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Abstract: The most popular method for computing the matrix logarithm is a combination of the
inverse scaling and squaring method in conjunction with a Padé approximation, sometimes accom-
panied by the Schur decomposition. In this work, we present a Taylor series algorithm, based on
the free-transformation approach of the inverse scaling and squaring technique, that uses recent
matrix polynomial formulas for evaluating the Taylor approximation of the matrix logarithm more
efficiently than the Paterson–Stockmeyer method. Two MATLAB implementations of this algorithm,
related to relative forward or backward error analysis, were developed and compared with different
state-of-the art MATLAB functions. Numerical tests showed that the new implementations are
generally more accurate than the previously available codes, with an intermediate execution time
among all the codes in comparison.

Keywords: matrix logarithm; matrix square root; inverse scaling and squaring method; Taylor series;
Paterson–Stockmeyer method; matrix polynomial evaluation

1. Introduction and Notation

The calculus of matrix functions has been, for a long period of time, an area of interest
in applied mathematics due to its multiple applications in many branches of science and
engineering; see [1] and the references therein. Among these matrix functions, the matrix
exponential stands out due to both its applications and the difficulties of its effective
calculation. Basically, given a square matrix A ∈ Cn×n, its exponential function is defined
by the matrix series:

eA = ∑
n≥0

An

n!
.

Directly related to the exponential function, we find the matrix logarithm. Specifically,
given a nonsingular matrix A ∈ Cn×n whose eigenvalues lie in C− (−∞, 0 ], we define the
matrix logarithm of A as any matrix X ∈ Cn×n satisfying the matrix equation:

A = eX . (1)

Of course, there are infinite solutions of Equation (1), but we only focus on the principal
matrix logarithm or the standard branch of the logarithm, denoted by log (A), which is the
unique logarithm of matrix A (see Theorem 1.31 of [1]) whose eigenvalues all lie in the strip
{z ∈ C;−π < Im(z) < π}. Indeed, this principal matrix logarithm is the most used in ap-
plications in many fields of research from pure science to engineering [2], such as quantum
chemistry and mechanics [3,4], buckling simulation [5], biomolecular dynamics [6], ma-
chine learning [7–10], graph theory [11,12], the study of Markov chains [13], sociology [14],
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optics [15], mechanics [16], computer graphics [17], control theory [18], computer-aided
design (CAD) [19], optimization [20], the study of viscoelastic fluids [21,22], the analysis of
the topological distances between networks [23], the study of brain–machine interfaces [24],
and also in statistics and data analysis [25], among other areas. Just considering various
branches of engineering, the matrix logarithm can be employed to compute the time-
invariant component of the state transition matrix of ordinary differential equations with
periodic time-varying coefficients [26] or to recover the coefficient matrix of a differential
system governed by the linear differential equation y′ = Xy from observations from the
state vector y [27].

The applicability of the matrix logarithm in so many distinct areas has motivated
different approaches for its evaluation. One of the most-used methods was that proposed
by Kenney and Laub in [28], based on the inverse scaling and squaring method and a Padé
approximation, exploiting the matrix identity:

log (A) = 2s log (A1/2s
). (2)

This method finds an integer s such that A1/2s
is close to the identity matrix, ap-

proximates log
(

A1/2s − I
)

by a [p/q] Padé approximation rpq(A), and finally, computes
2srpq(A).

These same authors developed in [27] an algorithm that consists of obtaining the
Schur decomposition A = QTQ∗, where Q is a unitary matrix, T is an upper triangular
matrix, and Q∗ is the conjugate transpose of Q. Then, B ≈ log(T) is computed as follows:
the main diagonal is calculated by applying the logarithm scalar function on its elements,
and the upper diagonals are computed by using the Fréchet derivative of the logarithm
function. Finally, log(A) is computed as QBQ∗.

Later, most of the developed algorithms basically used the inverse scaling and squar-
ing method with Padé approximants to dense or triangular matrices; see [29–35]. Never-
theless, some new algorithms are based on other methods, among which the following can
be highlighted:

• An algorithm based on the arithmetic–geometric mean iteration; see [36];
• The use of contour integrals; see [37];
• Methods based on different quadrature formulas, proposed in [38,39].

Finally, we should mention the built-in MATLAB function, called logm, that computes
the principal matrix logarithm by means of the algorithms described in [32,33].

Throughout this paper, we refer to the identity matrix of order n as In, or I. In addition,
we denote by σ(A) the set of eigenvalues of a matrix A ∈ Cn×n, whose spectral radius
ρ(A) is defined as:

ρ(A) = max{|λ|; λ ∈ σ(A)}.

With dxe, we denote the result reached after rounding x to the nearest integer greater
than or equal to x, and bxc is the result reached after rounding x to the nearest integer
less than or equal to x. The matrix norm || · || stands for any subordinate matrix norm; in
particular, || · ||1 is the usual 1-norm. Recall that if A = (aij) is a matrix in Cn×n, its 2-norm
or Euclidean norm represented by ‖A‖2 satisfies [40]:

max
i,j

∣∣aij
∣∣ ≤ ‖A‖2 ≤ n max

i,j

∣∣aij
∣∣.

All the implemented codes in this paper are intended for IEEE double-precision
arithmetic, where the unit round off is u = 2−53 ≈ 1.11× 10−16. Their implementations for
other distinct precisions are straightforward.

This paper is organized as follows: Section 2 describes an inverse scaling and squaring
Taylor algorithm based on efficient evaluation formulas [41] to approximate the matrix
logarithm, including an error analysis. Section 3 includes the results corresponding to the
experiments performed in order to compare the numerical and computational performance
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of different codes against a test battery composed of distinct types of matrices. Finally,
Section 4 presents the conclusions.

