbial abundances by the total sum of counts in a sample (relative
abundances) does not solve the compositional problem as spurious correlations still
remain. However, the log-ratio transformation of the microbial abundances relative
to other features in the dataset provides information directly relatable to the ori-
ginal sample58. We applied an additive log-ratio61 transformation (alr) of the MGs
before covariance-based and differential abundance analysis. Additive log-ratio
transformation permits comparison with other studies using different numbers of
MGs in the total database (i.e., it has subcompositional coherence61) and it has a
simpler interpretation in practice than other log-ratio transformations (e.g., cen-
tered or isometric), since they do not involve geometrical means59,60. Assuming J
denotes the number of variables in the database (J = 3,937), the abundance of each
MG within a sample was expressed as114

ln
xj
xref

� �
¼ lnðxjÞ � lnðxref Þ; j ¼ 1; ¼ ; J � 1; j≠ ref

where xj is the relative abundance of the j-th MG and xref is the relative abundance
of a reference MG. The housekeeping MG RP-S1, involved in ribosomal bio-
synthesis, was selected as the reference based on (1) almost perfectly reproducing
the geometry of the full set of ratios in a Procrustes analysis115 (Procrustes cor-
relation with the whole set of log ratios is 0.9988, see Supplementary Fig. 3), (2)
having very low variance in its log-transformed relative abundance (variance=
0.0018, see Supplementary Fig. 3, coefficient of variation= 2.13%, five-point dis-
tribution: min=− 2.13, 1st quartile=− 2.02, median=− 1.99, 3rd quartile=−
1.97, max=− 1.813), so the main variation of the alr comes from the numerator,
(3) its relative abundance being uncorrelated with intramuscular fat content
(Pearson correlation=− 0.07 ± 0.11), and (4) being highly abundant (mean rela-
tive abundance= 0.14%), which is generally associated with lower instrumental
error116. To test the outperforming of the compositional transformation
using additive log ratios in comparison with a noncompositional approach, we also
run the same analyses with MGs expressed in relative abundances.

Estimation of correlated responses to selection for intramuscular fat deposition on
lipid traits and MG abundances. Direct response to selection on intramuscular fat
content and correlated responses in scapular, perirenal fat weight, and body-fat
percentage were estimated as the phenotypic differences between obese and lean
lines in a linear model, including line as a fixed effect, and solved with “Rabbit”
software developed by the Institute for Animal Science and Technology
(Valencia, Spain). The identification of the MG abundances in the cecum
showing a correlated response to selection was evaluated by PLS-DA and PLS
analysis64 computed by SIMCA software (Umetrics, Umeå, Sweden), and R
package mixOmics117 was used to generate the graphs. Briefly, PLS and PLS-DA
models are built based on latent components that maximize the covariance
between the explanatory variables (MG alrs) and the traits of interest, in this case
intramuscular fat in PLS and a dummy variable coding the obese/lean classifi-
cation in PLS-DA. First, we detected discriminant MG alrs between lines by
fitting a PLS-DA model with the 3,936 MG alrs as explanatory variables. The
number of components in the model was selected based on a internal cross-
validation procedure with seven cross-validation groups. One animal from the
lean line was removed from the analysis for being detected as an outlier based on
the distance of each individual to the model (DMOD criterion). After some
exploratory analysis, MG alrs were selected if their variable importance for
projection (VIP) > 0.8, or the jackknife 95% confidence interval of their regres-
sion coefficients did not contain zero. We followed an iterative process and
stopped when the removal of one more MG alr decreased the model-prediction
ability. The misclassification rate obtained by fitting the final model with the
complete dataset (R2) and with 6/7 of the samples and classifying the remaining
1/7 (repeated for each cross-validation group, Q2) was computed. Second, we
detected the more informative MG alrs explaining the variation within animals in
intramuscular fat content by fitting a PLS model following the same iterative
process as in PLS-DA checking the prediction ability of the model before (R2) and
after the same cross-validation previously described (Q2). A permutation test was
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used to check the robustness of PLS-DA and PLS models by obtaining a
P-value ≤ 0.001. Third, we compare the results in PLS-DA and PLS models and
consider the MG alrs selected in both approaches to be the ones presenting a
correlated response to selection.

The sign and the magnitude of the correlated response to selection on the
abundance of each MG alr selected were studied by estimating the difference
between obese and lean genetic lines in a linear model only including line effect
with two levels. Linear models were solved by Bayesian procedures65 using the
Rabbit program developed by our institute7 and assuming flat priors for all
unknowns. To describe the marginal posterior distributions of the differences
between lines, we estimated their median, their highest posterior-density interval at
95% probability, and the probability of the difference being higher or lower than 0
if the difference is positive or negative, respectively (P0). We expressed the
differences between lines in MG alrs as units of their SD.

Identification of microbial gut mechanisms differentiating lipid deposition in muscle
or in body-fat depots. One of the objectives of this study was to search for MGs
exclusively influencing intramuscular fat content independently of body-fat depot
weight. We first fitted body-fat percentage in a PLS model following the same
procedure as the one previously described. Then, we studied the overlap between
the MG alrs explaining body-fat percentage with those showing a correlated
response to selection in intramuscular fat content (overlapping between previously
described muscle lipid content PLS and PLS-DA analysis) and considered as
specific for intramuscular or body-fat content those MG alrs selected exclusively in
one of the approaches. For further validation, we used MG alrs specifics for
intramuscular fat to predict body-fat percentage, and in the same way, MG alrs
specific for body-fat percentage to predict intramuscular fat expecting a negligible
prediction ability.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metagenomic sequence reads for all rumen samples are available under European
Nucleotide Archive (ENA) under accession project PRJEB46755. Resolved metagenomics
(microbial gene abundances) are available under request.
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