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Abstract: Recently, two general methods for evaluating matrix polynomials requiring one matrix
product less than the Paterson–Stockmeyer method were proposed, where the cost of evaluating
a matrix polynomial is given asymptotically by the total number of matrix product evaluations.
An analysis of the stability of those methods was given and the methods have been applied to
Taylor-based implementations for computing the exponential, the cosine and the hyperbolic tangent
matrix functions. Moreover, a particular example for the evaluation of the matrix exponential
Taylor approximation of degree 15 requiring four matrix products was given, whereas the maximum
polynomial degree available using Paterson–Stockmeyer method with four matrix products is 9.
Based on this example, a new family of methods for evaluating matrix polynomials more efficiently
than the Paterson–Stockmeyer method was proposed, having the potential to achieve a much higher
efficiency, i.e., requiring less matrix products for evaluating a matrix polynomial of certain degree, or
increasing the available degree for the same cost. However, the difficulty of these family of methods
lies in the calculation of the coefficients involved for the evaluation of general matrix polynomials
and approximations. In this paper, we provide a general matrix polynomial evaluation method for
evaluating matrix polynomials requiring two matrix products less than the Paterson-Stockmeyer
method for degrees higher than 30. Moreover, we provide general methods for evaluating matrix
polynomial approximations of degrees 15 and 21 with four and five matrix product evaluations,
respectively, whereas the maximum available degrees for the same cost with the Paterson–Stockmeyer
method are 9 and 12, respectively. Finally, practical examples for evaluating Taylor approximations
of the matrix cosine and the matrix logarithm accurately and efficiently with these new methods
are given.

Keywords: efficient; matrix polynomial evaluation; matrix function; Taylor approximation; cosine;
logarithm

1. Introduction

The authors of [1] presented a new family of methods for the evaluation of matrix
polynomials more efficiently than the state-of-the-art method from [2] by Paterson and
Stockmeyer (see [3], Section 4.2). These methods are based on the multiplication of matrix
polynomials to get a new matrix polynomial with degree given by the sum of the degrees
of the original matrix polynomials. The main difficulty in these methods lies in obtaining
the coefficients involved for the evaluation of general matrix polynomials. In this sense,
the authors of [1] (Section 3) gave two concrete general methods for evaluating matrix
polynomials requiring one less matrix product than the Paterson–Stockmeyer method.
Regarding the cost of evaluating matrix polynomials, since the cost of a matrix product,
denoted by M, is O(n3) for n× n matrices, and both the cost of the sum of two matrices
and the cost of a product of a matrix by a scalar are O(n2), similarly to [3] (Section 4.2) the
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overall cost of the evaluation of matrix polynomials will be approximated asymptotically
by the total number of matrix products.

The stability of the two methods from [1] (Section 3) was also analyzed and ap-
plications to the Taylor approximation of the exponential and cosine matrix functions
were given.

The two general polynomial evaluation methods from [1] (Section 3) named above
were applied in [4,5] and for the evaluation of Taylor polynomial approximations of the
matrix exponential and the matrix cosine more efficiently than the state-of-the-art Padé
methods from [6,7].

Moreover, the authors of [1] (Example 5.1) provided a polynomial evaluation formula
for computing the matrix exponential Taylor approximation of degree 15 with cost 4M,
whereas the maximum available degree for that cost using the two general methods from [1]
(Section 3) named above is 12. Based on this example, the authors of [5] (Section 3) proposed
other new particular evaluation formulae for computing the matrix exponential Taylor
polynomial approximations of degrees 15, 21, 24, and 30 that had cost 4M, 5M, 6M, and
7M, respectively. In [8], the authors proposed a particular method for evaluating the matrix
exponential Taylor approximations with the lower degrees 12, 18, and 22 with cost 4M, 5M,
and 6M, respectively (see [8], Table 3). Note that general methods for the evaluation of
matrix polynomials more efficiently than Paterson–Stockmeyer method are provided in [1],
whereas [8] deals with the concrete case of the matrix exponential Taylor approximation.
Moreover, (7) from [9] is equivalent to the particular case of taking s = 1 in (62)–(65)
from [1]. This work was submitted in October 2016, and evaluation Formulas (62)–(65)
were first introduced as (25)–(28) of the early unpublished version [10] of February 2016,
whereas [8] is an updated version of the unpublished reference [9] released more than one
year later, i.e., October 2017.

In this paper, we generalize the results from [5] (Section 3) given there for the particular
case of the matrix exponential Taylor approximation of degrees 15, 21, 24, and 30. These
generalizations consist of giving general procedures for:

• Evaluating polynomial approximations of matrix functions of degrees 15 and 21 with
cost 4M and 5M, respectively.

• Evaluating matrix polynomials of degrees 6s with s = 3, 4, . . . with cost (s + 2)M.
• Evaluating matrix polynomials of degrees greater than 30 with two matrix products

less than the Paterson–Stockmeyer method.

Finally, examples for computing Taylor approximations of the matrix cosine and the
matrix logarithm efficiently and accurately using those evaluation formulae are given.

Regarding Taylor approximations, if

f (X) = ∑
i≥0

aiXi,

is the Taylor series of the matrix function f (·), where X ∈ Cn×n, then

Tm(X) =
m

∑
i=0

aiXi,

is its Taylor approximation of order m (for the convergence of matrix Taylor series, see
Theorem 4.7 of [3], p. 76).

From [11] (Section 1), a matrix X ∈ Cn×n is a logarithm of B ∈ Cn×n if eX = B.
Therefore, any nonsingular matrix has infinitely many logarithms and we will focus on the
principal logarithm, denoted by log(B). For a matrix B ∈ Cn×n with no eigenvalues on R−

the principal logarithm is the unique logarithm whose eigenvalues have imaginary parts



Mathematics 2021, 9, 1600 3 of 23

lying in the interval (−π, π). Therefore, in the given examples, we will assume that B has
no eigenvalues on R− and we will take the logarithm Taylor series

log(B) = log(I − A) = −∑
i>1

Ai/i, where A = I− B. (1)

The exponential matrix has been studied in numerous papers (see [3] (Chap. 10),
and [5,6,8,12] and the references therein). This matrix function can be defined by

exp(X) = ∑
i≥0

Xi

i!
. (2)

The matrix cosine has received attention recently (see [4,7] and the references therein).
This matrix function can be defined by

cos(X) = ∑
i>0

(−1)i X2i

(2i)!
= ∑

i>0
(−1)i Yi

(2i)!
, Y = X2. (3)

Note that if we truncate the Taylor series on the right-hand side of (3) by the term
i = m, then the order of the corresponding cosine Taylor approximation is 2m.

Regarding the cost in matrix rational approximations, note that the multiplication
by the corresponding matrix inverse is calculated by solving a multiple right-hand side
linear system. From [13] (Appendix C), it follows that the cost of the solution of multiple
right-hand side linear systems AX = B, where matrices A and B are n× n, denoted by D
(see [14], p. 11940) is

D ≈ 4/3M. (4)

Therefore, using (4), the cost of computing rational approximations will be also given
in terms of M.

In this article, the following notation will be used: dxe denotes the smallest integer
greater than or equal to x, and bxc the largest integer less than or equal to x. u denotes
the unit roundoff in IEEE double precision arithmetic (see [15], Section 2.2). The set of
positive integers is denoted as N. The set of real and complex matrices of size n× n are
denoted, respectively, by Rn×n and Cn×n. The identity matrix for both sets is denoted as I.
The dependence of a variable y on the variables

x1, x2, . . . , xn

is denoted by
y = y(x1, x2, . . . , xn).

