
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Neural news classifier from pre-trained models

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Vazquez Barrera, Adrian

Tutor: Casacuberta Nolla, Francisco

ACADEMIC YEAR: 2021/2022

Universitat Politècnica de València

Dept. of Computer Systems and Computation

Neural news classifier
from pre-trained
models

Author: Vázquez Barrera, Adrián

Advisor: Casacuberta Nolla, Francisco

2021-2022

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and Digital

Imaging.  

Table of contents
Abstract	
1

Keywords	
4

Chapter I - Introduction	
5

1.1 Problem	 5

1.1.1 User perspective	
5

1.1.2 Press perspective	
6

1.1.3 News aggregation perspective	
6
1.2 Proposed solution	 6

1.3 Objectives	 7

1.4 Document breakdown	 8

Chapter II - State of the art	
10

2.1 Text classification	 10

2.1.1 Pre-processing	
11

2.1.2 Feature extraction	
12

2.1.3 Text classification algorithms	
13
2.2 Naive Bayes	 15

2.3 Support Vector Machines	 16

2.4 Recurrent Neural Networks	 17

2.4.1 Back-propagation through time	
18

2.4.2 One to Many	
20

2.4.3 Many to One	
20

2.4.4 Many to Many I - Same length output	
21

2.4.5 Many to Many II - Different length output	
21

2.4.6 Bidirectional recurrent neural networks	
22

2.4.7 Connectionist Temporal Classification	
23

2.5 Long Short-Term Memory Networks	 24

2.5.1 Forget gate	
25

2.5.2 Input gate	
26

2.5.3 Output gate	
28
2.6 Transformers	 29

2.6.1 Inputs embeddings	
31

2.6.2 Positional encoding	
32

2.6.3 Self-attention mechanism	
33

2.6.4 Layer normalisation	
35

2.6.5 Pre-trained models	
35
2.6.5.1 BERT	
36
2.6.5.2 DistilBERT	
38
2.6.5.3 RoBERTa	
39
2.6.5.4 GPT-2	
39

2.7 Contributions	 39

2.7.1 Fully connected approach	
39

2.7.2 Convolutional approach	
40

Chapter III - Experimental framework	
42

3.1 Dataset	 42

3.1.1 Inshort-news corpus	
43

3.1.2 AG News corpus	
43
3.2 Pre-processing	 44

3.2.1 Inshort-news corpus	
44

3.2.2 AG News corpus	
45
3.3 Tokenisation	 46

3.4 Encoding	 47

3.5 Metrics	 49

3.5.1 Accuracy	
50

3.5.2 Loss	
50

3.5.3 Precision	
50

3.5.4 Recall	
51

3.5.5 F1 Score	
51
3.6 Parameters	 51

3.7 Environment	 52

Chapter IV - Experiments	
53

4.1 LSTM	 53

4.2 Bidirectional LSTM	 56

4.3 BERT	 58

4.4 BERT uncased	 60

4.5 DistilBERT	 63

4.6 RoBERTa	 65

4.7 XLM-RoBERTa	 67

4.8 GPT-2	 69

4.9 RoBERTa CustomNet	 71

4.10 RoBERTa ConvNet	 73

4.11 Development set results summary	 75

Chapter V - Results	
79

5.1 LSTM	 79

5.2 Bidirectional LSTM	 80

5.3 BERT	 81

5.4 BERT uncased	 82

5.5 DistilBERT	 83

5.6 RoBERTa	 84

5.7 XLM-RoBERTa	 85

5.8 GPT-2	 86

5.9 RoBERTa CustomNet	 86

5.10 RoBERTa ConvNet	 87

5.11 Test set results summary	 88

Chapter VI - Real-world model implementation	
90

6.1 Docker	 90

6.2 Python HTTP server API	 91

6.3 PHP server	 91

Chapter VII - Conclusions	
92

Chapter VIII - Future work	
95

8.1 Multi-lingual datasets	 95

8.2 Large language models (LLM)	 95

Acknowledgements	
96

Bibliography	 97

List of Figures
Figure 1: Common workflow scheme for text classification	
11

Figure 2: Multi-class SVM	
17

Figure 3: RNN	
18

Figure 4: RNN Weights	
19

Figure 5: One to Many RNN	
20

Figure 6: Many to One RNN	
21

Figure 7: Many to Many I RNN	
21

Figure 8: Many to Many II RNN	
22

Figure 9: Bi-directional RNN	
22

Figure 10: Example of CTC usage for handwriting recognition	
23

Figure 11: LSTM Overview	
24

Figure 12: LSTM - Forget gate	
25

Figure 13: LSTM - Input gate	
27

Figure 14: LSTM - Output gate	
28

Figure 15: Transformer architecture	
31

Figure 16: The same word could have different meanings depending on
the context	
32

Figure 17: Example of Positional Encoding Matrix Calculation	
33

Figure 18: BERT input representation	
36

Figure 19: BERT overview	
37

Figure 20: BERT sizes	
38

Figure 21: DistilBERT performance comparison	
38

Figure 22: Proposed fully connected network appendix with pre-trained
BERT model	
40

Figure 23: Proposed convolutional network appendix with pre-trained
BERT model	
41

Figure 24: Tokeniser expected behaviour	
46

Figure 25: Token length distribution.	
47

Figure 26: How a vectoriser work	
48

Figure 27: How a vectoriser makes semantical relationships	
49

Figure 28: Dev accuracy evolution for LSTM model	
55

Figure 29: Dev accuracy evolution for Bidirectional LSTM model	
58

Figure 30: Dev accuracy evolution for BERT model	
60

Figure 31: Dev accuracy evolution for BERT uncased model	
62

Figure 32: Dev accuracy evolution for DistilBERT model	
64

Figure 33: Dev accuracy evolution for RoBERTa model	
66

Figure 34: Dev accuracy evolution for XLM-RoBERTa model	
68

Figure 35: Dev accuracy evolution for GPT-2 model	
70

Figure 36: Dev accuracy evolution for RoBERTa CustomNet model	
72

Figure 37: Dev accuracy evolution for RoBERTa ConvNet model	
74

Figure 38: Overall accuracy evolution on the development set	
76

Figure 39: Overall loss evolution on the development set	
77

Figure 40: Fine-tuned model’s overall accuracy evolution on the
development set.	
78

Figure 41: Fine-tuned models overall loss evolution on the development
set	
78

Figure 42: Accuracy bar-plot breakdown on test data	
89

Figure 43: Deployment diagram	
90

Figure 44: Operating example of the deployed system	 91

List of Tables
Table 1: Example format for input data files	
42

Table 2: Available classes	
44

Table 3: Distribution of the sample classes after partitioning	
45

Table 4: Adjustable parameters for each model type	
52

Table 5: Confusion matrix of LSTM on development data	
54

Table 6: Average LSTM macro-metrics on development data	
54

Table 7: Detailed confusion matrix for LSTM with development data for
every single class.	
55

Table 8: Confusion matrix of Bidirectional LSTM on development data	
56

Table 9: Average Bidirectional LSTM macro-metrics on development
data	
56

Table 10: Detailed confusion matrix for Bidirectional LSTM with
development data for every single class.	
57

Table 11: Confusion matrix of BERT on development data	
58

Table 12: Average BERT macro-metrics on development data	
59

Table 13: Detailed confusion matrix for BERT with development data for
every single class.	
59

Table 14: Confusion matrix of BERT uncased on development data	
61

Table 15: Average BERT uncased macro-metrics on development data	

61

Table 16: Detailed confusion matrix for BERT uncased with
development data for every single class.	
62

Table 17: Confusion matrix of DistilBERT on development data	
63

Table 18: Average DistilBERT macro-metrics on development data	
63

Table 19: Detailed confusion matrix for DistilBERT with development
data for every single class.	
64

Table 20: Confusion matrix of RoBERTa on development data	
65

Table 21: Average RoBERTa macro-metrics on development data	
65

Table 22: Detailed confusion matrix for RoBERTa with development data
for every single class.	
66

Table 23: Confusion matrix of XLM-RoBERTa on development data	
67

Table 24: Average XLM-RoBERTa macro-metrics on development data	

67

Table 25: Detailed confusion matrix for XLM-RoBERTa with
development data for every single class.	
68

Table 26: Confusion matrix of GPT-2 on development data	
69

Table 27: Average GPT-2 macro-metrics on development data	
69

Table 28: Detailed confusion matrix for GPT-2 with development data for
every single class.	
70

Table 29: Confusion matrix of RoBERTa CustomNet on development
data	
71

Table 30: Average RoBERTa CustomNet macro-metrics on development
data	
71

Table 31: Detailed confusion matrix for RoBERTa CustomNet with
development data for every single class.	
72

Table 32: Confusion matrix of RoBERTa ConvNet on development data	

73

Table 33: Average RoBERTa ConvNet macro-metrics on development
data	
74

Table 34: Detailed confusion matrix for RoBERTa ConvNet with
development data for every single class.	
74

Table 35: Model results overview for development set	
75

Table 36: Average LSTM macro-metrics on test data	
79

Table 37: Confusion matrix of LSTM on test data	
80

Table 38: Average Bidirectional LSTM macro-metrics on test data	
80

Table 39: Confusion matrix of Bidirectional LSTM on test data	
81

Table 40: Average BERT macro-metrics on test data	
81

Table 41: Confusion matrix of BERT on test data	
82

Table 42: Average BERT uncased macro-metrics on test data	
82

Table 43: Confusion matrix of BERT uncased on test data	
83

Table 44: Average DistilBERT macro-metrics on test data	
83

Table 45: Confusion matrix of DistilBERT on test data	
84

Table 46: Average RoBERTa macro-metrics on test data	
84

Table 47: Confusion matrix of RoBERTa on test data	
85

Table 48: Average XLM-RoBERTa macro-metrics on test data	
85

Table 49: Confusion matrix of XLM-RoBERTa on test data	
86

Table 50: Average RoBERTa CustomNet macro-metrics on test data	
86

Table 51: Confusion matrix of RoBERTa CustomNet on test data	
87

Table 52: Average RoBERTa ConvNet macro-metrics on test data	
87

Table 53: Confusion matrix of RoBERTa ConvNet on test data	
88

Table 54: Model results overview for test set	
89

Table 55: Results obtained by other users who used similar techniques
with different data partitions.	 94

Abstract

It is proposed to study the pre-trained linguistic models available in
PyTorch, in order to fine-tune them and improve their baseline
accuracy for the task of news classification.

This work reviews the current state of the art of text classification
as well as current techniques and classical methods, with a special
focus on transformer-based models. It will also address the
problem of corpus preprocessing for this kind of task. The study
will take into consideration metrics such as training cost, accuracy,
precision, recall and F1-Score in order to be able to compare them.

It is essential to ensure that the results obtained in this study are in
line with those achieved by other researchers using the same
corpora, therefore, despite not having used the same data
partitioning or the same techniques, it has been considered
appropriate to mention them later on in this study.

The model is intended to be usable by end users, so the best
implementation has been released for production through a web
interface.

1

Resumen

Se propone estudiar los modelos lingüísticos preentrenados
disponibles en PyTorch, con el fin de afinarlos y mejorar su
precisión de base para la tarea de clasificación de noticias.

Este trabajo revisa el estado actual de la clasificación de textos, así
como las técnicas actuales y los métodos clásicos, con especial
énfasis en los modelos basados en Transformers. También se
abordará el problema del preprocesamiento del corpus para este
tipo de tareas. El estudio tendrá en cuenta métricas como el coste
de entrenamiento, la fiabilidad, la precisión, el recall y la F1-Score
para poder compararlas.

Es fundamental que los resultados arrojados en este estudio estén
en consonancia con los obtenidos por otros investigadores
utilizando los mismos datos, por lo que, a pesar de no haber
utilizado la misma partición de datos ni las mismas técnicas, se ha
considerado oportuno mencionarlos más adelante en este estudio.

Se pretende que el modelo sea utilizable por los usuarios finales,
por lo que la mejor implementación se ha puesto en producción
desde una interfaz web.  

2

Resum

Es proposa estudiar els models lingüístics preentrenados
disponibles en PyTorch, amb la finalitat d'afinar-los i millorar la
seua precisió de base per a la tasca de classificació de notícies.

