VYTAUTAS MAGNUS UNIVERSITY
Faculty of Informatics

DEPARTMENT OF APPLIED INFORMATICS

Daniel Morales Estrella

E-Order system effectiveness for a restaurant

Bachelor Thesis

Informatics Systems study programme, state code 6121BX016

Study field Informatics
Supervisor lector Vytautas Barzdaitis
degree, name, surname signature, date
Defended prof.dr Tomas Krilavic¢ius
Dean of Faculty signature, date

Kaunas, 2022

Content

ABSTRACT
Resumen
Introduction

Motivation and objectives
Motivations
Objectives

Analysis

Competitors

Requirements
Functional Requirements
Non-functional Requirements

System Architecture
Microservices

Client Microservice
Restaurant Microservice

Client side and Server side
Database Design
Hardware

Technology stack used for developing
Electron
Node.js
Express
Axios
Materializecss
MongoDB
Docker

Design
Use case
Diagram Clases
Diagram Sequences UML
Flow of views

Abstract of analysis

Development of the system
Implementation Client Side
How works Views
Use RESTful service

11

11
11
12

13
13
17
17
18
18
19
20
21
22
25
26
26
26
27
27
27
27
27
28
28
28
29
30
31
32

32
32
33
35

Implementation Server Side

Microservice Client
API RESTful
Database operations (CRUD implementation)
Dockerfile

Microservice Restaurant
API RESTful
Database Operations
Dockerfile

Deploy App

Results

Providing the testing of the system
Conclusions:

Perspective

References

Appendix 1

36
36
36
37
41
42
42
43
45
45

49
49
53
54
55
57

Tables:

Table 1: Analysis competitors

Table 2: Differences in the architecture systems
Table 3: Pros and Cons of Microservice
Table 4: API for Client Microservice

Table 5:API for Restaurant Microservice
Table 6: API RESTful

Table 7: Advantages of docker container

Figures:

Figure 1 Home Instacart
Figure 2 Store Instacart

Figure 3 Basket Instacart
Figure 4 Payment Method Instacart
Figure 5 Home UberEats

Figure 6 Basket UberEats
Figure 7 Different architecture for a system
Figure 8 Client and Server side

Figure 9 Database Design
Figure 10 Use case

Figure 11 Diagram Clases
Figure 12: Diagram Sequence for Restaurant and Employee

Figure 13: Diagram Sequence for Owner
Figure 14: Flow of views

Figure 15: Package JSON

Figure 16: Function Renderer.js

Figure 17: Function?2 Renderer.js
Figure: 18 Model Rest Client

Figure 19: Example API RESTful
Figure 20 a: Example API create operation

Figure 20 b: Example API read operation
Figure 20 c: Example API update operation
Figure 20 d: Example API delete operation
Figure 21: Dockerfile Users

Figure 22: API RESTful restaurant
Figure 23: Calls for users microservices

Figure 24: Dockerfile for restaurant image
Figure 25: Docker-compose users and mongo 1 containers

Figure 26: Docker-compose restaurant and mongo 2 containers
Figure 27: Docker-compose Volumes and Networks
Figure 28: Container deployed

Figure 29: Running containers
Figure 30: Users microservice, register && login

Figure 31: Product microservice add type && product
Figure 32: Create edit and cancel order
Figur . Order, Sh rder an rder

LIST OF ABBREVIATIONS

API Application Programming Interface
BSON Binary Javascript Object Notation
CPU Central processing unit

CRUD Create, Read, Update and Delete
CSS Cascading style sheets

Gb Gigabits

Ghz Gigahertz

HTML Hypertext Markup language

JS Javascript

JSON JavaScript Object Notation

Mb Megabits

NoSQL No Structured Query Language
(ON) Operative System

Ram Random Access Memory

REST Representational state transfer

Ul User interface

UML Unified Modeling Language

URL Uniform Resource Locator

ABSTRACT

Author Daniel Morales Estrella
Title E-order System

Supervisor Vytautas Barzdaitis
Presented at Vytautas Magnus University,

Faculty of Informatics, Kaunas

25-05-2022
Number of pages 54
Number of appendices 9

In this thesis, I develop a web app for restaurants, where customers could order their food
without the intervention of a waiter to take the order. Therefore, the app will have 2
different parts, first one for the customers to take the orders and the second for the owner
and his employees. This part is for adding the different dishes on the menu and the
employees can control the delivery of the orders and charge the food.

During the development of the thesis, we will discuss the different phases of the development of
the application. Starting with the theory of how the app works, moreover explanations of
which technologies I use for the development, the implementation of those technologies
on the application. Finally, I do some tests on the app.

For the implementation of this application, I use electron and node js for the backend and
frontend. In addition to storing the data, I use the database MongoDB. Finally, for the
deployment of the application, I use docker.

Resumen

Autor Daniel Morales Estrella
Titulo E-order System

Supervisor Vytautas Barzdaitis
Presentado en Vytautas Magnus University,

Faculty of Informatics, Kaunas

25-05-2022
Numero de paginas 54
Numero de indices 9

En esta tesis se desarrolla una aplicacion web para un restaurante, donde los clientes puedan
pedir su comida sin la intervencion de un camarero que tome la orden. Por lo tanto, al
desarrollar la tenemos dos partes diferentes, la primera es la parte para los clientes, donde
estos podran hacer su pedido y la segunda parte es para el propietario y los empleados.
En esta parte se podran anadir los diferentes platos del menu y los empleados podran
controlar la entrega y cobrar los pedidos.

Durante el desarrollo de la tesis, se explican las diferentes fases del desarrollo de la aplicacion.
Empezaré con la teoria de coémo funcionara la aplicacion, luego sobre cémo se desarrollo
esta, seguire con la implementacion de las tecnologias para esta aplicacion y finalmente
hice unas pruebas del sistema

Para la implementacion de esta aplicacion, he utilizado electron y node.js para el backend y
frontend. Ademas para guardar los datos se utiliz6 la base de datos de MongoDB. Para
finalizar para el despliegue de la aplicacion se utilizé docker

10

1. Introduction

When we go to a restaurant, the employees have many tasks that extend the waiting period
between when the customer arrives, order his food and pay for the service. So this makes
a worse experience for the customers and increases the time the client spends at the
restaurant, then if the restaurant has fewer places available then they have fewer
revenues. To solve this problem, what we can do is to reduce those waiting times in
which the customer has to wait to be served by the waiter.

Therefore, I do a system to reduce this dead times, if we analyse this part we have three
important part to reduce the time: first when the client arrives at restaurant and need to
wait the menu, secondly, when he have to be served to take his meal order and third order
the bill without having to wait for the waiter.

Then I develop an application that manages these processes.

Then, the task is developing a system to handle the orders on the restaurants, where the owner
will need to add his products, handle his employees, also would be great to control the sales
through the app

2. Motivation and objectives

2.1. Motivations

The hospitality industry is one of the most important in the Spanish economy. Tourism is one of
the cornerstones of the Spanish economy and an outstanding driver of economic and
social development. In 2017, it accounted for 11.8% of GDP and in 2018 sustained
13.5% of employment (or 2.6 million direct jobs). (OECD, 2020)[0]

Although this sector needs a lot of people for the work, because there are some tasks where we
waste a lot of time (taking orders, inventory control, purchasing food, etc.) . Sometimes
this leads to long waiting times, causing customer discomfort. If we automated this kind

of task the workers could do other kind of tasks, reducing these waiting times.
It is amazing how this kind of task could be automated but here in Europe still with these old

habits. For example, if we compare with the Asian continent there they have some

automated work, for example robots instead of waiters.

