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Abstract


It is proposed to study the pre-trained linguistic models available in 
PyTorch, in order to fine-tune them and improve their baseline 
accuracy for the task of news classification.


This work reviews the current state of the art of text classification 
as well as current techniques and classical methods, with a special 
focus on transformer-based models. It will also address the 
problem of corpus preprocessing for this kind of task. The study 
will take into consideration metrics such as training cost, accuracy, 
precision, recall and F1-Score in order to be able to compare them. 


It is essential to ensure that the results obtained in this study are in 
line with those achieved by other researchers using the same 
corpora, therefore, despite not having used the same data 
partitioning or the same techniques, it has been considered 
appropriate to mention them later on in this study.


The model is intended to be usable by end users, so the best 
implementation has been released for production through a web 
interface.
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Resumen


Se propone estudiar los modelos lingüísticos preentrenados 
disponibles en PyTorch, con el fin de afinarlos y mejorar su 
precisión de base para la tarea de clasificación de noticias.


Este trabajo revisa el estado actual de la clasificación de textos, así 
como las técnicas actuales y los métodos clásicos, con especial 
énfasis en los modelos basados en Transformers. También se 
abordará el problema del preprocesamiento del corpus para este 
tipo de tareas. El estudio tendrá en cuenta métricas como el coste 
de entrenamiento, la fiabilidad, la precisión, el recall y la F1-Score 
para poder compararlas. 


Es fundamental que los resultados arrojados en este estudio estén 
en consonancia con los obtenidos por otros investigadores 
utilizando los mismos datos, por lo que, a pesar de no haber 
utilizado la misma partición de datos ni las mismas técnicas, se ha 
considerado oportuno mencionarlos más adelante en este estudio.


Se pretende que el modelo sea utilizable por los usuarios finales, 
por lo que la mejor implementación se ha puesto en producción 
desde una interfaz web.  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Resum


Es proposa estudiar els models lingüístics preentrenados 
disponibles en PyTorch, amb la finalitat d'afinar-los i millorar la 
seua precisió de base per a la tasca de classificació de notícies.


Aquest treball revisa l'estat actual de la classificació de textos, així 
com les tècniques actuals i els mètodes clàssics, amb especial 
èmfasi en els models basats en Transformers. També s'abordarà el 
problema del preprocessament del corpus per a aquesta mena de 
tasques. L'estudi tindrà en compte mètriques com el cost 
d'entrenament, la fiabilitat, la precisió, el recall i la F1-Score per a 
poder comparar-les. 


És fonamental que els resultats llançats en aquest treball estiguen 
d'acord amb els obtinguts per altres investigadors utilitzant les 
mateixes dades, per la qual cosa, malgrat no haver utilitzat la 
mateixa partició de dades ni les mateixes tècniques, s'ha 
considerat oportú esmentar-los més endavant en aquest estudi.


Es pretén que el model siga utilitzable pels usuaris finals, per la 
qual cosa la millor implementació s'ha posat en producció des 
d'una interfície web.  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Chapter I - Introduction


1.1 Problem

Text classification is a highly relevant field [1] of study in Natural 
Language Processing (NLP) as it is possible to classify huge 
amounts of text into labels in a very short time and at a very low 
cost compared to what would be necessary if it were carried out by 
humans.


By properly training a text classifier, nowadays standardised 
problems can be dealt with [1], such as spam detection in e-mails 
[9], political bias detection [23], hate speech detection and so on. 
The examples mentioned earlier are mostly in the field of sentiment 
analysis, in this study we will try to develop a news classifier that 
tackles the problem from three different angles.


1.1.1 User perspective 

The world we live in is constantly evolving faster and faster, so 
quickly that it often takes time for society to assimilate new 
technological developments. The progressive extinction of the 
written press [28] and its consequent transition to the electronic 
format has allowed any person or group of people to start up media 
at almost zero cost. Nevertheless, there is a counterpart that 
should not be underestimated. The proliferation of media has 
caused an increase in competition to gain clicks or subscriptions 
from customers [26]. This inevitably leads to the situation we are 
facing today, where apparently a headline can be deliberately 
written to be misinterpreted, or even worse, content that is not 
even minimally related to the topic in vogue (such as politics) is 
forced into the art icle to achieve relevance. Al l of the 
aforementioned have resulted in a rising distrust of the media on 
the user side. A system that can quickly alert users to such articles 
could be a time-saver for them.
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1.1.2 Press perspective  

As mentioned in the previous section, digital media are on the rise 
and traditional media are aware of this. It is therefore not surprising 
that they want to digitise their old printed editions to their website 
[27]. This problem requires two different models working together, 
firstly a system that automatically converts the content into digital 
content and then another one that sorts it into a specific section of 
their online newspaper, helping to search better for old documents 
and preserve the history of which traditional newspapers are part.


1.1.3 News aggregation perspective 

News aggregators such as Flipboard  or Feedly  make sure to 1 2

crawl the web and display the latest news to users. For these kinds 
of platforms, it is vital to classify them correctly to fit the 
customer's preferences, however, this is not always possible, as 
manual news tagging standards are barely followed. Models such 
as those proposed in this paper can be very useful for this kind of 
service.


1.2 Proposed solution

There are several approaches available to address the text 
classification problem. While it is possible to try to solve the task 
with classical methods, the use of these has been completely 
discarded.


Classical methods are ineffect ive in establ ishing strong 
relationships between words in a text [1]. Even those methods that 
are able to set them up inevitably face the problem of having to 
apply smoothing techniques, because there are words that have 
not been seen during training.


 https://flipboard.com1

 https://feedly.com2
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It is also possible for a word that, despite being recorded in the 
model, there is no probability associated with a given context [9]. 
There is even a scenario where the sentence to be evaluated could 
be so long that the probability associated with it is negligible.


For all of the above reasons, the use of neural models is necessary. 
There are various topologies of neural networks that can be used 
for the task of text classification, and these will be discussed in 
more detail later on in this document.


In addition, we will use pre-trained language models (such as BERT  
[11] or GPT-2 [16]) to speed up training and propose custom 
solutions based on the best-performing one.


In this study, we will be looking at pre-trained models available in 
PyTorch to fine-tune them for the task of news classification. We 
will be considering various metrics such as training cost, accuracy 
and model performance in order to determine the best model for 
this task. The aim is to create a model that is usable by end-users, 
so the best implementation will be released for production. 


1.3 Objectives

The purpose of this tool is to enable users to identify the main topic 
of an article without much effort, thus avoiding the need to read the 
full text. This is especially useful for customers who are short on 
time or who want to quickly get an overview of the main topics 
being discussed on a certain website or blog. By using this tool, 
users can save time and discard articles containing irrelevant 
information quickly and easily.


Therefore, the project's objectives include the following:


• Research and enumerate those state-of-the-art methods that 
can be used to accomplish the news classification task.


• Search for labelled dataset(s) that allow training proposed 
models.
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• Pre-process the data and carry out a thorough evaluation of 
the hyper-parameters that should be taken into consideration.


• Test all neural models (pre-trained mostly) that may be able to 
solve this task by applying a fine-tuning technique. 
Considering time constraints.


• Perform enhancements on the best-performing model 
according to its behaviour on the pre-labelled dataset.


• Deploy the best approach so that it can be used in 
production.


• Draw conclusions from the experiments carried out.


1.4 Document breakdown

The document is structured in eight principal items: state of the art 
(Chapter I), the experimental framework (Chapter II), the 
environment in which the experiments will be performed (Chapter 
III), it is experimentation on the models (Chapter IV), a summary of 
the obtained results (Chapter V),  a brief description of the model 
deployment (Chapter VI), the conclusions of the study (Chapter VII), 
and possible future works that may be derived from this project 
(Chapter VIII).


In the state-of-the-art section, there will be an overview of the text 
classification techniques that have been applied so far. Some 
classical methods will be briefly described, but there will be a 
particular emphasis on neural models, especially those based on 
transformers.


The experimental framework section will describe in detail the data 
used to carry out the required task, as well as the necessary pre-
processing of the data and the metrics to be used. Then, in the 
environment section, it will be described which tools, environments 
and/or libraries have been used to perform the experiments.
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In chapter IV, there will be a detailed review of the results obtained 
by each model using the metrics presented in the experimental 
framework. Then, in chapter V, the results obtained will be shown 
globally in order to compare the models in the conclusions section 
and finally, the future work that may be derived from this project 
will be mentioned.
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Chapter II - State of the art


2.1 Text classification

Text classification is the technique of categorising texts into labels 
based on their content [1]. It is one of the most relevant tasks in 
natural language processing (NLP), consisting of attempt detection, 
topic labelling, spam detection, and sentiment analysis. In this way, 
text classifiers can automatically categorise texts based on a 
predefined set of labels.


NLP, data mining and machine learning techniques are used to find 
and detect patterns in electronic documents automatically. The 
main goal of text mining is to allow users to retrieve information by 
using textual tools and process operations. The objective of 
information extraction (IE) methods is to extract accurate data from 
textual documents [1]. That is the initial approach, which proposes 
that text mining is equivalent to data mining. 


The process of searching for documents that answer questions is 
known as information retrieval (IR) [1]. This involves the use of 
statistical measures and methods for the automated processing of 
text data and its reference to the given query. In its widest context, 
information retrieval covers the whole scope of information 
processing, from data retrieval to knowledge retrieval. 


Text classification consists of classification processing steps such 
as preprocessing, feature extraction and the classification model 
for training and prediction. The training set is used to train the 
model and prediction is used to forecast the most plausible 
labelled output.
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Figure 1: Common workflow scheme for text classification 

2.1.1 Pre-processing 

As in most cases when working with data, pre-processing is one of 
the most important tasks for text classification in natural language 
processing [1]. There are three major methods for processing. Such 
as:


• Tokenisation: involves strings that are divided into smaller 
tokens. It is possible to tokenise paragraphs into sentences 
and tokenise sentences into words. 


• Stop word removal: this consist of eliminating common and 
frequent words like the, a, an etc. and removing irrelevant 
words. 


• Stemming: or noise removal is the process of reducing 
inflected words to their word stem, base or root form.
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2.1.2 Feature extraction 

Feature extraction not just provides greater accuracy, it also offers 
higher probability and saves computational time [7]. It has different 
properties such as a bag of words, embedding and extraction of 
features from the text which are converted into different vectors. 
The vectors are counted in the form of TF-IDF vectors [6], namely 
term frequency (TF) which means the number of times a term 
appears in a document compared to the total number of words in 
the document and inverse document frequency (IDF) reflecting the 
proportion of documents in the corpus that contains that term.


