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Abstract

Throughout their lives, 3 in 20 men and up to 2 in 20 women develop renal calculi
at some stage. Renal calculi are solid masses that originate in the kidneys but can
develop along the urinary tract. They appear when solutes from urine crystalise
to form calculi. Calculus formation is related to diet, urinary tract infections and
medications.

In most cases, renal calculi can result in excruciating pain and agony. Moreover,
although it does not lead to kidney failure, recurrent renal calculi can result in a
functional loss of the kidney.

With the help of convolutional neural networks, image preprocessing, data aug-
mentation and Python, TensorFlow, and Keras libraries, we have built a classific-
ation model to detect renal calculi from abdominal CT scans. Consequently, we
go through an iterative process of adjusting the models and preprocessing tech-
niques to improve their performance. Finally, we compare the best performing
model against industry-standard architectures such as VGG16, VGG19, ResNet
and Xception. We conclude that our model outperforms the industry-standard
CNNs, but it is not ready to become a medical application.
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1 Introduction

Renal calculi are solid masses that originate in the kidneys but can develop along
the urinary tract. The development of renal calculi can result in excruciating pain
with possible consequences being nausea, severe lower back pain, blood in urine,
fever and chills. If not identified in time, the treatment for renal calculi extraction
is removed by surgery. However, if, when identified, the calculus is small enough,
it can be passed without surgery. Over the past decades, the increase in high-salt
diets could have also led to the rise in cases. Renal calculi can also be formed due
to hereditary kidney problems, medications and urinary tract infections.

In recent decades, Ireland and the rest of the world have witnessed an increase
in radiologists’ demand. However, this demand has not been entirely satisfied,
leading to a shortage of radiologists and long waiting periods for patients in most
hospitals. It is predicted that this steady increase in demand will continue to rise
in the coming years. [8]

The most common case is that a radiologist will assess the CT scan and identify
any renal calculi. There exists literature that documents previous attempts to
automate this form of diagnosis. We will cover this in Section 2.

This project aims to develop a model that can accurately identify renal calculi from
CT scans using deep learning techniques such as convolutional neural networks.
By achieving this, we hope that this would reduce the workload of medical staff,
particularly radiologists while increasing the number of successful diagnoses and
reducing waiting periods for patients.

We will start with an overview of technical terms explaining matters like deep
learning, neural networks, CNNs, their use in the medical field, and previous work
similar to our project. In the next section, we will explain the methods applied to
collect and prepare the data used to train the models. In the following chapters,
we will cover the three phases of model development, describing the models that
we have built and a review of the performance of said models. Next, we will
compare our best performing model to industry-standard CNNs, and, finally, we
will provide our conclusions and future work to be done.
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2 Literature Review

This section will discuss the technologies that we have used throughout this project,
their application to medical analysis, and previous work related to our project.

2.1 Deep Learning

Deep learning has been around for many decades now, with the first implement-
ation dating back to 1943 with McCulloch and Pitts. However, they only started
attracting interest in the late 2000s and early 2010s when we finally had the com-
putational power to truly take advantage of this technology [11]. Deep learning is
a subset of machine learning that attempts to mimic the human brain in the form
of artificial neural networks. These networks are used to find patterns in data.

The main difference between machine learning and deep learning is the amount of
human intervention and data needed for training the models. Several preprocessing
techniques are done manually to extract the essential features from a dataset in
machine learning. However, preprocessing is not as crucial in deep learning be-
cause neural networks can find the most important patterns and features within
a dataset. Nonetheless, this comes at a price. Usually, deep learning algorithms
need much more data to learn than machine learning algorithms.

Deep learning has many applications like image recognition, natural language pro-
cessing, recommendation systems, financial fraud detection and medical analysis.

2.2 Neural Networks

Neural networks (NN) are architectures that represent how the human brain learns
and are used in many applications to automate processes. First, we will explain
the components of a NN, then describe the typical structure of one.

• Node: A simple data structure that can connect to other nodes via edges.

• Neuron: A node in a neural network. A neuron receives one or more
weighted inputs and sums them using an activation function to produce
an output.

10



• Edge: Link between two neurons that has a weight associated with it.

• Weight: A real value represents the influence one neuron has on the output
of another neuron.

• Activation function: Calculates the output of each neuron by applying a
nonlinear function.

Neural networks consist of 3 different types of layers formed by neurons connected
by edges, observed in Figure 1. The first layer is the input layer, where each
neuron represents the data fed to the network. These could be words, pixels
or numerical values. Then we have the hidden layers, where each component
is considered a neuron that calculates an output from its weighted inputs and
activation function. There can be as many hidden layers as necessary. The more
neurons, the taller the network is, and the more layers, the deeper it is. Deep
networks tend to be preferred over tall networks because they achieve the same level
of performance while using fewer parameters, making them much more efficient in
terms of computation. Finally, we have the output layer, which represents each of
the possible classes to which the data can belong. If given enough data and time,
neural networks are powerful enough to represent any possible existing mapping
function. [10]

Figure 1: Traditional Neural Network Structure
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2.3 Computer Vision

An application of deep learning is computer vision, a field of artificial intelligence
that allows computer systems to gain information from digital data such as videos
or images and make decisions based on the conclusion gained from such data. In
recent times, computer vision has gained significant importance in AI. Its rise in
deep learning can be attributed to convolution neural networks. This technology
has allowed computer vision to embrace its full potential and be used for medical
analysis, autonomous vehicles and facial recognition. Figure 2 shows an example
of computer vision.

