

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/186785

Iserte, S.; Prades, J.; Reaño González, C.; Silla, F. (2021). Improving the management
efficiency of GPU workloads in data centers through GPU virtualization. Concurrency and
Computation: Practice and Experience. 33(2):1-16. https://doi.org/10.1002/cpe.5275

https://doi.org/10.1002/cpe.5275

John Wiley & Sons

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Improving theManagement Efficiency of GPUWorkloads in
Data Centers through GPUVirtualization
Sergio Iserte*1 | Javier Prades2 | Carlos Reaño3 | Federico Silla2

1Dpto. de Ingeniería y Ciencia de los
Computadores, Universitat Jaume I, Castellón
de la Plana, Spain
2Departamento de Informática de Sistemas y
Computadores, Universitat Politècnica de
València, València, Spain
3School of Electronics, Electrical Engineering
and Computer Science, Queen’s University
Belfast, Belfast, UK
Correspondence
*Sergio Iserte, Dpto. de Ingeniería y Ciencia de
los Computadores, Universitat Jaume I,
Castellón de la Plana, Spain. Email:
siserte@uji.es

Abstract
Graphics ProcessingUnits (GPUs) are currently used in data centers to reduce the execution time
of compute-intensive applications. However, the use of GPUs presents several side effects, such
as increased acquisition costs as well as larger space requirements. Furthermore, GPUs require
a non-negligible amount of energy even while idle. Additionally, GPU utilization is usually low for
most applications.
In a similar way to the use of virtual machines, using virtual GPUs may address the concerns
associated with the use of these devices. In this regard, the remote GPU virtualization mecha-
nism could be leveraged to share the GPUs present in the computing facility among the nodes of
the cluster. This would increase overall GPU utilization, thus reducing the negative impact of the
increased costs mentioned before. Reducing the amount of GPUs installed in the cluster could
also be possible.
However, in the same way as job schedulers map GPU resources to applications, virtual GPUs
should also be scheduled before job execution. Nevertheless, current job schedulers are not able
to deal with virtual GPUs. In this paper we analyze the performance attained by a cluster using
the rCUDAmiddleware and amodified version of the Slurm scheduler, which is nowable to assign
remote GPUs to jobs. Results show that cluster throughput, measured as jobs completed per
time unit, is doubled at the same time that total energy consumption is reduced up to 40%. GPU
utilization is also increased.
KEYWORDS:
CUDA; HPC; virtualization; InfiniBand; data centers; Slurm; rCUDA; GPU

1 INTRODUCTION
The use ofGPUs (Graphics ProcessingUnits) has become awidely acceptedway of reducing the execution time of applications. Themassive parallel
capabilities of these devices are leveraged to accelerate specific parts of applications. Programmers exploit GPU resources by off-loading the com-
putationally intensive parts of applications to them. In this regard, although programmers must specify which parts of the application are executed
on the CPU andwhich parts are off-loaded to the GPU, the existence of libraries and programmingmodels such as CUDA (Compute UnifiedDevice
Architecture) 1 orOpenCL (OpenComputing Language) 2 noticeably ease this task. The net result is that these accelerators are used to significantly
reduce the execution time of applications from domains as different as data analysis (Big Data) 3, chemical physics 4, computational algebra 5, image
analysis 6, finance 7, and biology 8 to name only a few.
Many current data centers leveraging GPUs typically include one or more of these accelerators in every node of the cluster. Figure 1 shows an

example of such a deployment, composed of n nodes, each of them containing two CPU sockets and one GPU. The example in Figure 1 might be a

2 Sergio Iserte ET AL

Interconnection Network

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

FIGURE 1 Example of a GPU-accelerated cluster.
representation of a typical cluster configuration composed of n SYS1027-TRF Supermicro servers interconnected by an FDR InfiniBand network.
Each of the servers in Figure 1 may include, for instance, two Xeon E5-2620 v2 processors and one NVIDIA Tesla K20 GPU. However, the use of
GPUs in such a deployment is not exempt from side effects. For instance, let consider the execution of an MPI (Message Passing Interface) appli-
cation which does not require the use of GPUs. Typically, this application will spread across several nodes of the cluster flooding the CPU cores
available in them. In this scenario, the GPUs in the nodes involved in the execution of such anMPI application would become unavailable for other
applications because all the CPU cores in those nodes would be busy. In other words, the execution of non-accelerated applications in some nodes
may prevent other applications from making use of the accelerators installed in those nodes, forcing those GPUs to remain idle for some periods
of time. The consequence will be that the initial hardware investment will require more time to be amortized whereas some amount of energy is
wasted because idle GPUs still consume some power1.
Another important concern associatedwith the use ofGPUs in clusters is related to theway thatworkloadmanagers such as Slurm 9 perform the

accounting of resources in a cluster. These workload managers use a fine granularity for resources such as CPUs or memory, but not for GPUs. For
instance,workloadmanagers can assignCPUresources in a per-core basis, thus being able tomanage a sharedusageof theCPUsockets present in a
server among several applications. This per-core assignment increases overall CPUutilization, speedingup theamortizationof the initial investment
in hardware. In the case of memory, workload managers can also assign, in a shared approach, the memory present in a given node to the several
applications that will be concurrently executed in that server. However, in the case of GPUs, workload managers use a per-GPU granularity. In this
regard, GPUs are assigned to applications in an exclusive way. Therefore, a given GPU cannot be shared among several applications even in the
case that this GPU has enough resources to allow the concurrent execution of those applications. This per-GPU assignment causes that, in general,
overall GPU utilization is low because few applications present enough computational concurrency to keep GPUs in use all the time.
In order to address these concerns, the remote GPU virtualization mechanism could be used. This software mechanism allows an application

being executed in a computer which does not own a GPU to transparently make use of accelerators installed in other nodes of the cluster. In other
words, the remote GPU virtualization technique allows physical GPUs to be logically detached from nodes. This allows that decoupled (or virtual)
GPUs are concurrently shared by all the nodes of the computing facility. Furthermore, given that the remote GPU virtualization mechanism allows
GPUs to be transparently used from any node in the cluster, it is possible to create cluster configurations where not all the nodes in the cluster
own a GPU. This feature would not only reduce the costs associated with the acquisition and later use of GPUs, but would also increase the overall
utilization of such accelerators because workload managers would assign the acquired GPUs concurrently to several applications as far as GPUs
present enough resources for all of them. In general, remote GPU virtualization presents many benefits, as shown in in 10.
Notice, however, that workload managers need to be enhanced in order to manage virtual GPUs. This enhancement would basically consist in

replacing the current per-GPUgranularity by afiner granularity that should allowGPUs tobe concurrently shared among several applications.Once
this enhancement is performed, it is expected that overall cluster performance is increased because the concerns previously mentioned would be
reduced. It would also be possible to consider attaching a server owning several GPUs to a cluster that does not includeGPUs. In thisway, upgrading
a non-accelerated cluster so that it includes GPUswould become an easy and inexpensive process.
In this paper we present a study of the performance of a cluster that makes use of the remote GPU virtualization mechanism along with an

enhancedworkloadmanager able to assign virtual GPUs towaiting jobs. To that end, we havemade use of the rCUDA 11 remote GPU virtualization
middleware along with a modified version 12 of the Slurmworkload manager, which is now able to dispatch GPU-accelerated applications to nodes
not owning GPUswhile assigning such applications asmanyGPUs from other nodes as they require. A preliminary version of this workwas already
presented in 13. Notice, however, that in this paperwe further investigate the performance results reported by the integration of rCUDAand Slurm.

1Although GPUs present a favorable performance/power ratio while being used, they still require non-negligible amounts of energy while idle. For
instance, idleNVIDIATeslaK20andK40GPUs require, respectively, 25and20watts.On the contrary, newNVIDIATeslaK80GPUshave significantly reduced
the amount of energy consumed in the idle state although they still present a non-negligible power consumption while being active without performing
computations.

Sergio Iserte ET AL 3

FIGURE 2Architecture of the rCUDA remote GPU virtualizationmiddleware.
Paper layout is the following: Section 2 presents the basic required background on the rCUDA remote GPU virtualization framework and on

the modified Slurm workload manager to understand the rest of the paper. Later, Section 3 presents a thorough performance study of a cluster
using rCUDA and themodified version of Slurm. Section 4 presents a review of the state-of-the-art on the remoteGPU virtualization andworkload
manager areas. Finally, Section 5 concludes the paper.