Term frequency: 




Being














Inverse Document Frequency: 




Being














The TF-IDF of a term is calculated by multiplying TF and IDF 
scores. 

TF(t, d ) =
f (t, d )

N

t a term

d a document

N total number of terms in a document

f (t, d ) number of times a term appears in a document

IDF(t, D) = log
|D |

1 + g(t, D)

t a term

D the set of available documents

|D |  total number of documents

g(t, D) number of documents in which a term appears
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2.1.3 Text classification algorithms 

As we can see, certain types of data can only be understood as a 
sequence. Unlike other networks, such as those implemented for 
an image recognition system, where examples are handled by a 
single forward. Due to their unstructured nature, texts are 
computationally hard to process. Despite this, they can be a 
significant information source.


However, thanks to advances in natural language processing (NLP), 
implementing this kind of task has become easier to carry out. 
These machine learning algorithms can be categorised under three 
possible types [1]:


• Supervised: Naive Bayes, Support Vector Machines (SVM), 
Neural Networks, Convolutional Neural Networks and Recurrent 
Neuronal Networks.


• Unsupervised: K-Means, Clustering, Principal Components 
Analysis (PCA) and Association Rule Learning.


• Semi-supervised: Self-training, Semi-Supervised Vector 
Machines (S3VM) and Multi-view pseudo-labelling.


As it can be observed, models based on Transformers have not 
been categorised in any of the three categories above, this is 
because the boundaries between them are blurred when using this 
technique. Since models such as BERT [11] or GPT-2 [16] are 
usually pre-trained with large data sets (usually in an unsupervised 

TF-IDF(t, d, D) = TF(t, d ) ⋅ IDF(t, D)

t a term

d a document

D the set of available documents

TF(t, d ) Term Frequency

IDF(t, D) Inverse Document Frequency
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way) and then transfer learning to a task using supervised samples 
[18]. 


Even using the two examples above we can observe remarkable 
differences: GPT-2 was pre-trained in a semi-supervised way using 
a very large English corpus, while BERT was trained using two 
unsupervised tasks: Masked-LM and Next Sentence Prediction.


Some of the techniques mentioned above are detailed in more 
detail later in this document. Such as:


• Naive Bayes


• Support Vector Machines (SVM)


• Recurrent Neural Networks (RNN)


• Long Short-Term Memory (LSTM)


• Connectionist Temporal Classification (CTC)


• Transformers


This project will focus on the use of Transformers and consequently 
on the existing models available.


In a summary, machine learning text classification learns how to 
make classifications based on prior observations. By using pre-
labelled examples as training data, machine learning algorithms 
can infer the different associations between text samples.


To train a machine learning algorithm on text data, first, the text 
must be converted into numerical feature vectors. This can be done 
using various methods depending on the type of text and the 
desired features. When the text is in vector form, the machine 
learning algorithm is then given training data consisting of pairs of 
feature vectors and labels. The algorithm uses this data to learn 
how to make classifications based on prior observations.


Different types of features can be used to represent the text, such 
as bag-of-words, part-of-speech tags, dependency parse trees, 
etc. The features are typically chosen based on what is known 
about the task at hand. Once the training data has been processed 
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and the model generated, it can be used to make predictions on 
unseen data. To do this, the text is first transformed into a vector of 
features in the same way as the training data. The classification 
model is then applied to the features vector to generate a 
prediction.


2.2 Naive Bayes

The Naive Bayes method is one of the most well-known methods 
and was used especially at the end of the 20th century for 
multinomial classification tasks, in particular in the detection of 
junk mail [9].


A pre-labelled dataset is needed to train the classifier. From this 
data, it is possible to obtain the prior probability of each label, as 
well as the conditional probability on each class for words in the 
text.








Being

















Notice that in order to avoid misclassifications it is necessary for all 
the input words must have been seen previously in training, at least 
once per class, otherwise, we would be providing a likelihood of 
zero regardless of the other words in the sequence. 


p(c |W ) = p(c) ⋅
N

∏
i=0

p(wi |c)

̂c = argmax
c∈C

(p(c |W ))

W a sentence

wi word of the sentence

N sentence length

C a set of available classes

c a singles class
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One way to avoid this problem is to use some kind of smoothing 
method. But we would not solve the main limitation, it takes a 
sequence of words independent of each other, no matter what 
order or context they are in.


2.3 Support Vector Machines

Support vector machines (SVM) are somewhat more expensive to 
train than naive Bayes, but it can provide more accurate results. 
The main idea behind this algorithm is a hyper-plane, which 
separates at best two or more groups of objects. An optimal hyper-
plane should be that which leaves as large a gap as possible 
between groups [25].


The forecast hypothesis for an SVM is defined as follows:
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To perform a non-binary classification of the data on tasks with 
more than two classes, it will be necessary to make a hypothesis 
for each class, that isolates each one from the others, as shown in 
the picture below.


h(xi) = sign(
S

∑
j=1

ajyjK(xj, xi) + b)

K(v, v′￼) = exp(
| |v − v′￼| |2

2γ2
)

xi  the feature vector

b  a constant

aj  a constant for each xj

yi  represents the class (-1 or 1) for each xj

S  the number of support vectors

K  ∈ (0.0, 1.0)  the kernel function (1 being identical, 0 fully different vectors)
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Figure 2: Multi-class SVM 

Sometimes data may not be linearly separated by the initial number 
of dimensions, increasing the number of dimensions of data may fix 
this issue. In the case of text classification, it is enough to simply 
modify the feature extractor.


2.4 Recurrent Neural Networks

A recurrent neural network (RNN) is an artificial neural network that 
works with sequential data [3]. Common uses for this kind of 
network include speech recognition, image captioning, language 
translation, and natural language processing (NLP).


They are distinguished by their “memory” as they take information 
from prior inputs to influence the current input and output. While 
conventional deep neural networks consider all inputs and outputs 
independent of each other, the output of recurrent neural networks 
hangs on the sequence's prior parts.


Another feature of recurrent networks is that they share parameters 
across each layer of the network. Unlike feedforward networks with 
different weights at each node, recurrent neural networks share the 
same weight parameter at every layer of the network. Having said 
that, these weights are still adjusting in the back-propagation and 
gradient descent processes to facilitate learning by reinforcement.
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Figure 3: RNN 
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2.4.1 Back-propagation through time 

Recurrent neural networks take advantage of the back-propagation 
through time (BPTT) algorithm to compute gradients [15], which is 
slightly different from traditional back-propagation as it is special 
for sequence data. For better understanding, we are considering 
this representation which matches the text classification task.





xt  the current sequence's input

h0  initial hidden state

ht  the current hidden state

yt  the current output
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Figure 4: RNN Weights 
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xt  the current sequence's input

h0  initial hidden state

ht  the current hidden state

y  the output

Wx  the input weights matrix

Wh  the hidden state weights matrix

Wy  the output weights matrix

∂ET

∂Wh
=

T

∑
t=1

∂ET

∂YT
⋅

∂YT

∂ht
⋅

∂ht

∂Wh

∂ET

∂Wx
=

T

∑
t=1

∂ET

∂YT
⋅

∂YT

∂ht
⋅

∂ht

∂Wx

ET  the error at time T

YT  the output at time T
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There are several types of RNN such as:


• One to Many


• Many to One


• Many to Many with the same length output


• Many to Many with different length outputs


• Etc


2.4.2 One to Many 

A network produces an output sequence given a single input. Its 
applications can be found in Music Generation and Image 
Captioning.





Figure 5: One to Many RNN 

2.4.3 Many to One 

It generates a single output given a sequence, this kind of RNN is 
used in text classification.


Wx  the input weights matrix

Wh  the hidden state weights matrix

ht  the hidden state at time t
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Figure 6: Many to One RNN 

2.4.4 Many to Many I - Same length output 

The network generates an output with the identical length of the 
input. A common application can be found in Name-Entity 
Recognition.


Figure 7: Many to Many I RNN 

2.4.5 Many to Many II - Different length output 

Mainly used in machine translation, it allows the generation of an 
output sequence with a different length than the input sequence.
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Figure 8: Many to Many II RNN 

2.4.6 Bidirectional recurrent neural networks 

Classical RNNs only process input texts word by word, from 
beginning to end. Exactly in the same way as a standard human 
would. However, we can also somehow intuit words or concepts 
later in time. Therefore, it would be even more convenient if the 
model could also know the future words and solve the problem 
more effectively. For this case, bi-directional RNNs are used.


In a bidirectional RNN [14], we consider two separate sequences. 
One from right to left and the other in the reverse order. The 
outputs are generated by concatenating the sequences at each 
time and generating weights accordingly. Note that both the left-to-
right and right-to-left layers are never directly connected.


Figure 9: Bi-directional RNN 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2.4.7 Connectionist Temporal Classification 

Connectionist temporal classification (CTC) is a type of neural 
network layer for training recurrent neural networks that were 
designed specifically for temporal classification tasks, where the 
alignment between the inputs and the expected output is unknown 
[2][8]. It models all aspects of the sequence with a single neural 
network and does not require combining the network with any extra 
model, such as a hidden Markov model. It also does not require 
pre-segmented training data or additional post-processing to 
extract the sequence label from the network output. They are 
typically used for handwriting recognition or speech recognition.





Figure 10: Example of CTC usage for handwriting recognition 
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2.5 Long Short-Term Memory Networks





Figure 11: LSTM Overview 

Long-term memory networks (LSTM) are a special kind of recurrent 
neural network that can learn order dependence [17]. The output of 
the previous step is used as input to the current step in the RNN. 
LSTM handles the problem of long-term dependence, where RNNs 
are unable to predict the words stored in long-term memory, but 
can make more accurate predictions based on the actual data. 
RNNs do not perform efficiently as the gap length increases. LSTM 
can preserve information for a long time by default. 


Cells store information, while gates manipulate memory. There are 
three gateways:


• Forget gate


• Input gate


• Output gate


24



2.5.1 Forget gate  

The forget gate is the first step in the process [10][17]. Based on 
the previous hidden state and the new input data, it will decide 
which bits of the cell state (long-term memory of the network) are 
useful.


To do this, we are feeding the previous hidden state and the new 
input data into the network. This network generates a vector where 
each element is in the interval [0,1] (ensured by using the sigmoid 
activation). In the forget gate, this network is trained to produce 
close to 0 when a component of the input is irrelevant and close to 
1 when it is relevant. Each element of this vector can be thought of 
as a filter that lets in more information as the value gets closer to 1.