Figure 2: Computer Vision Application

2.4 Convolutional Neural Networks

CNNs are traditionally structured in the following manner. First, we have one or
more convolutional layers that process the input data and extract features from
it. These features are then fed to a neural network. Convolutional layers have
components known as receptive fields and filters.

The receptive field can be explained as the region that extracts features from the
input image data. In other words, the number of pixels covered from the input
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data to extract relevant features. The receptive field is modified depending on the
size of the image. If we were looking to recognise an object within a large image,
we would probably use a large receptive field. Moreover, we would likely use a
smaller receptive field for smaller images.

A filter is a 2D array of real values that slides over the input image and is used
to generate a feature map. This map is calculated with the dot product of the
filter and the input image data. It is very common to use many filters in parallel
to produce different feature maps. The number of filters varies depending on
the complexity of the shapes or features found within the image. For example,
for complex shapes, like the parts of a car, we would introduce more filters to
produce more feature maps because complex shapes tend to need more features
to be extracted to classify them correctly. On the other hand, we would use fewer
filters to produce feature maps for simple shapes. These feature maps can then be
used to visualise the characteristics that the model is extracting from the input
data. Essentially, they can be used to analyse whether the model is focusing on
the correct features to classify the model.

It is worth mentioning that we also implemented pooling layers in our models,
which reduce the dimensionality of the feature maps. Therefore, reducing the
number of parameters and computation power needed.

After the data has been fed through the convolutional layers, we obtain a 2D array
of weights representing a feature and its importance when classifying the image.
We apply this output to a neural network that processes the information and,
depending on the implementation, it returns the class calculated from the input.
Thus, CNNs essentially break down an image into minor features or characteristics
and use a neural network to classify such images. [11]

2.5 Medical Image Analysis

Medical imaging provides visual information about the human body and its organs,
aiding medical professionals in diagnosing. Some examples of medical imaging,
such as X-rays, computed tomography (CT), and ultrasound can be found in Figure
3. These technologies have played a crucial role in the advancement of modern

13



healthcare. They allow medical professionals to visualise the human body’s interior
and identify any anomalies. [3]

Figure 3: X-ray, CT Scan & Ultrasound Examples

2.6 CNNs In Medical Image Analysis

In recent years, CNNs have gained attraction in medical image analyses. In tradi-
tional machine learning, the algorithms work off the hand-picked features selected
by a human. In contrast, CNNs are fed the raw data and extract the most im-
portant features to classify the data with the help of the neurons or perceptrons
and convolution layers. This allows the CNN model to learn complex information
that could be vital in identifying an image as healthy or unhealthy.

However, there are not only positive aspects to the use of CNNs. There are limit-
ations, such as the computational power needed to train these models. Also, for
a CNN model to learn well, it needs a large amount of image data. Nevertheless,
if there is a large amount of data, it takes the model more time to learn. Finally,
the ethical problem. CNN models are known as black-box models. Therefore, the
inputs and outputs of the model are known, but the internal representation is not.
In other words, it is difficult to understand why a CNN model classifies an image
as healthy or unhealthy. [3]

2.7 Measures Of Performance For Medical Imaging

Although it is important in other fields, it is critical in the medical world to
achieve high accuracy with an equal balance in the model’s performance for each
class. That is why accuracy should not be the only measure of performance. Other
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measures such as sensitivity, specificity, precision, recall, and F1-score should be
calculated.

• Sensitivity: Ratio of the positive class correctly classified. It is also known
as recall.

Sensitivity =
TP

TP + FN
(1)

• Specificity: Ratio of the negative class correctly classified.

Specificity =
TN

TN + FP
(2)

• Precision: Ratio of instances that were correctly classified as positive.

Precision =
TP

TP + FP
(3)

• F1score: Weighted average of precision and recall. It measures the balance
between the two metrics. A score of 1 means both precision and recall are
1, and a score of 0 means that either the precision or recall are 0.

F1score = 2 ∗ Precision ∗Recall

Precision+Recall
(4)

• Accuracy: Ratio of instances classified correctly.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

These metrics should be calculated and analysed to avoid producing models that
are biased towards one class. In the following example, the unhealthy class is
considered the positive class, and the healthy class the negative. So, we could
train a model to detect pancreatic cancer from ultrasound images and only train
it with images of healthy patients. If we were to release this model and test it on a
random sample of the whole population on Earth, it would probably have very high
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accuracy. However, its sensitivity would likely be extremely low because the model
has never been exposed to images of patients with pancreatic cancer. Therefore,
it is very probable that this model would classify patients with pancreatic cancer
as healthy. This type of error is known as type-II error, and it is the worst error a
model could produce because it could have fatal consequences. Perhaps, a patient
incorrectly classified as healthy does not get the treatment they need and does
not survive because the model was biased toward the healthy class. Another type
of error could derive from model bias: type-I errors. These errors occur when a
model classifies a healthy subject as unhealthy. Type-I errors are not as bad as
those of type-II. However, they are still not desirable. [3]