2 BACKGROUNDON rCUDAAND SLURM
The purpose of this section is twofold. First, this section presents the required background on the rCUDA remote GPU virtualization framework so
that the reader can understand the performance evaluation presented in Section 3. Notice that this section is focused on the rCUDAmiddleware.
A complete discussion on the remote GPU virtualization mechanism as well as a description of the available frameworks can be found in Section 4.
Second, this section also presents the required background on the Slurm workload manager in order to follow Section 3. A summary of the main
changes applied to Slurm so that virtual GPUs provided by rCUDA can be managed by Slurm is also provided. A detailed description of the applied
changes can be found in 12. Additionally, a complete discussion about workloadmanagers can be found in Section 4.

2.1 Background on rCUDA
Frameworks such as CUDA 1 assist programmers in using GPUs for general-purpose computing. In addition, several remote GPU virtualization
solutions exist for this framework, such as GridCuda 14, DS-CUDA 15, gVirtuS 16, vCUDA 17, GViM 18, and rCUDA 11. Current virtualization frame-
works provide different features. This section focuses on describing the main characteristics of the rCUDA framework. A complete discussion on
the state-of-the-art on remote GPU virtualization frameworks can be found in Section 4.
Figure2depicts the architectureof the rCUDA framework,which is similar to that ofmost of these virtualization solutions, as shown inFigure11.

The rCUDA framework follows a client-server distributed approach. The client part of themiddleware is installed in the cluster node executing the
application requesting GPU services, whereas the server side runs in the computer owning the actual GPU. The client middleware offers the same
application programming interface (API) as does the NVIDIA CUDA Runtime 19 and Driver 20 APIs (except for graphics functions). It is binary com-
patible with CUDA 9.0 and also provides support for the libraries included within CUDA (cuBLAS, cuFFT, cuDNN, etc). Every time the accelerated
application performs aCUDAcall, the client side of rCUDA receives the request from the application and appropriately processes and forwards it to
the remote server. In the server node, the middleware receives the request and interprets and forwards it to the GPU, which completes the execu-
tion of the request and provides the execution results to the server middleware. In turn, the server sends back the results to the client middleware,
which forwards them to the initial application, which is not aware that its request has been served by a remote GPU instead of a local one.
The rCUDA framework supports several underlying interconnection technologies by making use of network-specific communication modules.

Currently, three communication modules are available: TCP/IP, InfiniBand, and RoCE. The former can be used in any TCP/IP compatible network
whereas the two latter make use of the high performance InfiniBand Verbs API available in the InfiniBand and RoCE network adapters. In order to
maximize performance, rCUDA has been perfectly tuned to the InfiniBand Verbs API 21. Furthermore, as shown in 22, rCUDA outperforms the rest

4 Sergio Iserte ET AL

of available remote GPU virtualization solutions. Additionally, rCUDA has been applied to different areas with very good results 23 24 25 26. rCUDA
can also be used in cloud computing scenarios 27 28. For these reasons, we use this middleware in our study.
Using rCUDA requires to set three environment variables prior to application execution: RCUDA_DEVICE_COUNT, RCUDA_DEVICE_j, and

RCUDA_NETWORK. The first variable indicates the amount of remote virtual GPUs accessible to the application. For example, if two remote GPUs
are assigned to the application, then the command “export RCUDA_DEVICE_COUNT=2” should be executed. The second environment variable,
RCUDA_DEVICE_j, indicates, for each of the n remote GPUs assigned to the application, in which cluster node the GPU with identifier j is located.
For instance, in the previous example, the commands “export RCUDA_DEVICE_0=192.168.0.1” and “export RCUDA_DEVICE_1=192.168.0.2”
should be executed to inform the rCUDA client about the location of the virtual GPUs assigned to the application. In case the GPU server owns
several accelerators, it is possible to declare which of those accelerators is assigned to the application. To that end, the RCUDA_DEVICE_j vari-
able should include the GPU identifier inside the server. For instance, the commands “export RCUDA_DEVICE_0=192.168.0.3:2” and “export
RCUDA_DEVICE_1=192.168.0.4:0” would assigne the application GPUs 2 and 0, respectively, of servers with IP addresses “192.168.0.3” and
“192.168.0.4”. Finally, theRCUDA_NETWORKenvironment variable sets the communicationmodule tobeusedduring theexecutionof the application.
For instance, the command “export RCUDA_NETWORK=IB” should be used in order to leverage the InfiniBand Verbs API.

2.2 Background on Slurm
Current workloadmanagers do not support the virtual GPUs provided by frameworks such as rCUDA due to their novelty. In this regard, workload
managers are only able to deal with real GPUs. Therefore, when a job includes within its computing requirements one or more GPUs per node, cur-
rentworkloadmanagerswill try tomap that job to nodes owning the requested amount of real GPUs.Nevertheless, it is possible to enhance current
workloadmanagers so that they become aware of virtual GPUs. This wouldmake the assignment of GPUsmore flexible because any available GPU
across the cluster might be assigned to a job, regardless of the exact GPU and job locations. In this way, by increasing the awareness of workload
managers, they would provide support for virtual GPUs, hence allowing the scheduling process to enjoy a larger degree of freedom.
In this paper we make use of an extended version of the Slurm workload manager 12 which supports the rCUDA middleware. Selecting Slurm

among the many available job schedulers was based on its open-source nature, at the same time that Slurm has demonstrated to be portable and
interconnect independent, thus making it suitable for many different cluster architectures. A complete discussion on workload managers can be
found in Section 4.
Next we present the six mainmodifications to the Slurmworkloadmanager in order tomake it virtual-GPU aware (the readermay refer to 12 for

a thorough description of themodifications done to Slurm):

1. The GRes module, which manages the allocation and deallocation of consumable generic resources such as GPUs, has been augmented so
that all GPUs in the cluster can be accessed from all the nodes. Additionally, GPUs in the cluster can be shared among different jobs.

2. Two new plug-ins have been implemented. On the one hand, the new GRes plug-in “gres/rgpu” is responsible for the declaration of the
remote GPUs as a generic resource, which will be referred to as rGPU. On the other hand, the select plug-in “select/cons_rgpu” will
perform tasks related to selection and scheduling of the new rGPUs.

3. Several internal data structures within Slurm have been modified with new attributes in order to maintain the required information about
the new rGPUs.

4. The RPC packages within Slurm have been augmentedwith additional fields intended to carry the rGPU information required by Slurm.
5. The job submission commandswithin Slurm have beenmodified so that they accept the new parameters related to the use of the new rGPU
resources.

6. In order to connect the scheduling process with the rCUDA middleware, the Slurm scheduler has to set the three rCUDA environment
variables mentioned in the previous section.

In addition to the previous modifications, some policy must be followed during the scheduling process in order to select one GPU or another
from the many GPUs available in the cluster. In this work we have followed a round-robin approach while giving a higher priority to those rGPUs
located in the same node that will execute the application. Other selection policies were also considered although performance results did not vary
significantly.
Once these changes are implemented, Slurm users are able to submit jobs to the system queues in three different modes:

1. CUDA: no change is required to the original way of launching jobs.

Sergio Iserte ET AL 5
2. rCUDA shared: the job will use the new rGPU resources, which will be shared with other jobs. The required amount of GPUmemory should
be specified as a parameter to the job submission command. For instance, “srun –rcuda-mode=shar –gres=rgpu:4:100M job.sh” will
submit a jobnamed “job.sh” requesting4virtualGPUshaving eachof themat least 100MBof availablememory. TheseGPUsmaybe shared
with other jobs.

3. rCUDA exclusive: the job will use the new rGPU resources but will not share themwith other jobs. For instance, “srun –rcuda-mode=excl

–gres=rgpu:4 job.sh” will submit a job named “job.sh” requesting the exclusive use of 4 virtual GPUs.

