
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/186784

Hauck, P.; Kazarin, LS.; Martínez-Pastor, A.; Pérez-Ramos, MD. (2021). Thompson-like
characterization of solubility for products of finite groups. Annali di Matematica Pura ed
Applicata (1923 -). 200(1):337-362. https://doi.org/10.1007/s10231-020-00998-z

https://doi.org/10.1007/s10231-020-00998-z

Springer-Verlag



Noname manuscript No.
(will be inserted by the editor)

Thompson-like characterization of solubility for products
of finite groups

P. Hauck · L. S. Kazarin ·
A. Mart́ınez-Pastor · M. D. Pérez-Ramos
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Abstract A remarkable result of Thompson states that a finite group is soluble
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generalized in numerous ways, and it is in the core of a wide area of research in
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1 Introduction

Our work arises from the confluence of two major areas of study in group theory.
On the one hand, what we might call local-global theory, and on the other hand,
the theory of products of groups.

Regarding the first one, the interest lies in the influence on the global structure of
a group of local properties on its elements, either by satisfying explicit relations
or formulas or by their generation properties. Classical Burnside problems might
be traced to the origin of this theory. We paraphrase here F. Grunewald, B. Kun-
yavskĭı and E. Plotkin in [28], which provides a valuable reference on the topic.
Widely speaking, one can say that classical Burnside problems ask to what extent
finiteness of cyclic subgroups (i.e. generated by one element) determines finiteness
of arbitrary finitely generated subgroups of a group. We are interested in the in-
fluence of two-generated subgroups on the structure of finite groups. First results
in this direction by M. Zorn [41] and R. Baer [6] show that nilpotency and super-
solubility, respectively, of a finite group is determined by the same corresponding
property of its two-generated subgroups. Undoubtedly one of the most influential
results is the one of J. Thompson regarding solubility.

Theorem (Thompson, [39]) A finite group G is soluble if and only if every two-

generated subgroup of G is soluble.

This result has been generalized and sharpened in various ways. In addition to
the above-mentioned reference, we cite for instance [16,23–27,37], some of whose
results have been applied to prove the results in this paper. As a typical example
we mention the following theorem of R. Guralnick, K. Kunyavskĭı, E. Plotkin and
A. Shalev.

Theorem (Guralnick, Kunyavskĭı, Plotkin, Shalev, [27]) Let G be a finite group, let

GS denote the soluble radical of G (i.e. the largest soluble normal subgroup of G) and

let x ∈ G. Then x ∈ GS if and only if the subgroup 〈x, y〉 is soluble for all y ∈ G.

In the theory of products of groups, the aim is to seek for information about the
structure of a factorized group from the subgroups in the factorization (and vice
versa). The well-known theorem by Kegel and Wielandt, about the solubility of
a finite group which is the product of nilpotent subgroups, is probably one of
the most remarkable results in the area. It is also known that the product of two
finite supersoluble subgroups is not necessarily supersoluble, even if the factors
are normal subgroups. This fact has motivated the search for conditions to obtain
positive results and, at the time, has been the source of a vast line of research
on factorized finite groups whose factors are linked by some particular property.
Originally M. Asaad and A. Shaalan in [5] introduced totally permutable products
of subgroups, which can be seen as extension of central products. A group G = AB

is a central product of subgroups A and B if ab = ba, for all a ∈ A and b ∈ B;
equivalently, 〈a, b〉 is abelian, for all a ∈ A and b ∈ B. The subgroups A and B are
said to be totally permutable if every subgroup of A permutes with every subgroup
of B; equivalently, 〈a〉〈b〉 = 〈b〉〈a〉, for all a ∈ A and b ∈ B. R. Maier notes in [36]
that for such subgroups, 〈a, b〉 = 〈a〉〈b〉 = 〈b〉〈a〉 is supersoluble, for all a ∈ A and
b ∈ B, which led to the following connection property:

Definition 1 (Carocca, [11]) Let L be a non-empty class of groups. Subgroups A
and B of a group G are L-connected if 〈a, b〉 ∈ L for all a ∈ A and b ∈ B.
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For the special case when G = AB = A = B this means of course that 〈a, b〉 ∈ L for
all a, b ∈ G, and the study of products of L-connected subgroups provides a more
general setting for local-global questions related to two-generated subgroups. We
refer to [8,29,9] for previous studies for the class L = N of finite nilpotent groups,
and to [18–21] for L being the class of finite metanilpotent groups and other rel-
evant classes of groups. For the class L = S of finite soluble groups, A. Carocca
in [12] proved the solubility of a product of S-connected soluble subgroups, which
provides a first extension of the above-mentioned theorem of Thompson for prod-
ucts of groups (see Corollary 2).

All groups considered in this paper are assumed to be finite. Unless otherwise
specified, we shall adhere to the notation used in [15] and we refer also to that
book for the basic results on classes of groups. In particular, GS denotes the soluble
radical of a group G as mentioned before. In addition, if n is a positive integer,
then π(n) denotes the set of primes dividing n; and π(H) = π(|H|) for any group
H.

The main result in this paper is the following:

Main Theorem. Let the finite group G = AB be the product of subgroups A and B.

Then the following statements are equivalent:

(1) A,B are S-connected.

(2) For all primes p 6= q, all p-elements a ∈ A and all q-elements b ∈ B, 〈a, b〉 is

soluble.

(3) [A,B] ≤ GS .

The configuration of a minimal counterexample to the Main Theorem is proven
to be an almost simple group, i.e. a group G such that N �G ≤ Aut(N) for some
non-abelian simple group N , where Aut(N) denotes the automorphism group of
N . As a major previous result, in Section 2 we prove Theorem 1, which deals with
an almost simple group which is the product of subgroups satisfying condition (2)
of the Main Theorem. A stronger version of Theorem 1 is stated in Corollary 1 as a
consequence of our main theorem. A remarkable result deduced from the checking
carried out for the proof of Theorem 1 is stated in Theorem 2 and has to do with
the existence of independent primes in almost simple groups.
For a group G the Grünberg-Kegel or prime graph Γ (G) of G is well-known.
It consists of the set of vertices V (Γ (G)) = π(G) and the set of edges (p, q) ∈
π(G) × π(G) such that there is an element of order pq in G. S. Abe and N. Iiyori
introduced in [1] the soluble graph Γsol(G) which has the same set of vertices as
Γ (G), but two vertices p, q ∈ π(G) are adjacent if G contains a soluble subgroup
of order divisible by pq. Iiyori [33], B. Amberg, A. Carocca and L. Kazarin [2],
and Amberg and Kazarin [4] take further the study of the soluble graph specially
for non-abelian finite simple groups. In [4] the authors are concerned with subsets
I ⊆ π(G) such that no pair of vertices in I is adjacent with respect to Γ (G) or
Γsol(G), respectively, called independent sets of the corresponding graph. This leads
to the following main concept for our purposes.

Definition 2 Given a finite group H, we call two prime divisors p and q of |H|
independent (with respect to H), if H contains no soluble subgroup whose order is
divisible by pq.

For an almost simple group G = AB with non-abelian socle N , not contained
in either A or B, and except for a few exceptions, we state in Theorem 2, and
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in the subsequent Remark, the existence of independent primes with respect to
N , one dividing |A∩N |, the other one dividing |B ∩N |, derived from the proof of
Theorem 1. We also prove that apart from some additional exceptions the existence
of such independent primes with respect to Aut(N) remains true.

It is clear that the Main Theorem extends the above-mentioned theorems of
Thompson [39] and Carocca [12]. It also implies the theorem of Guralnick, Kun-
yavskĭı, Plotkin and Shalev [27] stated above (with A = G, B = 〈x〉; note that
〈x〉GS is a normal (soluble) subgroup of G by the Main Theorem). However, it is
to be emphasized that we make use of this result in the proof of the Main Theorem.
Section 3 is devoted to prove our main result and to state some first consequences.
In particular, Corollary 2 generalizes Carocca’s result via the soluble radical in
a product of S-connected subgroups. In a forthcoming paper [17], our theorem is
applied to extend main results known for finite soluble groups in [18–20] to the
universe of all finite groups.

2 The case of almost simple groups

The aim of this section is the proof of the following result:

Theorem 1 Let N be a non-abelian simple group and N ≤ G = AB ≤ Aut(N) with

subgroups A and B satisfying condition (2) of the Main Theorem, AN = BN = G.

Then A = G or B = G.

In Corollary 1 we will see, as a consequence of the Main Theorem, that the as-
sumption AN = BN = G in the preceding result is not necessary and that actually
A = 1 or B = 1 holds.

Occasionally, the following lemma will be useful (cf. [3, Lemma 1.3.1]).

Lemma 1 Let G = AB be a group with subgroups A,B satisfying condition (2) of the

Main Theorem. If g, h ∈ G, then G = AgBh and Ag, Bh also satisfy condition (2) of

the Main Theorem.

Proof Let g = a1b1, h = b2a2, b1a
−1
2 = a3b3 with a1, a2, a3 ∈ A, b1, b2, b3 ∈ B.

If a ∈ A and b ∈ B, then ag = (aa1a3)b3a2 and bh = (bb2b
−1
3 )b3a2 . The assertion

follows. ut

Apart from the case of alternating groups our treatment in this section relies
heavily on the classification of the maximal factorizations of almost simple groups
by Liebeck, Praeger and Saxl [35] (and [30] for the exceptional groups of Lie type).
We will also keep to their notation as close as possible.