2.8 Related Work

Several projects have been published related to renal calculi detection from CT
scans. For example, [13] built a classification model using k-Nearest Neighbours
(KNN) and Support Vector Machines (SVM) to identify renal calculi from ultra-
sound images (US). An unknown number of images were used to train the models.
However, the paper used preprocessing techniques such as filters to combat US
images’ low resolution and quality. Next, they applied Principal Component Ana-
lysis (PCA) and image segmentation to extract the most relevant features to feed
to the machine learning models. Finally, this data is fed to the KNN and SVM
to be classified. The results show that KNN classified the US images with 89%
accuracy and SVM with 84%. We should note that accuracy is the only metric
of performance used, meaning that we do not know which class it is incorrectly
classifying. It could be the healthy class, the unhealthy one, or both. With the
accuracy alone, we do not have enough information on the true performance of
these two models.

Another related paper, [1], used Fuzzy C-means clustering (FCM) to identify and
locate renal calculi from CT scans. The image dataset used for this project is
composed of CT scans from 50 patients with CT image slices of the renal calculus
selected and stored for each patient. Therefore, we can say that all the data
used for this work are from patients with renal calculi. Preprocessing techniques
such as cropping, grayscaling and matrix calculations were used. Then, this data

16



was fed to the FCM model, which returned the location and size in pixels of the
calculus. Throughout this paper, this model’s only indication of performance is a
table where renal calculi were detected and their location in the image. However,
we do not know how accurate this location is or whether there were cases in which
the model incorrectly detected calculi in the image. All in all, there is a lack of
information when it comes to how good this model truly is.

[4] is probably the most similar to the project we have proposed. They used
a dataset of 206 images of kidney CT scans. Preprocessing techniques such as
median filtering, grayscaling, and gamma correction were used to reduce the noise
produced by speckles and enhance the image’s quality. Following this, K-means
filtering was applied to obtain the area of interest in the image and the 12 most
important features for classification. These features were used to train an Artificial
Neural Network (ANN), which returned an accuracy of 80%. However, by using 3
of the 12 features extracted from the 206 images, the SVM classifier obtained an
accuracy of 95%. Nonetheless, there is not much information about the origin of
the images, breakdown of classes or number of patients.

3 Methodology

This section will cover how the data was collected, and which pre-processing and
data augmentation techniques were used to improve the dataset.

3.1 Data Collection

The dataset we have used for this project contains 12,446 unique images of abdo-
men CT scans. The dataset is divided into healthy, calculi, cysts, and tumours.
There are 5,077 instances of healthy kidneys, 1,377 kidneys with calculi, 3,709
with cysts, and 2,283 with tumours. The dataset contains images for each of the
different cuts produced by a CT scan, Figure 4.

The images were collected from the Picture Archiving and Communication System
(PACS) of different hospitals in Dhaka, Bangladesh. The patients’ information and
the images’ metadata were removed from the data allowing it to be anonymous.
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Figure 4: CT Scan Cuts

The original format of the photos was Digital Imaging and Communications in
Medicine (DICOM), but they were converted to lossless JPG to train the model.
DICOM images can reach the size of 35 MB, making training the model costly
in terms of time and computation. After the conversion, each image was verified
by a radiologist and medical technologist, assuring that the data continued to be
correct.

Given that the dataset contains images of renal calculi, cysts and tumours, we
were only concerned with images of healthy kidneys or those with renal calculi.
Thus, we removed instances of kidneys with cysts and tumours. Furthermore,
we removed all scans taken on the sagittal cut, Figure 5, as there were only 14
instances for kidneys with calculi and 0 for healthy ones. It would not have been
correct to train the models with only images for one of the classes because the
model would be biased toward that class. In other words, it is very likely that
if the model received a sagittal cut image as an input, it would classify as an
unhealthy kidney regardless of its true class. We will refer to kidneys with renal
calculi as unhealthy kidneys from now on.
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Figure 5: Sagittal Cut CT Scan

3.2 Data Preprocessing

Data preprocessing is a set of techniques used to clean and normalise data ready
to be fed to a machine or deep learning model. It is a vital process that can
significantly improve the performance of a model. Typically, it involves removing
any erroneous or noisy data to ensure that the model can learn from the data
optimally without it being negatively affected by a few incorrect instances. With
image data, one of the techniques usually applied is to resize all the images to the
same size because the model always expects the data to be in the same dimension.

In our case, we could say that the image data we possess is almost too clean. That
is, it is not representative of real-world data. So, if we trained our model on the
data without preprocessing, it may perform well in training and testing, but when
it is shown real-world data, it could perform terribly because it was not prepared
for that type of data. Therefore, we will apply preprocessing techniques to make
the models we build more robust to real-world scenarios.