2. Taylor Approximation-Based Algorithm

If ρ(A) < 1, then (see [1], p. 273):

log(I + A) =
∞

∑
i=1

pi Ai, pi =
(−1)i+1

i
. (3)

Taylor approximation is given by:

Tm(A) =
m

∑
i=1

Ai

i
, (4)

where all the coefficients are positive and m denotes the order of the approximation.
For the lower orders m = 1, 2, and 4, the corresponding polynomial approximations

from (3) use the Paterson–Stockmeyer method for the evaluation. For the Taylor approx-
imation orders m ≥ 8, Sastre evaluation formulas from [41,42] are used for evaluating
Taylor-based polynomial approximations from (3) more efficiently than the Paterson–
Stockmeyer method. For reasons that will be shown below, the Taylor approximation
of − log(I − A), denoted by Tm, is used in all the Sastre approximations and evaluation
formulas of the matrix logarithm.

Sastre approximations and evaluation formulas based on (4) are denoted as ST
m(A),

where the superscript stands for the type of polynomial approximation used, in this
case the Taylor polynomial (4), and the subindex m represents the maximum degree of
the polynomial for the corresponding polynomial approximation. Using (3) and (4), the
implementation for the matrix logarithm computation is based on:

log(I + A) ≈ −ST
m(−A). (5)

For m = 8, we see that ST
8 (A) = T8(A). However, for higher orders of approximation,

we show that ST
m(A) has some more terms than Tm(A). These terms are similar to, but dif-

ferent from the respective ones of the Taylor series. Following [43] (Section 4), we represent
this order of approach by m+, and its corresponding approximation is denoted by ST

m+(A).
The next subsections deal with the different evaluation formulas and approximations.

2.1. Evaluation of T8(A)

For m = 8, the following evaluation formulas from [41] (Example 3.1) are used:

A2 = A2,

y02(A) = A2(c4 A2 + c3 A), (6)

y12(A) = ((y02(A) + d2 A2 + d1 A)(y02(A) + e2 A2) + e0y02(A)

+ f2 A2/2 + f1 A + f0 I),

where the second subindex in y02(A) and y12(A) expresses the maximum power of the
matrix A that appears in each expression, i.e., A2. The sum of both subindices in y02(A)
and y12(A) gives the cost in terms of matrix products for evaluating each formula, denoted
from now on by C. Thus, C = 2 for y02(A) and C = 3 for y12(A).

The system of nonlinear equations to be solved in order to determine the coefficients
in (6) that arise when equating y12(A) = P8(A), where P8(A) is a general
matrix polynomial:

P8(A) =
8

∑
i=0

bi Ai,
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is given by (16)–(24) of [41], i.e.,

c2
4 A8 = b8 A8, (7)

2c3c4 A7 = b7 A7, (8)

(c4(d2 + e2) + c3c3)A6 = b6 A6, (9)

(c4d1 + c3(d2 + e2))A5 = b5 A5, (10)

(d2e2 + c3d1 + c4e0)A4 = b4 A4, (11)

(d1e2 + c3e0)A3 = b3 A3, (12)

f2 A2 = b2 A2, (13)

f1 A = b1 A, (14)

f0 I = b0 I. (15)

From (7), one obtains c4 = ±
√

b8. Since p8 = −1/8 in (3), we equate y12(A) =
T8(A) from (4), where the corresponding coefficient is positive to prevent c4 from being a
complex number.

This system can be solved analytically using (25)–(32) from [41] (Example 3.1), giving
four sets of exact solutions for the coefficients in (6). Then, the solutions are rounded
to the desired precision arithmetic. As mentioned before, we use IEEE double-precision
arithmetic. From now on, for any coefficient xi, x̃i denotes the corresponding one rounded
to that precision.

In order to check if the rounded coefficient solutions are sufficiently accurate to
evaluate (6), we follow the stability check of [41] (Example 3.1). It consists of substituting
the rounded coefficients into the original system of Equations (7)–(15) and testing if the
relative error given by them with respect to each coefficient bi, for i = 0, 1, . . . , 8, is lower
than the unit round off in IEEE double-precision arithmetic. For instance, from (12), it
follows that the relative error for b3 is:

|b3 − (d̃1 ẽ2 + c̃3 ẽ0)|/|b3|. (16)

Then, we select a set of solutions where the relative errors for all bi, for
i = 0, 1, . . . , 8, are lower than u. In our experience, solutions giving relative errors of
order O(u) also provide accurate results. Finally, the approximation is computed as:

log(I + A) ≈ −T8(−A) = −y12(−A) = −ST
8 (−A), (17)

where −ST
8 (−A) is evaluated using (6) with the coefficients from Table 1.

Table 1. Coefficients for computing the matrix logarithm Taylor approximation of order m = 8, using
Sastre evaluation Formula (6), as log(I + A) ≈ −ST

8 (−A) = −y12(−A) = −T8(−A).

c4 3.535533905932738× 10−1

c3 2.020305089104422× 10−1

d2 −1.575975261945013× 10−1

d1 3.622805588353235× 10−1

e2 5.135560418938517× 10−1

e0 7.290085258759625× 10−1

f2 1/2
f1 1
f0 0

2.2. Evaluation of Higher-Order Taylor-Based Approximations

For higher orders of approximation, we followed a similar procedure as that described
in [43] (Sections 3.2 and 3.3), where evaluation formulas for Taylor-based approximations
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of the matrix exponential of orders m = 15+ and 21+ were given. Both of these formulas
were generalized to any polynomial approximation in [42] (Section 3), and this type of
polynomial approximation evaluation formula was first presented in [41] (Example 5.1).
Following the notation given in [43] (Section 4), the suffix “+” in m means that the corre-
sponding Taylor-based approximation is more accurate than the Taylor one of order m. This
is because the approximation with the order denoted by m+ has some more polynomial
terms than the Taylor one of order m, and these terms are similar to the corresponding
Taylor approach terms. We numerically define this similarity in each case.