11

2.2.

Objectives

The objective for the system in this thesis is to develop a system to take the orders in a simple
way and take care of the whole logistic process, to facilitating the workflow of the
restaurant.

Also, this project is good to learn about the different phases in the development of an app, put in
practice the different technologies I studied during my time as student, moreover to
improve my knowledge about these technologies.

To implement the objective small tasks will be solved:
Overview of similar systems

e State the functional and non-functional requirements
e (Choose the system architecture for the system
e Describe the frontend, backend and database
e Explain how the system works
e Construct frontend
e Develop a backend
o Authentication
O Multiuser system
o Connection with database, CRUD implementation
o Client side:
m Register
m Login
m Update user profile
m Order food
m Update order
m Payment method
o Restaurant microservice

Create employees

Create menu

Sales control

Sales statistics

Kitchen control: handle products and orders,
Dining room control

e Testing the system

12

3.Analysis

3.1.

It is important to analyze the market before making a new application, for this reason I take 2
companies specialized in the delivery of food and other orders, as I did not find any
company focused on taking the orders in a restaurant, but the final method to order is
similar.

Competitors

Compared my app with other possible competitors:

=> Uber-Eats [1] is a branch of Uber company, this branch is specialized a take away food
=> Instacart [2] this company is specialize in groceries and home essentials delivered from

local stores

Tablel: Analysis competitors

E-Order System

Uber-Eats

Instacart

Web Pages System develop in https://www.ubereats.com/es https://www.instacart.com/
this thesis
Technologies/ Electron React [3] React [4]
frameworks Node Node Python
MongoDB Nginx PostgreSQL
Docker Mysql Nginx
PostgreSQL Firebase
MongoDB
Specification Login Main Page with Restaurants Main page with shops
function for clients Charge Menu Menu in specific restaurant Add element to the basket
Send order Payment Method Login
Checkout Send order Checkout
Problems It is only for Notprobems Must be registered for order
restaurant

After analysing our competitor we can see none of these, manage the internal management in the
restaurant, only want to make more sales for them, then we have a place on the market
where nobody is taking profit. But one of the risks is that these companies could make
something similar to this app, and take advantage of their position in the market. But the
problem they have is that this kind of business has some legal problems with the current
law with the deliveries, thanks to that they are focusing their resources to solve this
problem.

Spain became the first European Union member to give delivery workers labor rights, firms such
as Uber Eats or Just Eat are still struggling to adapt to a new law that may become a
model for the rest of Europe. (BY FRENCH PRESS AGENCY - AFP, 2021) [5]

Otherwise, in this app we had the problem we need to the restaurant accept use this system,
which could be a barrier to entry into the market

Instacart Ul

@ instacart.com/stor

= ¥ instacart Search products, stores, and recipes Q 9 64 Alvarado Street -
- & ' 7 '
0 - -
P v & GO 50V w >
Pickup Grocery Convenience Ready Meals Gifts Alcohol Deals In-store 8T Dollar store Asian Latin Pets ste
+ New 430 min + New + New + New prices
Neighborhood viewall 6
#Delivery by 12:25pm - Shop local
= . - N
AN M &4
AN B
3 4 SR i
Home Hardware Pets Gourmet Gifts Baby Floral Sporting Goods Clothing
New stores near you Viewall >
Jai Ho Indian
Grocery
Delivery
Rulle ctarac in Qan Franei e

Figure 1. Home Instacart. [https://www.instacart.com/store]

@ instacart.com/store/catego

= Yinstacart Search products, stores, and recipes

In-store prices

Bianchini's Market San Carlos Bi-Rite Market Rainbow Grocery
Organic + Aleohol « Prepared Meals

Specialty « Organic * Alcohol BIRITE 4 Delivery by 12415t Vegetarian « Specialty « Co-op

4 Delivery by 1:24pm = pickap avyai\:ble P 4 Delivery by 12:47pm

In-store prices In-store prices

In-store prices 0.5 mi away

CVS Pharmacy® Petco The Epicurean Trader
wcvs Pcv:u‘nn\ Care + Drugstore « Groceries petco Pet S\fppllc: Specialty + Alcohol
4 Delivery by 12:27pm 4 Delivery by 12:32pm 4 Delivery by 12:38pm
In-store prices In-store prices In-store prices

Sprouts Farmers Market . Bianchini's Market Portola
. Organic + Groceries « Butcher Shop Raley's I
(sprouts) ¥ Delivery by 12:40pm Groceries « Produce » Organic @ Valley
\ | Pickup available oy i 4 Deliverv bv 1:120m Specialty » Organic » Alcohol -

Figure 2. Stores Instacart. [https://www.instacart.com/store/category/InStorePricesSurface]

14

https://www.instacart.com/store
https://www.instacart.com/store/category/InStorePricesSurface

instacart.com,

= Yinstacart <aisors

Bianchini's Market San Carlos
Everyday store prices
% 100% satisfaction guarantee

Shop

ﬂ Ready Meals
& Deals

Q Buy it again

Recipes
Beverages
Produce

Meat & Seafood
Dairy & Eggs
Snacks & Candy

Frozen

Search Bianchini's Market San Carlos...

Purina and RedRover
are committed to keeping
pets and people together.

Sweets and Goodies
Special picks for you

CE

Ly!

$6.69 $1.29 $6.59

Milky Way Milky Way ~ Canada Dry Zero
Oatly Frozen Dessert, Bar Single Sugar Ginger Ale
Non-Dairy, Vanilla 1840z 12x12floz

1pt

i o o+ @ o+
o
B T e

Gluten-Free + Vegan

Personal Bianchini's Market ...

Q Shopping in 94110
Make this order a gift

Bianchini's Market San Carlos
4 By 1:55pm
% 100% satisfaction guarantee

Add $15.44 for FREE delivery with Express!
= Oatly Frozen Dessert, Non-Dairy,
vy Venilla

J 1pt

> Preferences [7] Remove

Milky Way Milky Way Bar Single

\ /> Preferences [Remove

Canada Dry Zero Sugar Ginger Ale

g 12x12floz

be oo > Preferences [7] Remove
$4.99 Haagen-Dazs HAAGEN-DAZS Matcha
GlutonFroo Green Tea Ice Cream
Haagen-Dazs Oal e a
i — el /> Preferences Remove
Matcha Green Tea lc... 1Pt
1pt

$19.56

$6.69

$1.29

$6.59

$4.99

Figure 3. Basket Instacart. [https://www.instacart.com/store/bianchini/storefront]

Figure 4. Payment method Instacart.