Aquest treball revisa l'estat actual de la classificació de textos, així
com les tècniques actuals i els mètodes clàssics, amb especial
èmfasi en els models basats en Transformers. També s'abordarà el
problema del preprocessament del corpus per a aquesta mena de
tasques. L'estudi tindrà en compte mètriques com el cost
d'entrenament, la fiabilitat, la precisió, el recall i la F1-Score per a
poder comparar-les.

És fonamental que els resultats llançats en aquest treball estiguen
d'acord amb els obtinguts per altres investigadors utilitzant les
mateixes dades, per la qual cosa, malgrat no haver utilitzat la
mateixa partició de dades ni les mateixes tècniques, s'ha
considerat oportú esmentar-los més endavant en aquest estudi.

Es pretén que el model siga utilitzable pels usuaris finals, per la
qual cosa la millor implementació s'ha posat en producció des
d'una interfície web.  

3

Keywords

BERT, Classifier, Computer linguistics, Deployment, Development,
Fine-tuning, GPT, Language model, Machine learning, Neural
network, News, Pre-trained, PyTorch, Transformers.

4

Chapter I - Introduction

1.1 Problem

Text classification is a highly relevant field [1] of study in Natural
Language Processing (NLP) as it is possible to classify huge
amounts of text into labels in a very short time and at a very low
cost compared to what would be necessary if it were carried out by
humans.

By properly training a text classifier, nowadays standardised
problems can be dealt with [1], such as spam detection in e-mails
[9], political bias detection [23], hate speech detection and so on.
The examples mentioned earlier are mostly in the field of sentiment
analysis, in this study we will try to develop a news classifier that
tackles the problem from three different angles.

1.1.1 User perspective

The world we live in is constantly evolving faster and faster, so
quickly that it often takes time for society to assimilate new
technological developments. The progressive extinction of the
written press [28] and its consequent transition to the electronic
format has allowed any person or group of people to start up media
at almost zero cost. Nevertheless, there is a counterpart that
should not be underestimated. The proliferation of media has
caused an increase in competition to gain clicks or subscriptions
from customers [26]. This inevitably leads to the situation we are
facing today, where apparently a headline can be deliberately
written to be misinterpreted, or even worse, content that is not
even minimally related to the topic in vogue (such as politics) is
forced into the art icle to achieve relevance. Al l of the
aforementioned have resulted in a rising distrust of the media on
the user side. A system that can quickly alert users to such articles
could be a time-saver for them.

5

1.1.2 Press perspective

As mentioned in the previous section, digital media are on the rise
and traditional media are aware of this. It is therefore not surprising
that they want to digitise their old printed editions to their website
[27]. This problem requires two different models working together,
firstly a system that automatically converts the content into digital
content and then another one that sorts it into a specific section of
their online newspaper, helping to search better for old documents
and preserve the history of which traditional newspapers are part.

1.1.3 News aggregation perspective

News aggregators such as Flipboard or Feedly make sure to 1 2

crawl the web and display the latest news to users. For these kinds
of platforms, it is vital to classify them correctly to fit the
customer's preferences, however, this is not always possible, as
manual news tagging standards are barely followed. Models such
as those proposed in this paper can be very useful for this kind of
service.

1.2 Proposed solution

There are several approaches available to address the text
classification problem. While it is possible to try to solve the task
with classical methods, the use of these has been completely
discarded.

Classical methods are ineffect ive in establ ishing strong
relationships between words in a text [1]. Even those methods that
are able to set them up inevitably face the problem of having to
apply smoothing techniques, because there are words that have
not been seen during training.

 https://flipboard.com1

 https://feedly.com2

6

https://flipboard.com
https://feedly.com

It is also possible for a word that, despite being recorded in the
model, there is no probability associated with a given context [9].
There is even a scenario where the sentence to be evaluated could
be so long that the probability associated with it is negligible.

For all of the above reasons, the use of neural models is necessary.
There are various topologies of neural networks that can be used
for the task of text classification, and these will be discussed in
more detail later on in this document.

In addition, we will use pre-trained language models (such as BERT
[11] or GPT-2 [16]) to speed up training and propose custom
solutions based on the best-performing one.

In this study, we will be looking at pre-trained models available in
PyTorch to fine-tune them for the task of news classification. We
will be considering various metrics such as training cost, accuracy
and model performance in order to determine the best model for
this task. The aim is to create a model that is usable by end-users,
so the best implementation will be released for production.

1.3 Objectives

The purpose of this tool is to enable users to identify the main topic
of an article without much effort, thus avoiding the need to read the
full text. This is especially useful for customers who are short on
time or who want to quickly get an overview of the main topics
being discussed on a certain website or blog. By using this tool,
users can save time and discard articles containing irrelevant
information quickly and easily.

Therefore, the project's objectives include the following:

• Research and enumerate those state-of-the-art methods that
can be used to accomplish the news classification task.

• Search for labelled dataset(s) that allow training proposed
models.

7

• Pre-process the data and carry out a thorough evaluation of
the hyper-parameters that should be taken into consideration.

• Test all neural models (pre-trained mostly) that may be able to
solve this task by applying a fine-tuning technique.
Considering time constraints.

• Perform enhancements on the best-performing model
according to its behaviour on the pre-labelled dataset.

• Deploy the best approach so that it can be used in
production.

• Draw conclusions from the experiments carried out.

1.4 Document breakdown

The document is structured in eight principal items: state of the art
(Chapter I), the experimental framework (Chapter II), the
environment in which the experiments will be performed (Chapter
III), it is experimentation on the models (Chapter IV), a summary of
the obtained results (Chapter V), a brief description of the model
deployment (Chapter VI), the conclusions of the study (Chapter VII),
and possible future works that may be derived from this project
(Chapter VIII).

In the state-of-the-art section, there will be an overview of the text
classification techniques that have been applied so far. Some
classical methods will be briefly described, but there will be a
particular emphasis on neural models, especially those based on
transformers.

The experimental framework section will describe in detail the data
used to carry out the required task, as well as the necessary pre-
processing of the data and the metrics to be used. Then, in the
environment section, it will be described which tools, environments
and/or libraries have been used to perform the experiments.

8

In chapter IV, there will be a detailed review of the results obtained
by each model using the metrics presented in the experimental
framework. Then, in chapter V, the results obtained will be shown
globally in order to compare the models in the conclusions section
and finally, the future work that may be derived from this project
will be mentioned.

9

Chapter II - State of the art

2.1 Text classification

Text classification is the technique of categorising texts into labels
based on their content [1]. It is one of the most relevant tasks in
natural language processing (NLP), consisting of attempt detection,
topic labelling, spam detection, and sentiment analysis. In this way,
text classifiers can automatically categorise texts based on a
predefined set of labels.

NLP, data mining and machine learning techniques are used to find
and detect patterns in electronic documents automatically. The
main goal of text mining is to allow users to retrieve information by
using textual tools and process operations. The objective of
information extraction (IE) methods is to extract accurate data from
textual documents [1]. That is the initial approach, which proposes
that text mining is equivalent to data mining.

The process of searching for documents that answer questions is
known as information retrieval (IR) [1]. This involves the use of
statistical measures and methods for the automated processing of
text data and its reference to the given query. In its widest context,
information retrieval covers the whole scope of information
processing, from data retrieval to knowledge retrieval.

Text classification consists of classification processing steps such
as preprocessing, feature extraction and the classification model
for training and prediction. The training set is used to train the
model and prediction is used to forecast the most plausible
labelled output.

10

Figure 1: Common workflow scheme for text classification

2.1.1 Pre-processing

As in most cases when working with data, pre-processing is one of
the most important tasks for text classification in natural language
processing [1]. There are three major methods for processing. Such
as:

• Tokenisation: involves strings that are divided into smaller
tokens. It is possible to tokenise paragraphs into sentences
and tokenise sentences into words.

• Stop word removal: this consist of eliminating common and
frequent words like the, a, an etc. and removing irrelevant
words.

• Stemming: or noise removal is the process of reducing
inflected words to their word stem, base or root form.

11

2.1.2 Feature extraction

Feature extraction not just provides greater accuracy, it also offers
higher probability and saves computational time [7]. It has different
properties such as a bag of words, embedding and extraction of
features from the text which are converted into different vectors.
The vectors are counted in the form of TF-IDF vectors [6], namely
term frequency (TF) which means the number of times a term
appears in a document compared to the total number of words in
the document and inverse document frequency (IDF) reflecting the
proportion of documents in the corpus that contains that term.

Term frequency:

Being

Inverse Document Frequency:

Being

The TF-IDF of a term is calculated by multiplying TF and IDF
scores.

TF(t, d) =
f (t, d)

N

t a term

d a document

N total number of terms in a document

f (t, d) number of times a term appears in a document

IDF(t, D) = log
|D |

1 + g(t, D)

t a term

D the set of available documents

|D | total number of documents

g(t, D) number of documents in which a term appears

12

Being

2.1.3 Text classification algorithms

As we can see, certain types of data can only be understood as a
sequence. Unlike other networks, such as those implemented for
an image recognition system, where examples are handled by a
single forward. Due to their unstructured nature, texts are
computationally hard to process. Despite this, they can be a
significant information source.

However, thanks to advances in natural language processing (NLP),
implementing this kind of task has become easier to carry out.
These machine learning algorithms can be categorised under three
possible types [1]:

• Supervised: Naive Bayes, Support Vector Machines (SVM),
Neural Networks, Convolutional Neural Networks and Recurrent
Neuronal Networks.

• Unsupervised: K-Means, Clustering, Principal Components
Analysis (PCA) and Association Rule Learning.

• Semi-supervised: Self-training, Semi-Supervised Vector
Machines (S3VM) and Multi-view pseudo-labelling.

As it can be observed, models based on Transformers have not
been categorised in any of the three categories above, this is
because the boundaries between them are blurred when using this
technique. Since models such as BERT [11] or GPT-2 [16] are
usually pre-trained with large data sets (usually in an unsupervised

TF-IDF(t, d, D) = TF(t, d) ⋅ IDF(t, D)

t a term

d a document

D the set of available documents

TF(t, d) Term Frequency

IDF(t, D) Inverse Document Frequency

13

way) and then transfer learning to a task using supervised samples
[18].

Even using the two examples above we can observe remarkable
differences: GPT-2 was pre-trained in a semi-supervised way using
a very large English corpus, while BERT was trained using two
unsupervised tasks: Masked-LM and Next Sentence Prediction.

Some of the techniques mentioned above are detailed in more
detail later in this document. Such as:

• Naive Bayes

• Support Vector Machines (SVM)

• Recurrent Neural Networks (RNN)

• Long Short-Term Memory (LSTM)

• Connectionist Temporal Classification (CTC)

• Transformers

This project will focus on the use of Transformers and consequently
on the existing models available.

In a summary, machine learning text classification learns how to
make classifications based on prior observations. By using pre-
labelled examples as training data, machine learning algorithms
can infer the different associations between text samples.

To train a machine learning algorithm on text data, first, the text
must be converted into numerical feature vectors. This can be done
using various methods depending on the type of text and the
desired features. When the text is in vector form, the machine
learning algorithm is then given training data consisting of pairs of
feature vectors and labels. The algorithm uses this data to learn
how to make classifications based on prior observations.

Different types of features can be used to represent the text, such
as bag-of-words, part-of-speech tags, dependency parse trees,
etc. The features are typically chosen based on what is known
about the task at hand. Once the training data has been processed

14

and the model generated, it can be used to make predictions on
unseen data. To do this, the text is first transformed into a vector of
features in the same way as the training data. The classification
model is then applied to the features vector to generate a
prediction.

2.2 Naive Bayes

The Naive Bayes method is one of the most well-known methods
and was used especially at the end of the 20th century for
multinomial classification tasks, in particular in the detection of
junk mail [9].

A pre-labelled dataset is needed to train the classifier. From this
data, it is possible to obtain the prior probability of each label, as
well as the conditional probability on each class for words in the
text.