Proposition 1 and the MATLAB code fragments from [42] (Section 3.1) allow obtain-
ing all the solutions for the coefficients of the evaluation formulas (10)–(12) from [43]
(Section 3.2), not only for the exponential Taylor approximation of order m = 15+, but
for whatever polynomial approximation of the same order. Unfortunately, there were
no real solutions for the evaluation formulas of the logarithm Taylor approximation of
order m = 15+. We also tested different variations of the formulas providing order
m = 15+; however, there were no real solutions for any of them. The same also occurred
in [44] (Section 2.2) with the hyperbolic tangent Taylor approximation of order m = 15+.
In that case, we could find real solutions using an approximation of order m = 14+. In
this case, there were also real solutions for the following logarithm Taylor approximation
evaluation formulas of order m = 14+:

y02(A) = A2(c1 A2 + c2 A),

y12(A) = (y02(A) + c3 A2 + c4 A)(y02(A) + c5 A2) + c6y02(A), (18)

y22(A) = A((y12(A) + c7y02(A) + c8 A2 + c9 A)(y12(A) + c10 A2 + c11 A)

+c12y12(A) + c13 A2 + c14 A + c15 I),

where it is easy to show that the degree of y22(A) is 16. Therefore, we denote this approxi-
mation by ST

14+(A), and similarly to [44] (Section 2.2), one obtains:

ST
14+(A) = y22(A) = T14 + b15 A15 + b16 A16, (19)

where T14(A) is given by (4) and b15 and b16 depend on the coefficients ci from (18).
From (4), one obtains that p15 = 1/15 and p16 = 1/16. From all the solutions obtained for
the coefficients, a stable one was selected that incurs in relative errors lower than one with
respect to the corresponding Taylor coefficients p15 and p16, concretely:

|(b15 − 1/15)15|= 0.42,

|(b16 − 1/16)16|= 0.87, (20)

showing two decimal digits.
For orders from m = 21+ to m = 39+, we first evaluate and store the matrix pow-

ers Ai = Ai for i = 2, 3, . . . , s, and then, the evaluation formulas (94)–(96) proposed
in [42] (p. 21) are used, reproduced here for the sake of clarity:

y0s(A) = As

s

∑
i=1

ci Ai, (21)

y1s(A) =
4s

∑
i=s+1

ai Ai (22)

=

(
y0s(A) +

s

∑
i=1

di Ai

)(
y0s(A) +

s

∑
i=2

ei Ai

)

+ f0y0s(A) +
s

∑
i=3

fi Ai, (23)
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y2s(A) =

(
y1s(A) +

s

∑
i=1

gi Ai

)(
y1s(A) + h0y0s(A) +

s

∑
i=1

hi Ai

)

+j0y1s(A) + k0y0s(A) +
s

∑
i=0

li Ai. (24)

The degree of y2s(A) is 8s, and the total number of coefficients of y2s(A) is 6s + 4, i.e.,
3s coefficients ai, s coefficients gi, s coefficients hi, s + 1 coefficients li, and coefficients f0,
j0, and k0; see [42] (p. 21). Analogous to (6), the cost C for evaluating yks(A), k = 0, 1, 2,
from (21), (23) and (24) in terms of the matrix products is C = k + s.

Again, the corresponding approximation from (24), denoted as ST
(6s+3)+(A) = y2s(A),

allows us to evaluate Taylor-based approximations of the matrix logarithm of the type:

ST
(6s+3)+(A) = y2s(A) = T6s+3 +

8s

∑
i=6s+4

bi Ai, (25)

where the coefficients bi depend on the ones from (21)–(24).
In order to obtain all coefficients from these expressions, the nested procedure used

in [43] (Sections 3.2 and 3.3) was applied. Analogous to [44] (p. 7), we employed
the vpasolve function from the MATLAB Symbolic Computation Toolbox (https://es.
mathworks.com/help/symbolic/vpasolve.html, accessed on 20 August 2021) with the
random option to obtain different solutions of the nonlinear system arising for each order
of approximation. Concretely, we obtained 1000 solutions for the coefficient sets of (21),
(22), and (24) for orders m = 21+ and m = 27+ and 300 solutions for m > 27+. Then, the
most stable real solution according to the stability check from [41] (Example 3.1) (see (16))
was selected for each order m+.

Similar to (20), we checked that the relative error for coefficients bi, i = 6s + 4,
6s + 5, . . . , 8s from (27) with respect to the corresponding Taylor coefficients for the selected
solutions was less than one.

For the orders higher than m = 39+, we combined y2s(A) from (24) with the Paterson–
Stockmeyer method, similar to (52) from [41] (Proposition 1), giving:

z2ps(A) =
((
· · ·
(

y2s(A)As + ap−1 As−1 + ap−2 As−2 + . . . + ap−s+1 A + ap−s

)
× As + ap−s−1 As−1 + ap−s−2 As−2 + . . . + ap−2s+1 A + ap−2s

)
× As + ap−2s−1 As−1 + ap−2s−2 As−2 + . . . + ap−3s+1 A + ap−3s

)
...