*instacart

® 64 Alvarado Strest

San Francisco, CA 94110

@ Choose delivery time

100% satisfaction guarantee
Q Place your order with peace of
mind.
Item subtotal
Service fee >
Estimated taxes and fees >

Long-distance service fec >

4 By124spm-1:05pm ™
Priority Temporary fuel surcharge > $0.40
Subtotal $29.23
| By ussem
Standard

3 Schedule a time

Continue

Delivery Instructions

Mobile number

Payment

4items

Add promo code or gift card

Bianchini’s Market Rewards

Bianchini's Market Member?

loyalty number here!

rd Number

[https://www.instacart.com/store/checkout_v3]

15

2 Iniciarsesion Registrarse

ubereats.
= UberEats Adomicilio Recogida © AvenidaBlasco Ibafiez - Recoger ahora Q ¢Qué te apetece?
- Vicente Zaraaoz4 (0B N 5| NS
- < s
Recogida cerca de la ubicacion T New 5 >
ey New 3 =3
‘y”», Iniversitat Politachl "ﬂ f + &
%, 2
Ordenar v DeUberEats v Rango de precios v Dietética v ‘%9 a3 FusionKebab&Pizza Galileo Galilei 8 CVem, _ =
% La Carrasca(DB) New Py, B 3.0 8
SRy, 42 A s O S gz
.) e % o) LN Facultais @ 5 g T
. \ J ALGIRGS £ H
» XK s 3
L b 2 ! Souy 4y s H
o 40 3
Americana Comida Tailandesa ~ Hawaiana Saludable Poke Alitas de Halal C e Serreria(DE) s
rapida pollo " ey, 3 % 1 New & . S
N " s -8 g H
oy 3o $ & 38 ¥ e & ;]
N ST New& - o S T] 1]
5 T # Y 245 S e Baray S onta
4 5 New [Cag ¥
o A New i A a7 37 § erpiy
iy 7 % " 45 Arae 1
', Ay, New X
8 s, a0 42 §
R %% e V g
s % <& $
5 . » N 43 § Be
DORAYA JAPAN BUFFET . 38 DORAYA JAPAN BUFFET 47 %, Ta 48 gy Y€ gy cocoeld - £ 35
.. 15295 min - 01 ke % Yrou, New 4. D IR 83
min-01km 15-25 min - O1kr PR G S, oy [
s & Mag o o a
- 25 g 2
4 ¥ derp,, Y Ayora @ © Sang,, H
" b ‘erty 5 & eatg, £ =
w* S vew? & e 3
% Yaw g £8 0 c, © 4118
\ e L3 orne,, £ C.Don Vicene Gatar i
< s £ b
O 3 4y, & Maritim- Serreria ©8) 2 5
. A K %ip,, & & S
. 3 o py
NOT FORDOGS 44 Go Poke & Salad de@i/ea < ’ e o o: D
N res CAMINS 3]
10-20 min - 0.1km AL GRAU S o CM
Ay, o
Ao e g, A g Q&
e learey &y s “ Py o
000 g -5
reclas Inst. Geogr. Nacional 7 Téminos deUso _Notifcar un problema de Maps ¥

5-15 min - 0.1km

Figure 5. Home Ubereats. [shorturl.at/gnELT]

Carrito+3 Iniciar sesién

Uber Eats
- ¥ x C e
=) s S,
o & DORAYA JAPAN
BUFFET .

Q ¢Qué te apetece?

@ Avenida Blasco Ibafiez - Recoger ahora

& 8 Costa de Valen
§ & escuela de espa b
< Av! 85
o 2 Blasc gy oscy I
& i N gy ey
o Slascy, N
Bire, (5] Alg) "
A CO) e Y. 8/,
K - ba”sz 590 by,
£ 4 Ve - Coiamcoresce! o pedido de grupo
DORAYA JAPAN BUFFET . 1w 79.Dragén 1050€
* 38(16 Asiatica + Mas 6
Abierto hasta las 11:30 PM
Toca para ver el horario, la direccion y mucho mas 1v 19 Pollo Teriyaki 560€
Elegido para ti i i
Elegido para ti 1v 53 MakideSalmén 460€
Entrantes
79. Dragén 55. Maki Tempura
Platos Calientes 1050€ o 490€ Pedir cubiertos, pajitas, etc. O °
8 unidades.
Arroces y Fideos
Afadir una nota para el establecimiento
Pinchos 19. Pollo Teriyaki 66. California de Sz
560€ o 660€ °
Plancha 8 unidades Pagar-20,70 €
Sushiy Sashimi
Makis Clasicos 53. Maki de Salmén
460€
California 8 unidades

Especiales de la Casa

Figure 6. Home Ubereats. [shorturl.at/klyIR]

3.2. Requirements

The first step for develop an app it is to specify which specifications we need for our system
works, then we need to choose our functional and non-functional requirements

3.2.1. Functional Requirements

For the functional requirements we need to define our main function in the app, in our structure
we can differentiate two important parts, for the clients and for the restaurant. So I define
the functional requirements for each part

e (lient

Register

Login

Update profile
Order food
Update order

o Payment method

o O O O

e Restaurant

Create employees
Create menu

Sales control
Kitchen control
Dining room control

o O O O

3.2.2. Non-functional Requirements

For the non-functional requirement I explain the behaviour of the app, the non-functional
requirements are split in three blocks: product requirements, here we specify
dependencies on the app works properly, organization requirements, here we know the
process for the client and the developers and finally the outside requirements, here we
detect the requirements outside the system and his development

e Product
o The minimal requirements to run the app is: Intel Core 15 2.3Ghz for the CPU,
8Gb for the ram and 500Mb for store
o App run on Windows and Linux

e Organization
o App will be developed with electron[6]

17

e OQutside requirements
o The client side must be connected with the microservices to do the different
operations
o The users data will be attached to the data protection regulation to the home
country

3.3. System Architecture

In this section I describe basic components on the app and how they work together, also which is

the structure for the database and finally the hardware requirements for run the app

Before to take the decision how the system it is develop, I show the other ways to build systems:

Monolithic: It is when all the system is develop in “one piece”
SOA: It is when the system is develop in different components to provide the
functionality to the system

e Microservices: It is when the system is develop in independent services and each service
work separately

ul

Ul Ul

Monolithic Service Oriented Microservices

Jelvix Source: CDN jelvix.com

Figure 7 Different architecture for a system [https:/jelvix.com/blog/monolith-vs-microservices-architecture]

18

https://jelvix.com/blog/monolith-vs-microservices-architecture

Table2: Differences on the architecture system

Monolithic SOA Microservice
Design The design is in one Design a different Design for small and
piece service, where the independent services,
communication is by a where the
protocol over a communication is by
network an API
Scalability Complicated for how Dependencies between It more easy because
was developed services and the each service is
network protocol independent
could produce
bottleneck
Development All the system Could reusable Each service could be
required to be components and developed with the
developed with the services most appropriate
same stack technology for its
function
3.3.1. Microservices

Microservices are when we split our functionalities of app, in small independent services to build
a distributed system where they work together. The reason for this is to make it easier to
scale or update the services without disrupting other services in the app.

Microservice are the best way to develop the system due to “now are a new trend in software
architecture, which emphases the design and development of highly maintainable and
scalable software” (Springer, 2017)[7], also if I would develop the system with the
monolithic architecture we would have problems like:

Less scalability
Less reusability

Large code, who made problems at the moment to fix some bugs or understand the

system

Table3: Pros and Cons of Microservice

Pros of use Microservices

Cons of use Microservices

More tolerant to errors
Individual service can scale and easily deployed
Each service could have different stacks

Easy maintenance

More latency

Dependencies between microservices

More difficult to debug

More complicated design this architecture

19

The microservices created for the system are following:

1. Client Microservice
This microservice is for the management of our clients, register, and authentication. This
microservice must show the products in the menu to the customers, therefore this
microservice is required to establish a communication with restaurant microservice. Then
this microservice will do:

Register users
Authentication
Show the menu
Order food
Payment

Also it is important to show the API for establish the communication with the database, then here
is the app for client microservice:

Table 4: Api for client Microservice

Function Parameters Description
addClient(client, cb) e client: The client Add new clients
e cb(err, client): Callback Callback receive the client
login(nickname, password, cb) e nickname: Nick for the client Authentication for the clients
e password: Password for the Callback receive token, which
client make easy to identify on the
e cb(err, client, token): Callback database and do the different
functions
getCollection(token, id, cb) e token: To identify the client For taking collection from users
e id: id from collection we want database
e cb(err, collection) Callback receive the collection
updateClient(token, client, cb) e token: To Identify the client Update data client
e client: Data to update Callback receive the new data
e cb(error, client) client
listMenu(token, cb) e token: To Identify the client List all the product
e cb(error, data) Callback receive the data
createOrder(token, order, cb) e token: To identify the client Send the order to the kitchen
who orders Callback receive dishes for the
e Order: Product ordered by the meal
client

e cb(error, food)

editOrder(token, orderID, cb) e token: To identify the client The client can modify his order
who orders Callback receive the new order
e orderID: To identify the order
which it is modify
e cb(error, food)

20

printTicket(token, userID, cb)

token
userID: To identify the user
cb(error, ticket)

Print the ticker for the meal
Callback receive ticket

cancelOrder(token, orderID, cb)

token: To Identify the client
orderID: To identify the order
cb(error)

Cancel the current order
Callback is for handle errors

removeProductOrder(token,
orderlID, id, cb)

token: To Identify the client
orderID: To identify the order
id: To identify the product
cb(error)

Remove specific products in the
current order
Callback is for handle errors

2. Restaurant Microservice

This microservice is for the owner, where it is possible to manage the different products we have
in the restaurant, also it implements a function to check our sales statistics to know which
products have better receptions between the customers. Finally, here it is important to
implement a special kind of user for the workers in the restaurant (waiters, cooks). Also,
it is important to mention that this microservice will be depending on the client
microservice because it would need access to the orders stored on the other microservice

to list the product from a specific order.

Then the function we will implement here:

e Sales statistics
e Handle product
o Orders

Also it is important to show the API for establish the communication with the database, then here
is the app for restaurant microservice:

Table 5: API for Restaurant microservice

Function

Parameters

Description

addProduct(token, product, cb)

token: To Identify the employee
product: The product
cb(err, product): Callback

Add new product
Callback receive the product

updateProduct(token,productID,
product, cb)

token: To Identify the employee
productID: To identify the produ
product: Changes on the product
cb(err, product)

Modify our current products
Callback receive the new product

deleteProduct(token, product, cb)

token: To Identify the employee
product: product to be deleted
cb(err, product)

Delete products

updateSales(token, orderID, cb)

token: To Identify the employee
orderID: order with all
products to update

Keep updated our sales
Callback is for handle the error

21

cb(err)

addType(token, type, cb)

token: To Identify the employee
type: Type for products
cb(err, type)

Create type for identify the products
Callback receive the new type

updateType(token, oldtype,type,cb)

token: To Identify the employee
oldtype: type we change

type: new type

cb(err, type)

Update the new content for the type
Callback receive update for the type

deleteType(token, type,cb)

token: To Identify the employee
type: type deleted
cb(err)

Delete a specific type
Callback for handle errors

showOrder(token, orderID, cb)

token: To Identify the employee
orderID: Order identifier

Show the product in the order
Callback receive the order

closeOrder(token, orderID, cb)

token: To Identify the employee
orderID: id for identify order

Close the order
Callback is for handle errors

3.3.2.

Client side and Server side

At the moment to develop the system it is important to know how the system will work, for this I
will split in two important sides:

e C(Client side: This side of the system contain the interfaces, also from this side we need to
create a file to consume the RESTful API service implemented on the server side

e Server side: This side of the system contains the 2 microservices, which implement the
RESTful API services listening on different ports to call the database, to insert the data
from the client. Although it is important to advise between our microservices have 1
dependency as we can see on e.g figure 8 the microservice restaurant require some
information of the clients microservice

22

Client Side Server Side

<
Client
Microservice

Views

File to consume Ty
L RESTful service Restaurant
mn Microservice

Figure 8: Client and Server Side made by the author

Moreover, as we mentioned before, on the server side a RESTful API service, which will be
consumed for the client side. Then for developing our RESTful API service it is
important to focus on the most important elements in the system, then for this system it is
the customers, product and order.

So we need to define the main entry points into the system. The integration with E-Order System
API will be implemented:
e /e-order/customers
e /e-order/product
e /e-order/order

Although it is important to define some special entry points for the system
e /e-order/sessions

e /e-order/info

This is because when we create a new session, we will need to assign the token to the user who
has been logged in and to establish communication between our microservices.

Now I will show a table with the API for our RESTful service:

23

Table 6 : API RESTful

Method

URL

Description

Special Resource

Post

/e-order/sessions

Open new session
Data: {email, password}
Results: {token, user}

Get

/e-order/sessions

Check the current session
Params: token

Results: {token, user}

Get

/e-order/info/:id

Get collection from users microservice
Data: {id}
Results: product

Users Resource

Post

/e-order/users

Add new user
Data: user
Results: user

Put

/e-order/users/:id

Update user with the id :id
Params: token

Data; user
Results: user

Orders Resource

Get

/e-order/order

List products and type available
Params: token
Results: products an types

Get

/e-order/order/open

Show open orders
Params: token
Results: Open orders

Get

/e-order/order/product/:id

Show products on the order to the user
identify with :id

Params: token

Results: Products on the order

Post

/e-order/order

Create a new order

Params: token

Data: order

Results: order

Put

/e-order/order/:id

Update the order with the id :id
Params:token
Data: editOrder

Put

/e-order/order/sales/:id

Update field sale on the products in the
order
Params: token

! Table 6 Continue in the next page

24

Method URL Description

Put /e-order/order/close/:id Close the order identify with :id
Params: token

Put /e-order/order/:order/:product Delete specific product from the order
Params: token
Data: orderID, productID

Delete /e-order/order/:id Delete order identify with :id
Params: token
Data: orderID

Products Resource

Post /e-order/product/type Add new type
Params: token
Data: type
Results:new type

Post /e-order/product Add new product

Params: token
Data: product
Results: new product

Put /e-order/product/type/:id Update type with the id :id
Params: token
Data: updated type

Put /e-order/product/:id Update product with the id :id
Params: token
Data: updated product

Delete /e-order/product/type/:id Delete type with the id :id
Params: token
Delete /e-order/product/:id Delete product with the id :id

Params: token

3.3.3. Database Design

In this section I will analyse the structure of the database, it is important to remember we have 2
microservices with their own database, but we have 1 dependency between them. To
implement the database I used MongoDB. The design of DB is presented in e.g.figure 9.