In order to prove Theorem 1, we assume here that N is neither contained in A nor
in B (for otherwise A = G or B = G and we are done). Our aim is to show that
for all possible factorizations G = AB, with N � A and N � B, the subgroups A
and B do not satisfy condition (2) of the Main Theorem.

Since we have also to consider possibly non-maximal factorizations G = AB, we
use the following notation:
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Notation If G = AB is as above, choose maximal subgroups Ã ≥ A and B̃ ≥ B,
N � Ã and N � B̃. Then G = ÃB̃ is a factorization of the type considered in [35].

Except for this ˜ -notation we use the notation of [35], however with N instead of
L.

We need the following simple lemma which follows from elementary order consid-
erations. To formulate it, we denote for a positive integer n and a prime p by np
the highest p-power dividing n, i.e. n = npm, p 6 | m.

Lemma 2 Let G = AB = AN = BN as in Theorem 1, p a prime. Then

|A ∩N |p ≥
|N |p

|B̃ ∩N |p|Out(N)|p

and likewise with B and Ã.

Proof Since G = B̃N = B̃A = AN , we easily have:

|N |
|B̃ ∩N ||Out(N)|

≤ |N |
|B̃ ∩N ||G/N |

=
|N |

|B̃ ∩N ||B̃/(B̃ ∩N)|
=
|N |
|B̃|

=
|N ||A|
|G||B̃ ∩A|

=
|A ∩N |
|B̃ ∩A|

≤ |A ∩N |,

and the result follows. ut

We state the outline of the proof of Theorem 1, and explain general arguments
and strategies used to carry it out, though usually detailed checking work and easy
calculations are omitted.

Strategies (S1) In our treatment of almost simple groups G (especially those of
Lie type and the sporadic ones), we will usually determine two primes, one
dividing |A ∩ N | and the other dividing |B ∩ N | that are independent with
respect to the simple group N . The divisibility properties follow always from
Lemma 2.
We remark that in sections 2.2 - 2.4 independence of primes is always meant
with respect to N , even if not explicitely stated.

(S2) For certain small groups the independency of two primes can be deduced
from the subgroup structure given in [10] or [13].

(S3) The following observation is sometimes helpful: Given a factorization G = AB

of the almost simple group G with A 6= G 6= B, suppose by way of contradiction
that A, B satisfy condition (2) of the Main Theorem. If r and s are distinct
primes, a ∈ A an r-element and b ∈ B an s-element, we may assume by Lemma
1, and by replacing A by a suitable conjugate, that a and b are contained
in a Hall {r, s}-subgroup of the soluble group 〈a, b〉, and so they generate an
{r, s}-subgroup of G.

(S4) For infinite families of groups of Lie type, the independency of the specified
primes can usually be proved by referring to results about the prime divisors of
certain maximal soluble subgroups. One of the primes in question is frequently
a primitive prime divisor of pk−1 for a suitable k, where p is the characteristic
of the field over which the group is defined.
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We recall this relevant definition:

Definition 3 Let k be a positive integer and p a prime. A primitive prime divisor

of pk − 1 is a prime r such that r|pk − 1 and r 6 | pi − 1 for every integer i such that
1 ≤ i < k.

The following well-known lemma of Zsigmondy [42] describes when primitive prime
divisors exist:

Lemma 3 Let k ≥ 2 an integer and p a prime.

a) There exists a primitive prime divisor of pk − 1 unless k = 2 and p is a Mersenne

prime or (p, k) = (2, 6).

b) If r is a primitive prime divisor of pk − 1, then r − 1 ≡ 0 (mod k). In particular,

r ≥ k + 1.

2.1 Alternating groups

Lemma 4 If n is an integer, n ≥ 5, n 6= 10, then there exists a non-Mersenne prime

p such that n
2 < p ≤ n.

Proof By a generalization of the Bertrand-Chebyshev theorem, due to Ramanujan
[38], for n ≥ 11 there exist two primes p1, p2 with n

2 < p1 < p2 ≤ n. Clearly, not
both of them can be Mersenne primes. Hence the assertion holds for n ≥ 11 and
p = 5 works for 5 ≤ n ≤ 9. ut

Lemma 5 Let H be a soluble permutation group of degree n. If there exists a non-

Mersenne prime p > n
2 dividing |H|, then H is p-closed, i.e. H has a unique Sylow

p-subgroup.

Proof p2 does not divide |H| as p > n
2 . Hence the assertion is equivalent to 〈x〉

normal in H for x ∈ H of order p; note that x is a p-cycle.
The proof is by induction on n, the case n = 1 being trivial. Assume that H is
intransitive on Ω = {1, . . . , n} with orbits ∆1, . . . ,∆s. Then H ≤ H∆1 × · · · ×H∆s

where H∆i is the permutation group induced by H on ∆i. It follows that there
exists exactly one j with |∆j | ≥ p and p divides |H∆j |. By induction, H∆j is
p-closed and so is H.
Hence we may assume that H is transitive on Ω. Then H is primitive on Ω (see
[40, 1.2.(a)]). If n = p then H is 2-transitive or p-closed by a result of Burnside
(see [14, Corollary 3.5B]). If n > p, then H is 2-transitive by a result of Jordan
(see [14, Theorem 7.4A]). So it remains to consider the 2-transitive case.
According to Huppert’s classification of soluble 2-transitive permutation groups
[31], n = ra for a prime r and H ≤ AGLa(r) where either H is a group of semilinear
mappings over Fra with |H| = ra(ra − 1)b, b|a or n ∈ {32, 34, 52, 72, 112, 232}.
It is easily checked that in none of the exceptional cases there exists a prime divisor
of |AGLa(r)| which is larger than ra

2 .

In the generic case, |H| = ra(ra − 1)b, b|a. Since p > ra

2 , it follows immediately
that p does not divide a and if p|ra − 1, then p = ra − 1 and r = 2 whence p is a
Mersenne prime, contradicting the hypothesis about p. Therefore p = r and a = 1.
Then |H| = p(p− 1) and H is p-closed by Sylow’s theorem. ut
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Proposition 1 Let N = An and n ≥ 5. If N ≤ G = AB ≤ Aut(N) with subgroups

A and B satisfying condition (2) of the Main Theorem, AN = BN = G, then A = G

or B = G.

Proof We consider first the case n = 10. Suppose 7 divides |A|. By [13], a Sylow
5-subgroup and a Sylow 7-subgoup of N = A10 generate N . Hence if A contains
a Sylow 5-subgroup of N , then N ≤ A whence A = G. So we may suppose that
5||B|. Again by [13], 5 and 7 are independent, contradicting condition (2) of the
Main Theorem for A and B.
Now let n 6= 10. By Lemma 4, there exists a non-Mersenne prime p with n

2 < p ≤ n.
We may assume that p divides |A|. Take P a subgroup of order p in A. If also p

divides |B|, we may assume by Lemma 1 that P ≤ B by replacing B by a suitable
conjugate if necessary.
Let b ∈ B be a q-element for a prime q 6= p. By hypothesis, 〈P, b〉 is soluble.
Therefore Lemma 5 implies that 〈P, b〉 is p-closed. It follows that P is normalized
by all p′-elements of B and hence by Op(B). If p does not divide |B|, B = Op(B);
otherwise B = Op(B)P . Therefore B normalizes P . Hence P ≤ Ab for all b ∈ B.
It follows now from G = AB that P ≤

⋂
b∈B

Ab =
⋂
g∈G

Ag. But then CoreG(A) 6= 1,

whence N ≤ A, A = G. ut

Notation for tables in 2.2–2.4.

Sections 2.2–2.4 make essential use of maximal factorizations of almost simple
groups whose simple normal subgroup is of Lie type or sporadic as given in [35].
For those factorizations where it is possible to determine independent primes, as
described in (S1), the corresponding information is gathered in tables. They appear
throughout the proof at the appropiate places.
In all tables the entries in the third and fourth columns are independent primes
(with respect to the simple group N) dividing |A∩N | (third column) and |B ∩N |
(fourth column), respectively.
Also, in Tables 1, 3, 5–8, the entries in the second column present subcases of
certain factorizations depending on the parameters of the corresponding classical
group considered in each case.
In Tables 2, 4, 9–14, the second column describes the subgroups appearing in the
possible maximal factorizations of the corresponding almost simple group.

2.2 Classical groups of Lie type

According to our general strategies we proceed here as follows:

- As mentioned in (S1), in the treatment of classical almost simple groups of
Lie type, apart from two cases (see Section 2.2.2, case m); Section 2.2.3, case
g)) we will always determine two primes, one dividing |A ∩ N | and the other
dividing |B ∩N | that are independent with respect to the simple group N (cf.
Theorem 2).

- Also as said in (S4), for the infinite families of factorizations presented in [35],
one of the primes is usually a primitive prime divisor r of pk−1 for a suitable k,
depending on the parameters of the simple groups of Lie type of characteristic
p. In this case the independence of r and the other specified prime, say s, can in
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general be proved by using results of [2] where necessary conditions for primes
dividing the order of a soluble subgroup containing an element of order r are
given; we will state them explicitely at the appropriate places but omit the
easy calculations needed to show that s is not among the possible primes.