In Section 2, we recall some results for computing matrix polynomials using the
Paterson–Stockmeyer method and summarize the matrix polynomial evaluation methods
from [1]. In Section 3, we describe the general methods for computing polynomial ap-
proximations of degrees 15, 21, and 6s with s = 3, 4, . . . and give examples for the Taylor
approximation of the cosine and logarithm matrix functions. Finally, in Section 4, we give
some conclusions. In this paper, we provide a method to evaluate matrix polynomials with
two matrix products less than the Paterson–Stockmeyer method and one matrix product
less than the methods from [1] (Section 3). Moreover, in this paper, we provide methods to
evaluate polynomial approximations of matrix functions of degrees 15 and 21 with cost 3M
and 4M. These methods are interesting because the maximum available degrees using the
other method proposed in this paper are 12 and 18, respectively. All of the new methods
proposed can be used in the applications for computing approximations of matrix functions
or evaluating matrix polynomials more efficiently than using the state-of-the-art methods.
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2. Efficient Evaluation of Matrix Polynomials
2.1. Paterson–Stockmeyer Method

The Paterson–Stockmeyer method [2] for computing a matrix polynomial

Pm(A) =
m

∑
i=0

ci Ai , (5)

consists of calculating Pm(A) as

PSm(A) =
((
· · ·
(

cm As + cm−1 As−1 + . . . + cm−s+1 A + cm−s I
)

× As + cm−s−1 As−1 + cm−s−2 As−2 + . . . + cm−2s+1 A + cm−2s I
)

× As + cm−2s−1 As−1 + cm−2s−2 As−2 + . . . + cm−3s+1 A + cm−3s I
)

...

× As + cs−1 As−1 + cs−2 As−2 + . . . + c1 A + c0 I, (6)

where PSm(A) denotes the Paterson–Stockmeyer evaluation Formula (6) and s > 0 is an
integer that divides m. Given a number of matrix products, the maximum degrees of Pm(A)
that are available using the Paterson–Stockmeyer method are the following:

m = s2, and m = s(s + 1), (7)

where s ∈ N, denoted by m∗, m∗ = {1, 2, 4, 6, 9, 12, . . .} [14] (Section 2.1). The cost CPS for
computing (6) for the values of m∗ are given by [14] (Equation (5)), which appear in [14]
(Table 1). In [16], the optimality of the rule m∗ = (CPS − s + 2)s, where s = bCPS/2c+ 1,
was demonstrated. This rule gives the same results as (7), since if CPS is even then CPS =
2s− 1, and in that case m∗ = s(s + 1), and if CPS is odd then CPS = 2s, and then m∗ = s2.
Note that, for positive integers m /∈ m∗, Pm(A) = PSm0(A) can be evaluated using (6)
taking m0 = min{m1 ∈ m∗, m1 > m} and setting some coefficients as zero [1] (Section 2.1).

2.2. General Polynomial Evaluation Methods beyond the Paterson–Stockmeyer Method

The authors of [1] (Example 3.1) give a method to compute P8(A) from (5) with a cost
of 3M with the following evaluation formulae

y02(A) = A2(q4 A2 + q3 A), (8)

y12(A) = (y02(A) + r2 A2 + r1 A)(y02(A) + s2 A2) (9)

+s0y02(A) + t2 A2 + t1 A + t0 I,

where q4, q3, r2, r1, s2, s0, t2, t1, and t0 are complex numbers. In order to compute (5) with
m = 8, if we equate y12(A) = Pm(A) from (5), then the system of eight equations with
eight coefficients from (16)–(24) from [1] arises. In this system, some coefficients can be
obtained directly from the polynomial Pm(A) coefficients as

q4 = ±
√

c8, (10)

q3 = c7/(2q4), (11)

t2 = c2, (12)

t1 = c1, (13)

t0 = c0, (14)

and the remaining equations can be reduced by variable substitution to a quadratic equation
on s2. This equation gives two solutions for q4 =

√
c8 and two more solutions for q4 =
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−√c8. The remaining coefficients can be obtained from s2, q4, and q3. From (11), one gets
q4 6= 0 giving condition

c8 6= 0, (15)

for coefficient c8 in Pm(A) from (5).
In order to check the stability of the solutions of qi, ri, and si rounded to IEEE double

precision arithmetic, the authors of [1] (Example 3.1) proposed to compute the relative
error for each coefficient ci, for i = 3, 4, . . . , 8 substituting those solutions into the original
system of Equations (16)–(24) from [1]. For instance, from (10), it follows that the relative
error for c8 using q4 rounded to IEEE double precision arithmetic is

|c8 − q̃2
4|/|c8|,

where q̃4 is the value q4 = ±√c8 rounded to IEEE double precision arithmetic. Then, if the
relative errors for all the expressions of the coefficients ci are of order the unit roundoff in
IEEE double precision arithmetic, i.e., u = 2−53 ≈ 1.11× 10−16, then the solution is stable.

In [1] (Table 4), one of the solutions rounded to IEEE double precision arithmetic
for evaluating the Taylor polynomial of the exponential and cosine functions is shown.
These solutions were substituted into the original system of equations to calculate the
relative error for ci, for i = 3, 4, . . . , 8 (see [1], Example 3.1), giving a relative error of order
u, turning out to be stable solutions. Moreover, the numerical tests from [1] (Example 3.2)
and [4,5] also show that if the relative error for each coefficient is O(u), then the polynomial
evaluation formulae are accurate, and if the relative errors are O(10u) or greater, then the
polynomial evaluation formulae are not so accurate.

The authors of [1] (Section 3) also provided a more general method for computing
matrix polynomials Pm(A) from (5) of degree m = 4s based on the evaluation formulae

y0s(A) = As
s

∑
i=1

qs+i Ai, (16)

y1s(A) =

(
y0s(A) +

s

∑
i=1

ri Ai

)(
y0s(A) +

s

∑
i=2

si Ai

)

+s0y0s(A) +
s

∑
i=0

ti Ai, (17)

where s ≥ 2, qs+i, ri, si and ti are scalar coefficients, q2s = ±√c4s 6= 0 and then c4s 6= 0
for coefficient c4s from Pm(A). Note that Ai, i = 2, 3, . . . , s are computed only once. The
degree and computing cost of y1s(A) are given by (36) of [1], i.e., dy1s = 4s and Cy1s = s + 1,
s = 2, 3, . . ., respectively. A general solution for the coefficients in (16) and (17) is given
in [1] (Section 3), with the condition

c4s 6= 0. (18)

Given a cost C(M), the maximum orders that can be reached when using the
Formulae (16) and (17) and the Paterson–Stockmeyer method are shown in [1] (Table 5).

Proposition 1 from [1] (Section 3) shows a method for computing matrix polynomials
combining the Paterson–Stockmeyer method with (17) as

zkps(x) =
((
· · ·
(

yks(x)xs + ap−1xs−1 + ap−2xs−2 + . . . + ap−s+1x + ap−s

)
× xs + ap−s−1xs−1 + ap−s−2xs−2 + . . . + ap−2s+1x + ap−2s

)
× xs + ap−2s−1xs−1 + ap−2s−2xs−2 + . . . + ap−3s+1x + ap−3s

)
...

× xs + as−1xs−1 + as−2xs−2 + . . . + a1x + a0, (19)
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where k = 1, p is a multiple of s and yks(x) = y1s(x) is evaluated using (16) and (17).
This allows one to increase the degree of the polynomial to be evaluated. The degree of
z1ps(A) and its computational cost are given by (53) of [1], i.e., dz1ps = 4s + p, Cz1ps =
(1 + s + p/s)M, respectively. Ref. [1] (Table 6) shows that evaluating a matrix polynomial
using (19) requires one less product than using the Paterson–Stockmeyer Formula (6).

Proposition 2 from [1] (Section 5) gives general formulae more efficient than the
formulae of the previous methods, whenever at least one solution for the coefficients in
(62)–(65) from [1] (Prop. 2) exists so that yks(x) is equal to the polynomial Pm to evaluate.
The maximum polynomial degree and the computing cost if x = A, A ∈ Cn×n, are given
by (66) of [1], i.e., dyks = 2k+1s, Cyks = (s + k) where dyks increases exponentially while Cyks

increases linearly. (17) is a particular case of (65) from [1] where k = 1.

3. Three General Expressions for y2s(A)

This section gives general procedures to obtain the coefficients of y2s(A) from (65)
from [1] with k = 2, generalizing the results from [5] (Section 3) for the evaluation of
the matrix exponential Taylor approximations of degrees 15, 21, 24, and 30, also giving
formulae for evaluating matrix polynomials of orders 6s, where s = 2 , 3, . . .

3.1. Evaluation of Matrix Polynomial Approximations of Order 15 with y2s(A), s = 2.

The following proposition allows to compute polynomial approximations of order 15
with cost 4M. Note that from [1] (Table 8), the maximum available order with cost 4M is 9
for the Paterson–Stockmeyer method and 12 for the method given by (16) and (17).