3 PERFORMANCEANALYSIS
In this sectionwe study the impact that using the remoteGPUvirtualizationmechanism in combinationwith Slurmhas on the performance of a data
center. To that end, we have executed several workloads in a cluster by submitting a series of job requests to the Slurmqueues. After job submission
we have measured several parameters such as total execution time of the workloads, energy required to execute them, GPU utilization, etc. We
have considered two different scenarios for workload execution. In the first one, the cluster uses CUDA and therefore applications can only use
those GPUs installed in the same node where the application is being executed. In this scenario, an unmodified version of Slurm has been used. In
the second scenario we have made use of rCUDA and therefore an application being executed in a given node can use any of the GPUs available in
the cluster. Moreover, the modified version of Slurm has been used so that it is possible to schedule the use of remote GPUs. These two scenarios
will allow to compare the performance of a cluster using CUDAwith the throughput of a cluster using rCUDA.
In the following subsections we present the performance analysis. In this regard, we first present the cluster configuration and the workloads

used in the experiments. After that, we analyze the performance of combining rCUDAwith Slurm in different cluster configurations.

3.1 Cluster Testbed
The testbed used in this study is comprised of 1027GR-TRF Supermicro servers. Each of the servers includes two Intel Xeon E5-2620 v2 proces-
sors (six cores with Ivy Bridge architecture) operating at 2.1 GHz and 32 GB of DDR3 SDRAM memory at 1600 MHz. They also have a Mellanox
ConnectX-3 VPI single-port FDR InfiniBand adapter connected to a Mellanox Switch SX6025 (FDR InfiniBand compatible) to exchange data at a
maximum rate of 56 Gb/s. Furthermore, an NVIDIA Tesla K20GPU is installed in each node.
In order to analyze how the obtained performance results depend on cluster size, we have considered three cluster sizes for the experiments: 4

nodes, 8 nodes, and 16 nodes. Obviously, the cluster configuration composed of 16 nodes is the most representative one (although it is still smaller
than most data centers). However, these three sizes will allow us to study the different trends of the performance metrics. In all the three cluster
sizesmentioned, one additional nodehas been leveraged. This additional node,which does not include aGPU,will be used as the Slurmmanagement
node andwill execute the central Slurm daemon responsible for scheduling jobs (the slurmctld process).
Regarding the software configuration of the cluster, Linux CentOS 6.4 was used along with Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and

administrative tools). Slurmversion 14.11.0was used. Themodifications described in Section 2.2were applied to Slurm. Itwas configured to use the
backfill scheduling policy. In this way, jobs can overtake others. Finally, version 2.0b of theMVAPICH2 implementation ofMPI, specifically tuned
for InfiniBand, was used for those applications requiring theMPI library.

3.2 Workloads
Several workloads have been considered in order to provide a more representative range of results. The workloads are composed of applications
(see Table 1) selected because of their different characteristics from the list of NVIDIA’s Popular GPU-Accelerated Applications Catalog 29.

• GPU-BLAST 30 has been designed to accelerate the gapped and ungapped protein sequence alignment algorithms of the NCBI-BLAST
(http://www.ncbi.nlm.nih.gov) implementation using GPUs.

• LAMMPS 31 is a classicmolecular dynamics simulator that can be used tomodel atoms or, more generically, as a parallel particle simulator at
the atomic, mesoscopic, or continuum scale.

• mCUDA-MEME 32 is a parallel CUDA implementation of the MEME algorithm, used for discovering motifs in a group of related DNA or
protein sequences.

• GROMACS 33 is a molecular dynamics simulator, as LAMMPS. Although this package can use GPUs, in this study we will use a non-
accelerated version in order to achieve a higher degree of heterogeneity in our experimental workloads.

6 Sergio Iserte ET AL

TABLE 1Applications used in this study. Configuration details for each application

Is anMPI Total amount Execution Memory
Application Configuration application? of GPUs time (s) per GPU
GPU-Blast 1 6-thread process in 1 node no 1 21 1599MB
LAMMPS 4 1-thread processes in 4 nodes yes 4 15 876MB
mCUDA-MEME 4 1-thread processes in 4 nodes yes 4 165 151MB
GROMACS 2 12-thread processes in 2 nodes yes 2 167 -
BarraCUDA 1 1-thread process in 1 node no 1 763 3319MB
MUMmerGPU 1 1-thread process in 1 node no 1 353 2104MB
GPU-LIBSVM 1 1-thread process in 1 node no 1 343 145MB
NAMD 4 12-thread processes in 4 nodes yes 4 241 -

• BarraCUDA 34 is a sequence mapping software that uses GPUs to accelerate the inexact alignment of short sequence reads to a particular
location on a reference genome.

• MUMmerGPU is the GPU implementation of MUMmer 35, which is a system for rapidly aligning entire genomes, whether in complete or
draft form.

• GPU-LIBSVM is a modification of the original LIBSVM 36 algorithm that exploits the CUDA framework to significantly reduce processing
time. LIBSVM is an integrated software intended for vector classification, regression and distribution estimation.

• NAMD 37 is a parallel molecular dynamics simulator designed for high-performance simulation of large biomolecular systems. Although this
application is able to use GPUs, the version of NAMD used in our study does not make use of them and therefore is intended to contribute
to a higher degree of heterogeneity of the workloads.

Table 1 provides additional information about the applications used in this work, such as the exact execution configuration used for each of
the applications, showing the amount of processes and threads used for each of them. It can be seen in the table that LAMMPS, mCUDA-MEME,
GROMACS, and NAMD are MPI applications that will spread across several nodes in the cluster. On the contrary, the other four applications will
execute in a single node. Additionally, some of the applications also make use of threads. For instance, the GPU-Blast application uses a single
process composed of 6 threads. During execution, each of these threads will use a different CPU core, although all of them will make use of the
same GPU. In a similar way, the NAMD application will be distributed across 4 different nodes of the cluster (4 processes) and 12 threads will be
launched at each node. Therefore, theNAMDapplicationwill make use of 4 entire nodes. In a similar way, theGROMACS applicationwill keep busy
two entire nodes while being executed. Notice that we have configured the execution of the considered applications as shown in Table 1 according
to a previous scalability analysis (not shown) which was carried out in advance to find out the best configuration for each application.
Table 1 also shows the execution time for each application, which ranges from 15 up to 763 seconds for LAMMPS and BarraCUDA, respectively.

Applications can be classified according to their execution time. In this regard, GPU-Blast, LAMMPS, mCUDA-MEME, and GROMACS require less
than 170 seconds to complete execution (they are “short” applications) whereas BarraCUDA, MUMmerGPU, GPU-LIBSVM, and NAMD require
more than 240 seconds to be executed (“long” applications). In addition to execution time, Table 1 also shows the GPU memory required by each
application. For those applications composed of several processes, the amount of GPU memory depicted in Table 1 refers to the individual needs
of each process. Notice that the amount of GPU memory is not specified for the GROMACS and NAMD applications because we are using non-
accelerated versions of these applications.
In summary, the eight applications used present different characteristics, not only regarding the amount of processes and threads used by each

of them and their execution time but they also present different GPU usage patterns, what includes both memory copies to/from GPUs and also
kernel executions. Therefore, although the set of applications considered is finite, it may provide a representative sample of a workload typically
found in current data centers. Actually, the set of applications in Table 1 could be considered from two different point of views. In the first one, the
exact computations performed by each application would receive themain focus. In this point of view, some applications address similar problems,
like LAMMPS, GROMACS, and NAMD. However, in the second point of view, the specific problem addressed by each application is not the focus
but applications are seen as processes that keep CPUs and GPUs busy during some amount of time and require some amount of memory. Now the
focus is the amount of resources required by each application and the time that those resources are kept busy. From this second perspective, the
set of applications in Table 1 becomes evenmore representative.
Table 2 displays the Slurm parameters used for launching each of the applications with CUDA and rCUDA. In the first case, CUDA will be used

(column labeled “Launch with CUDA”). In the second case, remote GPUs can either be used in an exclusive or shared way. In the first approach,
the column labeled as “Launch with rCUDA exclusive” shows that the rcuda-mode parameter is set to excl and no GPUmemory is declared. In the
second approach, the column labeled as “Launchwith rCUDA shared” shows that the amount of memory required at eachGPUmust be specified in

Sergio Iserte ET AL 7

TABLE 2 Slurm launching parameters

Launchwith Launchwith Launchwith
Application CUDA rCUDA exclusive rCUDA shared
GPU-Blast -N1 -n1 -c6 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c6 –gres=rgpu:1 -c6 –gres=rgpu:1:1599M
LAMMPS -N4 -n4 -c1 –rcuda-mode=excl –rcuda-mode=shar -n4