- There are also exceptional factorizations of classical groups with certain small
parameters n, q. As mentioned before in (S2), in these cases the independence
of the specified primes can be deduced from the subgroup structure given in
[10] or [13].

- We also note that many of the independency results can alternatively be in-
ferred from the proof of Theorem 2 in [1] or the one of Theorem 1 in [33].

In the following we use the notation of [35] for the groups of Lie type, especially
for the orthogonal groups, and their subgroups. In particular, if N̂ is a classical
linear group on the vector space V with centre Z such that N = N̂/Z is simple
and N̂ � Ĝ ≤ GL(V ), for any subgroup X of Ĝ we denote by X̂ the subgroup
(XZ ∩ N̂)/Z of N . Also we use the notation Pi, Ni, N

ε
i (ε = ±), for stabilizers of

subspaces as described in [35, 2.2.4].

2.2.1 Linear groups

N = Ln(q), n ≥ 2, q = pe, p prime.

We will proceed by considering the possible maximal factorizations according to
[35, Tables 1,3]. Using the notation of [35], in general X

Ã
= Ã∩N and likewise for

B̃ as can be seen from chapters 2 and 3 of [35]; in the exceptional cases, we give
information about |(Ã ∩N) : X

Ã
| or |(B̃ ∩N) : X

B̃
|, respectively. Then:

- In all cases we determine independent primes, one dividing |A ∩N |, the other
one dividing |B ∩N |.

- The independency of the given primes can be proved as explained at the be-
ginning of Section 2.2.

- In addition, in case of N = L2(q) the independence of the given primes is
always a consequence of Dickson’s list of subgroups of L2(q) as presented for
instance in [32, Theorem II.8.27].

In order to deal with infinite families of factorizations we introduce primes r, s, t,
depending on the parameters (n, p, e) of the linear group N = Ln(q), q = pe,
p prime, in each considered case, as we explain below in Notation 1. The next
remark considers the restrictions for their existence with the consequence that
for one type of factorization (type a) below) the treatment has to be split into
subcases.

Remark • If (n, p, e) 6= (2,Mersenne prime, 1), (2, 2, 3), (3, 2, 2), (6, 2, 1), then by
Lemma 3 there exists a primitive prime divisor of pen − 1.

• If (n, p, e) 6= (2, p, 1), (2,Mersenne prime, 2), (2, 2, 6), (4, 2, 2), (7, 2, 1),
(3,Mersenne prime, 1), (3, 2, 3), then by Lemma 3 there exists a primitive prime
divisor of pe(n−1) − 1.

• If (n, p, e) 6= (4,Mersenne prime, 1), (4, 2, 3), (5, 2, 2), (8, 2, 1), n ≥ 4, then by
Lemma 3 there exists a primitive prime divisor of pe(n−2) − 1.
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Notation 1 In those cases where they exist, we denote primes r, s, t for linear

groups as follows:

• r a primitive prime divisor of pen − 1.
• s a primitive prime divisor of pe(n−1) − 1.
• t a primitive prime divisor of pe(n−2) − 1.

It follows from Lemma 3 that such primes r, s, t do not divide |Out(N)|.
For the mentioned use of [2], the result that is needed is the following:

Lemma 6 ([2, Lemma 2.5]) With the previous notation, let the prime r be as above.

If H is a maximal soluble subgroup of GLn(q), n ≥ 2, whose order is divisible by r,

then one of the following holds:

(1) π(H) = π(n) ∪ π(qn − 1);

(2) π(H) ⊆ π(q − 1) ∪ π(l) ∪ {2, r}, where n = 2l, r = n+ 1 and q = p is a prime.

This result is sufficient for the subsequent treatment, but for some cases Lemma 2.6
of [2] can be used alternatively.

We consider now the possible maximal factorizations for linear groups according
to [35, Tables 1,3], as mentioned above at the beginning of subsection 2.2.1.

a) Ã ∩N = ĜLa(qb).b, ab = n, b prime, B̃ ∩N = P1 or Pn−1, (n, q) 6= (4, 2):

In this case there are independent primes (with respect to N) dividing |A∩N |
and |B ∩ N |, respectively, listed in Table 1. Here r, s, t are the primes in
Notation 1, unless otherwise specified. There are eight subcases depending on
the parameters (n, p, e).

a1) n ≥ 3, (n, p, e) 6= (3,Mersenne prime, 1), r s
(3, 2, 3), (7, 2, 1), e > 1 or s 6= n
(r as above or r = 7 if (n, p, e) = (3, 2, 2)
or (6, 2, 1),
s as above or s = 7 if (n, p, e) = (4, 2, 2))

a2) n ≥ 4, e = 1, n = s r t
(s as above or s = 7 if (n, p, e) = (7, 2, 1))

a3) (n, p, e) = (3, p, 1), p 6= 3 r p
a4) (n, p, e) = (3, 3, 1) 13 2
a5) (n, p, e) = (3, 2, 3) 73 7
a6) (n, p, e) = (2, p, e), e ≥ 2, r s

(n, p, e) 6= (2,Mersenne prime, 2) (3 if (7 if
p = 2 and e = 3) p = 2 and e = 6)

a7) (n, p, e) = (2,Mersenne prime, 2), p > 3 r p
a8) (n, p, e) = (2, p, 1), p > 3 largest prime p

divisor of p+ 1

Table 1

We show details for the proof of the existence of independent primes listed
in Table 1, corresponding to the case a1), as model of the arguments and
strategies used along the present proof of Theorem 1.
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Case a1) We aim to prove under the conditions of a1) that r divides |A ∩N |,
s divides |B ∩N |, and r and s are independent primes with respect to N .
We first notice that, attending Notation 1, in the present case there exists a
primitive prime divisor r of pen−1, except when (n, p, e) = (3, 2, 2) or (6, 2, 1),
and there exists a primitive prime divisor s of pe(n−1)−1, except when (n, p, e) =
(4, 2, 2), in which case we take s = 7.
Assume first that (n, p, e) 6= (3, 2, 2), (6, 2, 1), and take primes r, s as men-
tioned. Then we can use Lemma 6 to prove the independency of r and s.
We claim that s /∈ π(n)∪π(qn− 1), and s /∈ π(q− 1)∪π(l)∪{2, r} when n = 2l,
r = n+ 1, q = p. This will imply that r and s are independent by Lemma 6.
This is easily checked if (n, p, e) = (4, 2, 2) and s = 7. Otherwise, s is a primitive
prime divisor of pe(n−1) − 1. By Lemma 3 we have that s ≥ e(n − 1) + 1. If
s ∈ π(n), then e = 1 and s = n, which is not the case. Then s /∈ π(n). On
the other hand, if s ∈ π(qn − 1), then s divides (qn−1 − 1, qn − 1) = q − 1,
which is not the case by the definition of s and the fact that n − 1 ≥ 2. Thus
s /∈ π(qn − 1) ⊇ π(q − 1). It is also clear that s 6= r, 2. Finally, if n = 2l, since
s ≥ n > l, we have that s /∈ π(l), and the claim is proven.
We use Lemma 2 to prove that r divides |A ∩N | and s divides |B ∩N |.
In the present case, one checks that r does not divide |B̃ ∩ N ||Out(N)| but
divides |N |, which implies that r divides |A ∩N | by Lemma 2. Analogously, s
divides |B ∩N | as it does not divide |Ã ∩N ||Out(N)| and divides |N |.
Finally we consider the cases (n, p, e) = (3, 2, 2) or (6, 2, 1).
Here we take r = 7 and notice that for the case (n, p, e) = (3, 2, 2), s = 5 is
primitive prime divisor of pe(n−1) − 1 = 24 − 1, whereas for the case (n, p, e) =
(6, 2, 1), s = 31 is primitive prime divisor of pe(n−1) − 1 = 25 − 1.
In the case (n, p, e) = (6, 2, 1), 72 does not divide |B̃ ∩N | but divides |N |, and
7 does not divide |Out(N)|. Then Lemma 2 implies that 7 divides |A ∩N |.
In the case (n, p, e) = (3, 2, 2), 7 does not divide |B̃ ∩ N ||Out(N)| but divides
|N |, which implies again that 7 divides |A ∩N |.
Regarding s, in the both cases (n, p, e) = (3, 2, 2) or (6, 2, 1), s does not divide
|Ã ∩ N ||Out(N)| but divides |N |, and Lemma 2 implies again that s divides
|B ∩N |.
In order to prove the independency of r and s in the cases (n, p, e) = (3, 2, 2)
or (6, 2, 1), we notice that a soluble subgroup of N whose order is divisible by
rs, would contain an {r, s}-subgroup with order also divisible by rs. It is easily
checked, for instance using [13], that N contains no such {r, s}-subgroup.

b) X
Ã

= PSpn(q), B̃ ∩N = P1 or Pn−1, n even, n ≥ 4:

(Note that |(Ã ∩ N) : X
Ã
| = 1 or 2 since PSpn(q) or PSpn(q).2 is a maximal

subgroup of N , depending on n and q; see [10] and [34].)

This case is handled exactly as a1). All other cases in a) do not occur here
since n ≥ 4 is even.

c) X
Ã

= PSpn(q), B̃ ∩N = Stab(V1 ⊕ Vn−1), n even, n ≥ 4:

This case is handled exactly as a1).

d) Ã ∩N = ĜLn/2(q2).2, B̃ ∩N = Stab(V1 ⊕ Vn−1), q = 2, 4, n even, n ≥ 4:

This case is handled exactly as a1).