× As + as−1 As−1 + as−2 As−2 + . . . + a1 A + a0 I, (26)

where p is a multiple of s and the resulting Taylor-based approximation order is
m = (6s + 3 + p)+. If p = 0, note that z2ps(A) = y2s(A). Therefore, the corresponding
approximation (26) is denoted by ST

(6s+3+p)+(A), and it allows us to evaluate Taylor-based
approximations of the matrix logarithm of the type:

ST
(6s+3+p)+(A) = z2ps(A) = T6s+3+p(A) +

8s+p

∑
i=6s+4+p

bi Ai. (27)

Table 2 shows the orders of approximations available using the Paterson–Stockmeyer
method or ST

(6s+3+p)+(A) and their differences for a given cost C in terms of matrix prod-
ucts. It also shows the corresponding values of s and p for (26). Table 2 shows that the
difference in the polynomial orders increases as C grows. See the function available at
http://personales.upv.es/~jorsasma/Software/logm_pol.m for implementation details
(accessed on 20 August 2021).

https://es.mathworks.com/help/symbolic/vpasolve.html
https://es.mathworks.com/help/symbolic/vpasolve.html
http://personales.upv.es/~jorsasma/Software/logm_pol.m
http://personales.upv.es/~jorsasma/Software/logm_pol.m
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Table 2. Maximum available approximation order for a cost C in terms of matrix products using the
Paterson–Stockmeyer method, denoted by dPS, the maximum order using ST

(6s+3+p)+(A) from (27),
denoted by dzST , and the difference dzST − dPS. Parameters s and p are used in zST (A) in each case.

C 3 4 5 6 7 8 9 10 11 12 13

dPS 6 9 12 16 20 25 30 36 42 49 56
dz2ps - 15+ 21+ 27+ 33+ 39+ 45+ 52+ 59+ 67+ 75+

dz2ps − dPS - 6 9 11 13 14 15 16 17 18 19
s - 2 3 4 5 6 6 7 7 8 8
p - 0 0 0 0 0 6 7 14 16 24

2.3. Error Analysis

On the one hand, the relative forward error of approximating log(I + A) by means of
ST

m(A) can be defined as:

Er f (A) =
∥∥∥log (I + A)−1

(
log (I + A) + ST

m(−A)
)∥∥∥,

where ST
m(A) is any of the Sastre approximations that appear in Sections 2.1 and 2.2. This

error can be expressed as:
Er f (A) = ∑

k≥m
ak Ak.

Using Theorem 1.1 from [45], one obtains:

Er f (A) =

∥∥∥∥∥∑
k≥m

ak Ak

∥∥∥∥∥ ≤ ∑
k≥m
|ak|αk

m ≡ hm(αm), (28)

where:
αm = max

{
||Ak||1/k : k > m

}
. (29)

Let Θm be:
Θm = max{θ ≥ 0 : hm(θ) ≤ u}. (30)

On the other hand, the absolute backward error can be defined as the matrix ∆A
that verifies:

log(I + A + ∆A) = −ST
m(−A).

Then:
I + A + ∆A = e−ST

m(−A),

whereby the backward error can be expressed as:

∆A = e−ST
m(−A) − I − A.

It can be proven that this error can be expressed as ∑
k≥m+1

bk Ak; hence, the relative

backward error of approximating log(I + A) by means of −ST
m(−A) can be bounded

as follows:

Erb(A) =

∥∥∥∥∥ ∑
k≥m+1

bk Ak

∥∥∥∥∥
‖A‖ =

∥∥∥∥∥ ∑
k≥m+1

bk Ak−1

∥∥∥∥∥ =

∥∥∥∥∥∑
k≥m

b̄k Ak

∥∥∥∥∥ ≤ ∑
k≥m

∣∣b̄k
∣∣αk

m ≡ h̄m(αm), (31)

where b̄k = bk+1.
Let Θ̄m be:

Θ̄m = max
{

θ ≥ 0 : h̄m(θ) ≤ u
}

. (32)
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The values of Θmk and Θ̄mk , listed in Table 3, were obtained by using symbolic com-
putations. They satisfy that Θmk ≈ Θ̄mk and Θmk < Θ̄mk , for k ∈ {1, 2, · · · , 13}. Hence,
the numerical performance of two different algorithms, each based on one of these error
formulations, will be very similar. Taking into account (28) and (30)–(32), if αm ≤ Θm, then:

Er f (A) ≤ hm(αm) ≤ hm(Θm) ≤ u, (33)

and:
Erb(A) ≤ h̄m(αm) ≤ h̄m(Θ̄m) ≤ u, (34)

i.e., the relative forward and backward errors are lower than the unit round off in IEEE
double-precision arithmetic.

However, if only αm ≤ Θ̄m, then:

Erb(A) ≤ h̄m(αm) ≤ h̄m(Θ̄m) ≤ u, (35)

i.e., only the relative backward error is lower than the unit round off.

Table 3. Values Θmk and Θ̄mk , 1 ≤ k ≤ 13, corresponding to the forward and backward error
analyses, respectively.