Proposition 1. Let y12(A) and y22(A) be

y12(A) =
8

∑
i=2

ci Ai, (20)

y22(A) = (y12(A) + d2 A2 + d1 A)(y12(A) + e0y02(A) + e1 A)

+ f0y12(A) + g0y02(A) + h2 A2 + h1 A + h0 I, (21)

and let P15(A) be a polynomial of degree 15 with coefficients bi

P15(A) =
15

∑
i=0

bi Ai. (22)

Then,

y22(A) =
16

∑
i=0

ai Ai, (23)

where coefficients ai are functions of the following variables

ai = ai(c8, c7, . . . , c2, d2, d1, e1, e0, f0, g0, h2, h1, h0), i = 0, 1, . . . , 16,

and there exist at least one set of values of the 16 coefficients c8, c7, . . ., c2, d2, d1, e1, e0, f0, g0, h2,
h1, h0 so that

ai = bi, i = 0, 1, . . . , 15, (24)

and
a16 = c2

8, (25)
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provided the following conditions are fulfilled:

c8 6= 0, (26)

3b2
15 6= 8b14c2

8, (27)

27b6
15c45/2

8 + 576b2
14b2

15c53/2
8 6= 512b3

14c57/2
8 + 216b14b4

15c49/2
8 . (28)

Proof of Proposition 1. Note that y12(A) from (20) is a matrix polynomial of degree 8.
Therefore, if condition (26) holds, then Example [1] (Example 3.1) gives four possible
solutions for evaluating y12(A) using the evaluation Formulas (8) and (9) with cost 3M.
Similarly to [5] (Section 3.2), we will denote these four solutions as nested solutions.

Using (10) and (11), one gets that y02(A) from (8) can be written as

y02(A) = ±A2(
√

c8 A2 + c7/(2
√

c8)A). (29)

Then, taking the positive solution in (29), if we equate y22(A) from (23) to P15(A) from
(22), we obtain the following nonlinear system with 16 coefficients ci, i = 2, 3, . . . , 8, d2, d1,
e1, e0, f0, g0, h2, h1, h0:

a15 = 2c7c8 = b15,

a14 = c7
2 + 2c6c8 = b14,

a13 = 2c5c8 + 2c6c7 = b13,

a12 = c6
2 + c8(c4 +

√
c8e0) + c4c8 + 2c5c7 = b12,

a11 = c7(c4 +
√

c8e0) + c3c8 + c4c7 + 2c5c6 + c8

(
c3 +

c7e0
2
√

c8

)
= b11,

a10 = c5
2 + c6(c4 +

√
c8e0) +

2

∑
i=0

c2+ic8−i + c7

(
c3 +

c7e0
2
√

c8

)
+ c8(c2 + d2) = b10,

a9 = c5(c4 +
√

c8e0) +
2

∑
i=0

c2+ic7−i + c6

(
c3 +

c7e0
2
√

c8

)
+ c7(c2 + d2) + c8(d1 + e1) = b9,

a8 = c4(c4 +
√

c8e0) + c2c6 + c3c5 + c5

(
c3 +

c7e0
2
√

c8

)
(30)

+c6(c2 + d2) + c7(d1 + e1) + c8 f0 = b8,

a7 = c3(c4 +
√

c8e0) + c2c5 + c4

(
c3 +

c7e0
2
√

c8

)
+ c5(c2 + d2) + c6(d1 + e1) + c7 f0 = b7,

a6 = c2c4 + c3

(
c3 +

c7e0
2
√

c8

)
+ (c2 + d2)(c4 +

√
c8e0) + c5(d1 + e1) + c6 f0 = b6,

a5 = d1
√

c8e0 + c2c3 + (c2 + d2)

(
c3 +

c7e0
2
√

c8

)
+ c4(d1 + e1) + c5 f0 = b5,

a4 = d1
c7e0

2
√

c8
+ c2(c2 + d2) + c3(d1 + e1) + c4 f0 +

√
c8g0 = b4,

a3 = e1d2 + c2(d1 + e1) + c3 f0 +
c7g0
2
√

c8
= b3,

a2 = d1e1 + c2 f0 + h2 = b2,

a1 = h1 = 1,

a0 = h0 = 1.

This system of equations can be solved for a set of given variables bi, i = 1, 2, . . . , 15,
using variable substitution with the MATLAB Symbolic Toolbox using the following MAT-
LAB code fragment (we used MATLAB R2020a in all the computations):

% MATLAB code fragment 4.1: solves coefficient c8 of
% the system of equations (30) for general coefficients bi
1 syms A c2 c3 c4 c5 c6 c7 c8 d1 d2 e0 e1 f0 g0 h2 h1 h0I
2 syms b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
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3 c=[c2;c3;c4;c5;c6;c7;c8];
4 b=[b16;b15;b14;b13;b12;b11;b10;b9;b8;b7;b6;b5;b4;b3;b2;b1;b0];
5 y0=Aˆ2*(sqrt(c8)*Aˆ2+c7/(2*sqrt(c8))*A); % y0≥ 0 from (29)
6 y1=sum(c.*A.ˆ([2:8]’));
7 y2=(y1+d2*Aˆ2+d1*A)*(y1+e0*y0+e1*A)+f0*y1+g0*y0+h2*Aˆ2+h1*A+h0I;
8 [cy2,a1]=coeffs(y2,A);
9 cy2=cy2.’;
10 v=[cy2 b a1.’]%v shows the coefficients of each power of A
11 cy2=cy2(2:end)-b(2:end); %System of equations
12 c7s=solve(cy2(1),c7,’ReturnConditions’,true); %c7s=f(c8,bi)
13 c7s.conditions %c8 ˜= 0 condition for the existence of solutions
14 c7s=c7s.c7;
15 cy2=subs(cy2,c7,c7s);
16 c6s=solve(cy2(2), c6); %c6s depends on c8 bi
17 cy2=subs(cy2,c6,c6s);
18 c5s=solve(cy2(3), c5); %c5s depends on c8 bi
19 cy2=simplify(subs(cy2,c5,c5s));
20 symvar(cy2(4)) %cy2(4) depends on c8, c4, e0 bi
21 e0s=solve(cy2(4), e0);
22 cy2=simplify(subs(cy2,e0,e0s));
23 symvar(cy2(5)) %cy2(5) depends on c8, c3, c4, bi
24 c3s=solve(cy2(5), c3);
25 cy2=simplify(subs(cy2,c3,c3s));
26 symvar(cy2(6)) %cy2(6) depends only on c8, c2, d2, bi
27 d2s=solve(cy2(6), d2);
28 cy2=simplify(subs(cy2,d2,d2s));
29 symvar(cy2(7)) %cy2(7) depends only on c8, d1, e1, bi
30 d1s=solve(cy2(7), d1);
31 cy2=simplify(subs(cy2,d1,d1s));
32 symvar(cy2(8)) %cy2(8) depends only on c8, c4, f0, bi
33 f0s=solve(cy2(8), f0);
34 cy2=simplify(subs(cy2,f0,f0s));
35 symvar(cy2(9)) %cy2(9) depends only on c8, b7, b8,...,b15
36 c8s=solve(cy2(9), c8)

Since cy2(9) from the code fragment line 35 depends only on coefficients bi, for
i = 7, 8, . . . , 15, and c8, the solutions for c8 are given by the zeros of equation cy2(9) with
the condition given by MATLAB code fragment line 13, i.e., condition (26). solve function
gives 16 solutions for c8. They are the roots of a polynomial with coefficients depending on
variables bi, for i = 7, 8, . . . , 15.