These output values are sent upwards and point-wise multiplied 
with the previous state of the cell. This point-wise multiplication 
means that components of the cell state which have been 
considered irrelevant by the forget gate, the network will be 
multiplied by a number close to 0 and will therefore have less 
influence on the following steps.


In summary, the forget gate decides which pieces of the long-term 
memory should be forgotten (have less weight) given the previous 
hidden state and the new data in the sequence.


Figure 12: LSTM - Forget gate 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The function which defines the forget gate is defined as:
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2.5.2 Input gate 

The next step involves the new memory network and the input gate  
[10][17]. Given the previous hidden state and new input data, this 
step determines what new information should be added to the 
network's long-term memory (cell state).


The new memory network and the input gate are neural networks 
themselves, and both take the same inputs, the previous hidden 
state and the input data. It should be emphasised that the inputs 
here are the same as for the forget gate.


The new memory network is a hyperbolic tangent-activated neural 
network that combines previous hidden states with new input data 
to deliver a new memory update vector. This vector indicates how 
much each long-term memory component (cell state) of the 
network needs to be updated given new data.  

ft = σ(Wf[ht−1, xt] + bf )

ft  the forget gate

σ  sigmoid activation function

Wf  forget gate weights matrix

ht−1  hidden state of the previous LSTM block

xt  current input

bf  forget gate bias
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Figure 13: LSTM - Input gate 

Note that we use a hyperbolic tangent here because its values lie in 
[-1,1] and so can be negative. The possibility of negative values 
here is necessary if we wish to reduce the impact of a component 
in the cell state.


Despite this, it doesn't actually check if the new input data is even 
worth remembering. Input gates play a crucial role here. The input 
gate is a sigmoid-activated network which acts as a filter, deciding 
which components of the new memory vector should be retained.


This network will output a vector of values in [0,1] allowing it to act 
as a filter through point-wise multiplication. An output near zero, 
tells us we don’t want to update that element of the cell state. 
Earlier outputs are multiplied point-wise. By adding the combined 
vector to the cell state, the long-term memory of the network is 
updated. The function which defines the input gate is defined as:





Being




















it = σ (Wi[ht−1, xt] + bi)

it  the input gate

σ  sigmoid activation function

Wi  input gate weights matrix

ht−1  hidden state of the previous LSTM block

xt  current input

bi  input gate bias
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2.5.3 Output gate 

The output gate calculates the next hidden state using input data, 
prior hidden state and the recently updated cell state [10][17].


It is not possible to simply return the new cell state, as we would 
be giving back all the information accumulated so far. To prevent 
this from happening, a filter is simply added in the same way as in 
the forget gate. Therefore, a sigmoid function is used as a filter, 
since its range of values is between zero and one. Nevertheless, 
before applying the filter, the state of the cell is passed through a 
hyperbolic tangent to ensure a range of values in the interval [-1,1].


Figure 14: LSTM - Output gate 

The function which defines the output gate is defined as:
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ot = σ (Wo[ht−1, xt] + bo)

ot  the output gate

σ  sigmoid activation function

Wo  output gate weights matrix

ht−1  hidden state of the previous LSTM block

xt  current input

bo  output gate bias
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The equations for the cell state are defined as:
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The equation for the hidden state is defined as:
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2.6 Transformers

A transformer is a machine learning model that embraces the self-
attention mechanism [5], differentially weighing the significance of 
each part of the input data. 


C̃t = tanh(Wc[ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

C̃t  the candidate for current cell state 

Ct  the current cell state 

Ct−1  the previous cell state 

tanh  hyperbolic tangent activation function

Wc  cell state weights matrix

ht−1  hidden state of the previous LSTM block

xt  current input

bc  cell state bias

ft  the forget gate output

it  the input gate output

ht = ot ⊙ tanh(Ct)

ht  the hidden state

ot  the output gate output

Ct  the current cell state 
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Transformers, like recurrent neural networks (RNNs), are used for 
tasks like summarising and text translation since they are designed 
to deal with sequential data. Transformers, however, handle all of 
the input simultaneously, in contrast to RNNs, which process each 
token of a sequence one at a time. The attention mechanism 
provides context for any position in the input stream. For example, 
if the input data is a natural language sentence, the transformer 
does not have to process the words one by one. This allows greater 
parallelisation than RNNs and consequently reduces training times.


To understand how transformers work, it is necessary to explain its 
main parts:


• Inputs embeddings 


• Positional encoding 


• Self-attention mechanism


• Layer normalisation


In the following picture, the architecture of a transformer is 
represented the same way as in the original paper [5]. It can be 
split into two parts:  the encoder (left) and the decoder (right). 
Since we are making text classification, the decoder part could be 
omitted.
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Figure 15: Transformer architecture 
Source: Attention Is All You Need [5] 

2.6.1 Inputs embeddings  

As mentioned earlier in this document, computers are not able to 
process words straight away, they need to be expressed as vectors 
or matrices in order to be interpreted. The main idea is to map each 
word to a point in space where words with similar meanings are 
spatially close to each other. This is often referred to as 
"Embedding space".


31



2.6.2 Positional encoding  

The vectorisation of words in itself is not enough; the same word in 
different contexts may have completely different meanings. That is 
where positional encoders come in.


Figure 16: The same word could have different meanings depending on the context 

Since transformers contain no recurrence and no convolution, for 
the model to make use of the order of the sequence, we must inject 
some information about the relative or absolute position of the 
tokens in the sequence. To this end, we add "positional encodings" 
to the input embeddings at the bottoms of the encoder and 
decoder stacks [5]. The positional encodings have the same 
dimension as the embeddings so that the two can be summed. 


There are many choices of positional encodings, In the original 
paper [5], they use sine and cosine functions of different 
frequencies. In the below expression, we can see that even 
positions correspond to the sine function and odd positions 
correspond to the cosine function.
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PE(k,2i) = sin(k /n
2i
d )

PE(k,2i+1) = cos(k /n
2i
d )

k  the position of a word in the sequence

i  used for mapping to column indices 0 ≤ i ≤
d
2

n  a User-defined scalar. Originally set to 10000.

d  the dimensionality of input and output
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The following figure shows an example of Positional Encoding for the sentence 
"I am a student” with  and .


Figure 17: Example of Positional Encoding Matrix Calculation 

2.6.3 Self-attention mechanism  

Attention implies which part of the sentence to focus on [5]. An 
attention function can be described as mapping a query and a set 
of key-value pairs to an output, where the query ( ), keys ( ), 
values ( ) and output are all vectors. These vectors are created by 
multiplying the embedding by three weights matrices ( ,  and 

 respectively) that are adjusted during the training process. 
Notice that these new vectors could be smaller (architecture 
choice) in dimension than the embedding vector.











PE( pos,2i)  the positional encoding for even column indices positions

PE( pos,2i+1)  the positional encoding for odd column indices positions

n = 100 d = 4

Q K
V

WQ WK

WV

Q = X × WQ

K = X × WK

V = X × WV
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So far, the attention mechanism has provided one answer at once 
for each query. The transformer model introduces Multi-Head 
attention [5], which extends the previous mechanism to produce an 
answer that combines multiple key-query comparations. Multi-
Head attention consists of performing several parallel attention 
operations and combining outputs to obtain the final context 
vector. Each attention operation (or "head") is performed by 
applying a linear projection to the query, keys and values, then 
calculating the attention between them and subsequently 
projecting the result to a common space.





where 
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Attention(Q, K, V ) = sof tmax(
QKT

dk
)V

Q  the query vector

K  the keys vector

V  the values vector

dk  the dimensionality of K

MultiHead(Q, K, V ) = Concat(head1, head2, . . . , headh)WO

headi = Attention(QWQ
i , KWK

i , V WV
i )

Q  the query vector

K  the keys vector

V  the values vector

h  the number of attention layers. Originally set to 8

headi  the ith head

WO  global weigth matrix 

WQ
i   the ith query weigth matrix 

WK
i   the ith key weigth matrix 

WV
i   the ith value weigth matrix 
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2.6.4 Layer normalisation 

It should be noted that each sub-layer (self-attention and 
FeedForward) of each encoder has a residual connection around it, 
and is followed by a layer normalisation step [5].


It consists of normalising the outputs of the neural network layers 
so each neurone follows a normal distribution. To normalise a layer, 
we calculate the standard deviation and the mean of each 
neurone's activations in that layer, then subtract the mean and 
divide it by the standard deviation.


The normalisation of a layer can be calculated as follows:
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Note that  and  are parameters learned during training, and are 
used to enable the layer to generate normal distributions different 
from the standard normal distribution.


2.6.5 Pre-trained models 

Transformers are replacing RNN-based models and becoming the 
primary choice for NLP problems. Due to its facility to perform 
parallelisation, it allows training on bigger datasets. This resulted in 
the development of pre-trained models such as BERT (Bidirectional 
Encoder Representations from Transformers) and GPT (Generative 
Pre-trained Transformer), which are trained on large linguistic 
datasets and can be fine-tuned for specific tasks.


LayerNorm(ai) = γ
ai − μi

σi
+ β

ai the ith layer

μi the mean vector of the ith layer 

σi the standard deviation vector of the ith layer 

γ β
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2.6.5.1 BERT 


Means Bidirectional Encoder Representations from Transformers 
[11],  BERT's main technical innovation is to apply the bidirectional 
training of Transformer, this contrasts with previous efforts, which 
examined a sequence of text from left to right or combined left-to-
right and right-to-left training.


To make BERT handle various downstream tasks, this input 
representation is able to unambiguously represent both a single 
sentence and a pair of sentences (e.g.,  Question, Answering) in 
one token sequence. In the original paper, a “sentence” can be an 
arbitrary span of contiguous text, rather than an actual linguistic 
sentence. A “sequence” refers to the input token sequence to 
BERT, which may be a single sentence or two sentences packed 
together. The first token of every sequence is always a special 
classification token ([CLS]). The final hidden state corresponding to 
this token is used as the aggregate sequence representation for 
classification tasks. Sentence pairs are packed together into a 
single sequence. 


The input embedding is denoted as E, the final hidden vector of the 
special [CLS] token , and the final hidden vector for the   
input token . For a given token, its input representation is 
constructed by adding the corresponding token, segment, and 
position embeddings.


Figure 18: BERT input representation 
Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [11] 

C ∈ RH ith

Ti ∈ RH
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This model consists of two steps: pre-training and fine-tuning. 
During pre-training, the model is trained with unlabelled data on 
different tasks. During the tuning step, the model is initialised with 
the pre-trained parameters, and all of these are refined using 
labelled data for subsequent tasks. Furthermore, each of these 
tasks has different tuning models.