[]

Client Restaurant

Figure 9: Database Design made by the author

Microservice Microservice Order
e OrderlD: int
e refClient: int
Product e Paid: bool
e ProductID: int ¢ N°Tablerint
e Name: string e PayMethod: string
o ErE s ProductOrder: A_rray
e typePr: string o Prc)lquctlD: string
e description: string z gzéﬁtstring
e image: string o idint
e Sales: int
0..%
1.1
0...1
1.7
User
Type e UserlD: int
e Name: string
e Name: string e Surname: string
e |stPr: Array e Phone: int
o productld: string e Type: string
o Password: string
o Image: string
e orders: Array
o orderlD

3.3.4. Hardware

{T.0}

Client

Email: string

Cook

DNI: int

Waiter

DNI: int

To develop a new system, it is important to know the hardware specifications I have. Then for

development this system I have a laptop, which the following specifications:

Ram: 8GB

OS: Windows 10
CPU: Intel Core 15-6300HQ 2.30GHz

Store: SSD 1 Tb and HDD 500 Gb

26

3.4. Technology stack used for developing

In this section I talk about the technologies I use for the development of the system

3.4.1. Electron

Electron [6] is a framework for creating native applications with web technologies, because
electron have two important factors, one is chromium for building interfaces due to chromium
being able to interpret HTML, CSS and JS and secondly node.js which we will explain later

I use electron to build our client side, so here I build our interfaces for the customers and the
restaurant, also need to implement the RESTful service to call the microservices

34.2. Nodejs

Node/.js [8] is a cross-platform, open source, runtime environment based on JS. It was created
with the objective to be useful in the creation of highly scalable network programmes,
such as web servers. This technology that specializes in creating highly efficient
applications, due to two fundamental characteristics:

e There is only one thread of execution.
e All input/output operations with asynchronous

For this reasons Node.js can handle thousands of requests, which I require for deploy the
microservices

At the beginning was made to run on servers but with other technologies as Electron we can
make a full application

3.4.3. Express

Express [9] is one of the most important frameworks in node.js because it provides a robust set
of features to develop web and mobile applications. Although I use it to provide
server-side logic because one functionality of express is to handle the http request and
connect to the operation we require.

34.4. Axios

Axios [10] is a promise based HTTP client for the browser and Node. js. Axios makes it easy to
send asynchronous HTTP requests to REST endpoints and perform CRUD operations.
For that reason, I use axios on the client side to send our request to the microservices.

27

3.4.5. Materializecss

Materializecss [11] is a CSS and JS framework based on Material Design by Google. It was
developed for the front-end, we have multiple Ul components to build our app.
I take profit from some components of materialize for improving the Ul in the client side.

3.4.6. MongoDB

MongoDB [12] is a NoSQL database oriented to collections, the advantages of this database are
its high scalability and flexibility. Another important point on this database is instead of
saving data on tables like a relational database, MongoDB uses BSON structures, making
better integration with the data, thanks for that this helps to have better performance.

I need two different MongoDB databases, one for each microservice I use

3.4.7. Docker

Docker[13] is a technology which makes it easy to deploy an app inside a container. Although
docker adds a new layer over a Linux command to isolate different procedures and
resources. Then docker creates an isolated container to deploy the app.

I used docker for containerizing each microservice because it is the most popular option to
develop microservices: “Docker containers are becoming an attractive implementation
choice for next-generation microservices-based applications. When provisioning such an
application, container (microservice) instances need to be created from individual
container images* (Nathan et al., 2017)[14]

Container in docker is an isolated process which has its own memory, network and process.
These containers are advantageous due to these containers consuming fewer resources
than virtual machines. To create a new docker container it is required to have an image,
which has the information to deploy the system (files, libraries, configuration, etc.). We
could find all the images from docker in docker hub[15] where we have around more
than 100.000 images from software vendors, open-source projects, and the community.
Then I use containers to wrap the microservices and provide independence for our app
and have better scalability

Instead of use docker I could use a virtual machines but this have more disadvantages than
docker:

Docker Containers Virtual Machines

Every container runs with the kernel of the host ~ The virtual machines have his own os

Few resources to create a container More resources than docker containers
Faster to startup the services Slower top startup the services
Less memory is require More memory is required

Table 7: Advantages of docker containers

28

3.5. Design

In this section, I describe how the system works, the different interaction between the views and
how the user interact with the system

3.5.1. Use case

With the use case, we represent how the users can interact with the function requirements (point
3.21) specified before. As we can see on the e.g. figure 10, we have three different types
of users, which have specific functions depending on them. It is important to remark that
we differentiate the user with a tag at the moment to create the users. Also, for the
customer, we have an extra option in make order for editing the current order

Add
Product

Register

<<extend>>

O
/‘\

/\

Customer

Payment
Method

e/ Edit Em/ply\
Order

Figure 10: Use case diagram made by the author

29

3.5.2. Diagram Clases

In this section we analyze the different object we have in the system, we can see in the e.g. figure

11 we have the main classes with his different attributes and the main functions that they have

Figure 11: Diagram Clases made by the author

Product

ProductID: int
Price: int
Type: string

Y v

addProduct()
updateProduct()

Type

Order
Users P
e ClientiD: int : Clrieﬁ[mi :Rt
e ClientName: string |———— | o GjientName: string
~ ZrEEE e ProductID: int
e Phone: int e Amount: int
> createOrder() -
createOrder
> updateProfile() > editOrder() 0
> printTicket()
Employee Owner
e ClientlD: int e ClientlD: int
e ClientName: string e ClientName: string
e Email: string e Email: string
e Phone: int e Phone: int
> checkOrders() > createType()
> createProduct()
> createEmployee()

ProductID: int
Type: string

YvyYy

addType()
updateType()
deleteType()

30

3.5.3. Diagram Sequences UML

In this section I show how our customers interact with the system, for this reason I create two
different diagrams, e.g. figure 12 it is how the clients and employees interact with the
system, in other hand in e.g., figure 13 it is how the owner interact with the system

O System O
/N : /N
/\ /\

Client Login

Employee
Show Menu

Create Order Send order

Pay order

Charge

Figure 12: Diagram Sequence for Clients and Employees made by the author

o System

Register

Create Employee

Create Type

Create Product

Figure 13: Diagram Sequence for Owner made by the author

31

3.5.4. Flow of views

Here I show how it is possible to navigate between the different views in this system. In the e.g
figure 14 1 have two dotted arrows. That means when we create an order this change
produce a change in the kitchen view, similar with ticket and dining room when the ticket
it is ordered this action produce a change on dining room view.

Register Login — Owner Create Employee
K Create
Profile Home Choose Type/Product
Order / Kitchen Dining Room
Ticket [L

Figurel4: Flow of views made by th author

3.6. Abstract of analysis

After analysing possible competitors, I could subtract the basic elements of how it will work and
how we will build the system. I have also explained a bit about the technologies that used
during the development. On the other hand, we have analysed how the backend of the
application will be organized, and finally we analysed how the frontend will be organized
and how it will interact with the user.

4. Development of the system

After the analysis of how the system is, it is time to explain how It is developed. 1 explain a
section, starting for the client side, server side and ending with how to deploy the system.
Also I explain the most important operations in the system

4.1. Implementation Client Side

Here it explains how the client side was developed and how it works. On this side we have the
views, how I use the restful service and how run the client. The internal structure on the client it
1s:

32

Client/

package.json
app/
| - main.js
| - www/
| - css
| - styles.css
| - images/
| - products/
| - users/
| - js/
| - model rest.js
| - renderer.js
| - views.html

Package.JSON is a file with the basic configuration, dependencies, name, where the application
starts to run, etc.

{} packagejson X

cliente > {} packagejson > ...
1 A
"name": "e-order",
"version": "1.8.8",
"description”: "",
"main": "app/main.js",

"commonjs",

[N

"test": "echo \"Error: no test specified\" && exit 1"
}J
"author": "daniel morales estrella"”,
"license": "ISC",
"dependencies": {
"axios": "7@.27.2",
"cors™: " 8.5",
"electron": "716.4.7",
"express": "~4.18.1",
"materialize-css": "~1.0.0",
"mongodb": "/~4.5.0",
"multer™: "~1.4.4"

Figure 15: Package JSON made by the author

33

4.1.1. How works Views

After implement the views show on e.g. figure 13, it is important to know how this works, for
the development of the GUI I decide to apply the SPA, that's means all the views are
indexed on one document, but this views will be hide until the system calls them to be
showed, for this reason I develop renderer.js, from this document we ha a collection of all
the views, where we going to define the method to show and other function for the
system works properly.