Initially, we chose to train our models only on transverse cut images, Figure 6,
because this cut was the most predominant in the dataset. Therefore, we began
preprocessing with 4,111 images. Nevertheless, this number of instances is rel-
atively small regarding the data needed to train a CNN. Consequently, as well
as preprocessing, we performed data augmentation to achieve a more significant
number of instances and improve the model’s performance.
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Figure 6: Transverse Cut Unhealthy Kidney CT Scan

3.2.1 Grayscaling

All the images are in black and white, as observed in Figure 7. However, they are in
RGB format, meaning that each image was a three-dimensional array with three
values for each pixel. Therefore, we converted the images to a one-dimensional
array with one value per pixel. In other words, we converted each RGB image
to grayscale. This operation was performed because the RGB data provided no
additional information than the grayscale images. Also, by reducing the number
of dimensions, we transform the data to be computationally more efficient and
reduce its size in terms of storage space.

Figure 7: Image Grayscaling Before & After Comparison
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3.2.2 Image Normalisation

Image normalisation is applied to ensure that all the data is within the same scale.
In our case, by using it, we guaranteed that the pixels in every image have a value
between 0 and 255. Each image has a pixel with a value of 0 and a pixel with a
value of 255. As we can see, there is a very slight difference in contrast and colours
between the images compared in Figure 9. Essentially, image normalisation is
used to improve the contrast of image data. We took this step to enhance the
performance of the model. Figure 8 is the code used to normalise an image’s
pixels.

img = np.array(image)
norm = (img - np.min(img)) / (np.max(img) - np.min(img))*255

Figure 8: Normalisation Code

Figure 9: Image Normalisation Before & After Comparison

3.2.3 Image Scaling

The original data was composed of images of different sizes. So, to feed this data
to a model and due to computational limitations, we scaled the images to 128x128
pixels. These dimensions were chosen because it was the first size where the renal
calculi could be visibly differentiated. Additionally, we did not apply antialiasing
as this moved the kidneys to similar coordinate ranges, and we wanted to maintain
as much variability as possible. Figure 10 showcases the difference in the resolution
after scaling the images.
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Figure 10: Image Scaling Before & After Comparison

3.3 Data Augmentation

Data augmentation is a set of techniques to achieve more data instances by creat-
ing slightly modified copies of the original data and adding them to the dataset.
It is used to increase the performance of models and reduce overfitting. As men-
tioned earlier, 4,111 images are not enough data to optimally train a CNN model.
Therefore, we applied some data augmentation techniques to achieve more data
to train the model.

3.3.1 Image Rotation

The first technique we applied is image rotation, Figure 11. So, we rotated each
instance in intervals of 60º starting from 0º, increasing the number of cases by six
times the original size and introducing more variety into the dataset.

Figure 11: Image Rotation Comparison
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3.3.2 Applying Contrast

The images captured using computer tomography may have low contrast as it is a
dependent variable that can be influenced by the subject or the machinery used.
Some causes of low contrast images can be using a low-radiation dose during the
examination or using different storage, transmission, or display devices. Another
cause can be noise in the captured image. [2]

To emulate these imperfections, we applied different contrast to each of the scaled
rotated images from 40% to 160% in intervals of 20%, Figure 12. This form of
data augmentation, like rotation, brings more variety to the data set, making the
model more robust to inputs with different contrasts. Thus, improving the overall
performance of the model and reducing overfitting.

Figure 12: Image Contrast Comparison

After performing the preprocessing and data augmentation techniques mentioned,
we increased the size of our dataset from 4,111 images to 172,666. The increase
in instances allowed us to train the model with more diverse data, resulting in a
more well-rounded and robust model.

4 Model Development

We have opted to implement models using convolutional neural networks to classify
the data as healthy or unhealthy kidneys. In the following sections, we will discuss

23



the tools used and the architecture of the models.

4.1 Tools

We have elected to use TensorFlow as the library to develop the models because
it offers NVIDIA GPU support. It has a large and helpful community, making
debugging more manageable, and it is easy to use. Most importantly, TensorFlow
offers Keras support. Keras is a high-level API that allows us to build machine
and deep learning solutions using TensorFlow’s capabilities.

4.2 Phase I

Four models were built to classify abdomen CT scans using the transverse cut. All
the models were trained with a random subset of the augmented data set. The
said subset is composed of 10,000 healthy kidneys and 5,000 unhealthy kidney
instances. We applied a validation split of 60%-40%. 9,000 images were used to
train the model and 6,000 to test it.

The four models contain convolution, max-pooling and dense layers and imple-
ment the Adam algorithm for optimisation, a stochastic gradient descent algorithm
based on adaptive estimates of lower-order moments. It is a computationally ef-
ficient algorithm with small memory requirements suited for machine learning
problems with extensive data or many parameters.

As this is a classification problem with two classes, we have opted for the binary
cross-entropy loss function at the output layer. For all the convolutional and dense
layers, we have used the ReLU activation function, except for the output layer,
which implements the Sigmoid activation function. We have chosen ReLU (6)
over Sigmoid (7) as the activation function because it is more efficient, has better
gradient propagation, and converges quicker than the Sigmoid function.

f(x) = max(0, x) (6)
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S(x) =
1

1− e−x
(7)

4.2.1 Model 1

Model 1 is a convolutional neural network that consists of 6 layers which was
trained for 6 epochs with a batch size of 120. Its parameters and structure can be
seen in Table 1 and Figure 13.

