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Abstract: One approach with rising popularity in analyzing time-dependent problems in sci-
ence and engineering is the so-called space-time finite element method that utilizes finite ele-
ments in both space and time. A common ansatz in this context is to divide the mesh in temporal
direction into so-called space-time slabs, which are subsequently weakly connected in time with a
discontinuous galerkin approach. The corresponding jump-term, which is responsible for impos-
ing the weak continuity across space-time slabs, can be challenging to compute, in particular in
the context of deforming domains. Ensuring a conforming discretization of the space-time slab
at the top and bottom in time direction simplifies the handling of this term immensely. Other-
wise, a computationally expensive and error prone projection of the solution from one time-level
to another is necessary. However, when it comes to simulations with deformable domains, e.g.
for free-surface flows, ensuring conforming meshes is quite laborious. A possible solution to this
challenge is to extrude a spatial mesh in time at each time-step resulting in the so-called time-
discontinuous prismatic space-time (D-PST) method [1]. However, this procedure is restricted
to finite-elements of 1st order in time. We present a novel algorithmic approach for arbitrarily
discretized meshes by flipping the mesh in time-direction for each time-step. This ansatz allows
for a simple evaluation of the jump-term as the mesh is always conforming. The cost of flipping
the mesh around its symmetry plane in time scales with the number of nodes, which makes it
computationally cheaper than an additional update of the mesh to enforce conformity or the
evaluation of a projection. We validate the approach on various physical problems with and
without deforming domains.

1 INTRODUCTION

Space-time is the extension of the finite element concept in time. It was first introduced in
1988 by Thomas J.R. Hughes for classical elastodynamics with a proven convergence theorem
[2]. Nowadays, it is more commonly used in fluid problems, especially since the introduction of
the deformable-spatial-domain/space-time (DSD/SST) method [1, 3]. DSD/SST is beneficial
for free-surface-flows, where the computational domain is unknown as they allow for a conve-
nient way to track the boundary [4]. The initial version of space-time, as well as many other
adaptations, involves a discontinuous galerkin approach in time that leads to an additional
jump term between so-called space-time slabs. The evaluation of this term can be challenging.
Therefore we present an algorithmic approach for a more straightforward implementation of
this term.
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2 METHOD

In this section, we present our approach to the jump term in DG-Space-time methods. The
section is structured as follows. First, we recap the basics of space-time methods, including
the treatment of deforming domains. The next part focuses on possible treatments of the
jump-term, including the flipping ansatz.

2.1 SPACE-TIME

Space-time methods utilize finite elements in space and time rather than finite differences
as in semi-discrete settings, resulting in a finite element analysis of the full space-time domain.
There are various space-time methods that can be categorized with respect to the employed
element type as well as the time continuity. In this work, we choose prismatic elements and a
discontinuous galerkin approach in time, resulting in an analysis of so-called space-time slabs
illustrated in Fig. 2.1. These slabs can consist of one or multiple elements in time and can
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Figure 1: Illustration of a space-time-slab Qn and an exemplary single element Qe.

be considered an extension of a spatial mesh in time-direction. A jump-term, as typical for
DG methods, weakly enforces continuity in time direction over multiple slabs. In this context,
the weak form of a transient heat conduction equation reads: find T ∈ Sa (Qn) such that
∀w ∈ St (Qn): ∫
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w
∂T
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dx =

∫
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−
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Where Qn = Ω × [tn, tn+1] , T |±tn = lim
ε→0

T (tn ± ε), α =̂ thermal diffusivity and Sa, St are the

appropriate ansatz and testing spaces on Qn. Problems involving deforming domains can profit
from space-time methods despite introducing additional complexity or restrictions. One benefit
is incorporating deformation by formulating the weak form over the deforming or deformed
domain. That way, the movement or deformation is considered in the solution procedure
without modifying governing equations. When the movement is known, this can be particularly
useful as the solution could be found over the entire time interval in one step. In problems
where the deformation of a spatial domain is unknown beforehand, space-time methods with
DG in time face a challenge concerning the jump term. The solution at the top of the slab from
the previous time-step has to be projected to the bottom of the slab in the current time-step,
which is easy when the mesh is conforming. In that case, there is a direct relation between
the degrees of freedom. For non-conforming meshes, it is more challenging, and one possible
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solution namely a projection introduces an additional error. Furthermore, the domain itself
may deform, resulting in entirely non-matching domains. This can be avoided by (1) mesh
update schemes that ensure mesh conformity or (2) a restriction to single-element layers in
time.