–gres=gpu:1 -n4 -c1 –gres=rgpu:4 -c1 –gres=rgpu:4:876MÂă
mCUDA-MEME -N4 -n4 -c1 –rcuda-mode=excl –rcuda-mode=shar -n4

–gres=gpu:1 -n4 -c1 –gres=rgpu:4 -c1 –gres=rgpu:4:151M
GROMACS -N2 -n2 -c12 -N2 -n2 -c12 -N2 -n2 -c12
BarraCUDA -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:3319M
MUMmerGPU -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:2104M
GPU-LIBSVM -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:145M
NAMD -N4 -n48 -c1 -N4 -n48 -c1 -N4 -n48 -c1

the submission command. On the other hand, it can be seen by comparing the parameters in the three columns that, when CUDA is used, different
processes of anMPI applicationmust bemapped to different nodes (parameter “-Ni” where i is the amount of requested nodes) so that each process
can use a different GPU2. On the contrary, this requirement is removedwhen rCUDA is employed.
The previous applications have been combined in order to create three different workloads as shown in Table 3. Workload labeled as “Set 1” is

composed of 400 instances from applications GPU-Blast, LAMMPS, mCUDA-MEME, and GROMACS. Notice that these applications are the ones
with the shortest execution times. The exact amount of instances for each application is shown in the table. In a similar way, workload labeled
as “Set 2” is composed of 400 instances of applications BarraCUDA, MUMmerGPU, GPU-LIBSVM, and NAMD (these applications are the ”long”
applications). Finally, a third workload, referred to as “Set 1+2”, has been created with instances from all the applications. Notice that, for each of
theworkloads, the instances from different applications as well as the exact sequence of instanceswithin theworkload are randomly set. However,
once workloads are set, they remain constant across the different experiments presented in this section. This means that the amount of instances
of each application and the exact sequence of these instances is not modified across experiments.

3.3 Initial Performance Analysis: n nodes with 1 GPU each
This first experiment considers the simplest scenario consisting of a cluster with n nodes each of them owning one GPU. The three cluster sizes
mentioned in Section 3.1 were used. Figure 3 shows the performance results for the 16-node case. The other two cluster sizes provided similar
trends. Thefigure shows, for each of theworkloads depicted in Table 3, the performancewhenCUDA is used alongwith the original Slurmworkload
manager (results labeled as “CUDA”) as well as the performance when rCUDA is used in combination with the modified version of Slurm. In this
case, label “rCUDAex” refers to the results when remote GPUs are used in an exclusive way by applications whereas label “rCUDAsh” refers to the
case when remote GPUs are shared among several applications. Among both rCUDA uses, the shared approach is the most interesting option. The
exclusive case is considered in this paper only for comparison purposes. Figure 3(a) shows total execution time for each of theworkloads. Figure 3(b)

TABLE 3Workload composition

Workload
Application Set 1 Set 2 Set 1+2
GPU-Blast 112 - 57
LAMMPS 88 - 52
mCUDA-MEME 99 - 55
GROMACS 101 - 47
BarraCUDA - 112 51
MUMmerGPU - 88 52
GPU-LIBSVM - 99 37
NAMD - 101 49
Total 400 400 400

2In our cluster testbed there is only one GPU per node.

8 Sergio Iserte ET AL

0

4000

8000

12000

16000

Set 1 Set 2 Set 1+2Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA ex rCUDA sh

(a) Total execution time of the workloads.

Set 1 Set 2 Set 1+2
Workload

CUDA rCUDA ex rCUDA sh

0

0.1

0.2

0.3

0.4

0.5

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.

0
Set 1 Set 2 Set 1+2

Workload

CUDA rCUDA ex rCUDA sh

4

8

12

16

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 3 Performance results from the 16-node 16-GPU cluster.
depicts the averagedGPUutilization for all the 16GPUs in the cluster. Data forGPUutilization has been gathered by polling each of theGPUs in the
cluster once every second and afterwards averaging all the samples after completing workload execution. The nvidia-smi command was used for
polling theGPUs. In a similar way, Figure 3(c) shows total energy required for completingworkload execution. Energy has beenmeasured by polling
once every second the power distribution units (PDUs) present the cluster. Used units are APC AP8653 PDUs, which provide individual energy
measurements for each of the servers connected to them. Afterworkload completion, the energy required by all serverswas aggregated to provide
themeasurements in Figure 3(c).
As can be seen in Figure 3(a), workload “Set 1” presents the smallest execution time, given that it is composed of the applications with the small-

est execution times. Furthermore, using rCUDA in a shared way reduces execution time for the three workloads. In this regard, execution time is
reducedby48%, 37%, and27% forworkloads “Set 1”, “Set 2”, and “Set 1+2”, respectively.Notice also that the use of remoteGPUs in an exclusiveway
also reduces execution time. In the case for “Set 2” this reduction is more noticeable because, whenCUDA is used, theNAMDapplication (with 101
instances in theworkload) spans over 4 complete nodes thus blocking theGPUs in those nodes,which cannot beusedby any accelerated application
during the entire execution time of NAMD (241 seconds). On the contrary, when “rCUDAex” is leveraged, the GPUs in those four nodes are acces-
sible from other nodes and therefore they can be used by other applications being executed at other nodes. Regarding GPU utilizacion, Figure 3(b)
shows that the use of remote GPUs helps to increase overall GPU utilization. Actually, when “rCUDAsh” is used with “Set 1” and “Set 1+2”, average
GPU utilization is doubled with respect to the use of CUDA. Finally, total energy consumption is reduced accordingly, as shown in Figure 3(c), by
40%, 25%, and 15% for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively.
Several are the reasons for the benefits obtainedwhenGPUs are shared across the cluster. First, as alreadymentioned, the execution of the non-

accelerated applicationsmakes that GPUs in the nodes executing them remain idlewhenCUDA is used. On the contrary, when rCUDA is leveraged,
these GPUs can be used by applications being executed in other nodes of the cluster. Notice that this remote usage of GPUs belonging to nodes
with busy CPUs will be more frequent as cluster size increases because more GPUs will be blocked by non-accelerated applications (also depend-
ing on the exact workload). Another example is the execution of LAMMPS and mCUDA-MEME, which require 4 nodes with one GPU. While these
applications are being executed with CUDA, those 4 nodes cannot be used by any other application from Table 1: on the one hand, the other accel-
erated applications cannot access the GPUs in those nodes because they are busy and, on the other hand, the non-GPU applications (GROMACS
and NAMD) cannot use those nodes because they require all the CPU cores but LAMMPS and mCUDA-MEME already took one core. However,
whenGPUs are shared among several applications, GPUs assigned to LAMMPS andmCUDA-MEME can also be assigned to other applications that
will run in any available CPU in the cluster, thus increasing overall throughput. This concurrent usage of the GPUs brings to a second cause for the
improvements shown in Figure 3.
The second reason for the improvements shown in Figure 3 is related to the usage that applications make of GPUs. As Table 1 showed, some

applications do not completely exhaust GPUmemory resources. For instance, applicationsmCUDA-MEME andGPU-LIBSVMonly use about 3% of
the memory present in the NVIDIA Tesla K20 GPU. However, the unmodified version of Slurm (combined with CUDA) will allocate the entire GPU
for executing each of these applications, thus causing that almost 100% of the GPUmemory is wasted during application execution. This concern is
also present for other applications in Table 1. Moreover, if NVIDIA Tesla K40 GPUs were used instead of the NVIDIA Tesla K20 devices employed
in this study, then this memory underutilization would be worse because the K40model features 12 GB of memory instead of the 5 GB available in
the Tesla K20 device. On the contrary, when rCUDA is used in a shared way, GPUs can be shared among several applications provided that there
is enough memory for all of them. Obviously, GPU cores will have to be multiplexed among all those applications, what will cause that all of them
execute slower. In this regard, Figure 4 presents execution times for the applications in Table 1 when several instances of the same application are
concurrently executed in a GPU3. Executions in Figure 4 have been manually constrained to a single node using CUDA without the use of Slurm.

3It is also possible to analyze concurrent executions when the applications concurrently using the GPU are different. However, using several instances of
the same application generates a higher pressure on the system because all the instances will try to synchronously perform the same operations.