Now I explain the main functionalities from renderer.js
cliente > app > wva js > Js rendererjs 7 ...
v pages.login =
show: (data) { console.log('login.show()"
hide: () { console.log('login.hide()");
register: O {
console.log('login.register()"');
navigateTo('register');
}s

login: () {

console.log('login.login()"');

name = document.getElementById('name').value;

password = document.getElementById('password’).value;
login(name, password, (err, token, user) {

if (err) {

console.log('Error:
dialog.showErrorBox("Error:", 'Wrong credentials');

+ err.stack);

window.token = token;
window.user = user;
if (user.type == 'owner'
navigateTo('owner');
else if (user.type == 'employee’
navigateTo('choose');
lse

navigateTo('home');

Figure 16: Function renderer.js made by the author

On e.g. figure 16 have the functionalities to show and hide the login view, also we have the
function login, when it is called from the view and how take the data from the view

34

Js rendererjs M X
cliente > app > w s > Js rendererjs > @ editOrder
pages.ticket = {
show: (data) {

console.log('ticket.show()');

printTicket(token, token, (err, productList)
if (err) {
console.log('Error: ' + err.stack);
dialog.showErrorBox("Error:", 'Error showing products’);

totalPrice =
htmlTicket = " °;
htmlPaymentMethod = "~
productList.forEach((product) {
finalPrice = product.qty * product.price;
totalPrice += finalPrice;
htmlTicket +=

H

htmlPaymentMethod =

<a onclick="pages.ticket.paymentMethod('${product.idOrder}"',"
<a onclick="pages.ticket.paymentMethod('${product.idOrder}’,"’

H
i

htmlTotalPrice = ~<h5> ${totalPrice} \u2BAC</h5>";
document.getElementById('ticket').innerHTML = htmlTicket;
document.getElementById('finalPrice').innerHTML = htmlTotalPrice;
document.getElementById('paymentMethods').innerHTML = htmlPaymentMethod;

Figure 17: Function 2 renderer.js made by the author

On e.g. figure 17 It showed a function in how we introduce dynamic data, for print ticket first we
need to know the product in the order, after execute the function to get this info we
contact the html variable and put the information we get for the function, finally we look
for the element on the original view and insert our html variable with the variable we
created. Also in the html code that we insert it is possible to see how we call the function
from the view, I must follow the next notation, “pages.name of view.method”.

4.1.2. Use RESTful service

The last part of the client is to check how our system uses the RESTful service implemented on
the server side. This functionality is developed in the model rest.js file. Here I use the
axios libraries to make the requests to the microservices depending on which operation I
use the URL will change to follow our RESTful API, also as we explain before we have
2 different microservices, then the URL change depend on the microservice we call from
here.

35

J5 model_restjs X

cliente > app > www > js > J5 model_restjs > ...
il axios = require('axios');
urlBaseUser = 'http://localhost:8098/e-order’;
urlBaseProduct = 'http://localhost:8688/e-order’;

login(name, password, cb) {
axios.post(urlBaseUser + '/sessions',
name: name, password: password
.then(res
cb(, res.data.token, res.data.user)

.catch(err

cb(err);

Figure 18: Model_rest Client made by author

4.2. Implementation Server Side

In this section I explain how to implement the client and restaurant microservice, the
microservices are make by file with the API RESTful listening in a port, the operations
with the database and the image for docker to deploy the microservice, then the structure
for microservices will be similar to:

microservice/
| - dockerfile
| - model microservice.js
| - microservice.js

4.2.1. Microservice Client

The main purpose of client microservice it is to handle the information of all types of users
(employee, owner and customers), also these microservices handle the orders associated
with the customers.

4.2.1.1. API RESTful

In this file I implement all the function associated with the client microservice, that I mentioned
before e.g Table 6, then for access to this service

36

app. use((req, res, next) {
console.log(‘authorize * + req.method + * ' + req.originalurl);

if ((req.path == s' && req.method ==
(req.path == '/e-order/users’ && req.method == 'P
next();
else if (!req.query.token
res.status(401).send(' Token not found');

else next();

post('/ ses s', (req, res) {

console.log(" n ' + JSON.stringify(req.body));

if (lreqg.body.name || !req.body.password
res.status(400).send(' Parameters missing');

else
model.login(req.body.name, req.body.password, (err, token, user)
if (err 1
res.status(400).send(err);

res.send({ token: token, user: user });

Figure 19: API RESTful made by author

In e.g figure 19 the first function it is for authentication for every operation it is required they
have the token that they take when the user does the login, only the function to register
users and login don’t need the token to do the operation, also the last function is an
example as how it is implemented the API, we put a post method, and it is called when
the URL it is ‘/e-order/session’ also it is parsed in body the info from the users, after take
the information, the function login it is called, finally if the parameters are correct then
we receive the user and his token, else error is sending

37

4.2.1.2. Database operations (CRUD implementation)
In this file, using the MongoDB operation[16], I implement the API for e.g table 4, there is an
example of CRUD operation with the database
In this operation is adding a new type

err, client
el
_¢cb = (err, res) {

client.close();
ch(err, res);

db = client.db(g
product = db.collecti

product.findOne({ type: type.type },
err, _product
if (err) cb(err);
C if (_product) _cb(

3] = type.type.tolLowercas
Pr'] = [1;
nsertOne(type, (err, result
if (err) _cb(err);
else {
_cb(» 1 id: result.insertedId.toHexString(), name: type.name, lstPr: type.lstPr });

Figure 20 a: Example API create operation made by author

38

In this operation it is reading the information about the orders still open and each order is saved
in _orders, which variable it is returned in the callback

openOrders {
MongoClient. connect(url, err, client
if (err) cb(err)

console.log(
_cb(err, result) {
client.close();
cb(err, result);

db = client.db('e- Pz
colCustomer = db.collection(' customer’);

userOrder = [];

colCustomer.find({ paid: })-toArray((err, orders)
if (err) _cb(err);
else
_orders.forEach((_order)
userOrder.push({
refClient: _order.refClient,
num_table: _order.num_table,
methodPay: _order.methodPay
1
15

_cb(» userOrder)

Figure 20 b: Example API read operation made by author
In this operation is updating some product in the order that receive

editorder(token, orderID, content, cb) {

ent.connect(url, err, client
if (err) cb(err);
{
console. log(
_cb(err, resul
client.close();
cb(err, result);

db = client.db("
col = db.collection

f (!content.methodPay) {
col.findone({ _i mongodb.objectId(orderID) }, (err, _order)

cénsule.log _order);
col.updateone({ _id: d(orderID), ¢ ctId”: content.productId }, {

tId": content.productId,
ontent.qty,
content.notes

Figure 20 c: Example API update operation made by author

39

In this operations is deleting the order

cancelOrder(token, orderID, cb) {
oClient.connect(url, err, client
if (err) cb(err);

. I

L
console.log
_cb(err, res
client.close();
cb(err, result);

db = client.db('e er');
colCustomer = db.collection(customer');

colcustomer.findone({ id: mongodb.0bjectId(orderID) }, (err, order
if (err) _cb(err);
e I
= L

colCustomer.findoneandupdate({ _id: mongodb .0 tId(_order.refclient) },

$pull: { orders: orderID }

if (err)
else {
colCustomer.deleteOne({ _id: mongodb.0ObjectId(orderID) }, (err, _result
rr) cb(err);

er del

Figure 20 d: Example API delete operation made by author

It is important to know each function It is required to open the communication with the database
(MongoClient.connect()), and we finish the operation we call the function _cb that return
the cb with the result and close the connection with the database (client.close())

4.2.1.3. Dockerfile

The file Dockerfile contains the information on how to create the new image for our
microservice. Then on the e.g. figure 21, The image start from the node image available
on Docker Hub, after It added some label for information, also our microservice accept
two parameters for configuration, the first one it is the port where our microservice will
be listening and the second it is the URL for connecting with the MongoDB database.
Finally, it is added all the files to the microservice works on the folder /app and create a
new folder inside, /images for store the images, also it is installed on all the dependencies
and it is defined the entry point with the parameters mentioned before.