Figure 19: BERT overview 
Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [11] 

The architecture of the BERT model consists of a multi-layer bi-
d i rec t iona l t rans former encoder based on the o r ig ina l 
implementation but removing the decoder from the model and just 
keeping the encoder part. 


BERT has two model sizes. Firstly, there is BERT Base, with 12 
blocks, 768 hidden layers and 12 heads, so the total number of 
parameters is 110 million. If this is not enough, there is an 
extended version of this model known as BERT Large, with 24 
blocks, 1024 hidden layers and 16 heads, bringing to 340 million 
the total number of parameters.


37



Figure 20: BERT sizes 
Source: Hugging Face Inc  3

2.6.5.2 DistilBERT 


DistilBERT is a small, fast, cheap and light Transformer model 
trained by distilling the BERT base [22]. It has 40% fewer 
parameters than BERT Base and runs 60% faster while retaining 
97% of BERT’s performances as measured on the GLUE language 
understanding benchmark.


Figure 21: DistilBERT performance comparison 
Source: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter [22] 

 https://huggingface.co/blog/bert-1013
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2.6.5.3 RoBERTa


Based on the BERT Base model, which means: “Robustly 
Optimised BERT Pre-training Approach” [24], It builds on BERT and 
modifies key hyper-parameters, removes the next-sentence pre-
training objective and trains with much larger mini-batches and 
learning rates. RoBERTa uses a byte-level BPE (Byte Pair Encoding) 
as a tokeniser (same as GPT-2) and a different pre-training scheme.


2.6.5.4 GPT-2


This is a transformer model trained on a very large corpus of 
English data using a self-supervised approach [16]. This means that 
it has been trained on the raw texts only, without being labelled in 
any way by humans and unlike BERT, this model is unidirectional.


More precisely, inputs are sequences of the continuous text of a 
certain length and the targets are the same sequence, shifting one 
token (word or piece of word) to the right. The model uses internally 
a masking mechanism to make sure the predictions for a token only 
use the previous inputs but not the future ones. This way, the 
model learns an inner representation of the English language that 
can then be used to extract features useful for downstream tasks.


2.7 Contributions

Two possible modifications are then proposed with the intention of 
increasing the accuracy of the task of text classification in the 
previously described models. Both approaches rely on assisting the 
models by adding a significant number of additional layers to the 
model output. 


2.7.1 Fully connected approach 

It consists of adding seven linear layers at the end of a pre-trained 
model instead of one in order to perform a better classification by 
not reducing so drastically the output of it, as could be the case of 
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BERT which returns 768 outputs [11] in one shot to only 4 or 6, 
matching the number of classes (|C|) to predict.


Figure 22: Proposed fully connected network appendix with pre-trained BERT model 

2.7.2 Convolutional approach 

This modification attempts to translate an NLP problem into a 
Computer Vision one. Therefore, the idea is to transform the output 
of the BERT model into an image-like output and apply 
convolutional layers as if it were an image recogniser. 


Given the computational resources and the available pre-trained 
models, it has been opted to transform the output of these models 
to black and white 16x16 pixel images (1x16x16) obtaining 256 
values per sample.  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Figure 23: Proposed convolutional network appendix with pre-trained BERT model 
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Chapter III - Experimental framework


This section describes the experimental framework that is to be 
used to carry out the study and the necessary preprocessing of the 
available data. First of all, the format of the data and its origin, any 
necessary preprocessing, encoding, evaluation metrics and 
parameters will be described. With all these preliminary steps, it is 
intended to solve the problem of text classification in the best 
possible way. 


3.1 Dataset

To be able to train the model, it will be necessary that the employed 
dataset complies with the following structure:


Table 1: Example format for input data files 

Processed Dataset Structure

Class Heading Article body

1
OTT is the best thing that 
has happened for young 
talented people: Bobby

Talking about OTT platforms, 
Bobby Deol said that it is the 
best thing that has happened 
for young talented…

0
Tesla opens its largest 
Supercharger station in 
Shanghai

Tesla opens its largest 
Supercharger station in 
Shanghai China, with 72 
charging stalls…

4
Day 2 play abandoned due 
to rain, India trail Australia 
by 307 runs

The second day's play of the 
Brisbane Test was 
prematurely abandoned due 
to rain…

… … …
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Regardless of the chosen dataset, it needs to be split into three 
subsets: training, test and development. If this is not the case, it 
would have to be rearranged. This is necessary because we have to 
continuously check the model does not memorise the training data. 
We do this by evaluating the model with the development set at 
each epoch. But at the same time to avoid the model fitting too 
closely to the development set, the last validation will be against 
the test set and this will be the metric used for benchmarking.


3.1.1 Inshort-news corpus 

Indeed, this corpus  has 12120 news samples collected from the 4

Inshorts web app, a platform which aggregates news in a limited 
amount of words.  This makes it ideal for classifying news. From 
the total news provided by this corpus, 8726 have been used for 
training, 970 for development and 2424 for model evaluation.


However, there are currently no previously existing experiments for 
this task to compare with. Instead, it has been decided to do all 
experiments using a well-known dataset and then extrapolate the 
obtained results to the original dataset. 


3.1.2 AG News corpus 

The a l ternat ive task under cons iderat ion is "AG News 
Classification" also available on the Kaggle platform . It contains 4 5

classes (fewer than the previous set) distributed over 127,600 
samples. This is 10.5 times more samples than the Inshort set.


AG is a compilation of well over 1 million news articles. In more 
than 1 year of activity, ComeToMyHead has collected news articles 
from more than 2000 news sources. It is a search engine for 
academic news that has been running since July 2004.  

 https://www.kaggle.com/datasets/kishanyadav/inshort-news4

 https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset5
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The dataset is provided by the academic community for research 
purposes in data mining, information retrieval, data compression, 
data streaming and any other non-commercial activity. The AG 
news classification dataset is built by choosing the 4 largest 
classes from the original larger corpus.


This dataset is really large compared to our available hardware. 
This makes model training and evaluation much more time-
consuming. On the other hand, having more data means learning 
could potentially be better.


Table 2: Available classes 

3.2 Pre-processing 

To make the experimentation simpler, both datasets have been pre-
processed. By doing so, we ensure that the structure is the same 
and we can swap them quickly.


Each dataset has been rearranged into three subsets: training, 
development and test. This will be done once to ensure all future 
experiments use the same data and thus compare them fairly. 
Additionally, it can be guaranteed that in all subsets there is the 
same proportion of classes as in the full set.


3.2.1 Inshort-news corpus 

Initially, this set is provided as seven separate files, one per class. 
As a result, this turns out to be inconvenient, as we need the 
samples to be merged and mixed with others of different classes to 
be able to use it. 


Available tags
Inshort-news AG News corpus

automobile, entertainment, politics, 
science, sports, technology, world.

business, sci/tech, sports, world.
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Later on, it will also be necessary to make a partition of the dataset 
to fit the previously established division.


3.2.2 AG News corpus 

This set comes initially split into 2 subsets: train and test. Again, it 
does not fit the requirements set out above and needs to be mixed 
and separated back in the same way as with the Inshort-news 
corpus. This results in a division of 108 000 samples for training, 12 
000 samples for development and 7 600 samples for test.


Table 3: Distribution of the sample classes after partitioning 

To guarantee a correct model training, as far as possible the same 
proportion of classes in each split should be used to avoid biases.


Class distribution

Inshort-news corpus

All Train Development Test

automobile 10.67% 
entertainment 16.8% 
politics 13.17% 
science 11.86% 
sports 15.68% 
technology 14.78% 
world 17.05%

automobile 10.69% 
entertainment 16.87% 
politics 13.35% 
science 11.78% 
sports 15.6% 
technology 14.76% 
world 16.95%

automobile 11.65% 
entertainment 16.8% 
politics 11.75% 
science 11.65% 
sports 14.74% 
technology 14.23% 
world 19.18%

automobile XX% 
entertainment 16.54% 
politics 13.08% 
science 12.21% 
sports 16.34% 
technology 15.06% 
world 16.58%

AG News corpus

All Train Development Test

business 25.0% 
sci/tech 25.0% 
sports 25.0% 
world 25.0%

business 24.97% 
sci/tech 24.97% 
sports 25.06% 
world 25.0%

business 25.25% 
sci/tech 25.27% 
sports 24.50% 
world 24.98%

business 25.0% 
sci/tech 25.0% 
sports 25.0% 
world 25.0%
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3.3 Tokenisation

To be able to feed the model with strings, it is necessary to 
tokenise them first [1]. This process consists of chunking raw text 
into small parts. Tokenisation breaks the raw text into words and 
phrases called tokens [13]. These tokens help understand the 
context. It allows interpreting the meaning of the text by analysing 
words in sequence.


There are different methods (e.g Moses ) and libraries available for 6

tokenisation such as NLTK  or Gensim . However, because we are 7 8

using pre-trained models provided by Hugging Face, Inc. Each 
model has its own ad hoc tokeniser specifically designed for it, so 
it is more advisable to use them rather than other alternatives.


Figure 24: Tokeniser expected behaviour 

Setting an appropriate value for the token length parameter is 
crucial for the model's performance. Although models such as 
BERT and its derivatives have shown state-of-the-art results in 
most areas of NLP, the Transformer model has a major handicap: it 
is difficult to apply to very long texts. This difficulty is due to the 
self-attention operation, which has an exponential complexity of 
O(n²) relative to the input length. This can be problematic, as not 
everyone has the resources to efficiently handle the size and 
complexity of the data. Some examples are novels, legal 
documents, medical records, etc.  

 http://www2.statmt.org/moses/6

 https://www.nltk.org7

 https://pypi.org/project/gensim/8
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Several solutions have been proposed to mitigate the problem with 
long documents. The simplest one is truncation, where only the 
first N tokens of the documents are taken as input, but this wastes 
a lot of potentially valuable information from the original source. For 
the news classification task, this approach can be perfectly suitable 
if we do a proper token length analysis.


Figure 25: Token length distribution. 

As shown in the figure above, a token length of 100 would be 
enough to represent the news from any of the datasets. 


3.4 Encoding

Linked to the previous section, it is equally imperative to perform 
the encoding of the tokenised words beforehand, in other words, to 
give them a vector shape [1]. It can be achieved through a variety 
of available tools and methods.