Being

Notice that in order to avoid misclassifications it is necessary for all
the input words must have been seen previously in training, at least
once per class, otherwise, we would be providing a likelihood of
zero regardless of the other words in the sequence.

p(c |W) = p(c) ⋅
N

∏
i=0

p(wi |c)

̂c = argmax
c∈C

(p(c |W))

W a sentence

wi word of the sentence

N sentence length

C a set of available classes

c a singles class

15

One way to avoid this problem is to use some kind of smoothing
method. But we would not solve the main limitation, it takes a
sequence of words independent of each other, no matter what
order or context they are in.

2.3 Support Vector Machines

Support vector machines (SVM) are somewhat more expensive to
train than naive Bayes, but it can provide more accurate results.
The main idea behind this algorithm is a hyper-plane, which
separates at best two or more groups of objects. An optimal hyper-
plane should be that which leaves as large a gap as possible
between groups [25].

The forecast hypothesis for an SVM is defined as follows:

Being

To perform a non-binary classification of the data on tasks with
more than two classes, it will be necessary to make a hypothesis
for each class, that isolates each one from the others, as shown in
the picture below.

h(xi) = sign(
S

∑
j=1

ajyjK(xj, xi) + b)

K(v, v′￼) = exp(
| |v − v′￼| |2

2γ2
)

xi the feature vector

b a constant

aj a constant for each xj

yi represents the class (-1 or 1) for each xj

S the number of support vectors

K ∈ (0.0, 1.0) the kernel function (1 being identical, 0 fully different vectors)

16

Figure 2: Multi-class SVM

Sometimes data may not be linearly separated by the initial number
of dimensions, increasing the number of dimensions of data may fix
this issue. In the case of text classification, it is enough to simply
modify the feature extractor.

2.4 Recurrent Neural Networks

A recurrent neural network (RNN) is an artificial neural network that
works with sequential data [3]. Common uses for this kind of
network include speech recognition, image captioning, language
translation, and natural language processing (NLP).

They are distinguished by their “memory” as they take information
from prior inputs to influence the current input and output. While
conventional deep neural networks consider all inputs and outputs
independent of each other, the output of recurrent neural networks
hangs on the sequence's prior parts.

Another feature of recurrent networks is that they share parameters
across each layer of the network. Unlike feedforward networks with
different weights at each node, recurrent neural networks share the
same weight parameter at every layer of the network. Having said
that, these weights are still adjusting in the back-propagation and
gradient descent processes to facilitate learning by reinforcement.

17

Figure 3: RNN

Being

2.4.1 Back-propagation through time

Recurrent neural networks take advantage of the back-propagation
through time (BPTT) algorithm to compute gradients [15], which is
slightly different from traditional back-propagation as it is special
for sequence data. For better understanding, we are considering
this representation which matches the text classification task.

xt the current sequence's input

h0 initial hidden state

ht the current hidden state

yt the current output

18

Figure 4: RNN Weights

Being

Adjust Wh:

Adjust Wx:

Being

xt the current sequence's input

h0 initial hidden state

ht the current hidden state

y the output

Wx the input weights matrix

Wh the hidden state weights matrix

Wy the output weights matrix

∂ET

∂Wh
=

T

∑
t=1

∂ET

∂YT
⋅

∂YT

∂ht
⋅

∂ht

∂Wh

∂ET

∂Wx
=

T

∑
t=1

∂ET

∂YT
⋅

∂YT

∂ht
⋅

∂ht

∂Wx

ET the error at time T

YT the output at time T

19

There are several types of RNN such as:

• One to Many

• Many to One

• Many to Many with the same length output

• Many to Many with different length outputs

• Etc

2.4.2 One to Many

A network produces an output sequence given a single input. Its
applications can be found in Music Generation and Image
Captioning.

Figure 5: One to Many RNN

2.4.3 Many to One

It generates a single output given a sequence, this kind of RNN is
used in text classification.

Wx the input weights matrix

Wh the hidden state weights matrix

ht the hidden state at time t

20

Figure 6: Many to One RNN

2.4.4 Many to Many I - Same length output

The network generates an output with the identical length of the
input. A common application can be found in Name-Entity
Recognition.

Figure 7: Many to Many I RNN

2.4.5 Many to Many II - Different length output

Mainly used in machine translation, it allows the generation of an
output sequence with a different length than the input sequence.

21

Figure 8: Many to Many II RNN

2.4.6 Bidirectional recurrent neural networks

Classical RNNs only process input texts word by word, from
beginning to end. Exactly in the same way as a standard human
would. However, we can also somehow intuit words or concepts
later in time. Therefore, it would be even more convenient if the
model could also know the future words and solve the problem
more effectively. For this case, bi-directional RNNs are used.

In a bidirectional RNN [14], we consider two separate sequences.
One from right to left and the other in the reverse order. The
outputs are generated by concatenating the sequences at each
time and generating weights accordingly. Note that both the left-to-
right and right-to-left layers are never directly connected.

Figure 9: Bi-directional RNN 

22

2.4.7 Connectionist Temporal Classification

Connectionist temporal classification (CTC) is a type of neural
network layer for training recurrent neural networks that were
designed specifically for temporal classification tasks, where the
alignment between the inputs and the expected output is unknown
[2][8]. It models all aspects of the sequence with a single neural
network and does not require combining the network with any extra
model, such as a hidden Markov model. It also does not require
pre-segmented training data or additional post-processing to
extract the sequence label from the network output. They are
typically used for handwriting recognition or speech recognition.

Figure 10: Example of CTC usage for handwriting recognition

23

2.5 Long Short-Term Memory Networks

Figure 11: LSTM Overview

Long-term memory networks (LSTM) are a special kind of recurrent
neural network that can learn order dependence [17]. The output of
the previous step is used as input to the current step in the RNN.
LSTM handles the problem of long-term dependence, where RNNs
are unable to predict the words stored in long-term memory, but
can make more accurate predictions based on the actual data.
RNNs do not perform efficiently as the gap length increases. LSTM
can preserve information for a long time by default.

Cells store information, while gates manipulate memory. There are
three gateways:

• Forget gate

• Input gate

• Output gate

24

2.5.1 Forget gate

The forget gate is the first step in the process [10][17]. Based on
the previous hidden state and the new input data, it will decide
which bits of the cell state (long-term memory of the network) are
useful.

To do this, we are feeding the previous hidden state and the new
input data into the network. This network generates a vector where
each element is in the interval [0,1] (ensured by using the sigmoid
activation). In the forget gate, this network is trained to produce
close to 0 when a component of the input is irrelevant and close to
1 when it is relevant. Each element of this vector can be thought of
as a filter that lets in more information as the value gets closer to 1.

These output values are sent upwards and point-wise multiplied
with the previous state of the cell. This point-wise multiplication
means that components of the cell state which have been
considered irrelevant by the forget gate, the network will be
multiplied by a number close to 0 and will therefore have less
influence on the following steps.

In summary, the forget gate decides which pieces of the long-term
memory should be forgotten (have less weight) given the previous
hidden state and the new data in the sequence.

Figure 12: LSTM - Forget gate 

25

The function which defines the forget gate is defined as:

Being

2.5.2 Input gate

The next step involves the new memory network and the input gate
[10][17]. Given the previous hidden state and new input data, this
step determines what new information should be added to the
network's long-term memory (cell state).

The new memory network and the input gate are neural networks
themselves, and both take the same inputs, the previous hidden
state and the input data. It should be emphasised that the inputs
here are the same as for the forget gate.

The new memory network is a hyperbolic tangent-activated neural
network that combines previous hidden states with new input data
to deliver a new memory update vector. This vector indicates how
much each long-term memory component (cell state) of the
network needs to be updated given new data.  

ft = σ(Wf[ht−1, xt] + bf)

ft the forget gate

σ sigmoid activation function

Wf forget gate weights matrix

ht−1 hidden state of the previous LSTM block

xt current input

bf forget gate bias

26

 
Figure 13: LSTM - Input gate

Note that we use a hyperbolic tangent here because its values lie in
[-1,1] and so can be negative. The possibility of negative values
here is necessary if we wish to reduce the impact of a component
in the cell state.

Despite this, it doesn't actually check if the new input data is even
worth remembering. Input gates play a crucial role here. The input
gate is a sigmoid-activated network which acts as a filter, deciding
which components of the new memory vector should be retained.

This network will output a vector of values in [0,1] allowing it to act
as a filter through point-wise multiplication. An output near zero,
tells us we don’t want to update that element of the cell state.
Earlier outputs are multiplied point-wise. By adding the combined
vector to the cell state, the long-term memory of the network is
updated. The function which defines the input gate is defined as:

Being

it = σ (Wi[ht−1, xt] + bi)

it the input gate

σ sigmoid activation function

Wi input gate weights matrix

ht−1 hidden state of the previous LSTM block

xt current input

bi input gate bias

27

2.5.3 Output gate

The output gate calculates the next hidden state using input data,
prior hidden state and the recently updated cell state [10][17].

It is not possible to simply return the new cell state, as we would
be giving back all the information accumulated so far. To prevent
this from happening, a filter is simply added in the same way as in
the forget gate. Therefore, a sigmoid function is used as a filter,
since its range of values is between zero and one. Nevertheless,
before applying the filter, the state of the cell is passed through a
hyperbolic tangent to ensure a range of values in the interval [-1,1].

Figure 14: LSTM - Output gate

The function which defines the output gate is defined as:

Being

ot = σ (Wo[ht−1, xt] + bo)

ot the output gate

σ sigmoid activation function

Wo output gate weights matrix

ht−1 hidden state of the previous LSTM block

xt current input

bo output gate bias

28

The equations for the cell state are defined as:

Being

The equation for the hidden state is defined as:

Being

2.6 Transformers

A transformer is a machine learning model that embraces the self-
attention mechanism [5], differentially weighing the significance of
each part of the input data.

C̃t = tanh(Wc[ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

C̃t the candidate for current cell state

Ct the current cell state

Ct−1 the previous cell state

tanh hyperbolic tangent activation function

Wc cell state weights matrix

ht−1 hidden state of the previous LSTM block

xt current input

bc cell state bias

ft the forget gate output

it the input gate output

ht = ot ⊙ tanh(Ct)

ht the hidden state

ot the output gate output

Ct the current cell state

29

Transformers, like recurrent neural networks (RNNs), are used for
tasks like summarising and text translation since they are designed
to deal with sequential data. Transformers, however, handle all of
the input simultaneously, in contrast to RNNs, which process each
token of a sequence one at a time. The attention mechanism
provides context for any position in the input stream. For example,
if the input data is a natural language sentence, the transformer
does not have to process the words one by one. This allows greater
parallelisation than RNNs and consequently reduces training times.

To understand how transformers work, it is necessary to explain its
main parts:

• Inputs embeddings

• Positional encoding

• Self-attention mechanism

• Layer normalisation

In the following picture, the architecture of a transformer is
represented the same way as in the original paper [5]. It can be
split into two parts: the encoder (left) and the decoder (right).
Since we are making text classification, the decoder part could be
omitted.

30

Figure 15: Transformer architecture
Source: Attention Is All You Need [5]

2.6.1 Inputs embeddings

As mentioned earlier in this document, computers are not able to
process words straight away, they need to be expressed as vectors
or matrices in order to be interpreted. The main idea is to map each
word to a point in space where words with similar meanings are
spatially close to each other. This is often referred to as
"Embedding space".

31

2.6.2 Positional encoding

The vectorisation of words in itself is not enough; the same word in
different contexts may have completely different meanings. That is
where positional encoders come in.

Figure 16: The same word could have different meanings depending on the context

Since transformers contain no recurrence and no convolution, for
the model to make use of the order of the sequence, we must inject
some information about the relative or absolute position of the
tokens in the sequence. To this end, we add "positional encodings"
to the input embeddings at the bottoms of the encoder and
decoder stacks [5]. The positional encodings have the same
dimension as the embeddings so that the two can be summed.

There are many choices of positional encodings, In the original
paper [5], they use sine and cosine functions of different
frequencies. In the below expression, we can see that even
positions correspond to the sine function and odd positions
correspond to the cosine function.

Being

	

	

	

	

PE(k,2i) = sin(k /n
2i
d)

PE(k,2i+1) = cos(k /n
2i
d)

k the position of a word in the sequence

i used for mapping to column indices 0 ≤ i ≤
d
2

n a User-defined scalar. Originally set to 10000.

d the dimensionality of input and output

32

The following figure shows an example of Positional Encoding for the sentence
"I am a student” with and .