Θmk Θ̄mk

m1 = 2 1.825012070831092× 10−8 1.825012070831092× 10−8

m2 = 4 1.534933282031150× 10−4 1.534943099234865× 10−4

m3 = 8 1.332493973299263× 10−2 1.333163669910284× 10−2

m4 = 14+ 9.274127959683863× 10−2 9.306363354613097× 10−2

m5 = 21+ 2.098941946985260× 10−1 2.110800698278637× 10−1

m6 = 27+ 2.939884229988359× 10−1 2.955066872745040× 10−1

m7 = 33+ 3.708207838275638× 10−1 3.727263249913135× 10−1

m8 = 39+ 4.262026331818284× 10−1 4.280874011090428× 10−1

m9 = 45+ 4.859152511361255× 10−1 4.896983924717211× 10−1

m10 = 52+ 5.370288954119011× 10−1 5.40947981059669× 10−1

m11 = 59+ 5.782443740143352× 10−1 5.82425847124017× 10−1

m12 = 67+ 6.172435921175158× 10−1 6.17751273400193× 10−1

m13 = 75+ 6.518700502072328× 10−1 6.53999314510431× 10−1

2.4. Algorithm for Computing log(A)

Taking into account that log(A) can be expressed as log(I + A − I), Algorithm 1
computes log(A) by the inverse scaling and squaring Taylor algorithm based on the
expressions that appear in Sections 2.1 and 2.2, where mk, k ∈ {1, 2, · · · , 13}, is a Taylor
approximation order. In this algorithm, we can use either the Θk (forward error analysis)
or the Θ̄k (backward error analysis) of Table 3.

The preprocessing step is based on applying a similarity transformation of matrix A
to obtain a permutation of a diagonal matrix T whose elements are integer powers of two
and a new balanced matrix B such that B = T−1 AT. The aim of balancing is to achieve the
norms of each row of B and its corresponding column nearly equal, trying to concentrate
any ill-conditioning of the eigenvalues of matrix A into the diagonal scaling matrix T. To
carry out this balancing, the balance MATLAB function can be employed.

Steps 2 to 11 bring A close to I by taking successive square roots of A until α ≤ Θmk ,
where mk is the maximum order and α is computed as described in Step 5. To compute the
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matrix square roots required, we implemented a MATLAB function that uses the scaled
Denman–Beavers iteration described in [1] (Equation (6.28)). This iteration is defined by:

Xk+1 =
1
2
(µkXk + µ−1

k Y−1
k ),

Yk+1 =
1
2
(µkYk + µ−1

k X−1
k ),

(36)

with X0 = A, Y0 = I, and µk = |det(Xk)det(Yk)|−1/(2n), n being the dimension of matrix
A. Although convergence is not guaranteed, if it does, then Xk converges to A1/2. In Step
5, we use the following approximation for calculating α from (29) (see [46,47]):

α ≈ max{||(A− I)mk ||1/mk , ||(A− I)mk+1||1/(mk+1)}.

To compute approximately the 1-norm of ||(A− I)m
k || and ||(A− I)mk+1||, the 1-norm

estimation algorithm of [48] can be employed. In order to implement Algorithm 1 in the
most efficient way, it is worth noting that ||(A− I)mk+1||1/(mk+1) should be only worked
out if ||(A− I)mk ||1/mk ≤ Θmk .

Algorithm 1 Given a matrix A ∈ Cn×n, a maximum approximation order mk,
k ∈ {1, 2, 3, · · · , 13}, and a maximum number of iterations maxiter, this algorithm com-
putes L = log(A) by a Taylor approximation of order lower that or equal to mk.

1: Preprocessing of matrix A: A← T−1 AT
2: s = 0
3: f inish = ||A− I|| ≤ Θmk
4: while not f inish and s < maxiter do
5: α = max{||(A− I)mk ||1/mk , ||(A− I)mk+1||1/(mk+1)}
6: f inish = α ≤ Θmk
7: if not f inish then
8: A← A1/2, using scaled DB iteration (36)
9: s = s + 1

10: end if
11: end while
12: Find the smallest integer k̄ ≤ k such that α ≤ Θmk̄
13: Compute L = Tmk̄

(A− I), using the expressions that appear in Sections 2.1 and 2.2.
14: L← 2sL
15: Postprocessing of matrix L: L← TLT−1

Then, Step 12 finds the most appropriate order of the approximation polynomial
to be used, always with the aim of reducing the computational cost, but without any
loss of accuracy. For efficiency reasons, an algorithm based on the well-known bisection
method of function root search was adopted. In Step 13, the matrix logarithm approxima-
tion of A− I is computed by means of the efficient polynomial evaluations presented in
Sections 2.1 and 2.2. Finally, the squaring phase takes place in Step 14, and in Step 15, the
postprocessing operation L = TLT−1 is required to provide the logarithm of matrix A if
the preprocessing stage was previously applied to it.

3. Numerical Experiments

In this section, we compare the following five MATLAB codes in terms of accuracy
and efficiency:

• logm_iss_full: It calculates the matrix logarithm using the transformation-free
form of the inverse scaling and squaring method with Padé approximation. Ma-
trix square roots are computed by the product form of the Denman–Beavers iteration
([1], Equation (6.29)). It corresponds to Algorithm 5.2 described in [32], denoted as the
iss_new code;
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• logm_new: It starts with the transformation of the input matrix A to the Schur triangu-
lar form A = QTQ∗. Thereafter, it computes the logarithm of the triangular matrix T
using the inverse scaling and squaring method with Padé approximation. The square
roots of the upper triangular matrix T are computed by the Björck and Hammarling al-
gorithm ([1,49], Equation (6.3)), solving one column at a time. It is an implementation
of Algorithm 4.1 explained in [32], designated as the iss_schur_new function;

• logm: It is a MATLAB built-in function in charge of working out the matrix logarithm
from the algorithms included in [32,33]. MATLAB R2015b incorporated an improved
version that applies inverse scaling and squaring and Padé approximants to the
whole triangular Schur factor, whereas the previous logm applied this technique to
the individual diagonal blocks in conjunction with the Parlett recurrence. Although
it follows a similar main scheme to the logm_new code, the square roots of the upper
triangular matrix T are computed using a recursive blocking technique from the
Björck and Hammarling recurrence, which works outs the square roots of increasingly
smaller triangular matrices [50]. The technique is rich on matrix multiplications and
has the requirement of solving the Sylvester equation. In addition, it allows parallel
architectures to be exploited simply by using threaded BLAS;

• logm_polf: This is an implementation of Algorithm 1, where Taylor matrix polynomi-
als are evaluated thanks to the Sastre formulas previously detailed. Values from the
set m ∈ {2, 4, 8, 14+, 21+, 27+, 33+, 39+, 45+, 52+, 59+, 67+, 75+} were used as the ap-
proximation polynomial order for all the tests carried out in this section, and forward
relative errors were considered;

• logm_polb: It is an identical implementation to the previous code, but it is based on
relative backward errors.