2D Conv Max-pooling 2D Conv Max-pooling Hidden Dense Output Dense
Input: 128x128
Filters: 64
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Filters: 128
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Neurons: 128
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 1: Model 1 Parameters

Figure 13: Model 1 Structure

4.2.2 Model 2

Model 2 is a convolutional neural network that consists of 6 layers which was
trained for 10 epochs with a batch size of 120. This second model attempts to
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obtain similar performance to Model 1 while being computationally more efficient.
Its parameters and structure can be seen in Table 2 and Figure 14.

2D Conv Max-pooling 2D Conv Max-pooling Hidden Dense Output Dense
Input: 128x128
Filters: 32
Filter size: 5x5
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 4x4
Padding: Valid

Filters: 64
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Neurons: 28
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 2: Model 2 Parameters

Figure 14: Model 2 Structure

4.2.3 Model 3

Model 3 is a convolutional neural network that consists of 4 layers which was
trained for 15 epochs with a batch size of 120. Much like Model 2, this version’s
objective is to obtain similar performance while reducing the computational com-
plexity. Model 3 has fewer layers and produces fewer features to be fed to the
dense layers. Its parameters and structure can be seen in Table 3 and Figure 15.
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2D Conv Max-pooling Hidden Dense Output Dense
Input: 128x128
Filters: 32
Filter size: 9x9
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 5x5
Padding: Valid

Neurons: 256
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 3: Model 3 Parameters

Figure 15: Model 3 Structure

4.2.4 Model 4

Model 4 is a convolutional neural network that consists of 6 layers which was
trained for 15 epochs with a batch size of 120. This version reverts to a similar
architecture to Models 1 and 2. This model has fewer filters per layer and fewer
neurons than Model 1 in the hidden dense layer, making it more efficient. Its
parameters and structure can be seen in Table 4 and Figure 16.

2D Conv Max-pooling 2D Conv Max-pooling Hidden Dense Output Dense
Input: 128x128
Filters: 16
Filter size: 7x7
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 4x4
Padding: Valid

Filters: 32
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Neurons: 32
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 4: Model 4 Parameters
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Figure 16: Model 4 Structure

4.2.5 Results

Transverse Cut Data

As we can see in Table 5, all four models showcase a high performance in detecting
renal calculi in transverse cut images with very little bias toward the healthy class.

Accuracy Precision F1-Score Specificity Sensitivity
Model 1 99.96% 99.98% 0.9983 99.99% 99.89%
Model 2 99.95% 99.87% 0.9988 99.97% 99.90%
Model 3 99.67% 99.24% 0.9920 99.80% 99.16%
Model 4 99.89% 99.60% 0.9972 99.90% 99.84%

Table 5: Results With Transverse Cut

Coronal Cut Data

After observing the high performance of all four models, we tested the most efficient
and best model on different data. We performed the same preprocessing and data
augmentation techniques on the coronal cut data, transforming 2,328 images to
97,776. We tested this data on Model 2, which was trained using only transverse
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cut images.

Table 6 shows that Model 2’s performance dropped considerably compared to when
tested on transverse cut images. This is expected as the model was only trained for
transverse cut images. We observed that Model 2 struggled with false negatives
during testing, classifying unhealthy kidneys as healthy. Below we can see the
overall statistics of this model.

Accuracy Precision F1-Score Specificity Sensitivity
Model 2 73.96% 41.58% 0.3164 86.38% 25.54%

Table 6: Results With Coronal Cut

4.3 Phase II

Intending to build complete models to identify CT scans of kidneys as healthy or
unhealthy, we retrained the models described above with transverse and coronal
cut data, Figure 17. Additionally, we built two more models that were more robust
and offered slightly higher performance than the previous models. We will only
describe the new models in the following sections and compare their performance
to the previous ones.

Figure 17: Transverse & Coronal Cut CT Scans
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4.3.1 Model 5

Model 5 is a convolutional neural network that consists of 7 layers which was
trained for 15 epochs with a batch size of 120. The architecture is very similar to
Model 4. The difference can be found in the hidden dense layers, as this model
has two. Its parameters and structure can be seen in Table 7 and Figure 18.

2D Conv Max-pooling 2D Conv Max-pooling
Input: 128x128
Filters: 16
Filter size: 7x7
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 4x4
Padding: Valid

Filters: 32
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Hidden Dense Hidden Dense Output Dense
Neurons: 48
Act. func.: ReLu

Neurons: 16
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 7: Model 5 Parameters

Figure 18: Model 5 Structure
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4.3.2 Model 6

Model 6 is a convolutional neural network that consists of 7 layers which was
trained for 12 epochs with a batch size of 120. Again, this version is very similar
to Model 5. However, to improve performance, we made the hidden dense layers
taller. That is, we added more neurons per layer. Its parameters and structure
can be seen in Table 8 and Figure 19.