47



Such as:


• Frequency-based Embedding: Count Vectors, TF-IDF, Co-
Occurrence Matrix [19].


• Prediction-based Embedding (Word2vec): CBOW, Skip-
Gram [19].


• GloVe: Global Vectors for Word Representation [12].


Computers only understand numbers, so a good tokeniser should 
establish semantic relationships between words through the use of 
vector operations.


Figure 26: How a vectoriser work 
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Figure 27: How a vectoriser makes semantical relationships 

Since we are using pre-trained models, the Hugging Face, Inc 
'transformers' library provides a specific vectoriser within each 
tokeniser. Therefore, for the same reason as in the previous section, 
this one will be used instead of any other third-party solution.


3.5 Metrics

For the evaluation of NLP models, a variety of metrics are used to 
measure their quality. In the case of automatic text classification, 
the following metrics have been used:


• Accuracy


• Loss


• Precision


• Recall


• F1 Score  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3.5.1 Accuracy 

Measures the number of well-classified samples relative to the total 
amount of them.





Being








3.5.2 Loss 

Cross-entropy loss measures the performance of a classification 
model whose output is a probability value in the (0, 1) range. In 
multi-class classification, a separate loss is calculated for each 
class label per observation and the result is then added up.





Being











3.5.3 Precision 

This metric measures how accurate a model is by establishing a 
relationship between the number of true positives and all identified 
as positives.





Being  and .


accuracy =
TP

Total

TP  true positive values

Total  all available samples

Lo,c = −
M

∑
c=1

yo,c log po,c

M  number of classes

yo,c  binary indicator (0 or 1) if class label c is the correct for observation o

po,c  predicted probability observation o is of class c

precision =
TP

TP + FP
TP  true positive values FP  false positive values
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3.5.4 Recall 

Measures the model's ability to predict true positive classes. It is 
the ratio between the predicted true positives and what was 
labelled. The recall metric reveals how many predicted classes are 
labelled well.





Being








3.5.5 F1 Score 

This is a Precision and Recall function. It is necessary when a 
balance between precision and recall is desired.











Being











3.6 Parameters

Each model has a set of hyper-parameters that should be adjusted 
to achieve better results. The corresponding parameters are 
indicated in the table below.


recall =
TP

TP + FN

TP  true positive values

FN  false negative values

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2 ⋅ precision ⋅ recall
precision + recall

TP  true positive values

FP  false positive values

FN  false negative values
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Table 4: Adjustable parameters for each model type 

3.7 Environment

For the experiments, two NVIDIA GTX 1080 GPUs with CUDA 
version 10.1 are hosted on a dedicated PRHLT server powered by 
Ubuntu 20.04. 


In order to speed up the experiments running others in parallel, an 
additional computer, a Dell XPS 15 9570 equipped with an Intel 
core i7-8750H processor, 16GB RAM and Nvidia 1050 4GB NVRAM 
Max-Q GPU, is used. In any case, all machines have the same 
dependencies installed in a CONDA environment.


The essential python modules for running the experiments are 
PyTorch v1.11, Torchaudio v0.11, Torchvision v0.1, Transformers 
v4.18, Hugging face Hub v0.5.1, Numpy v1.19 and Pandas v1.4.2.


Parameters

Name Type Description

Common

Learning rate Float Initial learning rate before scheduling

Epochs Integer Number of training set iterations

Batch size Integer Number of training samples per batch

Optimiser Object Model optimiser (Adam, SGD, etc)

Maximum token 
length Integer First N tokens to be evaluated per 

sample

Transformer based Frozen Boolean Freeze pre-trained model or not

LSTM based

Maximum word 
vocab. Integer Maximum vocabulary available.

Hidden dimension Integer Hidden size of the LSTM layer

Number of layers Integer Number or LSTM layers.
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Chapter IV - Experiments


In this study, various transformer-based neural models have been 
tested, however, it is also desirable to put these results in 
perspective with the previous state-of-the-art models, i.e. the 
recurrent models with attention mechanisms or LSTMs.


To ensure fair model comparisons, the following restrictions are 
established:


• All models have the same random seed.


• All models share the same training, test and set partitions.


• Each model must run for no more than 100 epochs. In the 
case of transformer-based models, an additional 100 epochs 
are allowed for fine-tuning.


• Every model has 2·10-5 as the initial learning rate. For 
transformer-based models, the initial value of the learning 
rate is reduced to 2·10-8 in the fine-tuning process. 


The results in the following tables refer to the best version of each 
model evaluated over the test set. The best version of a model is 
defined as that which provides the highest accuracy value during 
the model training against the development set.


Every model implementation in this study follows the same scheme: 
the text is processed directly to the base model (LSTM, BERT, etc.) 
and then the last hidden state generated by that model is extracted 
and passed through a fully connected layer for classification. With 
the exception of the last models, which are proposed contributions 
that have a significantly higher number of layers than the previous 
ones.


4.1 LSTM

Long Short-term memory (LSTM) is a kind of artificial neural 
network. Unlike standard networks, the LSTM has feedback 
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connections. While recurrent neural networks (RNN) can process 
individual data points and entire sequences of data, the LSTM 
architecture is intended to provide RNNs with a short-term memory 
that can last for thousands of time steps, so it is a "long-term 
memory” [17]. A common LSTM unit consists of a cell, an input 
gate, an output gate and a forgetting gate. The cell remembers 
values during arbitrary time intervals and the three gates regulate 
the flow of information in and out of the cell. The following tables of 
results have been obtained for the LSTM model.


Table 5: Confusion matrix of LSTM on development data 

As can be seen, this model is able to differentiate quite certainly 
considering its execution time of just 3 minutes per epoch. It is also 
remarkable its ability to differentiate sports news from the other 
categories. There is a difference of approximately 10% on average 
over the others.


Table 6: Average LSTM macro-metrics on development data 

This model sets the baseline for the rest of the models that will be 
developed later in this document. In the table above it can be seen 
that we start from approximately 86.30% in all macro metrics. In 

Predicted values

12000 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2541 134 165 158 84.76%
Sports 66 2787 16 70 94.83%

Business 153 18 2494 365 82.31%
Sci/Tech 173 56 273 2531 83.45%

Macro 
Precision 86.63% 93.06% 84.60% 81.02%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

86.28% 86.33% 86.34% 86.33%
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this case, they are so similar and it is a good indicator. If we have 
to choose between similar models that differ in precision and/or 
recall, the best trade-off will be the one with the best balance 
between them, As known as F1-Score.


The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 7: Detailed confusion matrix for LSTM with development data for every single 
class. 

In the following figure, we can see how the accuracy of the model 
evolves in the training and development set. It can be seen that the 
evolution of the development set mirrors the training set relatively 
well. However, we can appreciate that there is a certain decoupling 
between them, especially in the intervals (10, 40) and at the end of 
the execution. With slight overfitting.


Figure 28: Dev accuracy evolution for LSTM model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2541 8610 457 392
Sports 2787 8853 152 208

Business 2494 8516 536 454
Sci/Tech 2531 8374 502 593
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4.2 Bidirectional LSTM

LSTM is a Gated Recurrent Neural Network [17], and bidirectional 
LSTM is just an extension of it. The main feature is that those 
networks can store information that can be used for future cell 
processing. In bidirectional LSTM, instead of just training one 
model, we use two [14]. The first model learns the sequence from 
the provided input, the second model learns this sequence 
backwards. The following tables of results have been obtained for 
the Bi-directional LSTM model.


Table 8: Confusion matrix of Bidirectional LSTM on development data 

According to the table above, the Bidirectional LSTM network 
improves on its predecessor in all aspects. It is also noticeable that 
it still maintains its capacity to significantly distinguish sports news 
from the rest.


Table 9: Average Bidirectional LSTM macro-metrics on development data 

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2592 126 165 115 86.46%
Sports 38 2845 31 25 96.80%

Business 99 29 2619 283 86.44%
Sci/Tech 92 34 233 2674 88.16%

Macro 
Precision 91.88% 93.77% 85.93% 86.34%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

89.42% 89.48% 89.46% 89.47%
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As can be seen, the use of bidirectional recurrent neural networks 
with attention mechanisms in this problem implies (as expected) a 
remarkable improvement in the classification. Being able to reach 
the 90% accuracy threshold in 6.5 minutes per epoch. Despite 
taking twice the time of the standard LSTM network, it still takes a 
fair ly reasonable amount of computing time per forward 
considering the actual performance. Particularly if low-resource 
hardware is used in the deployment.


The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 10: Detailed confusion matrix for Bidirectional LSTM with development data 
for every single class. 

In the figure below, we can see how the accuracy of the model 
evolves in the training and development sets. It can be seen that 
the evolution of the development data almost perfectly mirrors the 
results obtained in the test set during the first 20 iterations. From 
then on, there is a slight divergence that widens over time, which 
indicates that the overfitting is much more intense than in the 
previous model.


12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2592 8773 406 229
Sports 2845 8872 94 189

Business 2619 8541 411 429
Sci/Tech 2674 8544 359 423
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Figure 29: Dev accuracy evolution for Bidirectional LSTM model 

4.3 BERT

Means Bidirectional Encoder Representations from Transformers,  
BERT's main technical innovation is to apply the bidirectional 
training of Transformer [11], this contrasts with previous efforts, 
which examined a sequence of text from left to right or combined 
left-to-right and right-to-left training. The presented data refers to 
the fine-tuned version of the pre-trained BERT model. The following 
tables of results have been obtained for the BERT model.


Table 11: Confusion matrix of BERT on development data 

Predicted values
12000  

samples World Sports Business Sci/Tech Macro 
Recall

Actual 
values

World 2671 109 125 93 89.09%
Sports 10 2914 11 4 99.15%

Business 88 15 2646 281 87.33%
Sci/Tech 64 17 169 2783 91.76%

Macro 
Precision 94.28% 95.38% 89.66% 88.04%
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Moving to transformer-based models such as BERT, we see a 
considerable improvement in the results. While the business and 
sci/tech categories are still confused, it is less common. This is 
understandable in part because science and technology are in 
many cases the main drivers of the world's economic development 
nowadays.


Table 12: Average BERT macro-metrics on development data 

If we look at the macro-metrics in the table above, we can see that 
BERT is the first model, of those seen so far, to surpass 91% 
accuracy. However, this is not cost-free due to the enormous cost 
of forwarding to it without a graphics card. In this case, with an 
Nvidia 1080 GPU, each epoch took around 25 minutes, and in order 
to achieve these results, an extra 100 iterations of fine-tuning were 
required. So we should ser iously consider whether the 
improvement in accuracy is worth the increased use of resources. 