A testbed consisting of the following three sets of different matrices was employed in
all the numerical experiments performed. In addition, MATLAB Symbolic Math Toolbox
with 256 digits of precision was the tool chosen to obtain the “exact”matrix logarithm, using
the vpa (variable-precision floating-point arithmetic) function:

• Set 1: The 100 diagonalizable 128 × 128 complex matrices. They have the form
A = V × D×VT , where D is a diagonal matrix with complex eigenvalues and V is
an orthogonal matrix such as V = H/

√
n, H being a Hadamard matrix and n the

matrix order. The 2-norm of these matrices varies from 0.1 to 300. The “exact”matrix
logarithm was calculated as log (A) = V × log (D)×VT ;

• Set 2: The 100 nondiagonalizable 128 × 128 complex matrices computed as A =

V × J × VT , where J is a Jordan matrix with complex eigenvalues whose algebraic
multiplicity is randomly generated between 1 and 3. V is an orthogonal random
matrix with elements in progressively wider intervals from [−2.5, 2.5], for the first
matrix, to [−250, 250], for the last one. As the 2-norm, these matrices range from 3.39
to 337.72. The “exact”matrix logarithm was computed as log (A) = V × log (J)×VT ;

• Set 3: The 52 matrices A from the Matrix Computation Toolbox (MCT) [51] and the 20
from the Eigtool MATLAB Package (EMP) [52], all of them with a 128× 128 order. The

“exact”matrix logarithm was calculated by means of the following three-step procedure:

1. Calling the MATLAB function eig and providing, as a result, a matrix V and a
diagonal matrix D such that A = V × D×V−1, using the vpa function. If any
of the elements of matrix D, i.e., the eigenvalues of matrix A, have a real value
less than or equal to zero, this will be replaced by the result of the sum of its
absolute value and a random number in the interval [0, 1]. Thus, a new matrix
D̃ will be generated. Next, matrices Ã and L1 will be calculated in the form
Ã = V × D̃×V−1 and L1 = V × log(D̃)×V−1;

2. Computing the matrix logarithm thanks to the logm and vpa functions, that is
L2 = logm(Ã);
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3. Considering the “exact”matrix logarithm of Ã only if:

‖L1 − L2‖
‖L1‖

< u.

A total of forty-six matrices, forty from the MCT and six from the EMP, were considered
for the numerical experiments. The others were excluded for the following reasons:

– Matrices 17, 18, and 40 from the MCT and Matrices 7, 9, and 14 from the EMP did
not pass the previous procedure for the “exact”matrix logarithm computation;

– The relative error incurred by some of the codes in comparison was greater than
or equal to unity for Matrices 4, 6, 12, 26, 35, and 38 belonging to the MCT
and Matrices 1, 4, 10, 19, and 20 pertaining to the EMP. The reason was the
ill-conditioning of these matrices for the matrix logarithm function;

– Matrices 2, 9, and 16, which are part of the MCT, and Matrices 15 and 18, incorpo-
rated in the EMP, resulted in a failure to execute the logm_iss_full code. More
specifically, the error was due to the fact that the function sqrtm_dbp, responsible
for computing the principal square root of a matrix using the product form of the
Denman–Beavers iteration, did not converge after a maximum allowed number
of 25 iterations;

– Matrices 8, 11, 13, and 16 from the EMP were already incorporated in the MCT.

If we had not taken the previously described precaution of modifying all those ma-
trices with eigenvalues less than or equal to zero, they would have been directly
discarded, and evidently, the number of matrices that would be part of this set would
be much more reduced.

The accuracy of the distinct codes for each matrix A was tested by computing the
normwise relative error as:

Er(A) =
‖ log(A)− l̃og(A)‖2

‖log(A)‖2
,

where log(A) means the “exact”solution and l̃og(A) denotes the approximate one. All
the tests were carried out on a Microsoft Windows 10 ×64 PC system with an Intel Core
i7-6700HQ CPU @2.60Ghz processor and 16 GB of RAM, using MATLAB R2020b.

First of all, three experiments were performed, one for each of the three above sets of
matrices, respectively, in order to evaluate the influence of the type of error employed by
comparing the numerical and computational performance of logm_polf and logm_polb.
Table 4 shows the percentage of cases in which the normwise relative error of logm_polf
was lower, greater than, or equal to that of logm_polb. As expected, according to the Θ and
Θ̄ values exposed in Table 3, both codes gave almost identical results, with a practically
inappreciable improvement for logm_polf in the case of Sets 1 and 3.

Table 4. Relative error comparison, for the three sets of matrices, between logm_polf and logm_polb.

Set 1 Set 2 Set 3

Er(logm_polf)<Er(logm_polb) 3% 0% 2.17%
Er(logm_polf)>Er(logm_polb) 0% 0% 0%
Er(logm_polf)=Er(logm_polb) 97% 100% 97.83%

The computational cost of logm_polf and logm_polb was basically identical, although
slightly lower in the case of the latter code, since the logm_polb function required, on some
cases, approximation polynomials of lower orders than those of logm_polf. Both of them
performed an identical number of matrix square roots.