Once the 16 solutions for c8 are obtained for concrete values of the coefficients bi,
i = 0, 1, . . . , 15, the remaining variables can be obtained with the following MATLAB
code fragment:

% MATLAB code fragment 4.2: solves coefficient c2 of the
% system of equations (30) for general coefficients bi by
% using the solutions for coefficient c8 obtained using the
% MATLAB piece of code 4.1
1 symvar(cy2(10)) %cy2(10) depends on c8, c2, c4, bi
2 c4s=solve(cy2(10), c4) % two solutions depending on c8, c2, bi
3 cy2=simplify(subs(cy2,c4,c4s(1)))%change c4s(1) for c4s(2) for
more solutions

4 symvar(cy2(11)) %cy2(11) depends on c8, c2, e1, bi
5 e1s=solve(cy2(11), e1)
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6 cy2=simplify(subs(cy2,e1,e1s))
7 symvar(cy2(12)) %cy2(12) depends on c8, c2, g0, bi
8 g0s=solve(cy2(12), g0,’ReturnConditions’,true)
9 g0s.conditions %conditions for the existence of solutions:
%3*b15ˆ2 ˜= 8*b14*c8ˆ2 &
%27*b15ˆ6*c8ˆ(45/2) + 576*b14ˆ2*b15ˆ2*c8ˆ(53/2) ˜=
%512*b14ˆ3*c8ˆ(57/2) + 216*b14*b15ˆ4*c8ˆ(49/2) &
%c8 ˜= 0
10 g0s=g0s.g0
11 cy2=simplify(subs(cy2,g0,g0s))
12 symvar(cy2(13)) %cy2(13) depends on c8, c2, bi

Since cy2(13) depends only on coefficients bi, for i = 3, 4, . . . , 15, c8, and c2, sub-
stituting the values obtained previously for c8 in cy2(13), the solutions for c2 are given
by the zeros of equation cy2(13) with the conditions given by line 9 from MATLAB code
fragment 4.2 when solving c7 and g0, given by (26)–(28). Both code fragments are available
(http://personales.upv.es/jorsasma/Software/coeffspolm15plus.m (accessed on
24 June 2021)).

All of the coefficients c7, c6, . . ., c3, d2, d1, e1, e0, f0, g0, can be obtained from c2, c8
and bi, i = 0, 1, . . . 15, and then hi can be obtained from the three last equations of system
(30) as

h2 = b2 − d1e1 − c2 f0, (31)

h1 = b1, (32)

h0 = b0. (33)

Finally, using (20) and (21), coefficient a16 from (23) is given by (25).
Hence, for any values of the coefficients bi, i = 0, 1, . . . , 15, of the polynomial (22),

then there exist at least one solution of system (30) giving a set of values of the coefficients
from y22(A) from (20) and (21) so that (24) and (25) hold, provided conditions (26)–(28)
are fulfilled.

Given certain coefficients bi, i = 1, 2, . . . , 15 for P15(A) from (22), using MATLAB
code fragments 4.1 and 4.2, one can get typically more than one solution of system (30).
Moreover, if we take the negative sign in (29) another set of solutions fulfilling (24) can
be obtained. For each of those solutions there are also different solutions for the nested
solutions for evaluating (20) with the solutions from Example [1] (Example 3.1).

For each of those solutions, coefficient a16 from y22(A) in (23) is given by (25). For the
particular case of the matrix exponential Taylor approximation from [5] (p. 209), there were
two real solutions of c8 giving

|c2
8 − 1/16!|16! ≈ 0.454, (34)

|c2
8 − 1/16!|16! ≈ 2.510. (35)

Therefore, we selected the first solution (34) since both solutions were stable according
to the stability study from Section 2.2 (see [1], p. 243), but (34) had a lower error for
a16 with respect to the corresponding Taylor coefficient 1/16!. Then, considering exact
arithmetic, one gets that the matrix exponential approximation from y22(A) in evaluation
Formulas (10)–(12) from [5] (p. 209) with the coefficients from [5] (Table 3) is more accurate
than the exponential Taylor approximation of order 15. For that reason, the corresponding
Taylor approximation order was denoted by m = 15+ in [5] (Section 4).

Recently, in [17], an evaluation formula of the type given in Proposition 1 was used
to evaluate a Taylor polynomial approximation of degree 15+ of the hyperbolic tangent.
However, in this case, all the solutions obtained were complExample We tried different
configurations of the evaluation formulae giving degree 15+, but all of them gave complex

http://personales.upv.es/jorsasma/Software/coeffspolm15plus.m
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solutions. Then, we proposed the similar evaluation Formula (11) from [17] (p. 6) with
degree 14+ that did give real solutions. Similarly to (34), in the case of the hyperbolic
tangent, the relative error of the coefficients ai, i = 15, and 16 was also lower than 1—
concretely, 0.38 and 0.85, respectively (see [17], p. 6). This method was compared to
the Paterson–Stockmeyer method being noticeably more efficient without affecting the
accuracy (see [17], Section 3) for details. Proposition 1 allows us to evaluate polynomial
approximations of degree 15 not only for the matrix exponential or the hyperbolic tangent
but also for other matrix functions. If all the given solutions were complex, we can modify
the formula to evaluate approximation formulae with a lower degree, such as 14+, to check
if they give real solutions.

Example 1. In [4] (Section 2), we showed that the solutions for the coefficients of the polynomial
evaluation method similar to [5] (Section 3.2) of the matrix cosine Taylor approximation of order
2m = 30+ were not stable, giving poor accuracy results. Using Proposition 1, this example gives a
stable solution for calculating a Taylor-based approximation of the matrix cosine with a combination
of formula (21) with the Paterson–Stockmeyer method from (19). Setting k = p = s = 2 in (19)
and yks = y22 from (21), one gets

z222(B) = y22(B)B2 − B/2 + I = P17(B) =
17

∑
i=0

biBi + a18B18, (36)

where B = A2 and z222(B) is a Taylor-based approximation of the matrix cosine (3) of order
2m = 34+, i.e., bi = (−1)i/(2i)! for i = 0, 1, . . . , 17, coefficient a18 is given by a18 = c2

8
(see (25)).

MATLAB code fragment 4.1 was used for obtaining all the real solutions of c8. Then, MATLAB
code fragment 4.2 was used with these solutions taking solution 1 for coefficient c4 in line 3 of
the MATLAB code fragment 4.2. Then, we obtain the equation cy2(13) from the code fragment
in line 12 depending on c2 and c8. This equation was solved for every real solution of c8, using
the MATLAB Symbolic Math Toolbox with variable precision arithmetic. Finally, we obtained the
nested solutions for computing (20) with (8) and (9) with q4 > 0 from (10).

The real solutions of system (30) rounded to IEEE double precision arithmetic explored in [4]
(Section 2) gave errors of order ≥ 10−14, greater than the unit roundoff in IEEE double precision
arithmetic u = 2−53 ≈ 1.11× 10−16. Using MATLAB code fragments 4.1 and 4.2, we checked that
there is no solution with a lower error. Then, according to the stability check from Section 2.2, the
solutions are unstable, and we checked in [4] that they gave poor accuracy results. However, using
Proposition 1, for 2m = 34+, we could find two real solutions of system (30) giving a maximum
error of order u. For those two solutions, a18 gave

|a18 − 1/36!|36! ≈ 0.394, (37)

|a18 − 1/36!|36! ≈ 16.591, (38)

respectively. Therefore, the solution (37) giving the lowest error was selected. Table 1 gives the
corresponding coefficients in IEEE double precision arithmetic from (8) and (9) for computing (20)
with three matrix products, and the rest of the needed coefficients for computing y22(B) from (21)
with s = 2, given finally by

y02(B) = B2(q4B2 + q3B), (39)

y12(B) =
(

y02(B) + r2B2 + r1B
)(

y02(B) + s2B2
)

+s0y02(B) + t2B2, (40)

y22(B) = (y12(B) + d2B2 + d1B)(y12(B) + e0y02(B) + e1B)

+ f0y12(B) + g0y02(B) + h2B2 + h1B + h0 I. (41)

Using (39)–(41) with the coefficients from Table 1 and (36), a matrix cosine Taylor approxima-
tion of order 2m = 34+ can be computed in IEEE double precision arithmetic with a cost of six
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matrix products, i.e., B = A2, B2, three for evaluating (39)–(41), and one more for evaluating (36).
The maximum available and stable order given in [4] (Section 2) with six matrix products was
2m = 30. The coefficients from Table 1 were computed with variable precision arithmetic with a
precision of 32 and 250 decimal digits to check its correctness, giving the same results.

Taking into account (3) and the selection of the solution in (37), in exact arithmetic, one gets

z222(x) =
17

∑
i=0

(−1)i x2i

(2i)!
+ a18x36. (42)

where, using (39)–(41), one gets a18 = q4
4.

Table 1. Coefficients of y02, y12, and y22 from (39)–(41) for computing the Taylor-based approxima-
tion z222(B) of order 2m = 34+ from (36) of the matrix cosine.

q4 3.571998478323090× 10−11 d1 −2.645687940516643× 10−3

q3 −1.857982456862233× 10−8 e1 1.049722718717408× 101

r2 3.278753597700932× 10−5 e0 8.965376033761624× 10−4

r1 −1.148774768780758× 10−2 f0 −1.859420533601965× 100

s2 −2.008741312156575× 10−5 g0 1.493008139094410× 101

s0 1.737292932136998× 101 h2 1.570135323717639× 10−4

t2 6.982819862335600× 10−5 h1 −1/6!
d2 −5.259287265295055× 10−5 h0 1/4!