The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 13: Detailed confusion matrix for BERT with development data for every single 
class. 

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

91.78% 91.84% 91.83% 91.84%

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2671 8840 327 162
Sports 2914 8920 25 141

Business 2646 8665 384 305
Sci/Tech 2783 8589 250 378
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In the figure below, we can see how the accuracy of the model 
evolves in the training and development sets. It can be observed 
that the evolution of the development data perfectly replicates the 
evolution of the training set. This behaviour is mirrored in the first 
training stage and the fine-tuning phase. So we can assume that 
this model does not suffer from overfitting. But what we can say 
with certainty is that this model is the most stable of those seen so 
far in this document in terms of its metrics during training.


Figure 30: Dev accuracy evolution for BERT model 

4.4 BERT uncased

This is a modification of the original BERT model, with the special 
characteristic that it does not differentiate between upper and 
lower case letters. The following tables of results have been 
obtained for the BERT uncased model.
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Table 14: Confusion matrix of BERT uncased on development data 

Unfortunately, this variant of BERT worsens the results obtained by 
the original model in every aspect, being even poorer than a 
bidirectional LSTM network. Therefore, in terms of both 
computational cost and results obtained, this model would be 
completely out of the scope of this task in any case.  This may be 
due to using acronyms and abbreviations that are usually 
capitalised and so typical of news. It would not be surprising if this 
could confuse the model enough to make its results so much 
worse.


Table 15: Average BERT uncased macro-metrics on development data 

The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.  

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2586 131 156 125 86.26%
Sports 79 2807 30 23 95.51%

Business 126 36 2557 311 84.39%
Sci/Tech 111 41 234 2647 87.27%

Macro 
Precision 89.11% 93.10% 85.89% 85.22%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

88.31% 88.33% 88.36% 88.34%
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Table 16: Detailed confusion matrix for BERT uncased with development data for 
every single class. 

The most positive thing about this model which can be seen in the 
figure below is that like the original BERT it is very stable during 
training. Coping the results obtained in the development set very 
well compared to those obtained in the training set. Unfortunately, 
the BERT model is still better in this aspect as it shows less 
divergence.


Figure 31: Dev accuracy evolution for BERT uncased model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2586 8686 412 316
Sports 2807 8853 132 208

Business 2557 8550 473 420
Sci/Tech 2647 8508 386 459
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4.5 DistilBERT

This is another modification of the original BERT model [22], with 
some changes that make it a smaller, faster, cheaper and lighter 
version obtained by distilling BERT. The following tables of results 
have been obtained for the DistilBERT model.


Table 17: Confusion matrix of DistilBERT on development data 

DistilBERT faces the same problem as BERT uncased, and even 
worse. While it is true that this model can supposedly retain up to 
97% of the capacity of the original BERT model, for this task it is 
not capable of at least equaling it. This is understandable 
(compared to BERT uncased) because this model has up to 40% 
fewer parameters and runs up to 60% faster. In our case, 
DistilBERT is the model that overcomes the 80% accuracy 
threshold in the fewest number of iterations, in this case, during the 
first 20 epochs (before fine-tuning) this model achieves first place. 


Table 18: Average DistilBERT macro-metrics on development data 

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2563 132 183 120 85.49%
Sports 68 2813 34 24 95.71%

Business 116 45 2556 313 84.36%
Sci/Tech 124 46 250 2613 86.15%

Macro 
Precision 89.27% 92.65% 84.55% 85.11%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

87.87% 87.90% 87.93% 87.91%
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The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 19: Detailed confusion matrix for DistilBERT with development data for every 
single class. 

In the figure below, we can see how the accuracy of the model 
evolves in the training and development sets. It can be seen that 
the evolution of the development data replicates quite well the 
evolution of the training set, at least in the first phase of training. In 
the fine-tuning phase, we can observe some de-coupling between 
the accuracy obtained in the training and development sets. So it 
suffers even more from overfitting than BERT uncased.


Figure 32: Dev accuracy evolution for DistilBERT model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2563 8694 435 308
Sports 2813 8838 126 223

Business 2556 8503 474 467
Sci/Tech 2613 8510 420 457
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4.6 RoBERTa

Again, it is a model based on the BERT, which means: “Robustly 
Optimised BERT Pre-training Approach” [24], It builds on BERT and 
modifies key hyper-parameters, removes the next-sentence pre-
training objective and trains with much larger mini-batches and 
learning rates. The following tables of results have been obtained 
for the RoBERTa model.


Table 20: Confusion matrix of RoBERTa on development data 

As might be expected given the above description, RoBERTa 
slightly improves on the results obtained by BERT at about the 
same time cost. In some specific metrics, a very marginal (almost 
negligible) decrease in some scores can be seen, such as macro 
recall and macro accuracy for world and sports categories 
respectively. In general terms, RoBERTa presents the best results in 
this work.


Table 21: Average RoBERTa macro-metrics on development data 

The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2680 111 127 80 89.39%
Sports 10 2912 9 8 99.08%

Business 82 9 2679 260 88.42%
Sci/Tech 76 13 167 2777 91.56%

Macro 
Precision 94.10% 95.63% 89.84% 88.86%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

92.07% 92.11% 92.11% 92.11%
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Table 22: Detailed confusion matrix for RoBERTa with development data for every 
single class. 

Analogous to BERT, the evolution of the accuracy in the 
development set almost closely mirror those of the training set. 
Therefore, we can intuitively conclude that this fine-tuning of 
RoBERTa does not show a high degree of overfitting.


Figure 33: Dev accuracy evolution for RoBERTa model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2680 8834 318 168
Sports 2912 8928 27 133

Business 2679 8667 351 303
Sci/Tech 2777 8619 256 348
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4.7 XLM-RoBERTa

This is the multilingual version of RoBERTa [4]. It is a large multi-
lingual language model, trained on 2.5TB of filtered CommonCrawl 
data. Common Crawl is a non-profit organisation that scraps the 
Internet and publishes its data sets for free. The following tables of 
results have been obtained for the XLM-RoBERTa model.


Table 23: Confusion matrix of XLM-RoBERTa on development data 

The results clearly show that having a monolingual dataset 
significantly detracts from the model's performance. They are 
worse than the original BERT model but better than those of a 
bidirectional LSTM network. Probably, in the case of a multilingual 
dataset, XLM-RoBERTa would have scored better than any other 
model. So while the current results are disappointing, we cannot 
discard its capability if we want to deploy this model outside the 
Anglophone world.


Table 24: Average XLM-RoBERTa macro-metrics on development data 

The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2638 112 157 91 87.99%
Sports 11 2907 9 12 98.91%

Business 88 22 2627 293 86.70%
Sci/Tech 78 18 215 2722 89.75%

Macro 
Precision 93.71% 95.03% 87.33% 87.30%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

90.78% 90.84% 90.84% 90.84%
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Table 25: Detailed confusion matrix for XLM-RoBERTa with development data for 
every single class. 

As in its monolingual form, the evolution of accuracy in the 
development set almost mirrors that of the training set, with no 
clear evidence of overfitting.


Figure 34: Dev accuracy evolution for XLM-RoBERTa model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2638 8825 360 177
Sports 2907 8909 32 152

Business 2627 8589 403 381
Sci/Tech 2722 8571 311 396
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4.8 GPT-2

The data presented refer to the fine-tuned version of the pre-
trained GPT-2 model. This is a transformer model trained on a very 
large corpus of English data using a self-supervised approach [16]. 
This means that it has been trained on the raw texts only, without 
being labelled in any way by humans. The following tables of 
results have been obtained for the GPT-2 model.


Table 26: Confusion matrix of GPT-2 on development data 

There really isn't much to say about this model, for this task the 
results are absolutely awful, equal to if not worse than tossing dice 
or flipping a coin. The poor performance of GPT-2 is easily 
understandable if we consider that this model is decoder-only. That 
means, in its construction, it omits the fundamental part of a good 
classifier, the encoder. GPT-2 has a niche in text generation such as 
translation and question answering, but it is clearly not suitable for 
classification.


Table 27: Average GPT-2 macro-metrics on development data 

Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1687 665 329 317 56.27%
Sports 519 1721 342 357 58.56%

Business 599 766 1099 566 36.27%
Sci/Tech 433 705 327 1568 51.70%

Macro 
Precision 52.10% 44.62% 52.41% 55.84%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

50.62% 51.24% 50.70% 50.97%
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The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 28: Detailed confusion matrix for GPT-2 with development data for every single 
class. 

As can be seen, it is possible to barely obtain an accuracy close to 
50% at best for both the training and the development set.


Figure 35: Dev accuracy evolution for GPT-2 model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 1687 7451 1311 1551
Sports 1721 6925 1218 2136

Business 1099 7972 1931 998
Sci/Tech 1568 7727 1465 1240
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4.9 RoBERTa CustomNet

This is the same RoBERTa model described previously with fully 
connected and dropout layers added after getting the last hidden 
state from the base model. The following tables of results have 
been obtained for the RoBERTa CustomNet model.


Table 29: Confusion matrix of RoBERTa CustomNet on development data 

This proposal was intended to add several fully connected layers to 
the original model in the hope of helping the classification task 
(unsuccessfully) by not reducing the RoBERTa outputs so 
drastically to the number of labels of the problem. As a result, we 
have obtained a model not much better than XML-RoBERTa for this 
monolingual task but with a somewhat higher cost than the original 
RoBERTa model. Making this approach impracticable for any 
possible use.


Table 30: Average RoBERTa CustomNet macro-metrics on development data 

The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Predicted values

12000  
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 2620 120 148 110 87.39%
Sports 17 2904 12 6 98.81%

Business 71 10 2694 255 88.91%
Sci/Tech 100 22 264 2647 87.27%

Macro 
Precision 93.30% 95.03% 86.40% 87.71%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

90.54% 90.61% 90.60% 90.60%
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Table 31: Detailed confusion matrix for RoBERTa CustomNet with development data 
for every single class. 

As in the original version, the evolution of accuracy in the 
development set almost mirrors that of the training set, with no 
clear evidence of overfitting.


Figure 36: Dev accuracy evolution for RoBERTa CustomNet model 

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2620 8814 378 188
Sports 2904 8909 35 152

Business 2694 8546 336 424
Sci/Tech 2647 8596 386 371
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4.10 RoBERTa ConvNet

This is the same RoBERTa model described previously with 
convolutional, fully connected and dropout layers added after 
getting and reshaping the last hidden state from the base model to 
an image configuration. The following tables of results have been 
obtained for the RoBERTa ConvNet model.