40

users » dockerfile

node

description="Users microservice"
version="1.08"
maintainer="danymexicano5{@gmail.com"”

PORT=80906
URL MONGODB= “mon goao: [/127.06.8.1:27917"

users.js model users.js package.json /app/
mkdir -p /app/images
npm --prefix /app install

node /app $PORT $URL MONGODB

Figure 21: Dockerfile Users made by author

4.2.2. Microservice Restaurant

The main purpose of restaurant microservice is to handle the information of the type and
products.

4.2.2.1. API RESTful

In this file is similar to the other microservice, it implements all the functions of this
microservice from e.g table6, to be called from the client.

fileStorageEngineProduct = multer.diskStorage({
destination: (req, file, cb
cb(, " ./app/images
]
filename: (req, file, cb
cb(, Date.now() + + file.originalname);

uploadPr = multer({ storage: fileStorageEngineProduct });

Figure 22: API RESTful restaurant made by author

41

In e.g figure 22 this function is how to introduce images for the products, first it is required the
multer[17] library to store the images, with this library it is possible to choose where it is
possible to store the data and the filename, for the microservice the images will be safe in
a folder /app/images(the folder /app will be created on the dockerfile e.g figure 24) and
the name for the files will be the current date with the name from the file, then we define
a const for upload the picture. Then our function to store images is ready and we could
access these images to put in our client.

4.2.2.2. Database Operations

In this file it is similar to the other microservice, I create a function for upload the database, but
in this microservices we have other difference, If we remember in the e.g. figure 8 we
have a dependency from restaurant microservice to customer microservice, that's because
we need some information from the orders at the moment to print the ticket and update
the sales. Then we need to create specific calls to the other microservice to have access to
this data.

product > J5 model_product
getSession(token, cb) {
console.log(urlUsers + '
params: { token: token
)i

axios.get(urlUsers + °
params: { token: token }

.{henires
cb(, res.data)

.catch(err
cb(err);

getCollection(token, id, cb) {
console.log(urlusers + */ "+ oid);
axios.get(urlUsers + "/info/' + id,

narams: { token: token }
L J

.fhen{res
cb(, res.data)

.catch(err
cb(err);

Figure 23: Calls for users microservice made by author

42

Then in the e.g figure 21, we have two different calls to the customers microservice, getSession
to check the token from our user, and the second function getCollection with this function
we can get a specific collection from the customer microservices, with this function
configured our microservices restaurant it is ready to request for collection to the
customer microservice

4.2.2.3. Dockerfile

In this Dockerfile it is defined as the information to create the new image for restaurant
microservice, this image is very similar to the other image, but in this file we have a few
differences. The difference it is on the configuration parameters, first it is this service will
be listened on the 8080 port and here we have a new parameter (url users), this
parameter it is to connect the restaurant microservice to the customers microservices, if
we check the url it is calling the port :8090, which is where it is the customers
microservices listening for request.

product ? dockerfile

node

description="Product microservice"
version="1.0"
maintainer="danymexicano5@gmail.com"

PORT=8030
URL USERS="http:
URL_MONGODB="mo

product.js model product.js package.json /app/
mkdir -p /app/images
npm --prefix /app install

node /app $PORT $URL_USERS $URL_MDNGDD4

Figure 24: Dockerfile for restaurant image made by author

4.2.3. Deploy App

Now with all the systems developed we need to containerize our microservices, to deploy our
system, for this I will use docker-compose.yml to deploy our microservices in different
containers on the same host.

43

"'mongodb: //mongol:27017"'

mongol

images1l:/app/images

./cliente/app/www/images/users:/app/images
mongo

lan

voll: /data/db

'27090:27017'

Figure 25: Docker-compose users and mongol containers mae by author

In the e.g figure 25 this part from the docker-compose.yml is how it is deployed the containers
for users microservice and MongoDB, then for deploying a container docker-compose
requires an image, for our microservice customer this image is in the folder ./users where
we have our Dockerfile defining this image (e.g table 21), in the environment it is defined
the parameters for the Dockerfile to this container is listening on the port 8090 and the
connection with the MongoDB database, in port it is configure that the container is
listening in the 8090 port, then this container it is attached to the LAN network and create
the dependency with mongo1 for at the moment to deploy the container, mongo 1 should
be created first, finally we have the volume imagesl, this volume it works to store the
image from this service, after it is created a temporary folder with the images in the client
side. In other hand the other service is mongo 1 this is the MongoDB database for users
microservices, for that it is downloaded the image mongo from Docker Hub, attached to
the LAN network, also it is created a volume to store all the data and the service will be

44

listening in the port 27090, (that's not require, but it is good to have easily access to the
database and check everything run properly)

. /product

"http://host.docker.internal:8090/e-order’
"mongodb://mongo2:27017"'

lan

users

mongo2

images2:/app/images
./cliente/app/www/images/product:/app/images

mongo

lan

vol2:/data/db

'27080:27017'

Figure 26: Docker-compose customer and mongo2 containers made by author

This part from the document is similar to the e.g figure 25. Here it is defined as the microservice
restaurant and mongo 2, the difference is the service restaurant is listening in the port
:8080 also it is defined the connection with the other microservice for that we add the
users container into the depends on from this container. In addition, we have the mongo
2, this is the database for the restaurant microservices, it is the same configuration as
mongo 1, the only difference it is this database is listening in the port :27080

45

Figure 27: Docker-Compose Volumes and networks mae by author

This is the end for the docker-compose.yml, in the e.g figure 27 it is defined the volumes it is
used for the containers, also the volume users and products are declared as external
because this is stored on the client side. Finally it is defined the network lan

With all the docke-compose.yml defined for deploy the system, I execute the command
docker-compose up

tfg

RUMNNING

tfg-users-1 tfg users
RUNNING PORT: 8090

tfg-product-’l tfg_product
RUMMNING PORT: 8080

tfg-mongo1-1 mongo
RUNNING PORT: 27090

tfg-mongo2-1 mongo
RUMMNING PORT: 27080

Figure 28: Container Deployed made by author

46

5. Results

After finishing the development of this system, I got a frontend because it is good how to take
the data from the frontend and parse this information for sending to the database through
to the microservices. Also, I must mention the dynamic parts in the frontend, for example
the menu in the restaurant.

Also, the development of the microservices, how they are working to receive information from
the client and how they can communicate to exchange information and how they got
containerized with docker. On the other hand, the CRUD operation is implemented to
handle the data on the database.