Figure 17: Example of Positional Encoding Matrix Calculation

2.6.3 Self-attention mechanism

Attention implies which part of the sentence to focus on [5]. An
attention function can be described as mapping a query and a set
of key-value pairs to an output, where the query (), keys (),
values () and output are all vectors. These vectors are created by
multiplying the embedding by three weights matrices (, and

 respectively) that are adjusted during the training process.
Notice that these new vectors could be smaller (architecture
choice) in dimension than the embedding vector.

PE(pos,2i) the positional encoding for even column indices positions

PE(pos,2i+1) the positional encoding for odd column indices positions

n = 100 d = 4

Q K
V

WQ WK

WV

Q = X × WQ

K = X × WK

V = X × WV

33

Being

	

	

	

	

So far, the attention mechanism has provided one answer at once
for each query. The transformer model introduces Multi-Head
attention [5], which extends the previous mechanism to produce an
answer that combines multiple key-query comparations. Multi-
Head attention consists of performing several parallel attention
operations and combining outputs to obtain the final context
vector. Each attention operation (or "head") is performed by
applying a linear projection to the query, keys and values, then
calculating the attention between them and subsequently
projecting the result to a common space.

where

Being

	

	

	

	

	

	

	

	

	

Attention(Q, K, V) = sof tmax(
QKT

dk
)V

Q the query vector

K the keys vector

V the values vector

dk the dimensionality of K

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO

headi = Attention(QWQ
i , KWK

i , V WV
i)

Q the query vector

K the keys vector

V the values vector

h the number of attention layers. Originally set to 8

headi the ith head

WO global weigth matrix

WQ
i the ith query weigth matrix

WK
i the ith key weigth matrix

WV
i the ith value weigth matrix

34

2.6.4 Layer normalisation

It should be noted that each sub-layer (self-attention and
FeedForward) of each encoder has a residual connection around it,
and is followed by a layer normalisation step [5].

It consists of normalising the outputs of the neural network layers
so each neurone follows a normal distribution. To normalise a layer,
we calculate the standard deviation and the mean of each
neurone's activations in that layer, then subtract the mean and
divide it by the standard deviation.

The normalisation of a layer can be calculated as follows:

Being

	

	

	

Note that and are parameters learned during training, and are
used to enable the layer to generate normal distributions different
from the standard normal distribution.

2.6.5 Pre-trained models

Transformers are replacing RNN-based models and becoming the
primary choice for NLP problems. Due to its facility to perform
parallelisation, it allows training on bigger datasets. This resulted in
the development of pre-trained models such as BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative
Pre-trained Transformer), which are trained on large linguistic
datasets and can be fine-tuned for specific tasks.

LayerNorm(ai) = γ
ai − μi

σi
+ β

ai the ith layer

μi the mean vector of the ith layer

σi the standard deviation vector of the ith layer

γ β

35

2.6.5.1 BERT

Means Bidirectional Encoder Representations from Transformers
[11], BERT's main technical innovation is to apply the bidirectional
training of Transformer, this contrasts with previous efforts, which
examined a sequence of text from left to right or combined left-to-
right and right-to-left training.

To make BERT handle various downstream tasks, this input
representation is able to unambiguously represent both a single
sentence and a pair of sentences (e.g., Question, Answering) in
one token sequence. In the original paper, a “sentence” can be an
arbitrary span of contiguous text, rather than an actual linguistic
sentence. A “sequence” refers to the input token sequence to
BERT, which may be a single sentence or two sentences packed
together. The first token of every sequence is always a special
classification token ([CLS]). The final hidden state corresponding to
this token is used as the aggregate sequence representation for
classification tasks. Sentence pairs are packed together into a
single sequence.

The input embedding is denoted as E, the final hidden vector of the
special [CLS] token , and the final hidden vector for the
input token . For a given token, its input representation is
constructed by adding the corresponding token, segment, and
position embeddings.

Figure 18: BERT input representation
Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [11]

C ∈ RH ith

Ti ∈ RH

36

This model consists of two steps: pre-training and fine-tuning.
During pre-training, the model is trained with unlabelled data on
different tasks. During the tuning step, the model is initialised with
the pre-trained parameters, and all of these are refined using
labelled data for subsequent tasks. Furthermore, each of these
tasks has different tuning models.

Figure 19: BERT overview
Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [11]

The architecture of the BERT model consists of a multi-layer bi-
d i rec t iona l t rans former encoder based on the o r ig ina l
implementation but removing the decoder from the model and just
keeping the encoder part.

BERT has two model sizes. Firstly, there is BERT Base, with 12
blocks, 768 hidden layers and 12 heads, so the total number of
parameters is 110 million. If this is not enough, there is an
extended version of this model known as BERT Large, with 24
blocks, 1024 hidden layers and 16 heads, bringing to 340 million
the total number of parameters.

37

Figure 20: BERT sizes
Source: Hugging Face Inc 3

2.6.5.2 DistilBERT

DistilBERT is a small, fast, cheap and light Transformer model
trained by distilling the BERT base [22]. It has 40% fewer
parameters than BERT Base and runs 60% faster while retaining
97% of BERT’s performances as measured on the GLUE language
understanding benchmark.

Figure 21: DistilBERT performance comparison
Source: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter [22]

 https://huggingface.co/blog/bert-1013

38

https://huggingface.co/blog/bert-101

2.6.5.3 RoBERTa

Based on the BERT Base model, which means: “Robustly
Optimised BERT Pre-training Approach” [24], It builds on BERT and
modifies key hyper-parameters, removes the next-sentence pre-
training objective and trains with much larger mini-batches and
learning rates. RoBERTa uses a byte-level BPE (Byte Pair Encoding)
as a tokeniser (same as GPT-2) and a different pre-training scheme.

2.6.5.4 GPT-2

This is a transformer model trained on a very large corpus of
English data using a self-supervised approach [16]. This means that
it has been trained on the raw texts only, without being labelled in
any way by humans and unlike BERT, this model is unidirectional.

More precisely, inputs are sequences of the continuous text of a
certain length and the targets are the same sequence, shifting one
token (word or piece of word) to the right. The model uses internally
a masking mechanism to make sure the predictions for a token only
use the previous inputs but not the future ones. This way, the
model learns an inner representation of the English language that
can then be used to extract features useful for downstream tasks.

2.7 Contributions

Two possible modifications are then proposed with the intention of
increasing the accuracy of the task of text classification in the
previously described models. Both approaches rely on assisting the
models by adding a significant number of additional layers to the
model output.

2.7.1 Fully connected approach

It consists of adding seven linear layers at the end of a pre-trained
model instead of one in order to perform a better classification by
not reducing so drastically the output of it, as could be the case of

39

BERT which returns 768 outputs [11] in one shot to only 4 or 6,
matching the number of classes (|C|) to predict.

Figure 22: Proposed fully connected network appendix with pre-trained BERT model

2.7.2 Convolutional approach

This modification attempts to translate an NLP problem into a
Computer Vision one. Therefore, the idea is to transform the output
of the BERT model into an image-like output and apply
convolutional layers as if it were an image recogniser.

Given the computational resources and the available pre-trained
models, it has been opted to transform the output of these models
to black and white 16x16 pixel images (1x16x16) obtaining 256
values per sample.  

40

Figure 23: Proposed convolutional network appendix with pre-trained BERT model

41

Chapter III - Experimental framework

This section describes the experimental framework that is to be
used to carry out the study and the necessary preprocessing of the
available data. First of all, the format of the data and its origin, any
necessary preprocessing, encoding, evaluation metrics and
parameters will be described. With all these preliminary steps, it is
intended to solve the problem of text classification in the best
possible way.

3.1 Dataset

To be able to train the model, it will be necessary that the employed
dataset complies with the following structure:

Table 1: Example format for input data files

Processed Dataset Structure

Class Heading Article body

1
OTT is the best thing that
has happened for young
talented people: Bobby

Talking about OTT platforms,
Bobby Deol said that it is the
best thing that has happened
for young talented…

0
Tesla opens its largest
Supercharger station in
Shanghai

Tesla opens its largest
Supercharger station in
Shanghai China, with 72
charging stalls…

4
Day 2 play abandoned due
to rain, India trail Australia
by 307 runs

The second day's play of the
Brisbane Test was
prematurely abandoned due
to rain…

… … …

42

Regardless of the chosen dataset, it needs to be split into three
subsets: training, test and development. If this is not the case, it
would have to be rearranged. This is necessary because we have to
continuously check the model does not memorise the training data.
We do this by evaluating the model with the development set at
each epoch. But at the same time to avoid the model fitting too
closely to the development set, the last validation will be against
the test set and this will be the metric used for benchmarking.

3.1.1 Inshort-news corpus

Indeed, this corpus has 12120 news samples collected from the 4

Inshorts web app, a platform which aggregates news in a limited
amount of words. This makes it ideal for classifying news. From
the total news provided by this corpus, 8726 have been used for
training, 970 for development and 2424 for model evaluation.

However, there are currently no previously existing experiments for
this task to compare with. Instead, it has been decided to do all
experiments using a well-known dataset and then extrapolate the
obtained results to the original dataset.

3.1.2 AG News corpus

The a l ternat ive task under cons iderat ion is "AG News
Classification" also available on the Kaggle platform . It contains 4 5

classes (fewer than the previous set) distributed over 127,600
samples. This is 10.5 times more samples than the Inshort set.

AG is a compilation of well over 1 million news articles. In more
than 1 year of activity, ComeToMyHead has collected news articles
from more than 2000 news sources. It is a search engine for
academic news that has been running since July 2004.  

 https://www.kaggle.com/datasets/kishanyadav/inshort-news4

 https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset5

43

https://www.kaggle.com/datasets/kishanyadav/inshort-news
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset

The dataset is provided by the academic community for research
purposes in data mining, information retrieval, data compression,
data streaming and any other non-commercial activity. The AG
news classification dataset is built by choosing the 4 largest
classes from the original larger corpus.

This dataset is really large compared to our available hardware.
This makes model training and evaluation much more time-
consuming. On the other hand, having more data means learning
could potentially be better.

Table 2: Available classes

3.2 Pre-processing

To make the experimentation simpler, both datasets have been pre-
processed. By doing so, we ensure that the structure is the same
and we can swap them quickly.

Each dataset has been rearranged into three subsets: training,
development and test. This will be done once to ensure all future
experiments use the same data and thus compare them fairly.
Additionally, it can be guaranteed that in all subsets there is the
same proportion of classes as in the full set.

3.2.1 Inshort-news corpus

Initially, this set is provided as seven separate files, one per class.
As a result, this turns out to be inconvenient, as we need the
samples to be merged and mixed with others of different classes to
be able to use it.

Available tags
Inshort-news AG News corpus

automobile, entertainment, politics,
science, sports, technology, world.

business, sci/tech, sports, world.

44

Later on, it will also be necessary to make a partition of the dataset
to fit the previously established division.

3.2.2 AG News corpus

This set comes initially split into 2 subsets: train and test. Again, it
does not fit the requirements set out above and needs to be mixed
and separated back in the same way as with the Inshort-news
corpus. This results in a division of 108 000 samples for training, 12
000 samples for development and 7 600 samples for test.

Table 3: Distribution of the sample classes after partitioning

To guarantee a correct model training, as far as possible the same
proportion of classes in each split should be used to avoid biases.

Class distribution

Inshort-news corpus

All Train Development Test

automobile 10.67% 
entertainment 16.8% 
politics 13.17% 
science 11.86% 
sports 15.68% 
technology 14.78% 
world 17.05%

automobile 10.69% 
entertainment 16.87% 
politics 13.35% 
science 11.78% 
sports 15.6% 
technology 14.76% 
world 16.95%

automobile 11.65% 
entertainment 16.8% 
politics 11.75% 
science 11.65% 
sports 14.74% 
technology 14.23% 
world 19.18%

automobile XX% 
entertainment 16.54% 
politics 13.08% 
science 12.21% 
sports 16.34% 
technology 15.06% 
world 16.58%

AG News corpus

All Train Development Test

business 25.0% 
sci/tech 25.0% 
sports 25.0% 
world 25.0%

business 24.97% 
sci/tech 24.97% 
sports 25.06% 
world 25.0%

business 25.25% 
sci/tech 25.27% 
sports 24.50% 
world 24.98%

business 25.0% 
sci/tech 25.0% 
sports 25.0% 
world 25.0%

45

3.3 Tokenisation

To be able to feed the model with strings, it is necessary to
tokenise them first [1]. This process consists of chunking raw text
into small parts. Tokenisation breaks the raw text into words and
phrases called tokens [13]. These tokens help understand the
context. It allows interpreting the meaning of the text by analysing
words in sequence.