To check if the new evaluation formulae are accurate, we compared the results of computing
the matrix cosine with function cosm from [7] with a function using the coefficients from Table 1 in
(39)–(41) and (36) with no scaling for simplicity. Since [7] used a relative backward error analysis,
we used the values of Θ from [15] (Table 1) corresponding to the backward relative error analysis
of the Taylor approximation of the matrix cosine, denoted by Eb. Then, if ||B|| = ||A2|| ≤ Θ,
then ||Eb|| ≤ u for the corresponding Taylor approximations. In [15] (Table 1), Θ for Taylor
approximation of order 16 was 9.97 and Θ20 = 10.18, showing two decimal digits. Then, for
our test with order 2m = 34+, we used a set of 48 8× 8 matrices from the Matrix Computation
Toolbox [18] divided by random numbers to give ‖B‖ between 9 and 10. We compared the forward
error E f of both functions

E f = || cos(A)− f (A)||, (43)

where function f (A) was cosm and the function using z222(B). The “exact value" of cos(A) was
computed using the method in [19]. The total cost of the new matrix cosine computation function
z222 summing up the number of matrix products over all the test matrices is denoted by Costz222 .
Taking into account (4), the cost for the cosm Padé function summing up the number of matrix
products and inversions over all the test matrices is denoted by Costcosm. Then, the following cost
comparison was obtained for that set of test matrices

100× Costcosm −Costz222

Costz222

= 40.78%,

i.e., the cost of z222 is 40.78% lower than the cost of cosm. Moreover, the results were more accurate
in 76.60% of the matrices. Therefore, the new formulae are efficient and accurate.

3.2. Evaluation of Matrix Polynomial Approximations of Order 21

In this section, we generalize the results from [5] (Section 3.3) for evaluating poly-
nomial approximations of order m = 21 with cost 5M. Note that for that cost, from [1]
(Table 8), the maximum available orders using the Paterson–Stockmeyer method and the
evaluation Formulas (16) and (17) are 12 and 16, respectively. Applying a similar proce-
dure to that in Section 3.1 to obtain the coefficients for evaluating a matrix polynomial
approximation of order 21, in this case, a system of 22 equations with 22 unknown variables
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arises. This system can be reduced to three equations with three unknowns using variable
substitution with the MATLAB Symbolic Toolbox, provided that two of the variables are
not zero. The following proposition summarizes the results

Proposition 2. Let y13(A) and y23(A) be

y13(A) =
12

∑
i=2

ci Ai (44)

y23(A) = (y13(A) + d3 A3 + d2 A2 + d1 A)(y13(A) + e0y03(A) + e1 A)

+ f0y13(A) + g0y03(A) + h3 A3 + h2 A2 + h1 A + h0 I (45)

and let P21(A) be a polynomial of degree 21 with coefficients bi

P21(A) =
21

∑
i=0

bi Ai. (46)

Then,

y23(A) =
24

∑
i=0

ai Ai, (47)

where coefficients ai = ai(c12, c11, . . . , c2, d3, d2, d1, e1, e0, f0, g0, h3, h2, h1, h0), i = 0, 1, . . . , 24,
and the system of equations arising when equating

ai = bi, i = 0, 1, . . . , 21, (48)

can be reduced to a system of three equations of variables c12, c11 and c10, provided

c12 6= 0, e0 6= 0, (49)

and then variables ai, i = 22, 23 and 24 are

a24 = c2
12,

a23 = 2c11c12, (50)

a22 = c2
11 + 2c10c12.

Proof of Proposition 2. The proof of Proposition 2 is similar to the proof of Proposition 1.
Analogously, if condition (18) is fulfilled with s = 3, i.e., c12 6= 0, then polynomial y13(A)
can be evaluated using (16) and (17) with s = 3 and cost 4M, where y03 is given by (21)
of [5] (Section 3.3), i.e.,

y03(A) = ±A3(
√

c12 A3 + c11/(2
√

c12)A2 + (4c10c12 − c2
11)/(8c3/2

12 )A). (51)

If we apply (48), we obtain a similar system to (30). Using variable substitution
with the MATLAB Symbolic Toolbox, the MATLAB code coeffspolm21plus.m (http://
personales.upv.es/jorsasma/Software/coeffspolm21plus.m (accessed on 24 June 2021))
similar to MATLAB code fragments 4.1 and 4.2 is able to reduce the whole nonlinear
system of 22 equations to a nonlinear system of three equations with three variables c10, c11,
and c12. The MATLAB code coeffspolm21plus.m returns conditions (49) (see the actual
code for details.)

If there is at least one solution for c10, c11, and c12 fulfilling condition (49), all of the
other coefficients can be obtained using the values of c10, c11, c12. Then, y13(A) from
(44) can be evaluated using (16) and (17) giving several possible solutions. Finally, the
solutions are rounded to the required precision. Then, according to the stability study from
Section 2.2 (see [1], p. 243), the solution giving the least error should be selected.

http://personales.upv.es/jorsasma/Software/coeffspolm21plus.m
http://personales.upv.es/jorsasma/Software/coeffspolm21plus.m
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Similarly to (34) and (35), the degree of y23(A) of (45) is 24, but with the proposed
method, we can only set the polynomial approximation coefficients of (46) up to order
m = 21. The coefficients of ai of the power Ai, i =22, 23, and 24 are given by (50). The
authors of [5] (Section 3.3) give one particular example of this method for calculating a
matrix Taylor approximation of the exponential function, where in exact arithmetic

y23(A) = T21(A) + a22 A22 + a23 A23 + a24 A24, (52)

where T21 is the Taylor approximation of order m = 21 of the exponential function and

|a22 − 1/22!|22! ≈ 0.437, (53)

|a23 − 1/23!|23! ≈ 0.270, (54)

|a24 − 1/24!|24! ≈ 0.130, (55)

showing three decimal digits. Again, in exact arithmetic, the approximation y23(A) is more
accurate than T21(A). Therefore, the order of that approximation was denoted as m = 21+
in [5] (Section 4). The experimental results from [5] showed that this method was more
accurate and efficient than the Padé method from [6].

Recently, in [17], an evaluation formula similar to (45) was used to evaluate a Taylor
polynomial approximation of the hyperbolic tangent. Similarly to (53), in the case of the
hyperbolic tangent, the relative error of the coefficients ai, i = 22, 23, and 24 was also
lower than 1—concretely, 0.69, 0.69, and 0.70, respectively (see [17], p. 7). This method was
compared to the Paterson–Stockmeyer method being noticeably more efficient without
affecting the accuracy (see [17], Section 3 for details).

Proposition 2 allows us to evaluate polynomial approximations of degree 21 not
only for the matrix exponential or the hyperbolic tangent but also for other matrix func-
tions. In the following example, we show an application for the evaluation of the Taylor
approximation of the matrix logarithm.

Example 2. In this example, we give real coefficients for computing a Taylor-based approximation
of the matrix logarithm of order m = 21+ in a stable manner based on the previous results.
Evaluating (44) using (16) and (17) with s = 3, and using (45), the following formulae can be used
to compute the approximation of order m = 21+ of the principal logarithm log(B) for a square
matrix B = I − A with no eigenvalues on R−

y03(A) = A3(c1 A3 + c2 A2 + c3 A), (56)

y13(A) = (y03(A) + c4 A3 + c5 A2 + c6 A)(y03(A) + c7 A3 + c8 A2)

+c9y03(A) + c10 A3 + c11 A2, (57)

y23(A) = (y13(A) + c12 A3 + c13 A2 + c14 A)(y13(A) + c15y03(A) + c16 A)

+c17y13(A) + c18y03(A) + c19 A3 + c20 A2 + A, (58)

where the coefficients are numbered correlatively, and using (1), we take

log(B) = log(I − A) = −∑
i>1

Ai/i ≈ −y23(A). (59)