We treat now all exceptional factorizations of N corresponding to [35, Table
3]. We gather the different cases ocurring and the corresponding independent
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primes in Table 2. Recall that in the second column we also include Ã∩N and
B̃ ∩N .

e) N = L2(11), Ã ∩N = P1, B̃ ∩N = A5 11 3

f) N = L2(19), Ã ∩N = P1, B̃ ∩N = A5 11 5

g) N = L2(29), Ã ∩N = P1, B̃ ∩N = A5 29 5

h) N = L2(59), Ã ∩N = P1, B̃ ∩N = A5 59 5

i) N = L2(7), Ã ∩N = P1, B̃ ∩N = S4 7 2

j) N = L2(23), Ã ∩N = P1, B̃ ∩N = S4 23 3

k) N = L2(11), Ã ∩N = P1, B̃ ∩N = A4 11 3

l) N = L2(16), Ã ∩N = D34, B̃ ∩N = L2(4) 17 5

m) N = L3(4), Ã ∩N = L2(7), B̃ ∩N = A6 7 5

n) N = L5(2), Ã ∩N = 31.5, B̃ ∩N = P2 or P3 31 7

Table 2

2.2.2 Unitary groups

N = Un(q), n ≥ 3, q = pe, p prime.

Infinite families of factorizations of N described in [35, Table 1] exist only for
even n. So we assume first that n = 2m ≥ 4. Then:

- In all cases we determine independent primes, one dividing |A ∩ N |, the
other one dividing |B ∩N |.

- The divisibility properties and the independency are proved as described
at the beginning of Section 2.2.

We introduce primes r, s depending on (n, p, e), as explained next, where the
remark considers the restrictions for their existence:

Remark • If (n, p, e) 6= (4, 2, 1), then by Lemma 3 there exists a primitive
prime divisor of p2e(n−1) − 1.

• If (n, p, e) 6= (6, 2, 1), then by Lemma 3 there exists a primitive prime divisor
s of pen − 1.

Notation 2 In those cases where they exist, we denote primes r, s for unitary

groups as follows:
• r a primitive prime divisor of p2e(n−1) − 1.
• s a primitive prime divisor of pen − 1.

It follows from Lemma 3 that such primes r, s do not divide |Out(N)|.
We make use of the following result in [2]:

Lemma 7 ([2, Lemma 2.8(1)]) With the previous notation, let the prime r be as

above. If H is a maximal soluble subgroup of Un(q), n = 2m ≥ 4, with r | |H|, then

π(H) ⊆ π(n− 1) ∪ π(qn−1 + 1).
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We consider first the possible maximal factorizations for unitary groups ac-
cording to [35, Table 1].

a) Ã ∩N = N1, B̃ ∩N = Pm:

We have to consider two subcases, presented in Table 3.

a1) (n, p, e) 6= (4, 2, 1), r s (s as above or s = 7 if (n, p, e) = (6, 2, 1))
a2) (n, p, e) = (4, 2, 1) 3 5

Table 3

This case is proven by using analogous arguments to those for linear groups,
in Section 2.2.1, case a1), but with corresponding primes r, s as in Nota-
tion 2 or as specified, and Lemma 7 for the proof of the independence.

b) Ã ∩N = N1, X
B̃

= PSpn(q):

Note that |(B̃∩N) : X
B̃
| = 1 or 2 since PSpn(q) or PSpn(q).2 is a maximal

subgroup of N (depending on q and n; cf. [34] and [10]).

This case is handled exactly as a).

c) N = Un(2), m ≥ 3, Ã ∩N = N1, X
B̃

= ŜLm(4).2:

This case is handled exactly as a1).

d) N = Un(4), Ã ∩N = N1, X
B̃

= ŜLm(16).3.2:

This case is handled exactly as a1).

We treat now the exceptional factorizations as given in [35, Table 3].

Here we have:
- Apart from one case (N = U4(3)) there are independent primes dividing
|A ∩N | and |B ∩N |, respectively, summarized in Table 4.

- The divisibility of |A∩N | and |B ∩N | by the specified primes follows from
Lemma 2.

e) N = U3(3), Ã ∩N = L2(7), B̃ ∩N = P1 7 2

f) N = U3(5), Ã ∩N = A7, B̃ ∩N = P1 7 5

g) N = U3(8), Ã ∩N = 19.3, B̃ ∩N = P1 19 7

h) N = U4(2), Ã ∩N = 33.S4, B̃ ∩N = P2 3 5

i) N = U6(2), Ã ∩N = N1, B̃ ∩N = U4(3).2 11 7

j) N = U6(2), Ã ∩N = N1, B̃ ∩N = M22 11 7

k) N = U9(2), Ã ∩N = J3, B̃ ∩N = P1 19 43

l) N = U12(2), Ã ∩N = Suz, B̃ ∩N = N1 13 683

Table 4
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For case j) we have to explain why 11 divides |A ∩N |. If not, this would lead
to a non-trivial factorization A(Ã ∩ B̃) of Ã, Ã an almost simple group with
socle N1

∼= U5(2). This is impossible by [35, Tables 1,3].

It remains to consider the exceptional factorizations for the case N = U4(3)
according to [35, Table 3].

m) N = U4(3), Ã ∩N = L3(4), B̃ ∩N = P1 or PSp4(3) or P2:

It follows from Lemma 2 that in all three cases 7 divides |A ∩ N | and 34

divides |B ∩N |.
Suppose that A and B satisfy condition (2) of the Main Theorem. Note
that 7 is a primitive prime divisor of 36 − 1. Let y ∈ A ∩N of order 7. By
[13], |NN (〈y〉)| = 7 · 3. This and Lemma 7 imply that NN (〈y〉) is the only
maximal soluble subgroup of N containing y. Therefore 〈x, y〉 = NN (〈y〉)
for all non-trivial 3-elements x of B ∩N , a contradiction.
(We note that in case G = N the primes 2 and 7 are independent and 2
divides |B ∩N |. But this need not be the case if G ≥ N.2, see Theorem 2.)

2.2.3 Symplectic groups

N = PSp2m(q), m ≥ 2, q = pe, p prime.

For arguments like in the previous cases, we introduce primes r, s, t, depending
on (m, p, e), as explained next:

Remark • If (m, p, e) 6= (3, 2, 1), then by Lemma 3 there exists a primitive
prime divisor of p2em − 1.

• If (m, p, e) 6= (2,Mersenne prime, 1), (2, 2, 3), (3, 2, 2), (6, 2, 1), then by Lemma
3 there exists a primitive prime divisor of pem − 1.

• If (m, p, e) 6= (2,Mersenne prime, 1), (2, 2, 3), (4, 2, 1), then by Lemma 3 there
exists a primitive prime divisor of p2e(m−1) − 1.

Notation 3 In those cases where they exist, we denote primes r, s for sym-

plectic groups as follows:
• r a primitive prime divisor of p2em − 1.
• s a primitive prime divisor of pem − 1.
• t a primitive prime divisor of p2e(m−1) − 1.

It follows from Lemma 3 that such primes r, s, t do not divide |Out(N)|.

We first consider the possible maximal factorizations according to [35, Table
1]. Then:

- In all but one case (N = PSp6(2)) there exist independent primes with
respect to N , one dividing |A ∩N |, the other one dividing |B ∩N |.

- The independency of the given primes can be proved as mentioned at the
beginning of Section 2.2.

The result that is needed from [2] is the following. For later use in Sec-
tions 2.2.4 and 2.2.5 we formulate it already in a way that also includes or-
thogonal groups in odd dimension and of – type in even dimension.
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Lemma 8 ([2, Lemma 2.8(2)]) With the previous notation, let the prime r be

as above. If H is a maximal soluble subgroup of PSp2m(q), m ≥ 2, PΩ2m+1(q),

m ≥ 3 and q odd, or PΩ−2m(q), m ≥ 4, whose order is divisible by r, then one of

the following holds:

(1) π(H) ⊆ π(m) ∪ π(qm + 1) ∪ {2};
(2) π(H) ⊆ π(q − 1) ∪ π(l+ 1) ∪ {2, r}, where m = 2l, r = 2m+ 1 and q = p is a

prime.

The possible maximal factorizations are as follows.

a) Ã ∩N = PSp2a(qb).b, ab = m, b prime, B̃ ∩N = P1:

In this case there are always independent primes (with respect to N) di-
viding |A∩N | and |B ∩N |, respectively. They are specified in Table 5. The
primes r and t are as in Notation 3.

a1) (m, p, e) 6= (2,Mersenne prime, 1) r t
(r = 7 if (m, p, e) = (3, 2, 1),
t = 7 if (m, p, e) = (2, 2, 3) or (4, 2, 1))

a2) (m, p, e) = (2,Mersenne prime, 1) r p

Table 5

b) q = 2e, Ã ∩N = Sp2a(qb).b, ab = m, b prime, B̃ ∩N = O+
2m(q):

(Note that X
B̃

= B̃ ∩ N since O+
2m(q) is a maximal subgroup of N =

Sp2m(q), see [34] and [10].)