2D Conv Max-pooling 2D Conv Max-pooling
Input: 128x128
Filters: 16
Filter size: 7x7
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 4x4
Padding: Valid

Filters: 32
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Hidden Dense Hidden Dense Output Dense
Neurons: 128
Act. func.: ReLu

Neurons: 32
Act. func.: ReLu

Neurons: 1
Act. func.: Sigmoid

Table 8: Model 6 Parameters

Figure 19: Model 6 Structure
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4.3.3 Results

In Table 9, we can observe that, when retrained on transverse and coronal cut
data, the original models, 1 to 4, mostly recovered to their initial performance.
Nonetheless, models 5 and 6 slightly outperform them in terms of accuracy.

Accuracy Precision F1-Score Specificity Sensitivity
Model 1 99.13% 98.45% 0.9795 99.59% 97.45%
Model 2 99.35% 98.05% 0.9850 99.46% 98.96%
Model 3 98.77% 97.12% 0.9713 99.21% 99.14%
Model 4 99.28% 98.60% 0.9829 99.61% 97.99%
Model 5 99.64% 99.10% 0.9916 99.75% 99.21%
Model 6 99.69% 99.19% 0.9928 99.78% 99.37%

Table 9: Results With Transverse & Coronal Cut

Up until now, we have been testing the models on images from the dataset [9].
As we mentioned earlier, these CT scans were all obtained from hospitals in the
same city, and it is likely they are all captured with the machine model, making
the images very similar. Of course, the preprocessing and data augmentation
techniques we have used to introduce variety into the data should make the models
more robust and maintain an equivalent level of performance when tested with
real-world data.

To truly observe the performance of our best model (Model 6), we must test
it against completely unseen data. Therefore, we collected 45 images from the
Internet, 24 unhealthy and 21 healthy kidneys. After testing Model 6, its accuracy
dropped to 64.44%, with a sensitivity of 72% and a precision of 66.67%.

4.4 Phase III

We changed the preprocessing and the healthy-unhealthy ratio used for training to
improve the model’s performance. First, we observed that unseen data instances
were more cropped and had more noise than the training data. So, we randomly
cropped 10,710 images during preprocessing and introduced Gaussian noise layers
into the model. Then, we noticed that the model learned healthy kidneys much
better than unhealthy ones. Therefore, we changed the number of healthy and
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unhealthy images used during training to 12,500 healthy and 15,000 unhealthy
kidneys. Previously the ratio had been 2/3 healthy kidneys and 1/3 unhealthy.
Now, there are more unhealthy kidney instances used than healthy instances. Fi-
nally, we introduced dropout layers between the hidden layers to reduce overfitting.
After many iterations of models, we have built the following:

4.4.1 Model 7

Model 7 is a convolutional neural network that consists of 12 layers which was
trained for 22 epochs with a batch size of 120. It is a considerably larger model, but
most additional layers have been implemented to reduce overfitting. Its parameters
and structure can be seen in Table 10.

2D Conv Max-pooling 2D Conv Max-pooling 2D Conv Max-pooling
Input: 128x128
Filters: 16
Filter size: 9x9
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 4x4
Padding: Valid

Filters: 64
Filter size: 5x5
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Filters: 32
Filter size: 3x3
Stride: 1
Padding: Valid
Act. func.: ReLU

Filter size: 2x2
Padding: Valid

Gaussian Noise Hidden Dense Dropout Hidden Dense Dropout Output Dense
Value: 0.2 Neurons: 768

Act. func.: ReLu
Value: 0.2 Neurons: 96

Act. func.: ReLu
Value: 0.2 Neurons: 1

Act. func.: Sigmoid

Table 10: Model 7 Parameters & Structure

4.4.2 Results

In the Table 11, we can observe the performance metrics for Model 7 with the
unseen data.

Accuracy Precision F1-Score Specificity Sensitivity
Model 7 75.56% 76.92% 0.7843 70.00% 80.00%

Table 11: Model 7 Results With Unseen Data

Initially, we developed six models that could classify kidneys as healthy or un-
healthy from transverse cut CT scans. Consequently, we started an iterative pro-
cess of testing the models and retraining them to adapt to different data. We
began with retraining the models so they could detect renal calculi in coronal and
transverse cut CT scans. Then, after testing the best performing model on unseen
data, we adapted the training process and the preprocessing of the data to achieve
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higher performance. These changes showed an accuracy increase from almost 50%
to 75.56%. It is also worth noting that the final model, Model 7, has only a
small amount of bias toward the positive class. It is slightly better at classifying
unhealthy kidneys than healthy ones.

5 Comparison With Industry-Standard CNNs

The next step is to analyse how our best performing model compares to industry-
standard models like VGG16, VGG19, ResNet and Xception. We trained all four
models on the same images as our Model 7 and tested them with the same unseen
data to compare their performance differences. Also, these models were trained
using a validation split of 0.4 and a batch size of 120. We applied the early
stopping technique to monitor the validation accuracy with a patience of 3 to
avoid overfitting.

5.1 VGG16

VGG16 is a convolutional neural network presented at the 2014 ImageNet com-
petition sponsored by Google and Facebook. VGG16 introduced a new idea in
the form of stacked convolution layers with small filter sizes, which innovated the
world of computer vision.