After analyzing these results, we can conclude that there are no significant differences
between the two codes, and either of them could be used in the remainder of this section to
establish a comparison with the other ones. Be that as it may, the code chosen to be used
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for this purpose was logm_polf, and from here on, we designate it as logm_pol, a decision
justified by its numerical and computational equivalence to logm_polb.

Having decided which code based on the Taylor approximation to use, we now assess
its numerical peculiarities and those of the other methods for our test battery. Table 5 sets
out a comparison, in percentage terms, of the relative errors incurred by logm_pol with
respect to logm_iss_full, logm_new, and logm.

Table 5. Relative error comparison, for the three sets of matrices, of logm_pol versus logm_iss_full,
logm_new, and logm.

Set 1 Set 2 Set 3

Er(logm_pol)<Er(logm_iss_full) 100% 100% 97.83%
Er(logm_pol)>Er(logm_iss_full) 0% 0% 2.17%
Er(logm_pol)=Er(logm_iss_full) 0% 0% 0%

Er(logm_pol)<Er(logm_new) 97% 89% 89.13%
Er(logm_pol)>Er(logm_new) 3% 11% 10.87%
Er(logm_pol)=Er(logm_new) 0% 0% 0%

Er(logm_pol)<Er(logm) 97% 89% 89.13%
Er(logm_pol)>Er(logm) 3% 11% 10.87%
Er(logm_pol)=Er(logm) 0% 0% 0%

As we can see, logm_pol outperformed logm_iss_full in accuracy in 100% of the
matrices in Sets 1 and 2 and 97.83% of them in Set 3. logm_pol achieved better accuracy than
logm_new and logm in 97%, 89%, and 89.13% of the matrices for Sets 1, 2, and 3, respectively.

Graphically, Figures 1–3 provide the results obtained according to the experiments
carried out for each of the sets of matrices. More in detail, the normwise relative errors
(a), the performance profiles (b), the ratio of the relative errors (c), the lowest and highest
relative error rates (d), the polynomial or diagonal Padé orders (e), the execution times (f),
and the ratio of the execution times (g) for the four codes analyzed can be appreciated.

Figures 1a–3a illustrate the normwise relative errors assumed by each of the codes
when calculating the logarithm of the different matrices that comprise each of the sets. The
solid line that appears in them depicts the function klogu, where klog (or cond) represents
the condition number of the matrix logarithm function ([1], Chapter 3) and u is the unit
round off. The numerical stability of each method is evidenced if its errors are not much
higher than this solid line. The matrices were ordered by decreasing value of cond.

Roughly speaking, logm_pol obtained the lowest error values for most of the test
matrices, whereas the top values corresponded to logm_iss_full, for Sets 1 and 2, or to
logm_new and logm, for Set 3. Indeed, in the case of the first two sets, the vast majority of
errors incurred by logm_pol are below the continuous line, while those of logm_new and
logm are around this line and, in the case of logm_iss_full, clearly above it. The results
provided by logm_new and logm were identical in the different experiments performed,
with the exception of Set 3, where they were very similar. With regard to Set 3, the high
condition number of the logarithm function for some test matrices meant that the maximum
relative error committed by logm_pol punctually reached in one case the order of 10−3,
closely followed by the error recorded by logm_iss_full. Nevertheless, for this third set
of matrices and except for a few concrete exceptions, all methods provided results whose
errors are usually located below the klogu line.
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Figure 1. Experimental results for Set 1.
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Figure 2. Experimental results for Set 2.

Accordingly, these results showed that the numerical methods, on which the different
codes were based, are stable, especially in the case of Taylor and its implementation in
the logm_pol function, whose relative errors, as mentioned before, are always positioned
in lowest positions on the graphs, thus delivering excellent results. It should be clarified
that Matrices 19, 21, 23, 27, 51, and 52 from the MCT and Matrix 17 from the EMP are not
plotted in Figure 3a because of the excessive condition number of the logarithm function,
although it was taken into account in all other results.
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Figure 3. Experimental results for Set 3.

Figures 1b–3b trace the performance profile of the four codes where, on the x-axis, α
takes values from 1–5 with increments of 0.1. Given a specific value for the α coordinate,
the corresponding amount p on the y-axis denotes the probability that the relative error
committed by a particular algorithm is less than or equal to α-times the smallest relative
error incurred by all of them.

In consonance with the results given in Table 5, the performance profiles showed
that logm_pol was the most accurate function for the three matrix sets. In the case of
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the matrices belonging to the first two sets, the probability reached practically 100% in
most of the figures, while it tended to be around 95% for the matrices that comprised
the third set. Regarding the other codes, logm_new and logm offered practically identical
results in accuracy, with a few more noticeable differences in the initial part of Figure 3b
in favor of logm_new. On the other hand, logm_iss_full was significantly surpassed by
logm_new and logm in Sets 1 and 2, with the opposite being true for Set 3, although in a
more discrete manner.

The ratios in the normwise relative errors between logm_pol and the other tested
codes are presented, in decreasing order according to Er(logm_iss_full)/Er(logm_pol),
in Figures 1c–3c. For the vast majority of the matrices in Sets 1 and 2, the values plotted are
always greater than one, which again confirmed the superiority in terms of accuracy of
logm_pol over the other codes, especially for logm_iss_full. Similar conclusions can be
extracted from the analysis of the results for Set 3, although, in this case, the improvement
of logm_pol was more remarkable over logm_new and logm for a small group of matrices.