The coefficients can be obtained solving first the system of equations arising from (48) with
bi = 1/i for i = 1, 2, . . . , 21, b0 = 0. We used vpasolve (https://es.mathworks.com/help/
symbolic/vpasolve.html (accessed on 24 June 2021)) function from the MATLAB Symbolic Com-
putation Toolbox to solve those equations with variable precision arithmetic. We used the Random
option of vpasolve, which allows to obtain different solutions for the coefficients, running it 100
times. The majority of the solutions were complex, but there were two real stable solutions. Then,
we obtained the nested solutions for the coefficients of (16) and (17) with s = 3 for computing poly-
nomial (44) with four matrix products (see [1], Section 3), giving also real and complex solutions.

https://es.mathworks.com/help/symbolic/vpasolve.html
https://es.mathworks.com/help/symbolic/vpasolve.html
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Again, we selected the real stable solution given in Table 2. This solution avoids complex
arithmetic if the matrix A is real. The relative errors of the coefficients of A22, A23 and A24

of y23(A) with respect to the corresponding Taylor approximation of order 24 of − log(I − A)
function are:

a22 = 3.205116205918952 × 10−2, |a22 − 1/22|22 ≈ 0.295, (60)

a23 = 1.480540983455180 × 10−2, |a23 − 1/23|23 ≈ 0.659, (61)

a24 = 3.754613237786792 × 10−3, |a24 − 1/24|24 ≈ 0.910, (62)

where a22, a23, and a24 are rounded to double precision arithmetic. Then, considering exact
arithmetic, one gets

y23(A) =
21

∑
i=1

Ai/i + a22 A22 + a23 A23 + a24 A24, (63)

which is more accurate than the corresponding Taylor approximation of log(B) of order m = 21.
Therefore, similarly to [5] (Section 4), the approximation order of (63) is denoted by m = 21+.

Table 2. Coefficients of y03, y13, and y23 from (56)–(58) for computing a Taylor-based approximation
of function log(B) = log(I − A) of order m = 21+.

c1 2.475376717210241× 10−1 c11 −1.035631527011582× 10−1

c2 2.440262449961976× 10−1 c12 −3.416046999733390× 10−1

c3 1.674278428631194× 10−1 c13 4.544910328432021× 10−2

c4 −9.742340743664729× 10−2 c14 2.741820014945195× 10−1

c5 −4.744919764579607× 10−2 c15 −1.601466804001392× 100

c6 5.071515307996127× 10−1 c16 1.681067607322385× 10−1

c7 2.025389951302878× 10−1 c17 7.526271076306975× 10−1

c8 −4.809463272682823× 10−2 c18 4.282509402345739× 10−2

c9 6.574533191427105× 10−1 c19 1.462562712251202× 10−1

c10 3.236650728737168× 10−1 c20 5.318525879522635× 10−1

The θ values such that the relative backward errors for the Padé approximations are lower
than u are shown in [11] (Table 2.1). The corresponding θ value for the Taylor approximation of
log(I − A) of order m = 21+, denoted by θ21+, can be computed similarly (see [11] for details),
giving θ21+ = 0.211084493690929, where the value is rounded to IEEE double precision arithmetic.

We compared the results of using (56)–(58) with the coefficient values from Table 2, with the
results given by function logm_iss_full from [20]. For that comparison, we used a matrix test set
of 43 8× 8 matrices of the Matrix Computation Toolbox [18]. We reduced their norms so that they
are random with a uniform distribution in [0.2, θ21+] in order to compare the Padé approximations
of logm_iss_full with the Taylor-based evaluation Formulas (56)–(58) using no inverse scaling
in none of the approximations (see [11]).

The “exact” matrix logarithm was computed using the method from [19]. The error of the
implementation using Formula (58) was lower than logm_iss_full in 100% of the matrices with
a 19.61% lower relative cost in flops. Therefore, evaluation Formulas (56)–(58) are efficient and
accurate for a future Taylor-based implementation for computing the matrix logarithm.

3.3. Evaluation of Matrix Polynomials of Degree m = 6s

The following proposition generalizes the particular cases of the evaluation of the
matrix exponential Taylor approximation with degrees m = 24 and 30 from [5] (Section 3.4)
for evaluating general matrix polynomials of degree m = 6s, s = 2, 3, . . .
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Proposition 3. Let y0s(A), y1s(A), and y2s(A) be the polynomials

y0s(A) = As
s

∑
i=1

es+i Ai, (64)

y1s(A) =
4s

∑
i=1

ci Ai, (65)

y2s(A) = y1s(A)

(
y0s(A) +

s

∑
i=1

ei Ai

)
+

s

∑
i=0

fi Ai, (66)

and let Pm(A) be the polynomial

Pm(A) =
6s

∑
i=0

bi Ai. (67)

Then,

y2s(A) =
6s

∑
i=0

ai Ai, (68)

where coefficients ai = ai(ci, ej, fk), i = 1, 2, . . . , 4s, j = 1, 2, . . . , 2s, k = 0, 1, . . . , s, and if

b6s 6= 0, (69)

then, if we equate y2s(A) = Pm(A), i.e.,

ai = bi, i = 0, 1, . . . , 6s, (70)

then the following relationships between the coefficients of the polynomials y0s(A), y1s(A), y2s(A),
and Pm(A) are fulfilled:

a.

c4s−k = c4s−k(b6s, b6s−1, . . . , b6s−k), for k = 0, 1, . . . , s− 1,

e2s−k = e2s−k(b6s, b6s−1, . . . , b6s−k), for k = 0, 1, . . . , s− 1. (71)

b.
c3s−k = c3s−k(b6s, b6s−1, . . . , b5s−k, es, . . . , es−k), k = 0, . . . , s− 1. (72)

c.
c2s−k = c2s−k(b6s, . . . , b4s−k, es, . . . , e1), k = 0, . . . , s− 1. (73)

d.
cs−k = cs−k(b6s, . . . , b3s−k, es, . . . , e1), k = 0, . . . , s− 1. (74)

Proof of Proposition 3. Polynomial y1s(A) from (65) can be computed using the general
method from [1] (Section 3), reproduced here as (16) and (17), provided condition (18) is
fulfilled, i.e., c4s 6= 0.

a. In the following, we show that (71) holds. Taking (16) and (17) into account, one gets

y1s(A) = y2
0s(A) + q(A), (75)

where q(x) is a polynomial of degree lower than 3s + 1, and equating the terms of
degree 4s in (75), we obtain e2s = ±

√
c4s. On the other hand, equating the terms of

degree 6s in (66), taking condition (69) into account, we obtain

c4se2s = b6s,

c4s(±
√

c4s) = b6s,
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c4s =
3
√

b2
6s 6= 0, (76)

e2s = ± 3
√

b6s 6= 0. (77)

Since condition (69) is fulfilled, then by (76), one gets that condition (18) is also
fulfilled. Then, polynomial y1s(A) from (65) can be effectively computed using (16)
and (17), and by (76) and (77), one gets that c4s and e4s depend on b6s, i.e.,

c4s = c4s(b6s), e2s = e2s f (b6s). (78)

Equating the terms of degree 4s− 1 in (75), we obtain

c4s−1 = 2e2se2s−1.

Therefore,
e2s−1 =

c4s−1

2e2s
. (79)

Equating the terms of degree 4s− 2 in (75), we obtain

c4s−2 = e2se2s−2 + e2
2s−1 + e2s−2e2s,

then

e2s−2 =
c4s−2 − e2

2s−1
2e2s

. (80)

Equating the terms of degree 4s− 3 in (75), we obtain

c4s−3 = e2se2s−3 + e2s−1e2s−2 + e2s−2e2s−1 + e2s−3e2s,

then

e2s−3 =
c4s−3 − (e2s−1e2s−2 + e2s−2e2s−1)

2e2s
.

Equating the terms of degree 4s− 4 in (75), we obtain

c4s−4 = e2se2s−4 + e2s−1e2s−3 + e2s−2e2s−2 + e2s−3e2s−1 + e2s−4e2s,

then

e2s−4 =

c4s−4 −
3
∑

i=1
e2s−ie2s+i−4

2e2s
.