There are always independent primes (with respect to N) dividing |A ∩N |
and |B ∩N |, respectively. They are specified in Table 6 for all subcases to
be considered. The meaning of r and t is as above in Notation 3.

b1) (m, e) 6= (2, 3), (3, 1), (4, 1), r t
b2) (m, e) = (2, 3) 13 7
b3) (m, e) = (3, 1) 7 5
b4) (m, e) = (4, 1) 17 7

Table 6

In b3) we have to justify why 7 divides |A| (note that |Out(N)| = 1). Since
22 and 32 divide |A|, this follows from the fact that there is no subgroup of
Sp2(8).3 whose order is divisible by 36, but not by 7.

c) q = 2e, Ã ∩N = Sp2a(qb).b, ab = m, b prime, B̃ ∩N = O−2m(q):

(Note that X
B̃

= B̃ ∩ N since O−2m(q) is a maximal subgroup of N =
Sp2m(q), see [34] and [10].)
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Again there are always independent primes dividing |A ∩ N | and |B ∩ N |,
respectively. They are presented in Table 7 where the meaning of r, s and
t is as above in Notation 3.

c1) (m, e) 6= (2, 3), (3, 1), (4, 1), r | |A ∩N | r t
c2) (m, e) 6= (2, 3), (3, 1), (3, 2), (6, 1), r 6 | |A ∩N | s r
c3) (m, e) = (2, 3), r = 13 | |A ∩N | 13 7
c4) (m, e) = (2, 3), r = 13 6 | |A ∩N | 7 13
c5) (m, e) = (3, 1) 7 5
c6) (m, e) = (4, 1) 17 7
c7) (m, e) = (3, 2) or (6, 1), r = 13 6 | |A ∩N | 7 13

Table 7

d) q = 2e, Ã ∩N = O−2m(q), B̃ ∩N = Pm:

Here there are always independent primes dividing |A ∩ N | and |B ∩ N |,
respectively. They are presented in Table 8 where the meaning of r and s

is as above in Notation 3.

d1) (m, e) 6= (2, 3), (3, 1) r s
(s = 7 for (m, e) = (3, 2) or (6, 1))

d2) (m, e) = (2, 3) 13 7
d3) (m, e) = (3, 1) 5 7

Table 8

e) q = 2e, m even, Ã ∩N = O−2m(q), B̃ ∩N = Spm(q)wr S2:

This case case is handled exactly like d).

f) q = 2, m even, Ã = Spm(2).2, B̃ = N2 (note that |Out(N)| = 1):

One can assume that m ≥ 4 since Sp4(2)′ = L2(9). Then r divides |A ∩N |
and t divides |B ∩N | where r and t are as in Notation 3, or t = 7 if m = 4.
r and t are independent.

g) q = 2, Ã = O−2m(2), B̃ = O+
2m(2) (note that |Out(N)| = 1):

If m 6= 3, let r and s as above in Notation 3, or s = 7 for m = 6. Then r

divides |A| and s divides |B|. r and s are independent.
Let m = 3. By Lemma 2, 32 divides |A| and 7 divides |B|. If 5 divides
|A|, we are done since 5 and 7 are independent. Otherwise 5 divides |B|.
Using [10] or [13], the only maximal soluble subgroups of N whose order is
divisible by 15 are the normalizers of subgroups of order 5, isomorphic to
(5 × S3) : 4. Suppose A and B satisfy condition (2) of the Main Theorem.
It follows that if y ∈ B is of order 5, then 〈x1, y〉 = 〈x2, y〉 of order 15 for
all non-trivial 3-elements x1, x2 ∈ A, a contradiction.
(We note that in case m = 3 there need not be independent primes dividing
|A| and |B|, respectively. See Theorem 2.)

It remains to consider the three cases h), i), j) summarized in Table 9.
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Note in case j) that X
B̃

= B̃ ∩N by [35, 3.2.4(d)].

h) q = 4, Ã ∩N = O−2m(4), B̃ ∩N = O+
2m(4) r s (s = 7 if m = 3)

i) q = 4,m even, Ã ∩N = Spm(16).2, B̃ ∩N = N2 r t

j) q = 4, 16, Ã ∩N = O−2m(q), B̃ ∩N = Sp2m(q1/2) r s

Table 9

We now consider the possible maximal factorizations according to [35, Table
2]. Here:

- There are always independent primes dividing |A∩N | and |B ∩N |, respec-
tively, as specified next.

k) m = 2, q = 2e, e odd, e ≥ 3, Ã ∩N = Sz(q), B̃ ∩N = O+
4 (q):

r divides |A ∩N |, s divides |B ∩N |, r and s are independent.

l) m = 3, q = 2e, Ã ∩N = G2(q), B̃ ∩N = O+
6 (q):

If e > 1, then r divides |A ∩N |, t divides |B ∩N |, r and t are independent.
If e = 1, then G = N . Clearly 5 divides |B|. Since N = AB̃, it follows that
G2(2) ∼= Ã = A(Ã∩B̃). But according to [35, Table 5], G2(2) has only trivial
factorizations, whence A = Ã and 7 divides |A|. 7 and 5 are independent.

m) m = 3, q = 2e, Ã ∩N = G2(q), B̃ ∩N = O−6 (q):

Assume first the e > 1. t divides |B ∩ N |. If r divides |A ∩ N |, we choose
the independent primes r and t. If r does not divide |A∩N |, then r divides
|B ∩ N |. As s divides |A ∩ N | (s = 7 if e = 2), we choose the independent
primes s and r.
If e = 1, 7 divides |A∩N | and 5 divides |B ∩N |. 7 and 5 are independent.

n) m = 3, q = 2e, Ã ∩N = G2(q), B̃ ∩N = P1 or N2:

This follows exactly like case l).

We now consider the exceptional maximal factorizations according to [35, Table
3]. Here:

- There are always independent primes dividing |A∩N | and |B ∩N |, respec-
tively, specified in Table 10.

Note that Out(N) = 1 in q) and r).

o) N = PSp4(3), Ã ∩N = 24.A5, B̃ ∩N = P1 or P2 5 3

p) N = PSp6(3), Ã ∩N = L2(13), B̃ ∩N = P1 7 5

q) N = Sp8(2), Ã = O−8 (2), B̃ = S10 17 5

r) N = Sp8(2), Ã = L2(17), B̃ = O+
8 (2) 17 5

Table 10



Thompson-like characterization of solubility for products of finite groups 17

2.2.4 Orthogonal groups in odd dimension

N = PΩ2m+1(q) (= Ω2m+1(q)), m ≥ 3, q = pe odd, p prime.

We consider the maximal factorizations according to [35, Tables 1,2,3]. Then:

- There are always independent primes dividing |A∩N | and |B ∩N |, respec-
tively, specified in Table 11.

In order to prove it, we consider primes as follows, and Lemma 8.

Notation 4 We denote primes r, s, t for orthogonal groups in odd dimension,
as in Notation 3.

Note that they exist in this case without any restriction since m ≥ 3 and p 6= 2.
Note that none of r, s, t divides |Out(N)|.

a) Ã ∩N = N−1 , B̃ ∩N = Pm r s

b) N = Ω7(q), Ã ∩N = G2(q), B̃ ∩N = P1 r t

c) N = Ω7(q), Ã ∩N = G2(q), B̃ ∩N = N+
1 r t

d) N = Ω7(q), Ã ∩N = G2(q), B̃ ∩N = N−1 , r | |A ∩N | r t

e) N = Ω7(q), Ã ∩N = G2(q), B̃ ∩N = N−1 , r 6 | |A ∩N | s r

f) N = Ω7(q), Ã ∩N = G2(q), B̃ ∩N = Nε
2 , ε = +,− r t

g) N = Ω13(3e), Ã ∩N = PSp6(3e).a, a ≤ 2, B̃ ∩N = N−1 r s

h) N = Ω25(3e), Ã ∩N = F4(3e), B̃ ∩N = N−1 s r

i) N = Ω7(3), Ã ∩N = G2(3), B̃ ∩N = Sp6(2) or S9, 7 | |A ∩N | 7 5

j) N = Ω7(3), Ã ∩N = G2(3), B̃ ∩N = Sp6(2) or S9, 7 6 | |A ∩N | 13 7

k) N = Ω7(3), Ã ∩N = S9, B̃ ∩N = N+
1 or P3 7 13

l) N = Ω7(3), Ã ∩N = Sp6(2), B̃ ∩N = N+
1 or P3 7 13

m) N = Ω7(3), Ã ∩N = 26.A7, B̃ ∩N = P3 7 13

Table 11

2.2.5 Orthogonal groups of – type in even dimension

N = PΩ−2m(q), m ≥ 4, q = pe, p prime.

We now consider the maximal factorizations according to [35, Tables 1,3]. Here:

- There are always independent primes dividing |A∩N | and |B ∩N |, respec-
tively, specified in Table 12.

In order to prove it, we again consider primes as follows, and Lemma 8.

Notation 5 In those cases where they exist, we denote primes r, t for orthog-

onal groups of – type in even dimension as in Notation 3.
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Note that they exist in this case with the only restriction (m, p, e) 6= (4, 2, 1) to
ensure the existence of t. Note that both r and t do not divide |Out(N)|.

a) Ã ∩N = P1 or N1, B̃ ∩N = ĜUm(q),m odd t r

b) Ã ∩N = N1, B̃ ∩N = Ω−m(q2).2, q = 2, 4,m even t r
(t = 7 for (m, q) = (4, 2))

c) Ã ∩N = N+
2 , B̃ ∩N = GUm(4), q = 4,m odd t r

d) N = PΩ−10(2), Ã ∩N = A12, B̃ ∩N = P1 11 17

Table 12

2.2.6 Orthogonal groups of + type in even dimension

N = PΩ+
2m(q), m ≥ 4, q = pe, p prime.