2.2 MESH INVERSION/FLIPPING

We propose an alternative algorithmic approach, where the evaluation of the jump-term is
easy to implement and works for arbitrary discretizations. Let us first focus on the implemen-
tation of the space-time method itself. Consider a 3D semi-discrete domain as compared to
a 2D+time domain. Even though geometrically identical, algorithmically, one observes differ-
ences. These lie in the underlying operators in the PDE as well as the additional jump term.
In terms of differential operators, in space-time approaches, the temporal derivative needs to
be evaluated in a finite element sense whereas spatial derivatives need to be restricted to the
spatial dimension only and can no longer be evaluated on the full domain. We adapt the FE
mapping between the reference and physical space to consider the changes in the spatial dif-
ferential operator and to scale the input mesh with the time-step size. As a result, within the
computational mesh, the time coordinates are usually contained in [0, 1] and the physical time
is considered only through the mapping. Furthermore, for every space-time slab, the initial
solution, from where the iterative solution scheme commences, is set to zero. Note that this
entails that one can manipulate mesh coordinates without disturbing the solution process. We
make use of this and invert the time coordinates. For every new time-step, before the iterative
solution process starts, for every mesh node, we set the new t-coordinate t∗ as

t∗ = tmax − t+ tmin. (2)

Here, tmax/min is the maximum/minimum value for t in the slab, which are commonly 1 and 0.
As a result, the vertices and corresponding degrees of freedom move from the bottom to the
top and vice versa without moving in space, ensuring conformity at the slab interface.

3 NUMERICAL STUDIES

This section aims to validate the presented approach. We focus on transient heat conduction
problems and complement our test cases with a hyperplastic solid mechanical bending problem.
For showing that the approach is valid for moving domains, we present a test case with a
prescribed motion.

3.1 TRANSIENT HEAT ANALYSIS

In our first test case, we follow [6] and analyze heat conduction in a 2D rod. The rod is a
rectangular domain and adiabatic everywhere except on the left side, where a fixed heat flux of
1 W is prescribed. Tab. 1 contains the geometry and simulation parameters for this test case.

Table 1: Parameters for transient heat conduction analysis of a 2D rod.

Parameter Value Unit

Length 20 m
Width 1 m

Thermal diffusivity (α = κ
ρcp

) 1 m2

s

Reference time 1 s
Reference length 2 m

Reference time and length refer to the values at which we compare with the exact solution.
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Despite the 2D geometry, the problem reduces to a 1D phenomenon as the heat propagates
equally over the width. An analytical solution is given by

T (x, t) = 2
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and shown in Fig. 2 together with a space-time and implicit Euler solution. The resulting
solutions for the temperature distribution are depicted in Fig. 2. All solutions are visually
identical. Therefore, we proceed to analyze the errors of the individual implementations. Our
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Figure 2: Exact temperature distribution on the most left 2 m of the rod after 1 sec.

first comparison is between the presented approach and a classical implementation of the space-
time jump-term. Fig. 3 shows the error between these techniques and between each of them
and the exact solution for two different discretizations. The curve index refers to the discretiza-
tion while the ”difference” curves show the error between the two implementations. The mesh
details are the following:

Table 2: Mesh sizes for comparison between flipped and classical space-time implementations.

Curve index elements in length elements in width time step size

1 1000 1 0.1
2 10000 1 0.05

From Fig. 3, it is evident that the effect of the mesh inversion is negligable in comparison to
the overall discretization error. Fig. 4 shows the evolution of the error between the analyti-
cal solution and various space-time simulations as well as one implicit Euler simulation under
temporal refinement. The error is evaluated as the L-2 norm over the first 2 m of the mesh
normalized by the number of evaluation points (N). The analysis was performed on a quadri-
lateral 100.000x1 element spatial mesh. Note that the error of the implicit Euler scheme comes
close to the theoretical convergence order of one. In comparison, the error of the space-time
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Figure 3: Error comparison of heat conduction analysis between classical and flipped space-time.
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Figure 4: Relative error evolution of heat conduction analysis under temporal refinement.

ansatz decreases significantly faster when decreasing the time step size. However, not further
than about 5.0e−10 where the spatial discretization error dominates and temporal refinement
results in no improvement. For a fair comparison, the depicted time-step size ∆t in the case of
multiple time layer meshes corresponds to the layer thickness.
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Figure 5: Illustration of the beam used for structural analysis [7].