There are different methods (e.g Moses) and libraries available for 6

tokenisation such as NLTK or Gensim . However, because we are 7 8

using pre-trained models provided by Hugging Face, Inc. Each
model has its own ad hoc tokeniser specifically designed for it, so
it is more advisable to use them rather than other alternatives.

Figure 24: Tokeniser expected behaviour

Setting an appropriate value for the token length parameter is
crucial for the model's performance. Although models such as
BERT and its derivatives have shown state-of-the-art results in
most areas of NLP, the Transformer model has a major handicap: it
is difficult to apply to very long texts. This difficulty is due to the
self-attention operation, which has an exponential complexity of
O(n²) relative to the input length. This can be problematic, as not
everyone has the resources to efficiently handle the size and
complexity of the data. Some examples are novels, legal
documents, medical records, etc.  

 http://www2.statmt.org/moses/6

 https://www.nltk.org7

 https://pypi.org/project/gensim/8

46

https://pypi.org/project/gensim/
https://www.nltk.org
http://www2.statmt.org/moses/

Several solutions have been proposed to mitigate the problem with
long documents. The simplest one is truncation, where only the
first N tokens of the documents are taken as input, but this wastes
a lot of potentially valuable information from the original source. For
the news classification task, this approach can be perfectly suitable
if we do a proper token length analysis.

Figure 25: Token length distribution.

As shown in the figure above, a token length of 100 would be
enough to represent the news from any of the datasets.

3.4 Encoding

Linked to the previous section, it is equally imperative to perform
the encoding of the tokenised words beforehand, in other words, to
give them a vector shape [1]. It can be achieved through a variety
of available tools and methods.

47

Such as:

• Frequency-based Embedding: Count Vectors, TF-IDF, Co-
Occurrence Matrix [19].

• Prediction-based Embedding (Word2vec): CBOW, Skip-
Gram [19].

• GloVe: Global Vectors for Word Representation [12].

Computers only understand numbers, so a good tokeniser should
establish semantic relationships between words through the use of
vector operations.

Figure 26: How a vectoriser work

48

Figure 27: How a vectoriser makes semantical relationships

Since we are using pre-trained models, the Hugging Face, Inc
'transformers' library provides a specific vectoriser within each
tokeniser. Therefore, for the same reason as in the previous section,
this one will be used instead of any other third-party solution.

3.5 Metrics

For the evaluation of NLP models, a variety of metrics are used to
measure their quality. In the case of automatic text classification,
the following metrics have been used:

• Accuracy

• Loss

• Precision

• Recall

• F1 Score  

49

3.5.1 Accuracy

Measures the number of well-classified samples relative to the total
amount of them.

Being

3.5.2 Loss

Cross-entropy loss measures the performance of a classification
model whose output is a probability value in the (0, 1) range. In
multi-class classification, a separate loss is calculated for each
class label per observation and the result is then added up.

Being

3.5.3 Precision

This metric measures how accurate a model is by establishing a
relationship between the number of true positives and all identified
as positives.

Being and .

accuracy =
TP

Total

TP true positive values

Total all available samples

Lo,c = −
M

∑
c=1

yo,c log po,c

M number of classes

yo,c binary indicator (0 or 1) if class label c is the correct for observation o

po,c predicted probability observation o is of class c

precision =
TP

TP + FP
TP true positive values FP false positive values

50

3.5.4 Recall

Measures the model's ability to predict true positive classes. It is
the ratio between the predicted true positives and what was
labelled. The recall metric reveals how many predicted classes are
labelled well.

Being

3.5.5 F1 Score

This is a Precision and Recall function. It is necessary when a
balance between precision and recall is desired.

Being

3.6 Parameters

Each model has a set of hyper-parameters that should be adjusted
to achieve better results. The corresponding parameters are
indicated in the table below.

recall =
TP

TP + FN

TP true positive values

FN false negative values

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2 ⋅ precision ⋅ recall
precision + recall

TP true positive values

FP false positive values

FN false negative values

51

Table 4: Adjustable parameters for each model type

3.7 Environment

For the experiments, two NVIDIA GTX 1080 GPUs with CUDA
version 10.1 are hosted on a dedicated PRHLT server powered by
Ubuntu 20.04.

In order to speed up the experiments running others in parallel, an
additional computer, a Dell XPS 15 9570 equipped with an Intel
core i7-8750H processor, 16GB RAM and Nvidia 1050 4GB NVRAM
Max-Q GPU, is used. In any case, all machines have the same
dependencies installed in a CONDA environment.

The essential python modules for running the experiments are
PyTorch v1.11, Torchaudio v0.11, Torchvision v0.1, Transformers
v4.18, Hugging face Hub v0.5.1, Numpy v1.19 and Pandas v1.4.2.

Parameters

Name Type Description

Common

Learning rate Float Initial learning rate before scheduling

Epochs Integer Number of training set iterations

Batch size Integer Number of training samples per batch

Optimiser Object Model optimiser (Adam, SGD, etc)

Maximum token
length Integer First N tokens to be evaluated per

sample

Transformer based Frozen Boolean Freeze pre-trained model or not

LSTM based

Maximum word
vocab. Integer Maximum vocabulary available.

Hidden dimension Integer Hidden size of the LSTM layer

Number of layers Integer Number or LSTM layers.

52

Chapter IV - Experiments

In this study, various transformer-based neural models have been
tested, however, it is also desirable to put these results in
perspective with the previous state-of-the-art models, i.e. the
recurrent models with attention mechanisms or LSTMs.

To ensure fair model comparisons, the following restrictions are
established:

• All models have the same random seed.

• All models share the same training, test and set partitions.

• Each model must run for no more than 100 epochs. In the
case of transformer-based models, an additional 100 epochs
are allowed for fine-tuning.

• Every model has 2·10-5 as the initial learning rate. For
transformer-based models, the initial value of the learning
rate is reduced to 2·10-8 in the fine-tuning process.

The results in the following tables refer to the best version of each
model evaluated over the test set. The best version of a model is
defined as that which provides the highest accuracy value during
the model training against the development set.

Every model implementation in this study follows the same scheme:
the text is processed directly to the base model (LSTM, BERT, etc.)
and then the last hidden state generated by that model is extracted
and passed through a fully connected layer for classification. With
the exception of the last models, which are proposed contributions
that have a significantly higher number of layers than the previous
ones.

4.1 LSTM

Long Short-term memory (LSTM) is a kind of artificial neural
network. Unlike standard networks, the LSTM has feedback

53

connections. While recurrent neural networks (RNN) can process
individual data points and entire sequences of data, the LSTM
architecture is intended to provide RNNs with a short-term memory
that can last for thousands of time steps, so it is a "long-term
memory” [17]. A common LSTM unit consists of a cell, an input
gate, an output gate and a forgetting gate. The cell remembers
values during arbitrary time intervals and the three gates regulate
the flow of information in and out of the cell. The following tables of
results have been obtained for the LSTM model.

Table 5: Confusion matrix of LSTM on development data

As can be seen, this model is able to differentiate quite certainly
considering its execution time of just 3 minutes per epoch. It is also
remarkable its ability to differentiate sports news from the other
categories. There is a difference of approximately 10% on average
over the others.

Table 6: Average LSTM macro-metrics on development data

This model sets the baseline for the rest of the models that will be
developed later in this document. In the table above it can be seen
that we start from approximately 86.30% in all macro metrics. In

Predicted values

12000
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2541 134 165 158 84.76%
Sports 66 2787 16 70 94.83%

Business 153 18 2494 365 82.31%
Sci/Tech 173 56 273 2531 83.45%

Macro 
Precision 86.63% 93.06% 84.60% 81.02%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

86.28% 86.33% 86.34% 86.33%

54

this case, they are so similar and it is a good indicator. If we have
to choose between similar models that differ in precision and/or
recall, the best trade-off will be the one with the best balance
between them, As known as F1-Score.

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 7: Detailed confusion matrix for LSTM with development data for every single
class.

In the following figure, we can see how the accuracy of the model
evolves in the training and development set. It can be seen that the
evolution of the development set mirrors the training set relatively
well. However, we can appreciate that there is a certain decoupling
between them, especially in the intervals (10, 40) and at the end of
the execution. With slight overfitting.

Figure 28: Dev accuracy evolution for LSTM model

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2541 8610 457 392
Sports 2787 8853 152 208

Business 2494 8516 536 454
Sci/Tech 2531 8374 502 593

55

4.2 Bidirectional LSTM

LSTM is a Gated Recurrent Neural Network [17], and bidirectional
LSTM is just an extension of it. The main feature is that those
networks can store information that can be used for future cell
processing. In bidirectional LSTM, instead of just training one
model, we use two [14]. The first model learns the sequence from
the provided input, the second model learns this sequence
backwards. The following tables of results have been obtained for
the Bi-directional LSTM model.

Table 8: Confusion matrix of Bidirectional LSTM on development data

According to the table above, the Bidirectional LSTM network
improves on its predecessor in all aspects. It is also noticeable that
it still maintains its capacity to significantly distinguish sports news
from the rest.

Table 9: Average Bidirectional LSTM macro-metrics on development data

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2592 126 165 115 86.46%
Sports 38 2845 31 25 96.80%

Business 99 29 2619 283 86.44%
Sci/Tech 92 34 233 2674 88.16%

Macro 
Precision 91.88% 93.77% 85.93% 86.34%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

89.42% 89.48% 89.46% 89.47%

56

As can be seen, the use of bidirectional recurrent neural networks
with attention mechanisms in this problem implies (as expected) a
remarkable improvement in the classification. Being able to reach
the 90% accuracy threshold in 6.5 minutes per epoch. Despite
taking twice the time of the standard LSTM network, it still takes a
fair ly reasonable amount of computing time per forward
considering the actual performance. Particularly if low-resource
hardware is used in the deployment.

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 10: Detailed confusion matrix for Bidirectional LSTM with development data
for every single class.

In the figure below, we can see how the accuracy of the model
evolves in the training and development sets. It can be seen that
the evolution of the development data almost perfectly mirrors the
results obtained in the test set during the first 20 iterations. From
then on, there is a slight divergence that widens over time, which
indicates that the overfitting is much more intense than in the
previous model.

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2592 8773 406 229
Sports 2845 8872 94 189

Business 2619 8541 411 429
Sci/Tech 2674 8544 359 423

57

Figure 29: Dev accuracy evolution for Bidirectional LSTM model

4.3 BERT

Means Bidirectional Encoder Representations from Transformers,
BERT's main technical innovation is to apply the bidirectional
training of Transformer [11], this contrasts with previous efforts,
which examined a sequence of text from left to right or combined
left-to-right and right-to-left training. The presented data refers to
the fine-tuned version of the pre-trained BERT model. The following
tables of results have been obtained for the BERT model.

Table 11: Confusion matrix of BERT on development data

Predicted values
12000  

samples World Sports Business Sci/Tech Macro 
Recall

Actual
values

World 2671 109 125 93 89.09%
Sports 10 2914 11 4 99.15%

Business 88 15 2646 281 87.33%
Sci/Tech 64 17 169 2783 91.76%

Macro 
Precision 94.28% 95.38% 89.66% 88.04%

58

Moving to transformer-based models such as BERT, we see a
considerable improvement in the results. While the business and
sci/tech categories are still confused, it is less common. This is
understandable in part because science and technology are in
many cases the main drivers of the world's economic development
nowadays.