We will consider below the maximal factorizations according to [35], Tables 1,
2, 3 (case m ≥ 5) and Table 4 (case m = 4).

For arguments like in previous cases, we introduce primes r, s, t, depending on
(m, p, e), as explained next:

Remark • If (m, p, e) 6= (4, 2, 1), then by Lemma 3 there exists a primitive
prime divisor of p2e(m−1) − 1.

• If (m, p, e) 6= (6, 2, 1), then by Lemma 3 there exists a primitive prime
divisor of pem − 1.

• If (m, p, e) 6= (4, 2, 2), (7, 2, 1), then by Lemma 3 there exists a primitive
prime divisor of pe(m−1) − 1.

Notation 6 In those cases where they exist, we denote primes r, s, t for

orthogonal groups of + type in even dimension as follows:
• r a primitive prime divisor of p2e(m−1) − 1.
• s a primitive prime divisor of pem − 1.
• t a primitive prime divisor of pe(m−1) − 1.

It follows from Lemma 3 that such primes r, s, t do not divide |Out(N)|. More-
over, r, s, t are pairwise distinct.

For independency proofs we will need the following result of [2] (with a cor-
rected misprint there):

Lemma 9 ([2, Lemma 2.8(3)]) With the previous notation, let the prime r be as

above. If H is a maximal soluble subgroup of N = PΩ+
2m(q), m ≥ 4, whose order

is divisible by r, then one of the following holds:

(1) π(H) ⊆ π(m− 1) ∪ π(qm−1 + 1) ∪ π(q + 1) ∪ {2};
(2) π(H) ⊆ π(q2 − 1)∪ π(l+ 1)∪ {2, r}, where m− 1 = 2l, r = 2m− 1 and q = p

is a prime;

(3) π(H) ⊆ π(q − 1) ∪ π(l+ 1) ∪ {2, r}, where m = 2l, r = 2m− 1 and q = p is a

prime.
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We assume first that m ≥ 5 and consider the maximal factorizations according
to [35, Tables 1,2,3]. Then:

- There are always independent primes dividing |A∩N | and |B ∩N |, respec-
tively, specified in Table 13.

We note in part d) that X
B̃

= PSp2(q)⊗ PSpm(q) has index 1 or 2 in B̃ ∩N ;
cf. [34, Table 3.5.E, Prop. 4.4.12].

a) Ã ∩N = N1, B̃ ∩N = Pm or Pm−1 r s

b) Ã ∩N = N1, B̃ ∩N = ĜUm(q).2, r s
m even, r | |A ∩N |

c) Ã ∩N = N1, B̃ ∩N = ĜUm(q).2, t r
m even, r 6 | |A ∩N |

d) Ã ∩N = N1, XB̃ = PSp2(q)⊗ PSpm(q), r s
m even, q > 2

e) Ã ∩N = N−2 , B̃ ∩N = Pm or Pm−1 r s
(s = 7 for (m, q) = (6, 2))

f) Ã ∩N = P1, B̃ ∩N = ĜUm(q).2,m even t r

g) Ã ∩N = N1, B̃ ∩N = ĜLm(q).2 r s
(s = 7 for (m, q) = (6, 2))

h) Ã ∩N = N1, B̃ ∩N = Ω+
m(4).22, q = 2, r s

m even (s = 7 for (m, q) = (6, 2))

i) Ã ∩N = N1, B̃ ∩N = Ω+
m(16).22, q = 4, r s

m even

j) Ã ∩N = N−2 , B̃ ∩N = ĜLm(2).2, q = 2 r s
(s = 7 for (m, q) = (6, 2))

k) Ã ∩N = N−2 , B̃ ∩N = ĜLm(4).2, q = 4 r s

l) Ã ∩N = N+
2 , B̃ ∩N = ĜUm(4).2, q = 4, t r

m even

m) Ã ∩N = Ω9(q).a, B̃ ∩N = N1, a ≤ 2,m = 8 s r

n) N = Ω+
24(2), Ã ∩N = Co1, B̃ ∩N = N1 13 683

Table 13

We treat now the case m = 4 and consider the maximal factorizations according
to [35, Table 4]. Here:

- The primes r and s (r = 7 if q = 2) are independent.

For all maximal factorizations G = ÃB̃ with Ω+
8 (q) ≤ G ≤ Aut(Ω+

8 (q)) listed
in [35, Table 4], r divides |A ∩N | and s divides |B ∩N |, or vice versa.
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2.3 Exceptional groups of Lie type

For the exceptional groups of Lie type all factorizations (not only the maximal
ones) have been determined in [30]; see also [35, Table 5].

a) N = G2(q), q = 3e, A ∩ N = SL3(q) or SL3(q).2, B ∩ N = SU3(q) or
SU3(q).2:
By [1, Table 3] (with corrected misprint), there exist independent prime
divisors r of q2 + q + 1 | |A ∩N | and s of q2 − q + 1 | |B ∩N |.

b) N = G2(q), q = 3e, e odd, A ∩N = SL3(q) or SL3(q).2, B ∩N = 2G2(q):
This case is handled as in a).

c) N = G2(4), A ∩N = J2, B ∩N = SU3(4) or SU3(4).2:
7 divides |A ∩N | and 13 divides |B ∩N |. 7 and 13 are independent.

d) N = G2(4), A ∩N = (G2(2)× 2) ∩N , B ∩N = (SU3(4).4) ∩N :
This case is handled as in c).

e) N = F4(q), q = 2e, A ∩N = Sp8(q), B ∩N = 3D4(q) or 3D4(q).3:
By [1, Table 3], there exist independent prime divisors r of q4 + 1 | |A ∩N |
and s of q4 − q2 + 1 | |B ∩N |.

2.4 Sporadic groups

We use the list of maximal factorizations in [35, Table 6].
- In all cases there are independent primes dividing |A ∩ N | and |B ∩ N |,

respectively. They are presented in Table 14.

Note that Out(N) = 1 for N ∼= M11,M23,M24, Ru,Co1 (see for instance [13]).

a) N = M11, Ã = L2(11), B̃ = M10 or M9.2 11 3

b) N = M12, Ã ∩N = M11, B̃ ∩N = M11, L2(11), 11 6 | |A ∩N | 3 11

c) N = M12, Ã ∩N = M11, B̃ ∩N = M11, L2(11), 11 | |A ∩N | 11 3

d) N = M12, Ã ∩N = M11, B̃ ∩N = M10.2,M9.S3, 2× S5, 11 3
42 ×D12 or A4 × S3

e) N = M12, Ã ∩N = L2(11), B̃ ∩N = M10.2 or M9.S3 11 3

f) N = M22, Ã ∩N = L2(11).2 ∩N, B̃ ∩N = L3(4).2 ∩N 11 7

g) N = M23, Ã = 23.11, B̃ = M22,M21.2 or 24.A7 23 7

h) N = M24, Ã = M23, B̃ = L2(23), 23 | |A| 23 2

i) N = M24, Ã = M23, B̃ = L2(23), 23 6 | |A| 2 23

j) N = M24, Ã = M23, B̃ = M12.2, 26.3.S6, L2(7) or 26(L3(2)× S3) 23 2

k) N = M24, Ã = L2(23), B̃ = M22.2, 24.A8 or L3(4).S3 23 2

l) N = J2, Ã ∩N = U3(3), B̃ ∩N = A5 ×D10 7 5

m) N = J2, Ã ∩N = U3(3).2 ∩N, B̃ ∩N = 52(4× S3) ∩N 7 5

Table 14
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n) N = HS, Ã ∩N = M22, B̃ ∩N = U3(5).2, 7 | |A ∩N | 7 5

o) N = HS, Ã ∩N = M22, B̃ ∩N = U3(5).2, 7 6 | |A ∩N | 11 7

p) N = HS, Ã ∩N = M22.2 ∩N, B̃ ∩N = 51+2.25 ∩N 7 5

q) N = He, Ã ∩N = Sp4(4).2, B̃ ∩N = 72.SL2(7) 17 7

r) N = He, Ã ∩N = Sp4(4).4 ∩N, B̃ ∩N = 71+2(S3 × 6) ∩N 17 7

s) N = Ru, Ã = L2(29), B̃ = 2F4(2) 29 13

t) N = Suz, Ã ∩N = G2(4) ∩N, B̃ ∩N = U5(2) or 35.M11 13 11

u) N = Fi22, Ã ∩N = 2F4(2)′, B̃ ∩N = 2.U6(2) 13 11

v) N = Co1, Ã = Co2 or Co3, B̃ ∩N = 3.Suz.2 or (A4 ×G2(4)).2 23 13

Table 14 (contd.)

This completes the proof of Theorem 1.

As a consequence of the proof we state the following result:

Theorem 2 Let N be a simple group of Lie type (classical or exceptional) or a sporadic

simple group.