Proceeding in an analogous way with e2s−k for k = 5, 6, . . . , s− 1, we obtain

e2s−k =

c4s−k −
k−1
∑

i=1
e2s−ie2s+i−k

2e2s
, k = 1, 2, . . . , s− 1. (81)

On the other hand, equating the terms of degree 6s− 1 in (66), and taking (79) into
account, we obtain

c4se2s−1 + c4s−1e2s = c4s−1

(
c4s

2e2s
+ e2s

)
= b6s−1,

Since

c4s
2e2s

+ e2s =
c4s + 2e2

2s
2e2s

=

3
√

b2
6s + 2 3

√
b2

6s

2 3
√

b6s
=

3 3
√

b6s

2
6= 0, (82)

then
c4s−1 =

2b6s−1

3 3
√

b6s
. (83)
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Taking into account (77), (79) and (83), we obtain that c4s−1 and e2s−1 depend on b6s
and b6s−1, i.e.,

c4s−1 = c4s−1(b6s, b6s−1), e2s−1 = e2s−1(b6s, b6s−1). (84)

Equating the terms of degree 6s− 2 in (66) and taking (82) into account, we obtain

c4se2s−2 + c4s−1e2s−1 + c4s−2e2s = b6s−2,

and taking into account (80) and (82), it follows that

c4s−2 =
b6s−2 − c4s−1e2s−1 +

e2
2s−1
2e2s

3 3√b6s
2

. (85)

On the other hand, from (77), (84) and (85), one gets that c4s−2 and e2s−2 can be
computed explicitly depending on b6s, b6s−1, and b6s−2, i.e.,

c4s−2 = c4s−2(b6s, b6s−1, b6s−2), e2s−2 = e2s−2(b6s, b6s−1, b6s−2). (86)

Proceeding similarly when equating the terms of degrees 6s− 3, 6s− 4 . . . , 5s + 1 in
(66), one gets (71).

b. In the following, we show that (72) holds. Equating the terms of degree 5s in (66)
and taking condition e2s 6= 0 from (77) into account, we obtain

c4ses + c4s−1es+1 + . . . + c3s+1e2s−1 + c3se2s = b5s,

c3s =
b5s − (c4ses + c4s−1es+1 + . . . + c3s+1e2s−1)

e2s
.

Hence, taking (71) into account, it follows that

c3s = c3s(b6s, b6s−1, . . . , b5s+1, b5s, es). (87)

Equating the terms 5s− 1 in (66) and taking condition e2s 6= 0 from (77) into account,
we obtain

c4ses−1 + c4s−1es + . . . + c3se2s−1 + c3s−1e2s = b5s−1,

c3s−1 =
b5s−1 − (c4ses−1 + c4s−1es + . . . + c3se2s−1)

e2s
.

Hence, using (87), one gets

c3s−1 = c3s−1(b6s, b6s−1, . . . , b5s, b5s−1, es, es−1 ) (88)

Proceeding similarly, equating the terms of degrees 5s− 2, 5s− 3 . . ., 4s + 1 in (66),
one gets (72).

c. In the following, we show that (73) holds. Equating the terms of degree 4s in (66)
and taking condition e2s 6= 0 from (77) into account, it follows that

c4s−1e1 + c4s−2e2 + . . . + c2s+1e2s−1 + c2se2s = b4s,

c2s =
b4s − (c4s−1e1 + c4s−2e2 + . . . + c2s+1e2s−1)

e2s

Taking (71) and (72) into account, we obtain

c2s = c2s(b6s, . . . , b4s, es, . . . , e1).

Equating the terms of degree 4s− 1 in (66) and condition e2s 6= 0, one gets
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c4s−2e1 + c4s−3e2 + . . . + c2se2s−1 + c2s−1e2s = b4s−1,

c2s−1 =
b4s−1 − (c4s−2e1 + c4s−3e2 + . . . + c2se2s−1)

e2s
.

Taking (71) and (72) into account, we obtain

c2s−1 = c2s−1(b6s, . . . , b4s−1, es, . . . , e1).

Proceeding similarly, equating the terms of degrees 4s− 2, 4s− 3, . . . , 3s + 1 in (66)
and taking (71), (72), and condition e2s 6= 0 into account, one gets (73).

d. In the following, we show that (74) holds. Equating the terms of degree 3s in (66)
and takingcondition e2s 6= 0 into account, it follows that

c3s−1e1 + c3s−2e2 + . . . + cs+1e2s−1 + cse2s = b3s,

cs =
b3s − (c3s−1e1 + c3s−2e2 + . . . + cs+1e2s−1)

e2s
.

Hence, from (71)–(73), we obtain

cs = cs(b6s, . . . , b3s, es, . . . , e1).

Equating the terms of degree 3s− 1 in (66) and condition e2s 6= 0, we obtain

c3s−2e1 + c3s−3e2 + . . . + cse2s−1 + cs−1e2s = b3s−1,

cs−1 =
b3s−1 − (c3s−2e1 + c3s−3e2 + . . . + cse2s−1)

e2s
.

Hence, from (71)–(73) we obtain

cs−1 = cs−1(b6s, . . . , b3s−1, es, . . . , e1).

Proceeding similarly, equating the terms of degrees 3s− 2, 3s− 3, . . . , 2s + 1, in (66),
one gets (74).

Corollary 1. If condition (69) holds, then the system of 6s + 1 equations with 7s + 1 variables
arising from (70) can be reduced using variable substitution to a system of s equations with s
variables, and if there exist at least one solution for that system, then all the coefficients from
(64)–(66) can be calculated using the solution of the system.

Proof of Corollary 1. If we equate the terms of degree 2s, 2s− 1, . . . , s+ 1 in (66), we obtain
the following system of equations:

c2s−1e1 + c2s−2e2 + . . . + c2e2s−2 + c1e2s−1 = b2s

c2s−2e1 + c2s−3e2 + . . . + c2e2s−3 + c1e2s−2 = b2s−1

. . .

cse1 + cs−1e2 + . . . + c2es−1 + c1es = bs+1. (89)

Taking (71), (73), and (74) into account, it follows that system (89) can be written as a
system of s equations with a set of s unknown variables {e1, e2 . . . , es}, where, in general,
(89) is nonlinear system since the ck coefficients depend on the ek coefficients.
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Equating the terms of degrees s, s− 1, . . . , 0, in (66), one gets

fs = bs − cs−1e1 − cs−2e2 − . . .− c1es−1,

fs−1 = bs−1 − cs−2e1 − cs−3e2 − . . .− c1es−2,
...

f2 = b2 − c1e1,

f1 = b1,

f0 = b0. (90)

Using (71) from Proposition 3, one gets that the values c4s−k and e2s−k, for
k = 0, . . . , s− 1, can be calculated explicitly depending on the polynomial coefficients
bi for i = 6s, 6s− 2, . . . , 5s + 1.

If there exist at least one solution of system (89), then the values c3s−k, c2s−k and cs−k
can be calculated for k = 0, . . . , s− 1 (see (72)–(74)), and coefficients fs−k can be calculated
for k = 0, . . . , s, using (90), allowing one to obtain all the coefficients from (64)–(66).

Using [1] (Table 6), in Table 3, we present the maximum available order for a cost
C(M) in the following cases:

• The Paterson–Stockmeyer evaluation formula.
• zkps from (19) with k = 1, denoting the combination of (17) with the Paterson–

Stockmeyer formula proposed in [1] (Section 3.1).
• zkps from (19) with k = 2, denoting the combination of (66) with the Paterson–

Stockmeyer formula, whenever a solution for the coefficients of z2ps exist.

Table 3. Maximum available approximation order for a cost C using the Paterson–Stockmeyer
method, order denoted by dPS, maximum order using z1ps from (19) combining (16) and (17) with
the Paterson–Stockmeyer, denoted by dz1s , and maximum order using z2ps from (19) combining (66)
with the Paterson–Stockmeyer method, denoted by dz2s , whenever a solution for the coefficients of
z2ps exist. Parameters s and p for z2ps(x) such that s is minimum to obtain the required order giving
a system (89) of s equations with minimum size.

C(M) 3 4 5 6 7 8 9 10 11 12 13

dPS 6 9 12 16 20 25 30 36 42 49 56
dz1s 8 12 16 20 25 30 36 42 49 56 64
dz2s - 12 18 24 30 36 42 49 56 64 72
sz2s - 2 3 4 5 6 6 7 7 8 8
pz2s - 0 0 0 0 0 6 7 14 16 24

Table 3 also shows the values of p and s for z2ps(A) such that s is minimum to obtain
the required order, giving the minimum size of the system (89) to solve, i.e., s equations
with s unknown variables. Note that it makes no sense to use (66) for s = 1 and cost
C = 3M since the order obtained is m = 6s = 6 and for that cost the Paterson–Stockmeyer
method obtains the same order. Table 3 shows that evaluation formula z2ps obtains a greater
order than z1ps for dz1s > 12. Concretely, for sz2s ≥ 5, where the available order with z2s is
dz2s = 30, 36, 42, . . ., z2ps allows increments 10, 11, 12 . . . of the available order with respect
to using the Paterson–Stockmeyer method, and increments of sz2s = 5, 6, 6 . . . with respect
to using z1ps.