VGG16 is a CNN formed by a combination of 16 layers that include convolution
max-pooling and dense layers. The original model was built for 224x224 RGB
images, but we modified the input layer to accept grayscale images of 128x128.
[12]

5.2 VGG19

Like VGG16, this model was also submitted to the 2014 ImageNet. The main
difference between the configuration of VGG16 and VGG19 is the number of layers.
VGG19 has three extra convolution layers. This model was also built for 224x224
RGB images. [12]
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5.3 ResNet

ResNet is a residual network that reformulates layers as residual functions refer-
encing the input layers. These types of networks are seemingly easier to optimise
than networks that learn unreferenced functions. ResNet was the winner of the
2015 ImageNet classification task. The configuration we have used is ResNet50V2
which is composed of 50 layers, and despite it having more layers, it is more efficient
than both the VGG configurations we have elected. [6]

5.4 Xception

Xception is a depthwise separable convolutional neural network that takes in-
spiration from the Inception models. It separates 36 convolution layers into 14
modules. In the output layer, it uses logistic regression for classification. Xception
and Inception models have the same number of parameters showcasing that the
increase in performance obtained from Xception is due to more efficient use of
model parameters. [5]

5.5 Comparing Models

In this section, we will compare the performance of Model 7 against the industry-
standard architectures. Table 12 shows the performance with testing data, and
Table 13 is against unseen data.

Accuracy Precision F1-Score Specificity Sensitivity
VGG16 95.09% 96.41% 0.9549 95.71% 94.59%
VGG19 85.52% 89.02% 0.8644 87.38% 84.00%
ResNet 81.44% 80.56% 0.8378 74.37% 87.26%
Xception 98.94% 98.96% 0.9903 98.61% 99.21%
Model 7 99.69% 99.19% 0.9928 99.78% 99.37%

Table 12: Industry-standard Models Results With Test Data

We have performed a Two-sample Student’s t-test on Xception and Model 7, our
best performing model.
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Accuracy Precision F1-Score Specificity Sensitivity
VGG16 60.00% 61.29% 0.6756 40.00% 76.00%
VGG19 62.22% 63.33% 0.6909 45.00% 76.00%
ResNet 64.44% 84.62% 0.5790 65.00% 44.00%
Xception 64.44% 69.57% 0.6666 65.00% 64.00%
Model 7 75.56% 76.92% 0.7843 70.00% 80.00%

Table 13: Industry-standard Models Results With Unseen Data

• H0: Model 7 and Xception’s difference in accuracy IS NOT statistically
significant.

• H1: Model 7 and Xception’s difference in accuracy IS statistically significant.

Assuming a confidence interval of 95%, the p-value calculated is p < 0.000. As
the p-value calculated is lower than the threshold value of 0.05, we have enough
evidence to reject the null hypothesis and state that the difference in accuracy
between Model 7 and Xception IS statistically significant.

Having said this, it was likely that this would happen. These industry-standard
models were built to find complex features and classify images into 1000 different
classes. Therefore, when applied to our project, they may be looking for really
complex shapes in the CT scans, which only hurts their performance. The differ-
ence in performance could be because Model 7 is built to find simpler shapes or
features like calculi in a CT scan.

6 Discussion

This section covers the ethical aspects of developing our model and determines
whether it is ready to be used as a medical application in a real-world scenario.

6.1 ALTAI Ethical Assessment

ALTAI stands for Assessment List for Trustworthy Artificial Intelligence. It is
a tool used to evaluate whether an AI system protects the fundamental rights
of human beings. It has seven requirements, each raising questions that provoke
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thoughtful reflection while developing and maintaining a Trustworthy AI system.
Fulfilling the criteria marked in the ALTAI is critical in developing XAI. [7]

6.1.1 Human Agency

Human agency and oversight require AI systems to support the idea of human
autonomy. That is, the AI system should help the user’s agency. The system
should also defend its fundamental rights whilst being supported by human over-
sight. We will focus on human oversight for our project as human agency and
autonomy do not apply.

Human oversight helps assess whether the system should have specific human
measures to avoid any wrong decisions by the AI. In our case, it would be necessary
for the system to be overseen by a Human-in-Command. This supervisor is to
manage the overall activity of the system and overrule any decision made by the
AI system if they deem it to be incorrect. For example, when our model returns a
prediction, it returns two values: the healthy class’s probability and the unhealthy
class’s probability. If the prediction returned for either class is near 0.5, that is,
close to chance, the human-in-command could step in and assess the decision made
by the AI system. This governor should be a professional in the medical field with
the ability to identify renal calculi from CT scans.

6.1.2 Technical Robustness

Technical robustness and safety are critical requirements to achieve trustworthy
artificial intelligence. The AI system should be reliable and have a fall-back system,
either human or AI.

The objective of an AI system is to learn features from training data that it
can later apply to unseen data and produce a reliable prediction. As mentioned
earlier, we have used specific preprocessing techniques to ensure that the data is as
representative as possible of real-world data. Of course, there are certain factors
that we could not reproduce for this project, like, artefacts in CT scans, images
produced from many different models, and the radiation dose used to achieve
the scans. However, there are some tests that we could perform to improve the
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model’s accuracy. For example, we could generate heatmaps of the features that
the model extracts from the images to assess whether they are correct. It could
be looking for too complex characteristics for the problem at hand, harming the
model’s performance. This is an example of how we could improve the model in
the future.