Finally, it is important to remark how it is easy to deploy the system due to the docker images
and docker-compose, which we deploy the app with the specification on these files

6. Providing the testing of the system

Now with the system developed It is important to check the system works properly, then first it is
important to know how the system could be deployed, for doing that it will be required to
deploy the container with the microservices, the for doing that we must go where we
have the docker-compose and run the command “docker-compose up”, this command
deploy our microservices in this container. After being deployed if we check the
container they are ready and listening on the port that we set up e.g. figure 29

< tfg-product-1 tfg_product
RUMNMING
Using users url http://host.docker.internal:8050/e-order
Using MeongeDE url mongod monge2: 27017
Micreoservice product liatening on port B080
< tfg-users-1 tfg_users
RUMNMING
Using MongeDBE urlmengodb mongoel: 27017
Microservice users listening on port 80390

Figure 29: Running containers

47

After verifying that the containers are running correctly. Now it is possible to run and test our
client side, then for doing that we go to the client folder and run the command “npx
electron .”. And now our client will be open and ready to use the system.

Now it is possible to test the system, the the test will be provided as following:

1) Login

2) Register

3) Add Product and Type

4) Create, edit, delete and Update order
5) Show order and update Sale

In the e.g figure 30 first we start with registering the first user for the system, it is important to
know the first user in being registered will be tagged as the owner, then we check the logs
in the container how the function is call and execute the function addUser, after being
register it is tried the login function which works properly. Finally, we tried the function
to add an employee, and in the logs of the container it is shown how the function is called
and returns the information about our new employee.

tfg-users-1 tfg users — @ @ @ @
< B = Logs ©® Inspect |~ Stats

at ClientSessicn.endSession (/app/node_modules/mengodb/lib/sessicns.js:132:41)

"iMroot", email':"root", "password”: "root”, "phone":"root”, "type”: "customer”, "image": "undefinsd”}
Warning: curscr.count is deprecated and will be remeoved in the next major version, please use ‘collection.esti
cllection.countDocuments® inst

* to show where the warning was created

authorize POST

connected.
authorize POST /e-order/users

addUser {"name":"b", "surname":"b","dni":"b", "password":"b", "phone™:"b", "type": "employee"}

Figure 30: Microservice Users, register&&login made by the author

In the e.g figure 31 it is showed the logs of the container when we add a new type and product in
the menu, if we check the logs the function it is going properly and we get the
information about the new type and product, also there are some times it is called the
function list menu, which is required from our client side

48

< tfg-product-1 tfg_product
RUNMING

= Logs ® Inspect |~ Stats

Figure 31 Product Microservice add type && product made by the author

In the e.g figure 32 it is possible to view the logs for how we create, edit and cancel the order,
also we can see which product it is added to the order and some extra data, the same for
when we edit the order, but when the order is canceled only the ID from the order is
require. Moreover, there are some other logs, check token and getCollection. If we
remember this function is called from the product microservice, that's because the client
needs to show the product from the order.

49

< tfg-users-1 tfg_users
RUNNING

= Logs © Inspect |~ Stats

authorize

0866ac?token—628beclaade581cdi2d0866ab

Figure 32: Create, edit and cancel order made by the author

In the e.g. figure 33 we can see our last tests, first in users microservice we order the food and
want to pay, then for the system we change the method Pay from the order to the method
taken by the client, also we have the other function open orders that is because the client
need to show this order to the employee in the dining view. Finally, in the microservice
product when the order is finished, we need to update the sales from this product.

< tfg-users-1 tfg_users
RUNNING

= Logs @ Inspect |~ Stats

authorize

/62Bbec331deb8lcd02d0866ad?token—628bclaade581lcd02d0866ab

connected

authorize POST /e-order/sessions

authorize GET /e-order/order/open?token=628bbd52de581cd02d0866aa
cpen corders

connected.

< tfg-product-1 tfg_product
RUNNING

= Logs @ Inspect |~ Stats

Figure 33: Order, Show orders and update orders made by the author

50

We can see that the system works correctly, both the calls from the client and the management of
its microservices, although I think it would be necessary to test it with many users to be
able to confirm this data.

7. Conclusions:

Once the development of the application is finish, it is time to make an analysis of the final
system and how it could be improved. First | think it would be important to consider our
objective, the phases of development and the final result.

The analysis of the app it was very useful, because you have a first idea to how will be the
system, only just need to follow the indications at the time to develop the system,
therefore it was good to have a deep analysis of how will be the frontend and the
backend of the system. Sometimes in the development of a system this is the most
significant part to not waste too much time in redesigning some parts of the system.

About the system it was good to practise how it works with microservices, how to make the
CRUD operation for the database and connect those operations with the APl RESTful
for having the microservice ready to the requests.

Another essential part in the system was to containerize the microservices with docker, due to
this it was easier to deploy the app.

Finally, it is indispensable to say the system could be improved, for example the GUI is not very
friendly to the users. For example the owner and employee views are very simple and
with almost no components from materialize.css, also there are no colours, all of this is
worst experience for the users.

8. Perspective

Looking at the future although the system it is developed, this could be improved adding
some new specs. For example, I thought adding a new microservice to handle the
booking for the restaurant would be great because this adds value to the product, and it is
helpful to introduce this into the market.

51

9. References

[0] OECD. (2020, March 04). OECD (2020), OECD Tourism Trends and Policies 2020, OECD
Publishing, Paris. OECD Tourism Trends and Policies. Retrieved May 20, 2022, from
https://www.oecd-ilibrary.org/sites/8ed5145b-en/index.html?itemId=/content/component/
8ed5145b-en#chapter-d1€90998

[1] UBER-EATS - https://www.ubereats.com/

[2] INSTACART - https://www.instacart.com/

[3] STACKSHARE - Uber Eats - https://stackshare.io/uber-technologies/uber

[4] STACKSHARE - Instacart - https://stackshare.io/instacart/instacart

[5] BY FRENCH PRESS AGENCY - AFP. (2021, October 31). Spain's delivery riders law
reshuffles deck for take-away market. Daily Sabah.
https://www.dailysabah.com/business/economy/spains-delivery-riders-law-reshuffles-dec
k-for-take-away-market

[6] ELECTRON - https://www.electronjs.org/

[7] Springer, C. (2017, 09 06). Microservices: Yesterday, Today, and Tomorrow. Springer Link.
Retrieved 05 21, 2022, from

https://link.springer.com/chapter/10.1007/978-3-319-67425-4 12#citeas

[8] NODE.JS - https://nodejs.org/en/about/

[9] EXPRESS - http://expressjs.com/

[10] AXIOS - https://github.com/axios/axios

[11] MATERIALIZE.CSS - https://materializecss.com/

[12] MONGODB - https://www.mongodb.com/

[13] DOCKER - https://www.docker.com/

52

https://www.ubereats.com/
https://stackshare.io/instacart/instacart
https://www.electronjs.org/
https://nodejs.org/en/about/
http://expressjs.com/
https://github.com/axios/axios
https://materializecss.com/
https://www.mongodb.com/

[14]Nathan, S., Ghosh, R., Mukherjee, T., & Narayanan, K. (2017, 05 11). CoMICon. A
Co-Operative Management System for Docker Container Images. IEEE International
Conference on Cloud Engineering (IC2E). Retrieved 05 22, 2022, from

https://ieeexplore.ieee.org/abstract/document/7923794

[15] DOCKER-HUB - https://hub.docker.com/
[16] MONGODB OPERATION - https://www.mongodb.com/docs/manual/introduction/

[17] MULTER - https://www.npmjs.com/package/multer

53

https://ieeexplore.ieee.org/abstract/document/7923794
https://hub.docker.com/
https://www.mongodb.com/docs/manual/introduction/

Appendix 1
Url link to the project: https://github.com/DemeX404/TFG

54