Table 32: Confusion matrix of RoBERTa ConvNet on development data 

Again, the aim was to (unsuccessfully) improve the results obtained 
with the RoBERTa model by transforming an NLP problem into a 
Computer Vision one. The results are a little better than those 
obtained by the previous proposal, however, it is not enough. This 
model is placed in the third position, behind RoBERTa and BERT 
respectively, but adding a complex structure of reshapes and 
convolutions makes the whole process much more complex and 
computationally expensive.


We should mention the title of the paper that gave rise to the 
transformer-based models: "Attention Is All You Need", which, 
quite rightly, shows that no matter how many extra layers or 
mechanisms we add, we will only get worse results compared to 
those obtained by purely transformer-based models.  

Predicted values
12000  

samples World Sports Business Sci/Tech Macro 
Recall

Actual 
values

World 1240 111 143 87 88.63%
Sports 14 2913 8 4 99.12%

Business 86 11 2656 277 87.66%
Sci/Tech 95 15 182 2741 90.37%

Macro 
Precision 93.16% 95.51% 88.86% 88.16%
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Table 33: Average RoBERTa ConvNet macro-metrics on development data 

The table below shows the rate of True Positives, True Negatives, 
False Positives and False Negatives for each class in the dataset.


Table 34: Detailed confusion matrix for RoBERTa ConvNet with development data 
for every single class. 

As in the original version, the evolution of accuracy in the 
development set almost mirrors that of the training set, with no 
clear evidence of overfitting.


Figure 37: Dev accuracy evolution for RoBERTa ConvNet model 

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

91.39% 91.42% 91.44% 91.43%

12000  
samples

True Positive 
(TP)

True Negative 
(TN)

False Negative 
(FN)

False Positive 
(FP)

World 2657 8807 341 195
Sports 2913 8924 26 137

Business 2656 8637 374 333
Sci/Tech 2741 8599 292 368
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4.11 Development set results summary


Table 35: Model results overview for development set 

*Using roberta-base as a starting point 


Having analysed all the selected models, the results obtained in the 
development set for the best version of each one can be seen in 

100 Epochs
Model Type Accuracy
LSTM Standard 86.31%

LSTM II Bidirectional 89.57%

bert-base-cased
Frozen 74.59%

Fine-tuned 91.80%

bert-base-uncased
Frozen 78.89%

Fine-tuned 88.33%

distilbert-base-uncased
Frozen 85.32%

Fine-tuned 87.90%

roberta-base
Frozen 82.49%

Fine-tuned 92.07%

xlm-roberta-base
Frozen 82.71%

Fine-tuned 90.8%

gpt2
Frozen 50.02%

Fine-tuned 50.66%

custom-net*
Frozen 86.52%

Fine-tuned 90.55%

custom-convnet*
Frozen 86.63%

Fine-tuned 91.39%
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the table above. Here again, the best model obtained is the 
RoBERTa base with 92.07% accuracy. Followed by the original 
BERT model, both are characterised by their stability in training and 
metrics.  





Figure 38: Overall accuracy evolution on the development set 

However, there are models that, despite being worse in their 
metrics, can be very valuable in other contexts, as not everything is 
about accuracy. Often the speed of execution and resource 
consumption is even much more important. This is the case with bi-
directional LSTM networks, for example. After 100 iterations 
achieve stabilisation near the 90% threshold with a forward cost 
considerably lower than provided by the transformer-based models.
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Figure 39: Overall loss evolution on the development set 

Furthermore, as seen in the figure above, the bidirectional LSTM 
network can achieve the lowest values for the loss function in the 
first stage of training. It is only followed (fairly well behind) by the 
DistilBERT model, which although it is not as accurate as the 
bidirectional LSTM network, it is important to take into 
consideration that it can stabilise at around 85% accuracy in a little 
less than 20 epochs. This makes it an ideal model when training 
time is limited.


We can also observe that GPT-2 obtains disappointing results due 
to what we mentioned earlier. GPT-2 is decoder-only [16], which 
means that it omits the encoder part and that is critical for text 
classification. Due to its low performance, it has been decided to 
discard this model for the following figure. Otherwise, GPT-2 would 
interfere with the visualisation of the graphs, making the evolution 
of the rest of the models harder to see.


 

77



Figure 40: Fine-tuned model’s overall accuracy evolution on the development set. 

As we can see, the extra 100 epochs of fine-tuning work very well 
for the Transformer-based models. Since the top five models shown 
in the figure above are of this type. Surprisingly, the models offering 
the best performance for the loss function at this stage are 
respectively: BERT base, bidirectional LSTM networks and XLM 
RoBERTa. This means that while RoBERTa classifies better, it 
makes some huge mistakes in certain predictions.


Figure 41: Fine-tuned models overall loss evolution on the development set 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Chapter V - Results


Unlike the previous chapter, this section shows the results obtained 
by each model in the test set. That means that during training, the 
development set has been used to check the model performance 
every time it improved. This undoubtedly causes an inherent bias, 
so it is imperative to verify that the model does indeed learn by 
feeding it with samples that have never been processed and 
checking its performance. As is evident, all models show a very 
slight drop in their accuracy score, although it should be 
highlighted that this drop is in any case fairly acceptable. 


5.1 LSTM

For the LSTM networks, we observe an overall accuracy increase 
by hundredths, so we can effectively assume that the results 
obtained with the test set are representative of those obtained 
during training. Surprisingly, in macro terms, the score for the 
LSTM model improves very slightly with samples never seen 
before.


Table 36: Average LSTM macro-metrics on test data 

Looking at the confusion matrix below, it is interesting to note that 
for the test set, there are some specific categories that are slightly 
better than those of the development set, such as World, Business 
and Sci/Tech. With slight drops for the sports category. 


Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

86.34% 86.34% 86.34% 86.34%
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Table 37: Confusion matrix of LSTM on test data 

5.2 Bidirectional LSTM

Following the trend of the results obtained with the LSTM model, 
its bi-directional version improves the overall score very slightly in 
macro terms with samples that have never been seen previously. 


Table 38: Average Bidirectional LSTM macro-metrics on test data 

Looking at the confusion matrix below, it is interesting to note that 
for the test set, there are some specific categories that are very 
slightly better than those of the development set, such as Sports 
and Business. With slight drops in other categories. 


Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1628 75 104 93 85.68%
Sports 45 1788 16 51 94.11%

Business 99 17 1560 224 82.11%
Sci/Tech 107 52 155 1586 83.47%

Macro 
Precision 86.64% 92.55% 85.01% 81.17%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

89.71% 89.72% 89.71% 89.72%
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Table 39: Confusion matrix of Bidirectional LSTM on test data 

5.3 BERT

In the case of the BERT model, there is an expected not very 
significant decrease of a few tenths. So we can assume that the 
results obtained with the test set are representative of those 
obtained during training. 


Table 40: Average BERT macro-metrics on test data 

Looking at the confusion matrix below, we can appreciate slight 
improvements in some specific categories (sports and sci/tech) if 
we look at the precision metric. However, this is not the case for 
recall, which generally decreases for all categories with the 
exception of the World category, which slightly improves.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1677 69 96 58 88.26%
Sports 27 1827 23 23 96.16%

Business 75 14 1640 171 86.32%
Sci/Tech 55 21 150 1674 88.11%

Macro 
Precision 91.44% 94.61% 85.91% 86.92%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

91.50% 91.51% 91.50% 91.51%
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Table 41: Confusion matrix of BERT on test data 

5.4 BERT uncased

BERT uncased model generally exhibits a drop of approximately 
0.5% in all its macro metrics. So even though it cannot be said to 
be unrepresentative of the model. 


Table 42: Average BERT uncased macro-metrics on test data 

Looking at the confusion matrix below, we can see slight decreases 
in all categories (except sports) if we look at the precision metric. 
However, this is not the case for recall, which increases slightly for 
Sports and World and decreases for the rest.


Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1702 60 81 57 89.58%
Sports 8 1875 12 5 98.68%

Business 60 9 1649 182 86.79%
Sci/Tech 48 11 113 1728 90.95%

Macro 
Precision 93.62% 95.91% 88.89% 87.63%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

87.96% 87.93% 87.96% 87.95%
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Table 43: Confusion matrix of BERT uncased on test data 

5.5 DistilBERT

DistilBERT holds its own while maintaining generally the same 
macro metrics with a very slight drop of approximately 0.15%.


Table 44: Average DistilBERT macro-metrics on test data 

Looking at the confusion matrix below, we can see increases in 
some categories like Sports or World if we look at the precision 
metric. For recall, it maintains almost the same behaviour.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1654 77 107 62 87.05%
Sports 56 1815 12 17 95.53%

Business 93 20 1571 216 82.68%
Sci/Tech 64 28 163 1645 86.58%

Macro 
Precision 88.59% 93.56% 84.78% 84.79%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

87.75% 87.75% 87.75% 87.75%
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Table 45: Confusion matrix of DistilBERT on test data 

5.6 RoBERTa

In the case of the RoBERTa model, we obtain an expected not very 
significant decrease of approximately 0.16%. So we can assume 
that the results obtained with the test set are representative of 
those obtained during training. 


Table 46: Average RoBERTa macro-metrics on test data 

Looking at the confusion matrix below, we can appreciate slight 
improvements in some specific categories (World and Sports) if we 
look at the precision metric. However, this is not the case for recall, 
which generally decreases for all categories with the exception of 
the World category, which slightly improves.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1638 81 120 61 86.21%
Sports 52 1814 19 15 95.47%

Business 69 25 1597 209 84.05%
Sci/Tech 59 36 185 1620 85.26%

Macro 
Precision 90.10% 92.74% 83.13% 85.04%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

91.91% 91.93% 91.91% 91.92%
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Table 47: Confusion matrix of RoBERTa on test data 

5.7 XLM-RoBERTa

DistilBERT holds its own while maintaining generally the same 
macro metrics with a very slight drop of approximately 0.15%.


Table 48: Average XLM-RoBERTa macro-metrics on test data 

Looking at the confusion matrix below, we can that it still maintains 
almost the same behaviour.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1706 58 80 56 89.79%
Sports 8 1879 9 4 98.89%

Business 52 9 1668 171 87.79%
Sci/Tech 43 10 115 1732 91.16%

Macro 
Precision 94.31% 96.06% 89.10% 88.23%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

90.67% 90.70% 90.67% 90.68%
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Table 49: Confusion matrix of XLM-RoBERTa on test data 

5.8 GPT-2

This model has been discarded due to its proven ineffectiveness for 
this type of task, as discussed in chapter IV.