Let G = AB be a factorized almost simple group with socle N , i.e. N ≤ G ≤ Aut(N),

A ≤ G, B ≤ G with N 6≤ A, N 6≤ B.

a) If N 6∼= PSp6(2) and U4(3), there exist independent primes with respect to N , one

dividing |A ∩N |, the other one dividing |B ∩N |.
If N ∼= PSp6(2) ∼= Ω7(2), there exists a (non-maximal) factorization N = AB of

type g), Section 2.2.3, such that there are no independent primes dividing |A| and

|B|, respectively.

If N ∼= U4(3) ∼= PΩ−6 (2), then for each of the three factorization types in m),

Section 2.2.2, there exists a (non-maximal) factorization G = AB with |G : N | = 2
such that there are no independent primes dividing |A∩N | and |B∩N |, respectively.

b) If in addition to the two exceptional cases in a) N 6∼= L2(8), L2(p), p Mersenne

prime, L3(3), L4(2), and U3(3), then there exist primes dividing |A ∩ N | and

|B ∩N | that are independent with respect to Aut(N).

For N ∼= L2(8), L2(p), p Mersenne prime, L3(3), or U3(3), all pairs of primes

dividing |N | are not independent with respect to Aut(N).

For N ∼= L4(2) there exist factorizations G = AB without primes independent with

respect to Aut(N) dividing |A ∩N | and |B ∩N |, respectively.

Proof a) We mention that we can replace G by AN ∩BN = (A∩BN)(B ∩AN) to
satisfy the condition G = AN = BN in Theorem 1; since N 6≤ A and N 6≤ B, none
of the factors (A ∩BN) and (B ∩AN) equals AN ∩BN .

The first assertion follows now from an inspection of the proof of Theorem 1. Note
however that in [35] the group N = L4(2) ∼= A8 is treated as alternating group.
Here the primes 2 and 7 are independent with respect to N , and any pair of a
Sylow 2-subgroup with a Sylow 7-subgroup generates N . This proves the assertion
for L4(2).
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By [35, Table 1] there is a factorization PSp6(2) = ÃB̃ with Ã = O−6 (2) = U4(2) : 2,

B̃ = O+
6 (2) and Ã ∩ B̃ = S6 × 2 is maximal in Ã and B̃. We infer from [35, Table

1] again that there is a factorization Ã = A(Ã ∩ B̃) with A = GU3(2) of order
23 · 34. It follows that PSp6(2) = AB̃. Since a subgroup of order 5 in PSp6(2) is
normalized by S3.4 and a subgroup of order 7 by a cyclic group of order 6, none
of the prime divisors of |A| is independent of the prime divisors of |B̃|.
Therefore the exceptional case PSp6(2) does actually occur.

Let G = N〈x〉 with N = U4(3) and x the square of the diagonal automorphism.
There are two conjugacy classes of involutions, represented by 2B and 2C in [13],
such that G = N〈s〉 = N〈t〉, s of type 2B, t of type 2C. There exists a subgroup
A0
∼= L3(4) in N normalized by s and a Sylow 3-subgroup D of N normalized by t

such that st generates together with a Sylow 2-subgroup of A0 a Sylow 2-subgroup
of N . Setting A = A0〈s〉 and B = D〈t〉, then G = AB, A∩N = A0, B∩N = D. The
prime 3 is not independent of the other prime divisors of |N |: the normalizer of a
subgroup of order 7 has order 21 and there is a subgroup of order 34 normalized
by A6, so in particular by elements of order 5 and 2.

Therefore the exceptional case N = U4(3) with |G : N | ≥ 2 does actually occur.

The presented factorization of G has been constructed and verified using [13] and
GAP [22].

b) For N = L4(2) a factorization N = AB with A ∼= A7 and B a Sylow 2-subgroup
provides an example: 2 is not independent of any other prime with respect to
Aut(N).

For all other groups, apart from those already treated as exceptions in a), only
such cases in the proof of Theorem 1 have to be considered where one of the
independent primes divides |Out(N)|. This leads to the groups N ∼= L2(8), L2(p),
p Mersenne prime, L3(3), U3(3). It is easily checked that all pairs of primes dividing
|N | are not independent with respect to Aut(N). ut

Remark We have excluded the alternating groups from consideration in Theorem
2 and add some remarks about them here.

We recall that A5
∼= L2(5), A6

∼= L2(9) and A8
∼= L4(2).

More generally, there are many examples of alternating groups An that possess a
factorization An = AB without independent primes dividing |A| and |B|, respec-
tively. For instance, if n = 2m and 2m − 1 not prime, then let A = An−1 and B a
Sylow 2-subgroup of An. If p is a prime and 2 < p < n, then a subgroup generated
by a p-cycle is normalized by a suitable involution in An, because 2n − 1 is not
prime and hence p < n − 2. We argue similarly if n = 3m, m ≥ 2, A is as above
and B is a Sylow 3-subgroup of An: If n− 2 is not a prime, then a suitable 3-cycle
centralizes a p-cycle (if p is odd) or a product of two disjoint transpositions (if
p = 2). If q := n− 2 is a prime, then 3 divides n− 3 = q − 1 and therefore we find
a 3-cycle that normalizes a subgroup generated by a q-cycle.

On the other hand, if p ≥ 5 is a prime, then every non-trivial factorization Ap = AB

yields independent primes dividing the order of the factors. This can be seen as
follows: In A5 the primes 3 and 5 are independent and a Sylow 3-subgroup together
with a Sylow 5-subgroup generate the whole group; the same is true in A7 with
the primes 5 and 7. This proves the assertion for p = 5, 7. For p ≥ 11 there exists
a prime q with p

2 ≤ q ≤ p − 4; one can choose q = 7 for p = 11 or 13 and for
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p ≥ 17 this follows from [38]. By [35, Theorem D], we may assume that a p-cycle
is contained in B and that Ap−4 ≤ A since there exists no 5-transitive group of
prime degree p other than Ap or Sp. Then a q-cycle is contained in B. As q does
not divide p− 1, p and q are independent.
There are also other examples for both situations. But it is an open problem
to determine all alternating groups where every non-trivial factorization yields
independent primes dividing the order of the factors.

3 The general case

Proof of Main Theorem

That (1) implies (2) is trivial. Also that (3) implies (1) is obvious: If G = AB with
[A,B] ≤ GS , then 〈a, b〉′ ≤ GS whence 〈a, b〉 is soluble for all a ∈ A and b ∈ B.

It remains to prove that (2) implies (3). Suppose not and let G be a minimal
counterexample. The proof proceeds in several steps.

(i) G has a unique minimal normal subgroup N , N is non-abelian, CG(N) = 1 (in
particular, GS = 1), N ≤ [A,B] ≤ R where R/N = (G/N)S .

If N is a minimal normal subgroup of G, then one verifies easily that also G/N =
AN/N ·BN/N satisfies (2). G/N is not a counterexample whence [A,B] ≤ R with
R/N = (G/N)S . Since [A,B] E G and [A,B] 6= 1 (G being a counterexample),
N ≤ [A,B]. Clearly N is non-abelian, for otherwise R and hence [A,B] would be
soluble.
Suppose there are two distinct minimal normal subgroups N1, N2 of G. Let Ri/Ni =

(G/Ni)S , i = 1, 2. Choose d such that R
(d)
i = Ni, i = 1, 2 (d-th derived subgroup).

Then [A,B](d) ≤ R(d)
1 ∩R(d)

2 = N1 ∩N2 = 1 and [A,B] is soluble, contradiction.
Therefore G has a unique minimal normal subgroup N . As N is non-abelian,
N ∩ CG(N) = 1, and it follows from CG(N) E G that CG(N) = 1.

(ii) N 6≤ A and N 6≤ B.

Suppose that N ≤ A. Since B 6= 1, we can choose b ∈ B of prime order, say p.
Then N〈b〉 = (A ∩ N〈b〉)〈b〉 satisfies (2). If N〈b〉 < G, then [N, 〈b〉] ≤ (N〈b〉)S ≤
CN〈b〉(N) = 1 by (i). Therefore b ≤ CG(N) = 1, contradiction. Hence N〈b〉 = G.
Suppose first that N is simple. If G = A, then Theorems 1 and 2 of [26] imply that
b ∈ GS = 1, contradiction. If G = A〈b〉 > A = N , let 1 6= g ∈ G be a q-element
for a prime q 6= p. Then g ∈ N = A and 〈b, g〉 is soluble by (2). Again the same
theorems as before imply that b ∈ GS = 1, a contradiction.
Hence N is not simple and in particular b 6∈ N . Consequently, N is the direct
product of p copies of a non-abelian simple group L, permuted transitively by b.
Therefore we can assume w.l.o.g. that there are automorphisms αi of L, 1, . . . , p,
such that (l1, . . . , lp)

b = (α2(l2), . . . , αp(lp), α1(l1)) for all (l1, . . . , lp) ∈ N .
Assume first that p = 2. Let q ≥ 5 be a prime divisor of |L|. Since GS = 1, by [23,
Theorem 1.4] (see also [24], [25]), there exist (conjugate) elements m1,m2 ∈ L of
order q such that 〈m1,m2〉 is not soluble. Set n = (m1, α

−1
2 (m2)). Then n is of order

q and 〈n, b〉 ≥ 〈n, nb〉 = 〈(m1, α
−1
2 (m2)), (m2, α1(m1)〉 is not soluble, contradicting

(2).
Now let p ≥ 3. By [37, Theorem A] there exist three involutions m1,m2,m3 in L

such that 〈m1,m2,m3〉 is not soluble unless L = U3(3). In the latter case we let
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m1,m2 be elements of order 8 that generate a parabolic maximal subgroup 31+2 : 8
of L ([10, Table 8.5]) and choose m3 as a 2-element outside this maximal subgroup.
Setting l1 = m1, l2 = α−1

2 (m2), l3 = α−1
3 α−1

2 (m3) and li = 1 for 3 < i ≤ p in case
p ≥ 5, the element n = (l1, . . . , lp) ∈ N is a 2-element. Then conjugating n with b,
b2, it follows as above that 〈n, b〉 is not soluble, contradicting (2).
Hence N 6≤ A and analogously N 6≤ B.