Sergio Iserte ET AL 9

0

0.5

1

1.5

2

N
o

rm
al

iz
e

d
Ex

e
cu

ti
o

n
 T

im
e 1 Instance

2 Instances
4 Instances

FIGURE 4Normalized execution timewhen several concurrent instances of the same application are executedwith CUDA.

For some of the applications only two concurrent instances were executed due to their larger memory requirements. In a similar way, BarraCUDA
does not allow the concurrent execution of other instances due to its highmemory requirements. As shown, executing several instances of the same
application reports a speed up for all of them: LAMMPS achieves the smallest one whereas GPU-LIBSVM obtains significant benefits. In summary,
sharing a GPU among several applications reduces total execution time. This reduction makes that combining rCUDAwith the modified version of
Slurm results in important reductions in the time required to complete workload execution.
Another possible point of view related to sharing GPUs among applications is that all the applications sharing the GPU execute slower because

they have to share the GPU cores. However, despite of the slower execution of each individual application, the entire workload is completed ear-
lier, as shown in Figure 3. This means (1) that the time spent by applications waiting in the Slurm queues is reduced and (2) the execution of each
individual application is completed earlier. As a consequence, data center users increase their satisfaction regarding the service received.
One additional metric that could be analyzed is the time that GPUs remain allocated to applications. Figure 5 presents the time that any GPU

in the cluster is assigned to an application and also compares that time with total execution time of the workload. It can be seen that the use of
“rCUDAex” increases the percentage of time that GPUs are assigned to applications up to 96%whereas this percentage is reduced for “rCUDAsh”
to values equal to 59%, 83%, and 74% for “Set 1”, “Set 2”, and “Set 1+2” respectively. These lower percentages point out that, when rCUDAsh is
leveraged, execution time of workloads is dominated by the non-GPU applications because accelerated ones take advantage of available remote
GPU resources to complete their execution before all non-accelerated applications have finished.
Finally, as shown in Figure 4, the BarraCUDA application presents high GPU memory requirements, which reduce the opportunity to share its

GPUwith other applications. Thus, executions of BarraCUDAbehave in a similarway to the “rCUDAex”mode. In order to analyze the stability of the
resultswhen this behavior is reduced, twonewworkloadshavebeen created. Table4 shows thesenewworkloads. It canbe seen that thepresenceof
the heavy BarraCUDA application has been noticeably reduced at the same time that the presence of lighter applications such as GPU-LIBSVMhas
been increased. Figure 6 shows the performance results for these newworkloads. It can be seen that although theworkloads have been noticeably
modified, the trends of the results are similar to those in Figure 3. Results for cluster sizes of 4 and 8 nodes also showed similar trends. Moreover,
Figure 7 depicts the GPU allocation time with the new workloads. Again, the same trend as with the previous workloads is followed. This suggests
that the performance improvements shown in this section can be expected formany otherworkloads and cluster sizes. Finally, once it has been seen
that rCUDA exclusive performs better than CUDAbut worse than rCUDA sharedmode, henceforth wewill continue the performance study taking
only into account rCUDA shared.

Set 1 Set 2 Set 1+2
Workload

CUDA rCUDA ex rCUDA sh

(a) Percentage of GPU allocation time. (b) Total GPU allocation time.

FIGURE 5GPU allocation time in the 16-node 16-GPU cluster.

10 Sergio Iserte ET AL

TABLE 4Composition of newworkloads

Workload
Application Set 2 Set 1+2 New Set 2 New Set 1+2
GPU-Blast - 57 - 50
LAMMPS - 52 - 50
mCUDA-MEME - 55 - 50
GROMACS - 47 - 50
BarraCUDA 112 51 40 20
MUMmerGPU 88 52 100 50
GPU-LIBSVM 99 37 160 80
NAMD 101 49 100 50
Total 400 400 400 400

0

4000

8000

12000

16000

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2

(a) Total execution time of the workloads.
Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2
0

0.1

0.2

0.3

0.4

0.5

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.
Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2
0

4

8

12

16

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 6 Performance of the 16-node 16-GPU cluster with the newworkloads.

(a) Percentage of GPU allocation time. (b) Total GPU allocation time.

FIGURE 7GPU allocation time in the 16-node 16-GPU cluster with the newworkloads.
3.4 Introducing Additional Heterogeneity in the Cluster
Current data centers execute a large variety of applications. Some of them address highly parallel problems that can benefit from the use of sev-
eral GPUs. In these cases, the MPI library can be used in order to distribute the application processes across several nodes in the cluster so that
each process makes use of the GPU installed in the node executing that process. The net result is that the application is concurrently making use of
several GPUs thanks to theMPI library. However, using theMPI library for some applications may not be the best option. For instance, if communi-
cations amongprocesses are too intense, then the use of amessaging librarywould noticeably reduceoverall performance. In these cases, insteadof
following a distributed approach for designing the application, it could be programmed by leveraging the sharedmemory paradigm. In this context,
the applicationwould be divided into threads and each threadwould be responsible for submitting its kernels to theGPU. However, in order to effi-
ciently execute such a shared-memory parallel application, as many GPUs as threads should be available in the computer executing the application.

Sergio Iserte ET AL 11

TABLE 5Composition of workloads for non-uniform heterogeneous clusters

Workload
Application WL 1 WL 2
GPU-Blast 41 48
LAMMPS short 39 46
LAMMPS long 2p 20 10
LAMMPS long 4p 20 10
mCUDA-MEME short 39 46
mCUDA-MEME long 2p 20 10
mCUDA-MEME long 4p 20 10
GROMACS 40 40
BarraCUDA 40 47
MUMmerGPU 41 47
GPU-LIBSVM 40 46
NAMD 40 40
Total 400 400

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA sh

0

10000

20000

30000

40000

WL 1 WL 2

(a) Total execution time of the workloads.
Workload

CUDA rCUDA sh

WL 1 WL 2
0

0.1

0.2

0.3

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.
Workload

CUDA rCUDA sh

WL 1 WL 2
0

10

20

30

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 8 Performance results from a non-uniform cluster with fifteen 1-GPU nodes and one 4-GPU node.

In our cluster example, for instance, where only one GPU is available in each node, it would not be possible to execute this kind of applications. One
possible solution could be to augment the clusterwith one ormore servers featuring several GPUs. Thiswould create a non-uniformheterogeneous
cluster.
In order to model this scenario, we have replaced one of the nodes in our cluster by a node containing four GPUs. This node is based on the

Supermicro SYS7047GR-TRF server, populated with four NVIDIA Tesla K20 GPUs and one FDR InfiniBand network adapter. Additionally, in order
to model the use of these parallel shared-memory applications, we have modified the workloads used in the experiments by modeling applications
with two and four threads that require two and four GPUs, respectively. To that end, two different flavors of the LAMMPS and mCUDA-MEME
applications have been used, as shown in Table 5: (1) “LAMMPS long 2p” and “mCUDA-MEME long2p” consist of two single-threaded processes that
are forced to be executed in the same node by using the launching parameters -N1 -n2 -c1. These instances of the application will model the use of
two-thread shared-memory applications, (2) “LAMMPS long 4p” and “mCUDA-MEME long 4p” consist of four single-threaded processes that will
execute in the same node by using the launching parameters -N1 -n4 -c1. They will model the use of four-thread shared-memory applications. One
additional flavor of these applications will model single-thread shared-memory applications. This additional flavor is composed by the “LAMMPS
short” and “mCUDA-MEME short” cases shown in Table 5 which make use of one single-threaded process with launching parameters -N1 -n1 -c1.
Furthermore, small input data sets are used for the “LAMMPS short” and “mCUDA-MEME short” cases whereas the multi-threaded flavors use a
large input data set in order to lengthen their execution time. The idea behind the “2p” and “4p” flavors of LAMMPS andmCUDA-MEME is that they
necessarily require the 4-GPU server for their executionwhen a cluster not using rCUDA is employed. On the contrary, when rCUDA is used, all the
threadswill be placed in the same node but these threadswill be able to use any of the GPUs in the cluster, thus loosening up the initial limitation of
having to wait for the 4-GPU node and thus speeding up the execution of the workload.
Figure 8 depicts the performance results when the workloads in Table 5 are executed in a non-homogeneous cluster composed of 15 nodes

owning one GPU and one additional node populated with 4 GPUs. It can be seen that decoupling GPUs from nodes with rCUDA provides large

12 Sergio Iserte ET AL

FIGURE 9GPU allocation time in a non-uniform cluster with fifteen 1-GPU nodes and one 4-GPU node.
benefits because applications requiring 2 (or 4)GPUs can start execution as soon as there are enough available resources in remoteGPUs across the
cluster. Contrariwise,whenCUDA is used, applications spend a lot of timewaiting for the4-GPUnode. Thiswait canbe seen in Figure9which shows
the small percentage of GPU-allocation time when CUDA is used for these workloads. This small GPU allocation time suggests that applications
spendmost of the timewaiting for resources.