Table 12: Average BERT macro-metrics on development data

If we look at the macro-metrics in the table above, we can see that
BERT is the first model, of those seen so far, to surpass 91%
accuracy. However, this is not cost-free due to the enormous cost
of forwarding to it without a graphics card. In this case, with an
Nvidia 1080 GPU, each epoch took around 25 minutes, and in order
to achieve these results, an extra 100 iterations of fine-tuning were
required. So we should ser iously consider whether the
improvement in accuracy is worth the increased use of resources.

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 13: Detailed confusion matrix for BERT with development data for every single
class.

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

91.78% 91.84% 91.83% 91.84%

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2671 8840 327 162
Sports 2914 8920 25 141

Business 2646 8665 384 305
Sci/Tech 2783 8589 250 378

59

In the figure below, we can see how the accuracy of the model
evolves in the training and development sets. It can be observed
that the evolution of the development data perfectly replicates the
evolution of the training set. This behaviour is mirrored in the first
training stage and the fine-tuning phase. So we can assume that
this model does not suffer from overfitting. But what we can say
with certainty is that this model is the most stable of those seen so
far in this document in terms of its metrics during training.

Figure 30: Dev accuracy evolution for BERT model

4.4 BERT uncased

This is a modification of the original BERT model, with the special
characteristic that it does not differentiate between upper and
lower case letters. The following tables of results have been
obtained for the BERT uncased model.

60

Table 14: Confusion matrix of BERT uncased on development data

Unfortunately, this variant of BERT worsens the results obtained by
the original model in every aspect, being even poorer than a
bidirectional LSTM network. Therefore, in terms of both
computational cost and results obtained, this model would be
completely out of the scope of this task in any case. This may be
due to using acronyms and abbreviations that are usually
capitalised and so typical of news. It would not be surprising if this
could confuse the model enough to make its results so much
worse.

Table 15: Average BERT uncased macro-metrics on development data

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.  

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2586 131 156 125 86.26%
Sports 79 2807 30 23 95.51%

Business 126 36 2557 311 84.39%
Sci/Tech 111 41 234 2647 87.27%

Macro 
Precision 89.11% 93.10% 85.89% 85.22%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

88.31% 88.33% 88.36% 88.34%

61

Table 16: Detailed confusion matrix for BERT uncased with development data for
every single class.

The most positive thing about this model which can be seen in the
figure below is that like the original BERT it is very stable during
training. Coping the results obtained in the development set very
well compared to those obtained in the training set. Unfortunately,
the BERT model is still better in this aspect as it shows less
divergence.

Figure 31: Dev accuracy evolution for BERT uncased model 

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2586 8686 412 316
Sports 2807 8853 132 208

Business 2557 8550 473 420
Sci/Tech 2647 8508 386 459

62

4.5 DistilBERT

This is another modification of the original BERT model [22], with
some changes that make it a smaller, faster, cheaper and lighter
version obtained by distilling BERT. The following tables of results
have been obtained for the DistilBERT model.

Table 17: Confusion matrix of DistilBERT on development data

DistilBERT faces the same problem as BERT uncased, and even
worse. While it is true that this model can supposedly retain up to
97% of the capacity of the original BERT model, for this task it is
not capable of at least equaling it. This is understandable
(compared to BERT uncased) because this model has up to 40%
fewer parameters and runs up to 60% faster. In our case,
DistilBERT is the model that overcomes the 80% accuracy
threshold in the fewest number of iterations, in this case, during the
first 20 epochs (before fine-tuning) this model achieves first place.

Table 18: Average DistilBERT macro-metrics on development data

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2563 132 183 120 85.49%
Sports 68 2813 34 24 95.71%

Business 116 45 2556 313 84.36%
Sci/Tech 124 46 250 2613 86.15%

Macro 
Precision 89.27% 92.65% 84.55% 85.11%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

87.87% 87.90% 87.93% 87.91%

63

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 19: Detailed confusion matrix for DistilBERT with development data for every
single class.

In the figure below, we can see how the accuracy of the model
evolves in the training and development sets. It can be seen that
the evolution of the development data replicates quite well the
evolution of the training set, at least in the first phase of training. In
the fine-tuning phase, we can observe some de-coupling between
the accuracy obtained in the training and development sets. So it
suffers even more from overfitting than BERT uncased.

Figure 32: Dev accuracy evolution for DistilBERT model 

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2563 8694 435 308
Sports 2813 8838 126 223

Business 2556 8503 474 467
Sci/Tech 2613 8510 420 457

64

4.6 RoBERTa

Again, it is a model based on the BERT, which means: “Robustly
Optimised BERT Pre-training Approach” [24], It builds on BERT and
modifies key hyper-parameters, removes the next-sentence pre-
training objective and trains with much larger mini-batches and
learning rates. The following tables of results have been obtained
for the RoBERTa model.

Table 20: Confusion matrix of RoBERTa on development data

As might be expected given the above description, RoBERTa
slightly improves on the results obtained by BERT at about the
same time cost. In some specific metrics, a very marginal (almost
negligible) decrease in some scores can be seen, such as macro
recall and macro accuracy for world and sports categories
respectively. In general terms, RoBERTa presents the best results in
this work.

Table 21: Average RoBERTa macro-metrics on development data

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2680 111 127 80 89.39%
Sports 10 2912 9 8 99.08%

Business 82 9 2679 260 88.42%
Sci/Tech 76 13 167 2777 91.56%

Macro 
Precision 94.10% 95.63% 89.84% 88.86%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

92.07% 92.11% 92.11% 92.11%

65

Table 22: Detailed confusion matrix for RoBERTa with development data for every
single class.

Analogous to BERT, the evolution of the accuracy in the
development set almost closely mirror those of the training set.
Therefore, we can intuitively conclude that this fine-tuning of
RoBERTa does not show a high degree of overfitting.

Figure 33: Dev accuracy evolution for RoBERTa model 

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2680 8834 318 168
Sports 2912 8928 27 133

Business 2679 8667 351 303
Sci/Tech 2777 8619 256 348

66

4.7 XLM-RoBERTa

This is the multilingual version of RoBERTa [4]. It is a large multi-
lingual language model, trained on 2.5TB of filtered CommonCrawl
data. Common Crawl is a non-profit organisation that scraps the
Internet and publishes its data sets for free. The following tables of
results have been obtained for the XLM-RoBERTa model.

Table 23: Confusion matrix of XLM-RoBERTa on development data

The results clearly show that having a monolingual dataset
significantly detracts from the model's performance. They are
worse than the original BERT model but better than those of a
bidirectional LSTM network. Probably, in the case of a multilingual
dataset, XLM-RoBERTa would have scored better than any other
model. So while the current results are disappointing, we cannot
discard its capability if we want to deploy this model outside the
Anglophone world.

Table 24: Average XLM-RoBERTa macro-metrics on development data

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2638 112 157 91 87.99%
Sports 11 2907 9 12 98.91%

Business 88 22 2627 293 86.70%
Sci/Tech 78 18 215 2722 89.75%

Macro 
Precision 93.71% 95.03% 87.33% 87.30%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

90.78% 90.84% 90.84% 90.84%

67

Table 25: Detailed confusion matrix for XLM-RoBERTa with development data for
every single class.

As in its monolingual form, the evolution of accuracy in the
development set almost mirrors that of the training set, with no
clear evidence of overfitting.

Figure 34: Dev accuracy evolution for XLM-RoBERTa model

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2638 8825 360 177
Sports 2907 8909 32 152

Business 2627 8589 403 381
Sci/Tech 2722 8571 311 396

68

4.8 GPT-2

The data presented refer to the fine-tuned version of the pre-
trained GPT-2 model. This is a transformer model trained on a very
large corpus of English data using a self-supervised approach [16].
This means that it has been trained on the raw texts only, without
being labelled in any way by humans. The following tables of
results have been obtained for the GPT-2 model.

Table 26: Confusion matrix of GPT-2 on development data

There really isn't much to say about this model, for this task the
results are absolutely awful, equal to if not worse than tossing dice
or flipping a coin. The poor performance of GPT-2 is easily
understandable if we consider that this model is decoder-only. That
means, in its construction, it omits the fundamental part of a good
classifier, the encoder. GPT-2 has a niche in text generation such as
translation and question answering, but it is clearly not suitable for
classification.

Table 27: Average GPT-2 macro-metrics on development data

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1687 665 329 317 56.27%
Sports 519 1721 342 357 58.56%

Business 599 766 1099 566 36.27%
Sci/Tech 433 705 327 1568 51.70%

Macro 
Precision 52.10% 44.62% 52.41% 55.84%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

50.62% 51.24% 50.70% 50.97%

69

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 28: Detailed confusion matrix for GPT-2 with development data for every single
class.

As can be seen, it is possible to barely obtain an accuracy close to
50% at best for both the training and the development set.

Figure 35: Dev accuracy evolution for GPT-2 model 

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 1687 7451 1311 1551
Sports 1721 6925 1218 2136

Business 1099 7972 1931 998
Sci/Tech 1568 7727 1465 1240

70

4.9 RoBERTa CustomNet

This is the same RoBERTa model described previously with fully
connected and dropout layers added after getting the last hidden
state from the base model. The following tables of results have
been obtained for the RoBERTa CustomNet model.

Table 29: Confusion matrix of RoBERTa CustomNet on development data

This proposal was intended to add several fully connected layers to
the original model in the hope of helping the classification task
(unsuccessfully) by not reducing the RoBERTa outputs so
drastically to the number of labels of the problem. As a result, we
have obtained a model not much better than XML-RoBERTa for this
monolingual task but with a somewhat higher cost than the original
RoBERTa model. Making this approach impracticable for any
possible use.

Table 30: Average RoBERTa CustomNet macro-metrics on development data

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 2620 120 148 110 87.39%
Sports 17 2904 12 6 98.81%

Business 71 10 2694 255 88.91%
Sci/Tech 100 22 264 2647 87.27%

Macro 
Precision 93.30% 95.03% 86.40% 87.71%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

90.54% 90.61% 90.60% 90.60%

71

Table 31: Detailed confusion matrix for RoBERTa CustomNet with development data
for every single class.

As in the original version, the evolution of accuracy in the
development set almost mirrors that of the training set, with no
clear evidence of overfitting.

Figure 36: Dev accuracy evolution for RoBERTa CustomNet model 

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2620 8814 378 188
Sports 2904 8909 35 152

Business 2694 8546 336 424
Sci/Tech 2647 8596 386 371

72

4.10 RoBERTa ConvNet

This is the same RoBERTa model described previously with
convolutional, fully connected and dropout layers added after
getting and reshaping the last hidden state from the base model to
an image configuration. The following tables of results have been
obtained for the RoBERTa ConvNet model.

Table 32: Confusion matrix of RoBERTa ConvNet on development data

Again, the aim was to (unsuccessfully) improve the results obtained
with the RoBERTa model by transforming an NLP problem into a
Computer Vision one. The results are a little better than those
obtained by the previous proposal, however, it is not enough. This
model is placed in the third position, behind RoBERTa and BERT
respectively, but adding a complex structure of reshapes and
convolutions makes the whole process much more complex and
computationally expensive.

We should mention the title of the paper that gave rise to the
transformer-based models: "Attention Is All You Need", which,
quite rightly, shows that no matter how many extra layers or
mechanisms we add, we will only get worse results compared to
those obtained by purely transformer-based models.  

Predicted values
12000  

samples World Sports Business Sci/Tech Macro 
Recall

Actual
values

World 1240 111 143 87 88.63%
Sports 14 2913 8 4 99.12%

Business 86 11 2656 277 87.66%
Sci/Tech 95 15 182 2741 90.37%

Macro 
Precision 93.16% 95.51% 88.86% 88.16%

73

Table 33: Average RoBERTa ConvNet macro-metrics on development data

The table below shows the rate of True Positives, True Negatives,
False Positives and False Negatives for each class in the dataset.

Table 34: Detailed confusion matrix for RoBERTa ConvNet with development data
for every single class.

As in the original version, the evolution of accuracy in the
development set almost mirrors that of the training set, with no
clear evidence of overfitting.