In [5], real stable solutions were found for the coefficients of (64)–(66) for the exponen-
tial Taylor approximation with degrees 6s with s = 4 and 5, i.e., 24, and 30. The following
example deals with the matrix logarithm Taylor approximation.
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Example 3. In this example, we provide real coefficients for calculating the Taylor approximation
of the principal matrix logarithm log(B) of order m = 6s = 30, s = 5, in a stable manner based on
the results of Proposition 3 and Corollary 1 with the following expressions

y05(A) = A5(c1 A5 + c2 A4 + c3 A3 + c4 A2 + c5 A), (91)

y15(A) = (y05(A) + c6 A5 + c7 A4 + c8 A3 + c9 A2 + c10 A)

×(y05(A) + c11 A5 + c12 A4 + c13 A3 + c14 A2)

+c15y05(A) + c16 A5 + c17 A4 + c18 A3 + c19 A2 + c20 A, (92)

y25(A) = y15(A)(y05(A) + c21 A5 + c22 A4 + c23 A3 + c24 A2 + c25 A)

+c26 A5 + c27 A4 + c28 A3 + c29 A2 + c30 A, (93)

where the coefficients were numbered correlatively. The coefficients ci i = 1, 2, . . . , 30, can be
obtained following the procedure from Section 3.3, reducing the whole system of 30 equations with
30 unknown variables to the system (89) of s = 5 variables with s unknowns ei, i = 1, 2 . . . , 5,
corresponding in (93) to e1 = c25, e2 = c24, . . . , e5 = c21. Once this was done, we checked that
e1 and e2 could be easily solved as functions of e3, e4 and e5, reducing the system to a system of
three equations with three unknown variables. To obtain a real solution of the three coefficients,
we used the MATLAB Symbolic Math Toolbox function vpasolve giving a range [−10, 10] for
the solutions of the three variables and using 32 decimal digits. The results of the coefficients from
(91)–(93) rounded to IEEE double precision arithmetic are given in Table 4.

Note that using the evaluation Formulas (91)–(93), the Taylor approximation y25(A) of order
m = 30 can be computed with a cost of 7M. For the same order the cost of the Paterson–Stockmeyer
method is 9M, and using z1ps from (19) the cost is 8M (see Table 3). Similarly to [11], we computed
the value such that the relative backward error is lower than u for the Taylor approximation of
log(I − A) of order m = 30 giving θ30 = 0.329365534847136.

Similarly to Example 2, to check if y25(A) is competitive, we prepared a new matrix test set
with 50 8× 8 matrices of the Matrix Computation Toolbox [18] reducing their norms so that they
are random with a uniform distribution in [0.3, θ30], and the inverse scaling algorithm is not used
in either the Padé and Taylor algorithms. Then, we compared the results of using (91)–(93) with
the results given by function logm_iss_full from [20] for the previous matrix set, computing
the “exact” values of the matrix logarithm in the same way. The error of using the evaluation
Formulas (91)–(93) was lower than logm_iss_full in 97.62% of the matrices with a 42.40%
lower relative cost in flops, being competitive in efficiency and accuracy for future implementations
for computing the matrix logarithm.

Table 4. Coefficients of y05, y15, y25 from (91)–(93) for computing the Taylor approximation of
log(B) = log(I − A) = −y25(A) of order m = 30.

c1 3.218297948685432× 10−1 c16 2.231079274704953× 10−1

c2 1.109757913339804× 10−1 c17 3.891001336083639× 10−1

c3 7.667169819995447× 10−2 c18 6.539646241763075× 10−1

c4 6.192062222365700× 10−2 c19 8.543283349051067× 10−1

c5 5.369406358130299× 10−2 c20 −1.642222074981266× 10−2

c6 2.156719633283115× 10−1 c21 6.179507508449100× 10−2

c7 −2.827270631646985× 10−2 c22 3.176715034213954× 10−2

c8 −1.299375958233227× 10−1 c23 8.655952402393143× 10−2

c9 −3.345609833413695× 10−1 c24 3.035900161106295× 10−1

c10 −8.193390302418316× 10−1 c25 9.404049154527467× 10−1

c11 −1.318571680058333× 10−1 c26 −2.182842624594848× 10−1

c12 1.318536866523954× 10−1 c27 −5.036471128390267× 10−1

c13 1.718006767617093× 10−1 c28 −4.650956099599815× 10−1

c14 1.548174815648151× 10−1 c29 5.154435371157740× 10−1

c15 2.139947460365092× 10−1 c30 1
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Note that using the evaluation formulae from Sections 1 and 2 with cost 4M and 5M,
one can get an order of approximation 15+ and 21+, respectively, whereas using z2ps from
(19) combining (66) with the Paterson–Stockmeyer method, the orders that can be obtained
are lower, i.e., 12 and 18, respectively (see Table 3). Note that for the approximation 15+
where s = 2 (see Section 3.1), one gets order 15+ = (6s + 3)+ and the total degree of the
polynomial obtained is 8s = 16. For the approximation 21+ where s = 3, one gets order
21+ = (6s + 3)+ and the total degree of the polynomial degree is 8s = 24. The next step in
our research is to extend the evaluation formulae from Propositions 1 and 2 to evaluate
polynomial approximations of order (6s + 3)+ of the type

y0s(A) = As

s

∑
i=1

ci Ai, (94)

y1s(A) =
4s

∑
i=s+1

ai Ai =

(
y0s(A) +

s

∑
i=1

di Ai

)(
y0s(A) +

s

∑
i=2

ei Ai

)

+ f0y0s(A) +
s

∑
i=3

fi Ai, (95)

y2s(A) =

(
y1s(A) +

s

∑
i=1

gi Ai

)(
y1s(A) + h0y0s(A) +

s

∑
i=1

hi Ai

)

+j0y1s(A) + k0y0s(A) +
s

∑
i=0

li Ai. (96)

Those formulae correspond to a particular case of Formulas (62)–(65) of [1] (Prop. 2)
where k = 2. It is easy to show that the degree of y2s(A) is 8s and the total number
of coefficients of y2s is 6s + 4, i.e., 3s coefficients ai, s coefficients gi, s coefficients hi,
s + 1 coefficients li, and coefficients f0, j0 and k0. Using vpasolve in a similar way as in
Example 2, we could find solutions for the coefficients of (94)–(96) and (19) so that y2s(A)
and z2ps allows to evaluate matrix logarithm Taylor-based approximations of orders from
15+ up to 75+. Similarly, we could also find the coefficients for Formulas (94)–(96) to
evaluate matrix hyperbolic tangent Taylor approximations of orders higher than 21. Then,
our next research step is to show that evaluation Formulas (94)–(96) and its combination
with the Paterson–Stockmeyer method from (19) can be used for the general polynomial
approximations of matrix functions.

4. Conclusions

In this paper, we extend the family of methods for evaluating matrix polynomials
from [1], obtaining general solutions for new cases of the general matrix polynomial
evaluation Formulas (62)–(65) from Proposition 2 from [1] (Section 5). These cases allow
to compute matrix polynomial approximations of orders 15 and 21 with a cost of 4M and
5M, respectively, whenever a stable solution for the coefficients exist. Moreover, a general
method for computing matrix polynomials of order m = 6s, for s = 3, 4... more efficiently
than the methods provided in [1] was provided. Combining this method with the Paterson–
Stockmeyer method, polynomials or degree greater than 30 can be evaluated with two
matrix products less than using Paterson–Stockmeyer method as shown in Table 3.

Examples for evaluating Taylor approximations of the matrix cosine and the matrix
logarithm were given. The accuracy and efficiency results of the proposed evaluation
formulae were compared to state-of-the-art Padé algorithms, being competitive for future
implementations for computing both functions.

Future work will deal with the generalization of more efficient evaluation formulae
based on the evaluation Formulas (62)–(65) from Proposition 2 from [1] (Section 5), its
combinations with Paterson–Stockmeyer method (19), and in general, evaluation formulae
based on products of matrix polynomials.
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