3.5 Attaching GPUs to a non-GPUCluster
The use of GPUs in a cluster usually puts several burdens in the physical configuration of the nodes in the cluster. For instance, nodes owning aGPU
need to include larger power supplies able to provide the energy required by the accelerators. Also, GPUs are not small devices and therefore they
require a non-negligible amount of space in the nodes where they are installed. These requirements make that installing GPUs in a cluster which
did not initially include them is sometimes expensive (power supplies need to be upgraded) or simply impossible (nodes do not have enough space
for the GPUs). However, the workload in some data centers may evolve towards the use of GPUs. At that point, the concern is how to address the
introduction of GPUs in the computing facility.
One possible solution to the concern above is acquiring some amount of servers populated with GPUs and divert the execution of accelerated

applications to those nodes. The Slurm workload manager would automatically take care of dispatching the GPU-accelerated applications to the
new servers. However, although this approach is feasible, it presents the limitation that GPU-jobs will probably have to wait for long until one of
the GPU-enabled servers is available, even though GPU utilization is usually low. Another concern is that MPI accelerated applications will only be
able to span to as many nodes as GPU-enabled servers were acquired. Given these concerns, a better approach would be to acquire some amount
of servers populated with GPUs and use rCUDA to execute accelerated applications at any of the nodes in the cluster while using the GPUs in the
new servers. This solution would not only increase overall GPU utilization with respect to the use of CUDA in the previous scenario but would also
allow thatMPI applications span to asmany nodes as required becauseMPI processes would be able to remotely access GPUs thanks to rCUDA. In
summary, the remote GPU virtualizationmechanism allows that clusters which did not initially include GPUs can be easily and cheaply updated for
using GPUs by attaching to them one or more computers containing GPUs. In this way, the original nodes will make use of the GPUs installed in the
new nodes, which will becomeGPU servers. Slurmwould be used tomanage the use of the GPUs in the new severs.
Figure 10 shows the performance results when a server with four GPUs has been attached to a cluster without GPUs. The original cluster is

composed of 15 nodes (the same as in the previous section, but GPUs have been removed). The 4-GPU server is the same as in previous section.

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA sh

WL 1 WL 2
0

20000

40000

60000

80000

(a) Total execution time of the workloads.
Workload

CUDA rCUDA sh

WL 1 WL 2

G
P

U
 U

ti
liz

at
io

n

0

0.1

0.2

0.3

0.4

(b) Average GPU utilization.
Workload

CUDA rCUDA sh

WL 1 WL 2

En
e

rg
y

(k
W

h
)

0

10

20

30

40

(c) Total energy consumed during the execution of
the workloads.

FIGURE 10 Performance results when a server with 4 GPUs is attached to a non-GPU cluster.

Sergio Iserte ET AL 13

FIGURE 11Architecture usually deployed by GPU virtualization frameworks.
Results are similar to those presented in the previous section and show that decoupling GPUs from nodes with rCUDA allows applications tomake
amuchmore flexible usage of the resources in the cluster and therefore execution time is reduced as well as energy consumption.

4 RELATEDWORK
In this section an overview of the state-of-the-art is provided. We first review other works related to GPU virtualization and then a review about
workloadmanagers is addressed.

4.1 GPUVirtualization
Sharing accelerators among several computers has been addressed bothwith hardware and software approaches.On the hardware side,maybe the
most prominent solution was NextIO’s N2800-ICA 38, based on PCIe virtualization 39. This solution allowed to share a GPU among eight different
servers in a rackwithin a two-meter distance. Nevertheless, this solution lacked from the required flexibility because aGPU could only be used by a
single server at a time, thus preventing the concurrent sharing of GPUs. Furthermore, this solution was expensive, what may be one of the reasons
for NextIO going out of business in August 2013.
As a flexible alternative to hardware approaches, several software-based GPU sharing mechanisms have appeared, such as V-GPU, DS-CUDA,

rCUDA, vCUDA, and GridCuda, for example. Basically, these software proposals share a GPU by virtualizing it, so that they provide applications
with virtual instances of the real device, which can therefore be concurrently shared. Usually, these GPU sharing solutions place the virtualization
boundary at the API level, thus offering the same API as the NVIDIA CUDARuntime API 19 does.
Figure 11 depicts the architecture usually deployed by these virtualization solutions, which follow a distributed client-server approach and is

very similar to the architecture depicted for the rCUDAmiddleware in Figure 2.
CUDA-based GPU virtualization frameworks may be classified into two types: (1) those intended to be used in the context of virtual machines

and (2) those devised as general purpose virtualization frameworks to be used in native domains, although the client part of these latter solutions
may also be used within a virtual machine. Frameworks in the first category usually make use of shared-memory mechanisms in order to transfer
data frommain memory inside the virtual machine to the GPU in the native domain, whereas the general purpose virtualization frameworks in the
second type make use of the network fabric in the cluster to transfer data from main memory in the client side to the remote GPU located in the
server. This is why these latter solutions are commonly known as remote GPU virtualization frameworks.
Regarding thefirst type ofGPUvirtualization frameworksmentioned above, several solutions have been developed to be specifically usedwithin

virtual machines, as for example vCUDA 17, GViM 18, gVirtuS 16, and Shadowfax 40. The vCUDA technology supports only an old CUDA version
(v3.2) and implements an unspecified subset of the CUDA Runtime API. Moreover, its communication protocol presents a considerable overhead,
because of the cost of the encoding and decoding stages, which causes a noticeable drop in overall performance. GViM is based on the obsolete
CUDA version 1.1 and, in principle, does not implement the entire CUDA Runtime API. gVirtuS is based on the old CUDA version 2.3 and imple-
ments only a small portion of its API. For example, in the case of the memory management module, it implements only 17 out of 37 functions.
Furthermore, despite it is designed for KVM virtual machines, it requires a modified version of KVM. Nevertheless, although it is mainly intended
to be used in virtual machines, granting them access to the real GPU located in the same node, it also provides TCP/IP communications for remote
GPU virtualization, thus allowing applications in a non-virtualized environment to access GPUs located in other nodes. Regarding Shadowfax, this
solution allows Xen virtual machines to access the GPUs located at the same node, although it may also be used to access GPUs at other nodes of

14 Sergio Iserte ET AL

FIGURE12Comparisonbetween the theoretical bandwidth of different versions of PCI Express x16 and those of commercialized InfiniBand fabrics
and network adapters.
the cluster. It supports the obsolete CUDA version 1.1 and, additionally, neither the source code nor the binaries are available in order to evaluate
its performance.
In the second type of virtualization frameworks mentioned above, which provide general purpose GPU virtualization, one can find rCUDA 11,

V-GPU 41, GridCuda 14, DS-CUDA 15, and Shadowfax II 42. rCUDA, was already described in Section 2.1. V-GPU is a recent tool supporting CUDA
4.0. Unfortunately, the information provided by the V-GPU authors is fuzzy and there is no publicly available version that can be used for testing
and comparison. GridCuda also offers access to remote GPUs in a cluster, but supporting an old CUDA version (v2.3). Moreover, there is currently
no publicly available version of GridCuda that can be used for testing. Regarding DS-CUDA, it integrates a more recent version of CUDA (4.1) and
includes specific communication support for InfiniBand. However, DS-CUDApresents several strong limitations, such as not allowing data transfers
with pinned memory. Finally, Shadowfax II is still under development, not presenting a stable version yet and its public information is not updated
to reflect the current code status.
It is important to notice that although remote GPU virtualization has traditionally introduced a non-negligible overhead, given that applications

do not accessGPUs attached to the local PCI Express (PCIe) link but rather access devices that are installed in other nodes of the cluster (traversing
a network fabric with a lower bandwidth), this performance overhead has significantly been reduced thanks to the recent advances in networking
technologies. For example, as depicted in Figure 12, the theoretical bandwidth of the InfiniBand network is 12.5 GB/s when using the most recent
Mellanox EDR InfiniBand adapters. This bandwidth is very close to the 15.75 GB/s of PCIe 3.0 x16. This makes that the bandwidth achieved by
EDR InfiniBand network adapters and that of the NVIDIA Tesla K40 GPU are very close. Moreover, the previous generation of these technologies
(NVIDIA Tesla K20 GPUs and FDR InfiniBand network adapters), provides performance figures that are also very close: the Tesla K20 GPU used
PCIe 2.0, which achieves a theoretical bandwidth of 8 GB/s, whereas FDR InfiniBand (which uses PCIe 3.0 x8) provides 7 GB/s. As a result, when
using remote GPU virtualization solutions in both hardware generations (Tesla K40 & EDR InfiniBand and Tesla K20 & FDR InfiniBand), the path
communicating the main memory in the computer executing the application and the remote accelerator presents a similar bandwidth in all of its
stages. This bandwidth is similar to the one initially attained by the traditional approach using local GPUs, as shown in 43. This has turned remote
GPU virtualization frameworks into an appealing option.