Figure 37: Dev accuracy evolution for RoBERTa ConvNet model 

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

91.39% 91.42% 91.44% 91.43%

12000  
samples

True Positive
(TP)

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

World 2657 8807 341 195
Sports 2913 8924 26 137

Business 2656 8637 374 333
Sci/Tech 2741 8599 292 368

74

4.11 Development set results summary

Table 35: Model results overview for development set

*Using roberta-base as a starting point

Having analysed all the selected models, the results obtained in the
development set for the best version of each one can be seen in

100 Epochs
Model Type Accuracy
LSTM Standard 86.31%

LSTM II Bidirectional 89.57%

bert-base-cased
Frozen 74.59%

Fine-tuned 91.80%

bert-base-uncased
Frozen 78.89%

Fine-tuned 88.33%

distilbert-base-uncased
Frozen 85.32%

Fine-tuned 87.90%

roberta-base
Frozen 82.49%

Fine-tuned 92.07%

xlm-roberta-base
Frozen 82.71%

Fine-tuned 90.8%

gpt2
Frozen 50.02%

Fine-tuned 50.66%

custom-net*
Frozen 86.52%

Fine-tuned 90.55%

custom-convnet*
Frozen 86.63%

Fine-tuned 91.39%

75

the table above. Here again, the best model obtained is the
RoBERTa base with 92.07% accuracy. Followed by the original
BERT model, both are characterised by their stability in training and
metrics.

Figure 38: Overall accuracy evolution on the development set

However, there are models that, despite being worse in their
metrics, can be very valuable in other contexts, as not everything is
about accuracy. Often the speed of execution and resource
consumption is even much more important. This is the case with bi-
directional LSTM networks, for example. After 100 iterations
achieve stabilisation near the 90% threshold with a forward cost
considerably lower than provided by the transformer-based models.

76

Figure 39: Overall loss evolution on the development set

Furthermore, as seen in the figure above, the bidirectional LSTM
network can achieve the lowest values for the loss function in the
first stage of training. It is only followed (fairly well behind) by the
DistilBERT model, which although it is not as accurate as the
bidirectional LSTM network, it is important to take into
consideration that it can stabilise at around 85% accuracy in a little
less than 20 epochs. This makes it an ideal model when training
time is limited.

We can also observe that GPT-2 obtains disappointing results due
to what we mentioned earlier. GPT-2 is decoder-only [16], which
means that it omits the encoder part and that is critical for text
classification. Due to its low performance, it has been decided to
discard this model for the following figure. Otherwise, GPT-2 would
interfere with the visualisation of the graphs, making the evolution
of the rest of the models harder to see.

77

Figure 40: Fine-tuned model’s overall accuracy evolution on the development set.

As we can see, the extra 100 epochs of fine-tuning work very well
for the Transformer-based models. Since the top five models shown
in the figure above are of this type. Surprisingly, the models offering
the best performance for the loss function at this stage are
respectively: BERT base, bidirectional LSTM networks and XLM
RoBERTa. This means that while RoBERTa classifies better, it
makes some huge mistakes in certain predictions.

Figure 41: Fine-tuned models overall loss evolution on the development set 

78

Chapter V - Results

Unlike the previous chapter, this section shows the results obtained
by each model in the test set. That means that during training, the
development set has been used to check the model performance
every time it improved. This undoubtedly causes an inherent bias,
so it is imperative to verify that the model does indeed learn by
feeding it with samples that have never been processed and
checking its performance. As is evident, all models show a very
slight drop in their accuracy score, although it should be
highlighted that this drop is in any case fairly acceptable.

5.1 LSTM

For the LSTM networks, we observe an overall accuracy increase
by hundredths, so we can effectively assume that the results
obtained with the test set are representative of those obtained
during training. Surprisingly, in macro terms, the score for the
LSTM model improves very slightly with samples never seen
before.

Table 36: Average LSTM macro-metrics on test data

Looking at the confusion matrix below, it is interesting to note that
for the test set, there are some specific categories that are slightly
better than those of the development set, such as World, Business
and Sci/Tech. With slight drops for the sports category.

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

86.34% 86.34% 86.34% 86.34%

79

Table 37: Confusion matrix of LSTM on test data

5.2 Bidirectional LSTM

Following the trend of the results obtained with the LSTM model,
its bi-directional version improves the overall score very slightly in
macro terms with samples that have never been seen previously.

Table 38: Average Bidirectional LSTM macro-metrics on test data

Looking at the confusion matrix below, it is interesting to note that
for the test set, there are some specific categories that are very
slightly better than those of the development set, such as Sports
and Business. With slight drops in other categories.

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1628 75 104 93 85.68%
Sports 45 1788 16 51 94.11%

Business 99 17 1560 224 82.11%
Sci/Tech 107 52 155 1586 83.47%

Macro 
Precision 86.64% 92.55% 85.01% 81.17%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

89.71% 89.72% 89.71% 89.72%

80

Table 39: Confusion matrix of Bidirectional LSTM on test data

5.3 BERT

In the case of the BERT model, there is an expected not very
significant decrease of a few tenths. So we can assume that the
results obtained with the test set are representative of those
obtained during training.

Table 40: Average BERT macro-metrics on test data

Looking at the confusion matrix below, we can appreciate slight
improvements in some specific categories (sports and sci/tech) if
we look at the precision metric. However, this is not the case for
recall, which generally decreases for all categories with the
exception of the World category, which slightly improves.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1677 69 96 58 88.26%
Sports 27 1827 23 23 96.16%

Business 75 14 1640 171 86.32%
Sci/Tech 55 21 150 1674 88.11%

Macro 
Precision 91.44% 94.61% 85.91% 86.92%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

91.50% 91.51% 91.50% 91.51%

81

Table 41: Confusion matrix of BERT on test data

5.4 BERT uncased

BERT uncased model generally exhibits a drop of approximately
0.5% in all its macro metrics. So even though it cannot be said to
be unrepresentative of the model.

Table 42: Average BERT uncased macro-metrics on test data

Looking at the confusion matrix below, we can see slight decreases
in all categories (except sports) if we look at the precision metric.
However, this is not the case for recall, which increases slightly for
Sports and World and decreases for the rest.

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1702 60 81 57 89.58%
Sports 8 1875 12 5 98.68%

Business 60 9 1649 182 86.79%
Sci/Tech 48 11 113 1728 90.95%

Macro 
Precision 93.62% 95.91% 88.89% 87.63%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

87.96% 87.93% 87.96% 87.95%

82

Table 43: Confusion matrix of BERT uncased on test data

5.5 DistilBERT

DistilBERT holds its own while maintaining generally the same
macro metrics with a very slight drop of approximately 0.15%.

Table 44: Average DistilBERT macro-metrics on test data

Looking at the confusion matrix below, we can see increases in
some categories like Sports or World if we look at the precision
metric. For recall, it maintains almost the same behaviour.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1654 77 107 62 87.05%
Sports 56 1815 12 17 95.53%

Business 93 20 1571 216 82.68%
Sci/Tech 64 28 163 1645 86.58%

Macro 
Precision 88.59% 93.56% 84.78% 84.79%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

87.75% 87.75% 87.75% 87.75%

83

Table 45: Confusion matrix of DistilBERT on test data

5.6 RoBERTa

In the case of the RoBERTa model, we obtain an expected not very
significant decrease of approximately 0.16%. So we can assume
that the results obtained with the test set are representative of
those obtained during training.

Table 46: Average RoBERTa macro-metrics on test data

Looking at the confusion matrix below, we can appreciate slight
improvements in some specific categories (World and Sports) if we
look at the precision metric. However, this is not the case for recall,
which generally decreases for all categories with the exception of
the World category, which slightly improves.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1638 81 120 61 86.21%
Sports 52 1814 19 15 95.47%

Business 69 25 1597 209 84.05%
Sci/Tech 59 36 185 1620 85.26%

Macro 
Precision 90.10% 92.74% 83.13% 85.04%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

91.91% 91.93% 91.91% 91.92%

84

Table 47: Confusion matrix of RoBERTa on test data

5.7 XLM-RoBERTa

DistilBERT holds its own while maintaining generally the same
macro metrics with a very slight drop of approximately 0.15%.

Table 48: Average XLM-RoBERTa macro-metrics on test data

Looking at the confusion matrix below, we can that it still maintains
almost the same behaviour.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1706 58 80 56 89.79%
Sports 8 1879 9 4 98.89%

Business 52 9 1668 171 87.79%
Sci/Tech 43 10 115 1732 91.16%

Macro 
Precision 94.31% 96.06% 89.10% 88.23%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

90.67% 90.70% 90.67% 90.68%

85

Table 49: Confusion matrix of XLM-RoBERTa on test data

5.8 GPT-2

This model has been discarded due to its proven ineffectiveness for
this type of task, as discussed in chapter IV.

5.9 RoBERTa CustomNet

For the first proposed contribution, this model improves the overall
score very slightly in macro metrics with samples never seen
before.

Table 50: Average RoBERTa CustomNet macro-metrics on test data

This model slightly improve, in general, all metrics for each class.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1676 61 108 55 88.21%
Sports 12 1866 17 5 98.21%

Business 53 18 1648 181 86.74%
Sci/Tech 51 12 136 1701 89.53%

Macro 
Precision 93.53% 95.35% 86.33% 87.59%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

90.95% 91.00% 90.95% 90.97%

86

Table 51: Confusion matrix of RoBERTa CustomNet on test data

5.10 RoBERTa ConvNet

The second proposed contribution generally exhibits a drop of
approximately less than 0.1% in all its macro metrics. So it cannot
be said to be unrepresentative of the model.

Table 52: Average RoBERTa ConvNet macro-metrics on test data

As the original RoBERTa model, Looking at the confusion matrix
below, we can appreciate slight improvements in some specific
categories (World and Sports) if we look at the precision metric.
However, this is not the case for recall, which generally decreases
for all categories with the exception of the World category, which
slightly improves.  

Predicted values

7600
samples World Sports Business Sci/Tech Macro 

Recall

Actual
values

World 1680 61 107 52 88.42%
Sports 9 1875 10 6 98.68%

Business 39 7 1690 164 88.95%
Sci/Tech 60 13 160 1667 87.74%

Macro 
Precision 93.96% 95.86% 85.92% 88.25%

Avg.
Accuracy

Avg. Macro
Precision

Avg. Macro
Recall

Avg. Macro
F1 Score

91.37% 91.37% 91.37% 91.37%

87

Table 53: Confusion matrix of RoBERTa ConvNet on test data

5.11 Test set results summary

Predicted values
7600

samples World Sports Business Sci/Tech Macro 
Recall

Actual
values

World 1693 63 95 49 89.11%
Sports 10 1879 8 3 98.89%

Business 48 10 1661 181 87.42%
Sci/Tech 57 12 120 1711 90.05%

Macro 
Precision 93.64% 95.67% 88.16% 88.01%

100 Epochs
Model Type Accuracy
LSTM Standard 86.34%

LSTM II Bidirectional 89.71%

bert-base-cased
Frozen 73.88%

Fine-tuned 91.50%

bert-base-uncased
Frozen 78.05%

Fine-tuned 87.96%

distilbert-base-uncased
Frozen 85.22%

Fine-tuned 87.75%

roberta-base
Frozen 82.20%

Fine-tuned 91.91%

xlm-roberta-base
Frozen 82.72%

Fine-tuned 90.67%

gpt2
Frozen 49.78%

Fine-tuned 50.70%

88

Table 54: Model results overview for test set

*Using roberta-base as a starting point

The behaviour of the models has not changed substantially when
evaluated with previously unseen samples. In general, there is an
expected slight drop in their performance, but nothing remarkable.
Therefore, we can draw the same conclusions as mentioned in
chapter IV.

In the figure below it can be seen the maximum accuracy obtained
by each model in their first 100 epochs (in blue) and how the
transformer-based models have improved (in green) during their
fine-tuning stage. It should be noticed that all transformer-based
models need a mandatory fine-tuning stage in order to even
achieve the results of the bi-directional LSTM model.

Figure 42: Accuracy bar-plot breakdown on test data 

custom-net*
Frozen 86.30%

Fine-tuned 90.95%

custom-convnet*
Frozen 86.91%

Fine-tuned 91.37%

89

LSTM

BLSTM

BERT

BERT-uncased

DistilBERT

RoBERTa

XLM-RoBERTa

GPT-2

custom-net

custom-convnet

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100

Frozen Fine-tuned

Chapter VI - Real-world model
implementation

In addition to the previous work, a web interface has been
developed for the RoBERTa model, which has given the best
results. For this purpose, a docker environment has been created
where two containers are hosted. The first is the PHP web server
and the other has the model preloaded waiting for texts through
POST requests.