In the form of a pie chart, the percentage of matrices in our test battery in which each
method yielded the smallest or the largest normwise relative error over the other three
ones is displayed in Figures 1d–3d. Thus, on the positive side, logm_pol resulted in the
lowest error in 94%, 86%, and 89% of the cases for, respectively, each of the matrix sets.
Additionally, logm_pol never gave the most inaccurate result in the first two matrix sets
and only gave the worst result in 2% of the matrices in Set 3. As can be seen, logm_iss_full
gave the highest relative errors in 94% and 88% of the matrices correspondingly belonging
to Set 1 and Set 2. On the contrary, the highest error rates were shared between logm_new
and logm in Set 3.

The value of parameter m, or, in other words, the Taylor approximation polynomial or-
der, in the case of logm_pol, or the Padé approximant degree, in the case of logm_iss_full,
logm_new, and logm, is shown in Figures 1e–3e, respectively, for the three sets. It should
be clarified that the value and meaning of m is not comparable between logm_pol and the
rest of the codes. Additionally, and for the three matrix sets, Table 6 collects those values of
m, together with those ones of s, i.e., the number of matrix square roots computed, in the
form of maxima, minima, means, and medians. Whereas the logm_pol function always
required values of m much higher than the others, the values of s were more similar among
the different codes, always reaching the smallest values on average in the case of logm_pol.
Consequently, logm_pol needed to calculate a lower number of square roots compared to
those required by the other codes. Moreover, it should be pointed out that logm_iss_full,
logm_new, and logm were forced to use an atypically high value of s for a few matrices in
Set 3. In all the experiments performed, logm_new and logm always employed an identical
value of m and s.

On the other hand, Figures 1f–3f and Table 7 inform us about the execution times
spent by the different codes analyzed on computing the logarithm of all the matrices that
constituted our testbed. To obtain these overall times, the runs were launched six times,
discarding the first one and calculating the average time among the others. As we can
appreciate, logm was always the fastest function, followed by logm_iss_full, for Sets 1
and 2, or by logm_pol, for Set 3. In contrast, logm_new always invested the longest time for
our three experiments. Numerically speaking, and according to the times recorded for Set 3,
logm_pol was 1.74- and 2.04-times faster than logm_iss_full and logm_new, respectively.
This notwithstanding, logm_pol and the other codes were clearly outperformed by logm,
whose speed of execution in computing the logarithm of this third set of matrices was
2.71-times higher than that of logm_pol.
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Table 6. Minimum, maximum, mean, and median values for the parameters m and s reached by
logm_pol, logm_iss_full, logm_new, and logm for Sets 1–3, respectively.

m s
Min. Max. Mean Median Min. Max. Mean Median

logm_pol 33+ 75+ 42.53 42+ 3 4 3.89 4
logm_iss_full 7 15 9.36 8 3 5 4.46 5

logm_new 5 7 5.88 6 4 6 5.08 5
logm 5 7 5.88 6 4 6 5.08 5

logm_pol 33+ 75+ 42.26 45+ 3 4 3.92 4
logm_iss_full 7 14 9.23 8 3 5 4.49 5

logm_new 5 7 5.79 6 4 6 5.17 5
logm 5 7 5.79 6 4 6 5.17 5

logm_pol 21+ 75+ 43.98 39+ 0 5 2.83 3
logm_iss_full 6 15 10.15 10 0 36 4.98 4

logm_new 5 7 6.02 6 1 46 6.80 5
logm 5 7 6.02 6 1 46 6.80 5

In more detail, Figures 1g–3g provide the ratio between the computation time of the
other codes and logm_pol, individually for each of the matrices, in a decreasing order
consistent with the factor T(logm_iss_full)/T(logm_pol). As an example, for Set 3, this
ratio took values from 0.28 to 15.11 for logm_iss_full, from 0.32 to 28.03 for logm_new,
and from 0.05 a 3.93 for logm.

Lastly, it is worth mentioning that, after performing the pertinent execution time
profiles, it could be appreciated that much of the time spent by all the codes was involved
in the square root computation. Indeed, observe that logm resulted in better execution
times than logm_new, despite being two codes that share a similar theoretical scheme. This
was mainly due to two reasons: first, because the recursive approach that logm follows to
compute the square root of a triangular matrix is much more efficient than that of logm_new;
second, this is due to implementation issues since, among others, logm is composed of
distinct built-in functions in charge of, for example, calculating the Schur form, solving the
Sylvester equation, or solving systems of linear equations, resulting in a very cost-effective
code that is not possible to beat in speed as long as all its improvements are not also
implemented in its competitors.

Table 7. Execution time (T), in seconds, corresponding to logm_pol, logm_iss_full, logm_new, and
logm for computing matrices in the three sets.

T(logm_pollogm_pollogm_pol) T(logm_iss_fulllogm_iss_fulllogm_iss_full) T(logm_newlogm_newlogm_new) T(logmlogmlogm)

Set 1 16.25 13.11 18.54 4.70
Set 2 15.38 12.34 17.73 4.13
Set 3 5.18 9.01 10.59 1.91

4. Conclusions

In this paper, an algorithm to approximate the matrix logarithm was designed. It
uses recent matrix polynomial evaluation formulas corresponding to the Taylor series
expansion of the logarithm function, which offers a lower computational cost than the
Paterson–Stockmeyer method, but similar accuracy. From this algorithm, two MATLAB
codes, according to relative forward or backward error analyses, were implemented. They
were initially compared with each other and subsequently with MATLAB Codes 4.1 and 5.2
from [32], as well as with the logm built-in MATLAB function. For that, a testbed composed
of three distinct types of matrices was used. The numerical results showed that the new
Taylor-based codes are usually more accurate than the other state-of-the-art ones, with an
intermediate execution time among all of them.
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