5.9 RoBERTa CustomNet

For the first proposed contribution, this model improves the overall 
score very slightly in macro metrics with samples never seen 
before. 


Table 50: Average RoBERTa CustomNet macro-metrics on test data 

This model slightly improve, in general, all metrics for each class.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1676 61 108 55 88.21%
Sports 12 1866 17 5 98.21%

Business 53 18 1648 181 86.74%
Sci/Tech 51 12 136 1701 89.53%

Macro 
Precision 93.53% 95.35% 86.33% 87.59%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

90.95% 91.00% 90.95% 90.97%
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Table 51: Confusion matrix of RoBERTa CustomNet on test data 

5.10 RoBERTa ConvNet

The second proposed contribution generally exhibits a drop of 
approximately less than 0.1% in all its macro metrics. So it cannot 
be said to be unrepresentative of the model. 


Table 52: Average RoBERTa ConvNet macro-metrics on test data 

As the original RoBERTa model, Looking at the confusion matrix 
below, we can appreciate slight improvements in some specific 
categories (World and Sports) if we look at the precision metric. 
However, this is not the case for recall, which generally decreases 
for all categories with the exception of the World category, which 
slightly improves.  

Predicted values

7600 
samples World Sports Business Sci/Tech Macro 

Recall

Actual 
values

World 1680 61 107 52 88.42%
Sports 9 1875 10 6 98.68%

Business 39 7 1690 164 88.95%
Sci/Tech 60 13 160 1667 87.74%

Macro 
Precision 93.96% 95.86% 85.92% 88.25%

Avg.  
Accuracy

Avg. Macro 
Precision

Avg. Macro  
Recall

Avg. Macro  
F1 Score

91.37% 91.37% 91.37% 91.37%
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Table 53: Confusion matrix of RoBERTa ConvNet on test data 

5.11 Test set results summary


Predicted values
7600 

samples World Sports Business Sci/Tech Macro 
Recall

Actual 
values

World 1693 63 95 49 89.11%
Sports 10 1879 8 3 98.89%

Business 48 10 1661 181 87.42%
Sci/Tech 57 12 120 1711 90.05%

Macro 
Precision 93.64% 95.67% 88.16% 88.01%

100 Epochs
Model Type Accuracy
LSTM Standard 86.34%

LSTM II Bidirectional 89.71%

bert-base-cased
Frozen 73.88%

Fine-tuned 91.50%

bert-base-uncased
Frozen 78.05%

Fine-tuned 87.96%

distilbert-base-uncased
Frozen 85.22%

Fine-tuned 87.75%

roberta-base
Frozen 82.20%

Fine-tuned 91.91%

xlm-roberta-base
Frozen 82.72%

Fine-tuned 90.67%

gpt2
Frozen 49.78%

Fine-tuned 50.70%
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Table 54: Model results overview for test set 

*Using roberta-base as a starting point 


The behaviour of the models has not changed substantially when 
evaluated with previously unseen samples. In general, there is an 
expected slight drop in their performance, but nothing remarkable. 
Therefore, we can draw the same conclusions as mentioned in 
chapter IV.


In the figure below it can be seen the maximum accuracy obtained 
by each model in their first 100 epochs (in blue) and how the 
transformer-based models have improved (in green) during their 
fine-tuning stage. It should be noticed that all transformer-based 
models need a mandatory fine-tuning stage in order to even 
achieve the results of the bi-directional LSTM model.


Figure 42: Accuracy bar-plot breakdown on test data 

custom-net*
Frozen 86.30%

Fine-tuned 90.95%

custom-convnet*
Frozen 86.91%

Fine-tuned 91.37%
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Chapter VI - Real-world model 
implementation


In addition to the previous work, a web interface has been 
developed for the RoBERTa model, which has given the best 
results. For this purpose, a docker environment has been created 
where two containers are hosted. The first is the PHP web server 
and the other has the model preloaded waiting for texts through 
POST requests.





Figure 43: Deployment diagram 

6.1 Docker 

Docker is a set of platform-as-a-service products that use OS-level 
virtualisation to deliver software in packages called containers. This 
allows software solutions to be packaged together so the final 
production and development environments are virtually identical. 
This directly solves any incompatibility or dependency problems.  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It has been opted to deploy two independent containers connected 
by a virtual network. The first one serves the API publicly through 
POST requests, while the other one simply consumes the API, 
presenting its functionality through a web interface.


6.2 Python HTTP server API

This container is responsible for serving the text classification API. 
It is the minimum necessary implementation that loads the model 
ready to evaluate strings. Finally, the HTTP library integrated with 
Python is used to enable the reception of texts through web 
requests for their evaluation and subsequent responses.


6.3 PHP server

This is a container running an Apache PHP server. It is designed to 
consume the API, dressing it up with graphical elements that make 
it user-friendly, combining HTML, CSS and JavaScript.


Figure 44: Operating example of the deployed system 

Through the web interface by typing on the text box and then 
clicking the button, the system will provide the inferred label.  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Chapter VII - Conclusions 


All the models studied (except for GPT-2) reach the 85% accuracy 
threshold in the test set predictions. It should be considered that 
the transformer-based models have a hundred additional epochs of 
advantage to fine-tune pre-trained models. 


Indisputably those models that have obtained the best results are 
BERT-based models. For the case of this task, the best one is the 
base RoBERTa model [24], followed by the original BERT and the 
proposed convolutional network based on the winning model. This 
simply supports the " Attention is all you need" paper [5] in which 
the authors suggest that learning the global dependencies between 
input and output can just be done with attention mechanisms.


The models proposed with the idea of improving the RoBERTa base 
model's performance for the text classification task have proved to 
be a fiasco. The best of the two models, RoBERTa ConvNet, only 
achieved the third position in the ranking. It is considered a failure 
because it adds complexity to the model which was supposed to 
improve.


Therefore, it would be appreciated which of the previous state-of-
the-art models are capable of outperforming those transformer-
based ones during the first hundred epochs. This is the case of 
bidirectional LSTM networks, which is undoubtedly the network 
which obtains the best results in the shortest time, nearing the 90% 
accuracy threshold in its first forty epochs.


If we have in mind that DistilBERT [22] is a model derived from 
BERT with several modifications that make it lighter and therefore 
less expensive but more limited in its results, it is worth highlighting 
that during the first phase of training, it is the model that starts with 
the best results in its first forty epochs. So, in case of need 
execution and training speed that can tolerate an error rate of 
around 20%, it might be an interesting option to consider. This 
advantage unfortunately does not hold in the fine-tuning process 
where other transformer-based models generally take the lead.
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The multilingual [4] version of RoBERTa has obtained fairly decent 
results during the training. The fact of having a monolingual text 
corpus has been a handicap. It is perfectly feasible that if we would 
train this model with examples from different languages, in the 
worst scenario the performance could be equivalent to the ability to 
classify internationally with about a 10% error rate.


GPT-2 is a pre-trained model trained in a self-supervised way. It is 
therefore particularly good at answering questions, translating, 
generating and summarising texts, but has poor classification 
skills. This explains the terrible performance of this model, which is 
barely better than flipping a coin. GPT-2 does not have an encoder 
as the original transformer architecture does [16], as it is decoder 
only, there are no encoder attention blocks, so the encoder is 
equivalent to the encoder itself, except for the masking in the multi-
head attention block. This explains its malfunctioning, as the most 
important part of classifying texts is the encoder.


BERT was undoubtedly a breakthrough in the use of machine 
learning for natural language processing. The fact that it is 
accessible and allows quick fine-tuning, enables a wide range of 
practical applications and finally, four years later the BERT model 
and its derivatives are leading [21] at least the text classification 
field.


In general, all models show a great facility to differentiate sports 
news. This may be due to the fact that political, technological and 
business news are nowadays quite intertwined. For example, by 
2022 it is not surprising to observe political movements as a result 
of Elon Musk's declarations about his intention to buy the wildly 
popular bluebird social network.


The results obtained by other users using similar techniques, even 
though they have used different data splits, are shown below.
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Table 55: Results obtained by other users who used similar techniques with different 
data partitions. 

The difference in results can be perfectly explained by the use of 
only two partitions, which adds more samples for training. The fact 
of saving the model that provides the best accuracy in the test also 
conditions it. The reduced number of epochs does not allow us to 
see the long-term evolution where the model stabilises. 


While deploying the model it should be noted that, if we opt for a 
Transformer-based model, a CUDA-compatible GPU will be almost 
mandatory. This is because, even if we only have to forward 
evaluate a sample, these models have a large number of 
parameters which can increase the response time. It is also a fact 
that the machine used to deploy the RoBERTa model is a macOS 
machine with an ARM processor under docker, which implies (at 
least at the moment) several consecutive emulations, x86 
architecture emulation from ARM running a Linux container with all 
of that running on the CPU. 


This should encourage a reconsideration of the choice of a model 
for deployment, as the most accurate model does not always have 
to be the best. There is a trade-off between the hardware cost and 
the required performance for each model to be executed in a given 
time. So, depending on what we want, we will have to consider a 
balance between speed and accuracy.


Model Accuracy Split Epochs

Multinomial Naive 
Bayes 89.62% Train-test split -

BERT [18] 94% Train-test split 4

LSTM 90.41% Train-test split 10
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Chapter VIII - Future work


The study of the transformer-based language models seen in this 
paper provides a basis for numerous further studies, ranging from 
the more evident ones, such as multi-label support, fake news 
detection, etc., to those that explore different topologies from the 
typical many-to-one, such as news summarisation. However, there 
is also a significant margin for improvement without necessarily 
changing the nature of the original task. 


8.1 Multi-lingual datasets

Previous experiments have shown that multilingual models such as 
XLM-RoBERTa have only a 1.5% difference in the accuracy rate 
compared to the best monolingual models. This means that in the 
case of a multilingual corpus, we could obtain better results.


8.2 Large language models (LLM)

Some language models have recently been released to compete 
directly with GTP-3 [20], some of which have been published during 
the execution of this project and which due to time or lack of 
resources it has not been possible to implement in this study. 


Examples of recently published LLMs include:


• OPT-175B  - Facebook, Inc.
9

• BLOOM  - Hugging face, Inc.
10

• PaLM  - Google, Inc.  11

 https://arxiv.org/abs/2205.010689

 https://huggingface.co/bigscience/bloom10

 https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html11
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