4.2 WorkloadManagers and Job Schedulers
In addition to Slurm, there is a myriad of job schedulers, such as PBSPro 44, LoadLeveler 45, Condor 46, MOAB 47, LSF 48, DPCS 49, Quadrics RMS 50,
BPROC 51, TORQUE 52, OAR 53, MAUI 54, SunGrid Engine 55, etc. An in-depth analysis can be found in 56.We briefly review in the following themost
important ones in order to support our choice for Slurm.
The Portable Batch System (PBS) 44 is a commercial scheduler originally developed in NASA. Recently, support for GPU scheduling was intro-

ducedwith twodifferentflavors: (a) a simple approach inwhich just a singleGPU job canbe run at a time in a node and (b) an advanced approach that
allows several GPU jobs to be concurrently run in a node. In any case, sharing a GPU among several jobs is not allowed. Although PBS is portable, it
mainly presents the concern of being single threaded and hence exhibits poor performance on large clusters.
LoadLeveler 45 is a commercial tool by IBM and supports very few non-IBM systems, thus reducing its portability to general clusters. Further-

more, it presents a very poor scalability, requiring around 20minutes to execute a trivial 8000-task 500-node assignment 9.
Condor 46 is a parallel job manager developed at University of Wisconsin. It was the basis for LoadLeveler and presents an elaborated check-

point/restart feature and an interesting advertising system that allows servers to announce their available resources and consumers to disclose
their requirements, so that a broker can later performmatches among them. Although the source code of Condor is available, thusmaking it a good
candidate for introducing virtual GPU awareness, this batch system is less used than Slurm, which is used in several of systems in TOP500 list 57.
MOAB 47 is a commercial scheduler derived fromthePBSone. It provides theusual features in this kindof systems (backfilling, FCFS, preemption,

advance reservation, etc) but given that is is just a scheduler, it requires to be complementedwith a resourcemanager system.

Sergio Iserte ET AL 15

Load Sharing Facility (LSF) 48 is a proprietary batch system and parallel job manager created by Platform Computing. Although it has interesting
features such as the possibility of being fed with thermal data from the computing nodes and thus try to balance the workload among servers, it is
not open-source, thus hindering the possibility of making any change on it.
DPCS (Distributed Production Control System) 49 was developed at Lawrence Livermore National Laboratory (LLNL) and provides support only

for a few computing systems. Furthermore, it requires an underlying infrastructure for parallel jobmanagement.
Quadrics RMS 50 is intended for Unix systems leveraging the Quadrics Eln interconnects, thus making its usability quite limited. Moreover, it is

proprietary, thusmaking it impossible to use it for the purposes of the work presented in this paper.
The Beowulf Distributed Process Space (BPROC) 51 is a suit of libraries and utilities that allow to start processes in a Beowulf-style cluster.

However, achieving scalability with this tool can be difficult.
The rest of schedulers mentioned above present similar concerns. On the contrary, Slurm is a simple, highly scalable and portable resourceman-

agement system which, additionally, is open-source and widely used in the HPC community. These characteristics made us to select Slurm as the
target for themodifications toachievevirtualGPUawareness.Actually, Slurmhasalsobeenpreviouslyused for includingnew features. For example,
in 58 an integer programming based heterogeneous CPU-GPU cluster scheduler was proposed for Slurm. However, this work did not consider the
use of virtual GPUs. Also, in 59 the use ofGPU ranges is proposed. Such a feature can be very useful to runtime auto-tuning applications and systems
that can make use of a variable number of GPUs. However, this work does not consider the use of virtual GPUs which are decoupled from the CPU
cores. Furthermore, in 60 the reliability of job schedulers, with a focus on Slurm, is analyzed and two proposals are made. Finally, in 61 the features
provided by Slurm are enhancedwithmulti-core/multi-threaded support. As can be seen, Slurm has been extendedmany times in order to consider
new technology trends.

5 CONCLUSIONS
In this paperwe have carried out a thorough performance evaluation of a cluster using amodified version of Slurmwhich is able to schedule the use
of the virtual GPUs provided by the rCUDAmiddleware. Themain idea is that the rCUDAmiddleware decouples GPUs from the nodes where they
are installed, thereforemaking the scheduling process muchmore flexible at the same time that a better usage of resources is achieved.
Results from the execution of 7 different workloads composed of 8 applications in 3 different cluster configurations suggest that cluster perfor-

mance can be noticeably increased just by modifying the Slurm scheduler and introducing rCUDA in the cluster. It is also expected that as GPUs
feature larger memory sizes, the benefits presented in this work will become also larger.

ACKNOWLEDGEMENTS
This work was funded by Generalitat Valenciana under Grant PROMETEO/2017/077. The author from Universidad Jaume I was supported by
projects TIN2014-53495-R, TIN2015-65316-P, and TIN2017-82972-R from MINECO and FEDER.. The authors are grateful for the generous
support provided byMellanox Technologies and the equipment donated by NVIDIA Corporation.

References
1. NVIDIA . CUDA C Programming Guide 7.0. 2015.
2. Group KOW.OpenCL 1.2 Specification. 2011.
3. WuH, Diamos G, Sheard T, et al. Red Fox: An Execution Environment for Relational Query Processing on GPUs. In: CGO’14. ; 2014: 44–54.
4. Playne DP, Hawick KA. Data Parallel Three-Dimensional Cahn-Hilliard Field Equation Simulation on GPUs with CUDA. In: PDPTA’09. ; 2009:
104–110.

5. Yamazaki I, Dong T, Solca R, Tomov S, Dongarra J, Schulthess T. Tridiagonalization of a dense symmetric matrix on multiple GPUs and its
application to symmetric eigenvalue problems. Concurrency and Computation: Practice and Experience 2014; 26(16): 2652–2666.

6. Luo Y, Duraiswami R. Canny edge detection onNVIDIA CUDA. In: CVPRW’08. ; 2008: 1-8.
7. Surkov V. Parallel Option Pricing with Fourier Space Time-stepping Method on Graphics Processing Units. Parallel Comput. 2010; 36(7): 372–
380.

16 Sergio Iserte ET AL

8. Agarwal PK, Hampton S, Poznanovic J, Ramanthan A, Alam SR, Crozier PS. Performance modeling of microsecond scale biological molecular
dynamics simulations on heterogeneous architectures. Concurrency and Computation: Practice and Experience 2013; 25(10): 1356–1375.

9. Yoo A, Jette M, GrondonaM. SLURM: Simple Linux Utility for Resource Management. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 2003 (pp. 44-60).

10. Silla F, Iserte S, ReañoC, Prades J.On the benefits of the remoteGPUvirtualizationmechanism: The rCUDAcase.Concurrency andComputation:
Practice and Experience 2017; 29(13): e4072.

11. Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: Middleware Industry ’15. ACM;
2015; NewYork, NY, USA: 4:1–4:7

12. Iserte S, Castello A,Mayo R, et al. Slurm Support for Remote GPUVirtualization: Implementation and Performance Study. In: ; 2014: 318-325.
13. Iserte S, Prades J, no CR, Silla F. Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. In: ; 2016:

98-101.
14. Liang TY, Chang YW. GridCuda: A Grid-Enabled CUDAProgramming Toolkit. In:WAINA. ; 2011: 141–146.
15. OikawaM, Kawai A, Nomura K, Yasuoka K, Yoshikawa K, Narumi T. DS-CUDA: AMiddleware to UseManyGPUs in the Cloud Environment. In:

SCC ’12. ; 2012: 1207–1214.
16. Giunta G, Montella R, Agrillo G, Coviello G. A GPGPU Transparent Virtualization Component for High Performance Computing Clouds. In:

Springer Berlin Heidelberg; 2010: 379–391.
17. Shi L, ChenH, Sun J. vCUDA: GPU accelerated high performance computing in virtual machines. In: IPDPS’09. ; 2009: 1–11.
18. Gupta V, Gavrilovska A, Schwan K, et al. GViM: GPU-accelerated VirtualMachines. In: HPCVirt’09. ; 2009: 17–24.
19. NVIDIA . CUDA Runtime API 7.0. 2015.
20. NVIDIA . CUDADriver API 7.0. 2015.
21. Reaño C, Silla F. Tuning remote GPU virtualization for InfiniBand networks. The Journal of Supercomputing 2016; 72(12): 4520–4545.
22. Reaño C, Silla F. A Performance Comparison of CUDARemote GPUVirtualization Frameworks. In: ; 2015: 488-489.
23. ImbernÃşn B, Prades J, GimÃl’nezD, Cecilia JM, Silla F. Enhancing large-scale docking simulation on heterogeneous systems: AnMPI vs rCUDA

study. Future Generation Computer Systems 2018; 79: 26 - 37.
24. Silla F, Prades J, Reaño C. Leveraging rCUDA for Enhancing Low-Power Deployments in the Physics Domain. In: ICPP ’18. ; 2018: 17:1–17:8.
25. Reaño C, Prades J, Silla F. Exploring the Use of Remote GPUVirtualization in Low-Power Systems for Bioinformatics Applications. In: ICPP ’18.

; 2018: 8:1–8:8.
26. Prades J, Reaño C, Silla F, Imbernón B, Pérez-Sánchez H, Cecilia JM. Increasing Molecular Dynamics Simulations Throughput by Virtualizing

Remote GPUswith rCUDA. In: ICPP ’18. ; 2018: 9:1–9:8.
27. Pérez F, ReañoC, Silla F. Providing CUDAAcceleration to KVMVirtualMachines in InfiniBandClusterswith rCUDA. In: JelasityM, Kalyvianaki

E., eds.Distributed Applications and Interoperable Systems; 2016: 82–95.
28. Prades J, Reaño C, Silla F. CUDAAcceleration for Xen VirtualMachines in Infiniband Clusters with rCUDA. In: PPoPP ’16. ; 2016: 35:1–35:2.
29. NVIDIA . GPUApplications. http://www.nvidia.com/object/gpu-applications.html; 2015.
30. Vouzis PD, Sahinidis NV. GPU-BLAST: Using graphics processors to accelerate protein sequence alignment. Bioinformatics 2010.
31. BrownWM, Kohlmeyer A, Plimpton SJ, Tharrington AN. Implementing molecular dynamics on hybrid high performance computers: Particle-

particle particle-mesh. Computer Physics Communications 2012; 183(3): 449 - 459.

http://www.nvidia.com/object/gpu-applications.html

Sergio Iserte ET AL 17
32. Liu Y, Schmidt B, Liu W, Maskell DL. CUDA-MEME: Accelerating motif discovery in biological sequences using CUDA-enabled graphics

processing units. Pattern Recognition Letters 2010; 31(14): 2170 - 2177.
33. Pronk S, PÃąll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics

2013; 29(7): 845-854.
34. Klus P, Lam S, Lyberg D, et al. BarraCUDA - a fast short read sequence aligner using graphics processing units. BMC Research Notes 2012; 5(1):

1–7.
35. Kurtz S, Phillippy A, Delcher A, et al. Versatile and open software for comparing large genomes.Genome Biology 2004; 5(2).
36. Chang CC, Lin CJ. LIBSVM: A Library for Support VectorMachines. ACM Trans. Intell. Syst. Technol. 2011; 2(3): 27:1–27:27.
37. Phillips JC, Braun R,WangW, et al. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 26(16): 1781–1802.
38. NextIO, N2800-ICA— Flexible andmanageable I/O expansion and virtualization. http://www.nextio.com/; .
39. Krishnan V. Towards an integrated IO and clustering solution using PCI express. In: CLUSTER’07. ; 2007: 259–266.
40. Merritt AM, Gupta V, Verma A, Gavrilovska A, Schwan K. Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies. In:

VTDC’11. ; 2011: 3–10.
41. V-GPU: GPU virtualization. http://www.zillians.com/products/vgpu-gpu-virtualization/; .
42. Shadowfax II - scalable implementation of GPGPU assemblies. http://keeneland.gatech.edu/software/keeneland/kidron; .
43. Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: Middleware Industry ’15. ACM;

2015: 4:1–4:7.
44. Nitzberg B, Schopf JM, Jones JP. PBS Pro: Grid Computing and Scheduling Attributes. In: Kluwer Academic Publishers; 2004: 183–190.
45. Kannan S, RobertsM,Mayes P, Brelsford D, Skovira J.WorkloadManagement with LoadLeveler. IBM, rst ed. . 2001.
46. Tannenbaum T,Wright D,Miller K, LivnyM. Beowulf Cluster Computing with Linux. In: MIT Press. 2002 (pp. 307–350).
47. MoabWorkloadManager Documentation. http://www.adaptivecomputing.com/resources/docs/; .
48. LSF (Load Sharing Facility) Features andDocumentation. http://www.platform.com/workload-management/high-performance-computing; .
49. Distributed Production Control System. http://www.llnl.gov/icc/lc/dpcs_overview.html; .
50. Quadrics ResourceManagement System. http://www.quadrics.com/website/pdf/rms.pdf; .
51. Beowulf Distributed Process Space. http://brpoc.sourceforge.net; .
52. Torque ResourceManager Documentation. http://www.adaptivecomputing.com/resources/docs/; .
53. Capit N, Da Costa G, Georgiou Y, et al. A batch scheduler with high level components. In: . 2. ; 2005: 776-783 Vol. 2.
54. Bode B, HalsteadDM, Kendall R, Lei Z, JacksonD. The Portable Batch Scheduler and theMaui Scheduler on Linux Clusters. In: ALS’00. USENIX

Association; 2000: 27–27.
55. GentzschW. Sun Grid Engine: towards creating a compute power grid. In: ; 2001: 35-36.
56. Georgiou Y. Resource and JobManagement in High Performance Computing. PhD Thesis, Joseph Fourier University, France . 2010.
57. SlurmWorkloadManager. http://slurm.schedmd.com; .
58. Soner S, Ozturan C. Integer Programming Based Heterogeneous CPU-GPU Cluster Scheduler for SLURM Resource Manager. In: HPCC-

ICESS’12. ; 2012: 418-424.
59. Soner S, Ozturan C. Extending Slurmwith Support for GPURanges. In: ; 2013.

http://www.nextio.com/
http://www.zillians.com/products/vgpu-gpu-virtualization/
http://keeneland.gatech.edu/software/keeneland/kidron
http://www.adaptivecomputing.com/resources/docs/
http://www.platform.com/workload-management/high-performance-computing
http://www.llnl.gov/icc/lc/dpcs_overview.html
http://www.quadrics.com/website/pdf/rms.pdf
http://brpoc.sourceforge.net
http://www.adaptivecomputing.com/resources/docs/
http://slurm.schedmd.com

18 Sergio Iserte ET AL

60. Sabin G, Sadayappan P. On Enhancing the Reliability of Job Schedulers. In: HAPCW. ; 2005.
61. Balle SM, Palermo DJ. Enhancing an Open Source Resource Manager with Multi-core/Multi-threaded Support. In: JSSPP’07. Springer-Verlag;

2008; Berlin, Heidelberg: 37–50.

How to cite this article: S. Iserte., J. Prades, C. Reaño, and F. Silla (2019), Improving theManagement Efficiency of GPUWorkloads in Data Centers
through GPUVirtualization, Concurrency and Computation: Practice and Experience, 2019;00:1–6.