Now, we will discuss the consequences of the model predicting a false negative.
Of course, in this case, a false negative is the worst outcome we could get for a
prediction followed by a false positive. A false negative means that the model has
incorrectly predicted that the subject does not suffer from renal calculi. Therefore,
the subject may continue with their day-to-day life without considering that they
have renal calculi. So, they may not take any medication to treat the problem
allowing the calculus to grow. This would lead to a more complex and painful
treatment than if the system had correctly predicted the CT scan of the subject
as unhealthy.

6.1.3 Privacy And Data Governance

AI systems should be built to prevent any harm to the subjects’ privacy. Therefore,
our model should respect each person’s right to physical and mental integrity. This
can be achieved through data governance. The only personal data used in our
project are CT scans. However, steps have been taken to ensure that this data
is anonymous. For example, the patient’s information and the images’ metadata
were removed before the model saw any of this data. In future cases, the same
process would be applied to any new data used by the model, either for training
or predicting purposes.

6.1.4 Transparency

Transparency is a crucial requirement to be fulfilled to develop Trustworthy AI. At
the moment, our model is not explainable. This feature is yet to be implemented.
We could include explainability in our model by using heat maps that showcase
what features or lack thereof are responsible for the prediction scores outputted by
the model. Therefore, in a hypothetical final system, we show the user the classi-
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fication, whether renal calculi were detected or not, the confidence or score of this
classification and, finally, an image of the CT scan used as the input highlighting
the features or characteristics that have caused that decision.

6.2 Is Model 7 Ready To Be A Medical Application?

No, it is not. In general, AI systems need to be very accurate. However, a model
like the ones we have built needs to be highly accurate and reliable in the medical
world. Model 7 may have achieved an accuracy of 99.69% during testing, but when
tested with completely unseen data, its accuracy dropped to 75.56%. Furthermore,
we do not know what would happen to Model 7’s accuracy if we tested against
more unseen data. Would its performance increase or decrease? This performance
and uncertainty do not allow us to consider it as a ready medical application. The
risks of misdiagnosis are too high.

Other threats to validity exist. For example, there is not enough data nor variety
in the dataset used to train the model. Most of the data were likely captured on the
same machine model making all the images very similar despite involving different
patients. In future, we would need more data captured on different machine makes
and models, diverse ranges of contrast and data from other countries.

The final model needs to be explainable. We should be able to identify why
the model classifies an image as healthy or unhealthy. This can be achieved by
generating heatmaps of the features extracted by the model allowing us to visualise
what characteristics the model thinks are most important for classification.

Finally, throughout the project, we have realised that CT scans are not the pre-
ferred method for diagnosing renal calculi. Computed tomography exposes the
patient to large amounts of radiation throughout the whole body. Most med-
ical professionals opt for ultrasound over a CT scan because it is equally effective
without exposing the patient to radiation. Therefore, perhaps our choice of in-
put data may not be the most common for renal calculi detection. Having said
that, CT scans are used when the calculus may not be visualised correctly using
an ultrasound. In short, our model may not be built for the most appropriate
diagnostic tool, but if it were reliable, it would still be helpful.
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7 Conclusion

7.1 Summary

We began with four models and performed an iterative process to make these
models more robust to real-world data. Our initial models could accurately predict
whether a CT scan had renal calculi or not. However, it was only accurate on
transverse cut CT scans. Therefore, we retrained and built more models that
could accurately predict using transverse and coronal cut CT scans.

Next, we tested our best performing model on unseen data collected from the In-
ternet and observed a significant drop in accuracy. So, we analysed the incorrectly
classified cases of the unseen data. Based on our findings, we applied specific pre-
processing techniques and modified the training of the models to achieve higher
accuracy.

Finally, we tested and compared our best performing model, Model 7, with VGG16,
VGG19, ResNet and Xception. Using a Student’s t-test, we concluded that our
model outperformed the industry-standard models in this particular problem.

7.2 Future Improvements

Some changes could increase the model’s performance with the previously men-
tioned enhancements, like introducing heatmaps and improving the dataset.

Firstly, we discovered too late that we did not normalise the image data before
feeding it to the model. We trained the model with pixels whose value could be [0,
255] instead of [0, 1]. Had we normalised the data, the training would have been
quicker and the models more efficient.

Next, in the latter stages of the project, we discovered a preprocessing technique
that may have significantly improved the performance of the models, gamma cor-
rection. This technique is a nonlinear operation used to encode and decode lu-
minance in an image. Gamma correction was used in the paper [4], and it is
used to combat the different intensities in which images are captured or displayed
depending on the device’s gamma values. Therefore, gamma correction is used
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to visually enhance the images, particularly when those images are captured on
different devices or machines. It would be interesting to see the difference in per-
formance that applying gamma correction during preprocessing would have on the
performance of the models.
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