(iii) AN = BN = G and G/N is soluble.

Suppose AN = A(AN ∩ B) < G. Then [A,AN ∩ B] ≤ (AN)S ≤ CG(N) = 1. It
follows that AN ∩ B is normal in AN and that N ∩ B is normalized by B and
centralized by A, whence N ∩ B = 1 or N ∩ B = N . The latter is impossible by
(ii). Then [N,AN ∩B] ≤ N ∩AN ∩B = N ∩B = 1 whence AN ∩B ≤ CG(N) = 1.
This implies AN = A, contradicting (ii).
This shows that AN = G and analogously BN = G.
Because of AN = BN = AB = G and the fact that A and B satisfy (2) it follows
that all for all primes p 6= q every p-element and every q-element of G/N generate
a soluble group. Then by [16, Theorem B] (applied to a hypothetical non-cyclic
composition factor of G/N) or likewise by Theorems 1 and 2 of [26] it follows that
G/N is soluble.

(iv) Let N be the direct product of k copies of a non-abelian simple group L. We
denote the i-th component by Li. Since G is a counterexample, it follows from (i),
(ii), (iii) and Theorem 1 that k ≥ 2.

To conclude the proof we have to show that k ≥ 2 is not possible in a minimal
counterexample. To this end, after introducing some notation, we define below
groups Vi,X whose crucial property is proved in (v). This property, together with
a well-known result about the size of soluble subgroups of symmetric groups, will
lead to the final contradiction.
Let Mi = Aut(Li) ∼= Aut(L) and identify Li with Inn(Li) whence Li ≤ Mi, i =
1, . . . , k. Then N = L1 × · · · × Lk ≤ G ≤ (M1 × · · · ×Mk)T ∼= Aut(L)wr Sk where
T ∼= Sk, the symmetric group of degree k (see e.g. [15, Proposition A.18.14]). Set
M = M1 × · · · ×Mk. By slight abuse of notation we denote the elements of T by
permutations t and conjugation of elements in M1×· · ·×Mk by any t ∈ T inside the
semidirect product (M1×· · ·×Mk)T is given by (m1, . . . ,mk)t = (m1t−1 , . . . ,mkt−1).
Let ρi denote the projection of M onto Mi, 1 ≤ i ≤ k.
For X = G,A,B and 1 ≤ i ≤ k set

Wi,X = {(m1, . . . ,mk)t ∈ X |mj ∈Mj and t ∈ T fixes i} and
Vi,X = {mi ∈Mi | there exists (m1, . . . ,mk)t ∈Wi,X}.

It is clear that Wi,X is a subgroup of X and X∩M ≤Wi,X . Also Vi,X is a subgroup
of Mi, ρi(X ∩M) ≤ Vi,X .

We claim:

(v) For each 1 ≤ i ≤ k, Vi,G = Vi,A and Vi,B = 1 or vice versa.

It suffices to prove the assertion for i = 1 (the other cases being analogous) and
we set VX and WX for V1,X and W1,X , respectively.
Let l1 ∈ L1 be arbitrary. There exist a ∈ A and b ∈ B with (l1, 1, . . . , 1) = ab.
Let a = (m1, . . . ,mk)t and assume w.l.o.g. that in the decomposition of t in disjoint
cycles the cycle containing 1 is just (1, . . . , d) for some 1 ≤ d ≤ k. Clearly, b =
t−1(m−1

1 l1,m
−1
2 , . . . ,m−1

k ).

Set m = (m1, . . . ,mk) and m′ = (m−1
1 l1,m

−1
2 , . . . ,m−1

k ).
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Then ad = m ·mt−1

· · ·mt−(d−1)

td = (m1m2 · · ·md, ∗, . . . , ∗)td ∈WA and

bd = m′t · · ·m′t
d

t−d = (m−1
d m−1

d−1 · · ·m
−1
2 m−1

1 l1, ∗, . . . , ∗)t−d ∈WB .

It follows that (l1, ∗, . . . , ∗) = adbd ∈ WAWB . Therefore, l1 ∈ VAVB , whence L1 ⊆
VAVB . (Since we are only interested in the first component of the M1 × · · · ×Mk-
parts of ad, bd and adbd, we have denoted the other components by ∗ to avoid
superfluous notation.)
Let g ∈ WG be arbitrary. By (iii) and (iv) g = an, a = (m1, . . . ,mk)t ∈ WA,
n = (l1, . . . , lk) ∈ N . By what we have proved before, m1l1 ∈ VAVB , whence
VG = VAVB .
We claim that VA and VB satisfy (2) in VG. Since WA and WB satisfy (2), it
suffices to show that for every prime p and every p-element m ∈ VX there exists
a p-element (m′,m2, . . . ,mk)t ∈ WX (X = A,B) with 〈m〉 = 〈m′〉. This follows
easily: Choose y = (m,m′2, . . . ,m

′
k)t̃ ∈ WX . Let the order of y be pa · r where p

does not divide r. Then yr = (mr, ∗, . . . , ∗)t̃r since t̃ fixes position 1. The assertion
follows with m′ = mr.
Minimality of G (recall that k ≥ 2) now yields that [VA, VB ] ≤ (VG)S .
Since L1 ≤ VG ≤M1 and since L1 is the unique minimal normal subgroup of M1,
it follows that [VA, VB ] = 1. This means that one of VA and VB contains L1 and
the other is trivial. Hence (v) holds.

(vi) G ∩M = N ; moreover with appropriate choice of notation B ∩M = 1 and
ρi(A ∩N) = Li for 1 ≤ i ≤ k.

By (v) we may assume that V1,G×· · ·×Vk,G = V1,A×· · ·×Vh,A×Vh+1,B×· · ·×Vk,B
and V1,B = · · ·Vh,B = Vh+1,A = · · ·Vk,A = 1 for some 0 ≤ h ≤ k. W.l.o.g. assume
that h ≥ 1. Then L1 ≤ V1,G = V1,A.
By (iii) G/N is soluble. Then A/(A ∩ N) is soluble and taking iterated derived
groups, it follows that L1 ≤ ρ1(A ∩N). Since G = AN by (iii), A acts transitively
on {L1, . . . , Lk}. As A∩N is normal in A, N ≤ ρ1(A∩N)×· · ·×ρk(A∩N). Moreover,
B ∩M = 1. Since BN = G by (iii), the latter implies G ∩M = N .

(vii) Final contradiction.

It is well known (see for instance [7, Proposition 1.1.39]) that because of (vi) there
is a partition of {1, . . . , k} into subsets J1, . . . , Jd such that A ∩N = "

d
i=1Ai where

Ai = A ∩ "j∈JiLj and |Ai| = |L|, 1 ≤ i ≤ d.
Suppose that A∩Li = 1 for all 1 ≤ i ≤ k. Then d ≤ k/2 (note that k ≥ 2, see (iv)),
whence |A ∩ N | ≤ |L|k/2. Since G = AN , |G| = |A||N |/|A ∩ N | ≥ |A||L|k/2. Since
B∩N = 1 by (5), B is isomorphic to a soluble subgroup of Sk and hence |B| ≤ 3k−1

by a result of Dixon (see [14, Theorem 5.8B]). Therefore |G| ≤ |A||B| ≤ |A| · 3k−1.
It follows that |L|k/2 ≤ 3k−1 < 9k/2, whence |L| < 9, a contradiction.
Therefore we may assume that A∩L1 6= 1. If (l, 1, . . . , 1) ∈ A∩L1 with l 6= 1, then
because of ρ1(A ∩ N) = L1(∼= L) all ([l, l′], 1, . . . , 1), l′ ∈ L are in A ∩ L1. But the
elements [l, l′] generate L, whence A ∩ L1 = L1.
As A acts transitively on {L1, . . . , Lk}, it follows that N ≤ A which contradicts
(ii). ut

Corollary 1 Let N be a non-abelian simple group and N ≤ G = AB ≤ Aut(N) with

subgroups A and B satisfying (2) of the Main Theorem, then A = 1 or B = 1.

Proof By the Main Theorem, [A,B] ≤ GS = 1. Therefore A and B are normal in G,
whence A = 1 or B = 1 or N ≤ A∩B. But the latter implies N = N ′ ≤ [A,B] = 1,
a contradiction. ut
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There is another corollary to the Main Theorem that generalizes a result of Carocca
[12] on the solubility of S-connected products of finite soluble groups:

Corollary 2 Let G = AB be a finite group with S-connected subgroups A,B. Then

AS = A ∩GS and BS = B ∩GS .

In particular, if A and B are soluble then G is soluble.

Proof By the Main Theorem, ASGS is a normal subgroup of G. Since ASGS/GS
is soluble, ASGS is soluble. Consequently, AS ≤ GS whence AS = A ∩GS . ut
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