Figure 43: Deployment diagram

6.1 Docker

Docker is a set of platform-as-a-service products that use OS-level
virtualisation to deliver software in packages called containers. This
allows software solutions to be packaged together so the final
production and development environments are virtually identical.
This directly solves any incompatibility or dependency problems.  

90

It has been opted to deploy two independent containers connected
by a virtual network. The first one serves the API publicly through
POST requests, while the other one simply consumes the API,
presenting its functionality through a web interface.

6.2 Python HTTP server API

This container is responsible for serving the text classification API.
It is the minimum necessary implementation that loads the model
ready to evaluate strings. Finally, the HTTP library integrated with
Python is used to enable the reception of texts through web
requests for their evaluation and subsequent responses.

6.3 PHP server

This is a container running an Apache PHP server. It is designed to
consume the API, dressing it up with graphical elements that make
it user-friendly, combining HTML, CSS and JavaScript.

Figure 44: Operating example of the deployed system

Through the web interface by typing on the text box and then
clicking the button, the system will provide the inferred label.  

91

Chapter VII - Conclusions

All the models studied (except for GPT-2) reach the 85% accuracy
threshold in the test set predictions. It should be considered that
the transformer-based models have a hundred additional epochs of
advantage to fine-tune pre-trained models.

Indisputably those models that have obtained the best results are
BERT-based models. For the case of this task, the best one is the
base RoBERTa model [24], followed by the original BERT and the
proposed convolutional network based on the winning model. This
simply supports the " Attention is all you need" paper [5] in which
the authors suggest that learning the global dependencies between
input and output can just be done with attention mechanisms.

The models proposed with the idea of improving the RoBERTa base
model's performance for the text classification task have proved to
be a fiasco. The best of the two models, RoBERTa ConvNet, only
achieved the third position in the ranking. It is considered a failure
because it adds complexity to the model which was supposed to
improve.

Therefore, it would be appreciated which of the previous state-of-
the-art models are capable of outperforming those transformer-
based ones during the first hundred epochs. This is the case of
bidirectional LSTM networks, which is undoubtedly the network
which obtains the best results in the shortest time, nearing the 90%
accuracy threshold in its first forty epochs.

If we have in mind that DistilBERT [22] is a model derived from
BERT with several modifications that make it lighter and therefore
less expensive but more limited in its results, it is worth highlighting
that during the first phase of training, it is the model that starts with
the best results in its first forty epochs. So, in case of need
execution and training speed that can tolerate an error rate of
around 20%, it might be an interesting option to consider. This
advantage unfortunately does not hold in the fine-tuning process
where other transformer-based models generally take the lead.

92

The multilingual [4] version of RoBERTa has obtained fairly decent
results during the training. The fact of having a monolingual text
corpus has been a handicap. It is perfectly feasible that if we would
train this model with examples from different languages, in the
worst scenario the performance could be equivalent to the ability to
classify internationally with about a 10% error rate.

GPT-2 is a pre-trained model trained in a self-supervised way. It is
therefore particularly good at answering questions, translating,
generating and summarising texts, but has poor classification
skills. This explains the terrible performance of this model, which is
barely better than flipping a coin. GPT-2 does not have an encoder
as the original transformer architecture does [16], as it is decoder
only, there are no encoder attention blocks, so the encoder is
equivalent to the encoder itself, except for the masking in the multi-
head attention block. This explains its malfunctioning, as the most
important part of classifying texts is the encoder.

BERT was undoubtedly a breakthrough in the use of machine
learning for natural language processing. The fact that it is
accessible and allows quick fine-tuning, enables a wide range of
practical applications and finally, four years later the BERT model
and its derivatives are leading [21] at least the text classification
field.

In general, all models show a great facility to differentiate sports
news. This may be due to the fact that political, technological and
business news are nowadays quite intertwined. For example, by
2022 it is not surprising to observe political movements as a result
of Elon Musk's declarations about his intention to buy the wildly
popular bluebird social network.

The results obtained by other users using similar techniques, even
though they have used different data splits, are shown below.

93

Table 55: Results obtained by other users who used similar techniques with different
data partitions.

The difference in results can be perfectly explained by the use of
only two partitions, which adds more samples for training. The fact
of saving the model that provides the best accuracy in the test also
conditions it. The reduced number of epochs does not allow us to
see the long-term evolution where the model stabilises.

While deploying the model it should be noted that, if we opt for a
Transformer-based model, a CUDA-compatible GPU will be almost
mandatory. This is because, even if we only have to forward
evaluate a sample, these models have a large number of
parameters which can increase the response time. It is also a fact
that the machine used to deploy the RoBERTa model is a macOS
machine with an ARM processor under docker, which implies (at
least at the moment) several consecutive emulations, x86
architecture emulation from ARM running a Linux container with all
of that running on the CPU.

This should encourage a reconsideration of the choice of a model
for deployment, as the most accurate model does not always have
to be the best. There is a trade-off between the hardware cost and
the required performance for each model to be executed in a given
time. So, depending on what we want, we will have to consider a
balance between speed and accuracy.

Model Accuracy Split Epochs

Multinomial Naive
Bayes 89.62% Train-test split -

BERT [18] 94% Train-test split 4

LSTM 90.41% Train-test split 10

94

Chapter VIII - Future work

The study of the transformer-based language models seen in this
paper provides a basis for numerous further studies, ranging from
the more evident ones, such as multi-label support, fake news
detection, etc., to those that explore different topologies from the
typical many-to-one, such as news summarisation. However, there
is also a significant margin for improvement without necessarily
changing the nature of the original task.

8.1 Multi-lingual datasets

Previous experiments have shown that multilingual models such as
XLM-RoBERTa have only a 1.5% difference in the accuracy rate
compared to the best monolingual models. This means that in the
case of a multilingual corpus, we could obtain better results.

8.2 Large language models (LLM)

Some language models have recently been released to compete
directly with GTP-3 [20], some of which have been published during
the execution of this project and which due to time or lack of
resources it has not been possible to implement in this study.

Examples of recently published LLMs include:

• OPT-175B - Facebook, Inc.
9

• BLOOM - Hugging face, Inc.
10

• PaLM - Google, Inc.  11

 https://arxiv.org/abs/2205.010689

 https://huggingface.co/bigscience/bloom10

 https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html11

95

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://huggingface.co/bigscience/bloom
https://arxiv.org/abs/2205.01068

Acknowledgements

I would like to express my gratitude to my advisor Francisco
Casacuberta Nolla, who has guided me throughout this project.

I would also like to thank my friends and family who have
supported and offered me all the help I could need. Mostly for
giving me that little push I needed during my first year of university
studies. Thanks to them, I was introduced to computer science and
later on, I discovered all that artificial intelligence has to offer.

I would like to extend my special thanks to all the teachers I have
had since I entered the school system. From elementary school to
the highest grades, every little bit counts in this journey that has
spanned almost two decades. With special thanks to Walter
Valentine Cole Rogers, who was my spoken English teacher last
year. He strongly encouraged me to study for this master's degree
and regrettably has recently passed away, I will never forget you.

96

Bibliography

[1] A. Bhavani & B. Santhosh Kumar (2021) A Review of State Art of
Text Classification Algorithms. IEEE.

[2] Alex Graves, Santiago Fernández, Faustino Gomez & Jürgen
Schmidhuber (2006) Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural
Networks. IDSIA.

[3] Alex Sherstinsky (2018) Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) Network.
MIT. arXiv:1808.03314 [cs.LG]

[4] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav
Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave,
Myle Ott , Luke Zett lemoyer & Vesel in Stoyanov (2019)
Unsupervised Cross-lingual Representation Learning at Scale.
Facebook AI. arXiv:1911.02116 [cs.CL]

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser & Illia Polosukhin
(2017) Attention Is All You Need. arXiv:1706.03762 [cs.CL].

[6] Bijoyan Das & Sarit Chakraborty (2018) An Improved Text
Sentiment Classification Model Using TF-IDF and Next Word
Negation. arXiv:1806.06407 [cs.CL].

[7] Foram P. Shah, Vibha Patel (2016) A review on feature selection
and feature extraction for text classification. IEEE.

[8] Graves, A. (2012). Connectionist Temporal Classification. In:
Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational Intelligence, vol 385. Springer, Berlin,
Heidelberg.

[9] Haiyi Zhang, Di Li (2007) Naïve Bayes Text Classifier. IEEE.  

97

[10] Haojin Hu, Mengfan Liao, Chao Zhang & Yanmei Jing (2020)
Text classification based recurrent neural network. IEEE.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina
Toutanova (2018) BERT: Pre-training of Deep Bidirectional
Tr a n s f o r m e r s f o r L a n g u a g e U n d e r s t a n d i n g . G o o g l e .
arXiv:1810.04805 [cs.CL].

[12] Jeffrey Pennington, Richard Socher, & Christopher D. Manning.
(2014). GloVe: Global Vectors for Word Representation. Computer
Science Department, Stanford University.

[13] Jonathan J. Webster & Chunyu Kit (1992) Tokenization as the
initial phase in NLP.

[14] Li, C., Zhan, G. & Li, Z. (2018) News Text Classification Based
on Improved Bi-LSTM-CNN. 9th International Conference on
Information Technology in Medicine and Education, Hangzhou.

[15] P.J. Werbos (1990) Back-propagation through time: what it
does and how to do it. IEEE.

[16] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
Sutskever, I. (2019). Language models are unsupervised multitask
learners. OpenAI.

[17] Ralf C. Staudemeyer & Eric Rothstein Morris (2019)
Understanding LSTM -- a tutorial into Long Short-Term Memory
Recurrent Neural Networks. arXiv:1909.09586 [cs.NE].

[18] Samin Mohammadi & Mathieu Chapon (2020) Investigating the
Performance of Fine-tuned Text Classification Models Based on
Bert. IEEE.

[19] Selva Birunda, S. & Kanniga Devi, R. (2021). A Review on Word
Embedding Techniques for Text Classification. In: Raj, J.S., Iliyasu,
A.M., Bestak, R., Baig, Z.A. (eds) Innovative Data Communication
Technologies and Application. Lecture Notes on Data Engineering
and Communications Technologies, vol 59. Springer, Singapore.

98

[20] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka
Matsuo & Yusuke Iwasawa (2022) Large Language Models are
Zero-Shot Reasoners. University of Tokyo. arXiv:2205.11916
[cs.CL].

[21] Tingyu Zhang & Ruixia Zhang (2021) Revealing the power of
BERT for text sentiment classification. IEEE.

[22] Victor Sanh, Lysandre Debut, Julien Chaumond & Thomas Wolf
(2019) DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. Hugging Face. arXiv:1910.01108 [cs.CL].

[23] Vidish Sharma, Aditya Bendapudi, Tarun Trehan, Ashutosh
Sharma, Adwitiya Sinha (2020) Analysing Political Bias in Social
Media. IEEE.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer & Veselin
Stoyanov (2019) RoBERTa: A Robustly Optimized BERT Pretraining
Approach. Facebook AI. arXiv:1907.11692 [cs.CL].

[25] Ziqiang Wang, Xu Qian (2008) Text Categorization Based on
LDA and SVM. IEEE

[26] Ben F. (2015) Clickbait: The changing face of online journalism.
BBC. BBC news.

[27] Elias O. & Delermando B. (2016) Automatic classification of
journalistic documents on the Internet. Faculdade Católica
Salesiana do Espírito Santo, Brazil.

[28] Sarah T. (2014) Will the printed newspaper be extinct by 2040?.
Medium.

99

	Master's Thesis
	Table of contents
	List of Figures
	List of Tables
	Abstract
	Resumen
	Resum
	Keywords
	Chapter I - Introduction
	Chapter II - State of the art
	Chapter III - Experimental framework
	Chapter IV - Experiments
	Chapter V - Results
	Chapter VI - Real-world model implementation
	Chapter VII - Conclusions
	Chapter VIII - Future work
	Acknowledgements
	Bibliography