3.2 STRUCTURAL ANALYSIS

The next test case we would like to present is the transient structural analysis of a beam
that is fixed on the left side to a cylinder and bending under its weight. The clylinder is not
part of the computational domain. The test case is taken from [7] where it is used to validate a
structural solver before investigating fluid-structure-interaction. A hyperelastic material model,
namely the St-Venant-Kirchhoff model, is employed. The problem is modeled from a classical
lagrangian point of view, and we avoid 2nd order temporal derivatives by introducing a velocity
field and solving it. The geometry is depicted in Fig. 5, and the following parameters were
used:

Table 3: Parameters of structural analysis test-case.

Parameter value unit

length 35 cm
width 2 cm

cylinder radius r 5 cm

density 1000 kg
m3

1st lamme parameter λ 2 106 kg
ms2

2nd lamme prameter µ 0.5 106 kg
ms2

gravity (y-direction) -2 m
s2

We compare the displacement of the reference point A at the tip of the beam shown in Fig. 5.
Fig. 6 illustrates the displacement over 10 seconds in X and Y direction. The simulation details
are given in Tab. 4. The results seem to be in good agreement. Nevertheless, there are minor

Table 4: Simulation parameters of structural analysis results.

run elements ∆t

csm l4 5120 5ms
Crank-Nicolson (CN) 20x128 5ms

Space-time (ST) 20x128 5ms
CN dt=1ms 20x128 1ms

deviations. Fig. 7 zooms in on the last period of the oscillation between 9.2 and 10 seconds, and
we focus on the displacement in x-direction as the differences are more visible in that direction.
The result employing a Crank-Nicolson scheme and the same time-step is very close to the
reference values, and different meshes can explain the occurring fine distinctions. CSM l4 uses
an unstructured mesh with 5120 quadrilateral elements, while we choose a structured mesh of
20x128 quadrilateral elements. The space-time result exhibits slightly different behavior, which
is close to the results of a Crank-Nicolson simulation with a refined time-step. However, as
shown in the previous test case, space-time exhibits a superior accuracy with respect to the
time-step size, so this result is to be expected.
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Figure 6: Displacement of reference point A over 10 seconds.
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Figure 7: Displacement in x-direction within the last considered period.

3.3 RIGID-BODY MOVEMENT

The last test case we are discussing is the movement of a rigid body. This test case is
somewhat artificial as we solve a continuum mechanical system of equation coupled with an
elastic mesh-update problem and a free-surface approach, similar to what is described by Elgeti
and Zwicke [4, 5]. However, as we are only interested in the deformation of the domain, we
reduce the problem to a rigid body movement by imposing a fully developed velocity field of
v = (0.1, 0.1)T as initial and boundary conditions. The test case is a 1x1 sized spatial domain
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that then has to move (1, 1)T in 10 seconds. Fig. 8 shows the result after one time-step with
size 10. The t-axis is pointing out of the plane, and we view the x-y plane, meaning, at the
bottom, the body is in its initial configuration, and the mesh connects it to its new position
after 10 seconds at the top. The legend shows that the magnitude of the displacement is

√
2

after 10 seconds, which corresponds to the analytical solution.

Figure 8: Rigid-body movement result after 10 seconds.

4 CONCLUSION

In this work, we presented an algorithmic approach to the treatment of jump terms in
the context of space-time discontinuous finite element methods. We showed that inverting the
space-time slab around its temporal axis leads to a one-to-one degree of freedom correspondence
on the new bottom of the slab, allowing for easy evaluation of the jump term. Additionally,
this alleviates the requirement of a conforming mesh on the top and bottom of the time-slab
introducing new flexibility for the discretization. This ansatz is especially advantageous for
problems involving moving domains, where the movement is not known apriori. Our numerical
studies validated the approach in comparison to classical space-time and semi-discrete FEM
solutions and analytical solutions for different physical problems.
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