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Resum

El Traçat de Raigs és una tècnica elegant i relativament moderna per dibuixar gràfics
en 3D. L’algorisme subjacent existeix des de fa dècades, havent-se fet servir en in-
dústries on el temps de dibuixat és menys important, com el cinema. Tot i això no ha
pogut usar-se de forma prevalent en indústries que requereixin gràfics en temps real,
com els videojocs, fins fa pocs anys, gràcies a ser accelerat mitjançant l’ús de GPUs.
Actualment hi ha múltiples tecnologies que s’encarreguen de gran part d’aquesta
acceleració per nosaltres. Cadascuna té una audiència objectiu específica, ja sigui
gràfics en temps real o gràfics fotorealistes. Dues de les llibreries més importants en
aquests dominis són Vulkan i Nvidia OptiX, respectivament.

En aquest treball explorarem el desenvolupament d’un traçador de raigs emprant
cadascuna d’aquestes i analitzarem el seu rendiment en multitud d’ajustaments grà-
fics, escenes i configuracions de maquinari. Les mètriques en què ens centrarem són
el temps de construcció de lestructura dacceleració, temps de dibuixat dun fotograma
i ús de memòria gràfica.

L’objectiu d’aquest treball és conèixer les limitacions i les peculiaritats d’ambdues
API en diferents situacions, cosa que permetrà seleccionar la tecnologia més adequa-
da segons els nostres requisits de temps de processament, memòria i complexitat
d’escenes.
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Resumen

El Trazado de Rayos es una técnica elegante y relativamente moderna para dibujar
gráficos en 3D. El algoritmo subyacente existe desde hace décadas, habiéndose ha
usado en industrias donde el tiempo de dibujado es menos importante, como el cine.
Sin embargo no ha podido usarse de forma prevalente en industrias que requieran
gráficos en tiempo real, como los videojuegos, hasta hace pocos años, gracias a ser
acelerado mediante el uso de GPUs. Actualmente existen múltiples tecnologías que
se encargan de gran parte de dicha aceleración por nosotros. Cada una tiene una
audiencia objetivo específica, ya sea gráficos en tiempo real o gráficos fotorrealistas.
Dos de las librerías más importantes en dichos dominios son Vulkan y Nvidia OptiX,
respectivamente.

En este trabajo exploraremos el desarrollo de un trazador de rayos empleando cada
una de éstas y analizaremos su rendimiento en multitud de ajustes gráficos, escenas
y configuraciones de hardware. Las métricas en que nos centraremos son el tiempo
de construcción de la estructura de aceleración, tiempo de dibujado de un fotograma
y uso de memoria gráfica.

El objetivo de este trabajo es conocer las limitaciones y peculiaridades de ambas APIs
en distintas situaciones, lo que permitirá seleccionar la tecnología más adecuada
según nuestros requisitos de tiempo de procesamiento, memoria y complejidad de
escenas.
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Abstract

Ray Tracing is an ellegant and relatively modern technique to draw 3D graphics. Even
though the underlying algorithm has existed for decades now, it’s only been in recent
years that it has taken a prevalent role in industries like videogames or cinema,
due to it being accelerated through the use of GPUs. Nowadays there are multiple
technologies that handle most of this acceleration for us. Each with a specific target
audience, be it real time graphics or aiming for a higher image quality. Two of the
most prevalent libraries for each domain are Vulkan and Nvidia OptiX, respectively.

In this work we will be exploring the development of a ray tracer with each of these
and analyzing their performance across a slew of graphical settings, scenes and hard-
ware configurations. The metrics we will be focusing on will be acceleration structure
build time, frame rendering time and graphics memory usage.

This work’s goal is to know the limitations and quirks of each of these APIs in diffe-
rent situations, which will allow future programmers to choose the technology better
suited to their requirements for processing time, memory and scene complexity.
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Chapter 1

Introduction

Ray Tracing is one of the most advanced, elegant and precise ways to produce com-
puter graphics images. Although the original idea has existed since as early as the
16th century, it’s first computerized version didn’t appear until the year 1968. During
the last decade it has become increasingly popular thanks to GPU acceleration, and
many libraries have emerged to aid in the development of applications that use this
technique.

Each library better suits a different purpose for the final piece of software, be it real
time graphics for videogames or other real-time applications, or pursuing a higher
image quality for visual effects in movies, animations, complex scientific visualiza-
tions, etc.

Although academic work in this field is still actively published to this day using mo-
dern technologies (Riley, Diefes, Bechtold, y Barry, s.f.) (Wei y cols., 2022), bench-
marks and other publications that evaluate its performance have not been actively
done since around two decades ago (Lext, Assarsson, y Moller, 2001) (Foley y Suger-
man, 2005) (Wald, Boulos, y Shirley, 2007). For this reason we considered a revision
of modern technologies and their performance was in order, so it will orient fellow
graphics programmers and researchers when choosing the technology that better
suits their projects.

This work aims to compare the most prevalent technologies used to build Ray Tracing
applications for each purpose, Vulkan and OptiX, in order to benchmark their beha-
viour under different circumstances. We will implement a series of test cases which
will vary the ammount of rendered and loaded geometry as well as image quality
settings, and record the following data from each one:

* Acceleration Structure Building Time

* Frame Render Time

* Video Memory Consumption

These metrics will not only be analyzed in detail running in a single system, but also
compared running across a slew of hardware we could get our hands on. This will
allow us to isolate how different components like CPU or GPU affect them, as well as
comparing bare metal to virtualized performance.
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Chapter 2

State of the Art

In this chapter we will explain the current state of computer graphics its latest ad-
vances and how ray tracing fits into it. We will also be looking at the technologies
being used in both research and industry.

2.1. Rendering Techniques

The field of computer graphics seeks to generate images with the aid of computers.
Nowadays this is a core component of photography, film production and videogames
among others. This task is commonly refered to as rendering. Throughout the years
there have appeared many rendering techniques, of which the main ones being used
currently are Rasterization and Ray Tracing.

2.1.1. Rasterization

Rasterization is the process of taking an image described as vector graphics and
converting it into a series of pixels which, when displayed together, recreate the image
that was represented with vector shapes. This image can then be displayed in a
monitor, stored as a bit map and so on.

In figure 2.1, from (3D Basic Rendering, 2022) we see the principle of this process.
After transforming the geometry (in this case a triangle) to screen space, we check if
each pixel in the image overlaps said geometry.

When compared to other techniques for rendering 3D models, such as ray tracing,
rasterization is extremely fast. This gives it a prevalent usage in real time 3D engines.
We must take into account that the process of rasterization is only responsible for
mapping the scene geometry to pixels, and does not compute the color of such pixels.
This color is assigned by a Pixel (or Fragment) Shader, which is completely program-
mable in modern GPUs. This shader may take into account physical processes like
light position, or a purely artistic approach. There is no motivation in modifying the
rasterization techniques at render time. Therefore, the rest of the process of rasteri-
zing a 3D model into screen space (a 2D plane for displaying said graphics) is often
performed by non-programmable hardware with a fixed function within the graphics
pipeline. This method allows for high efficiency.
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2.1. Rendering Techniques

Figura 2.1: Image being rasterized into pixels, extracted from ScratchPixel

2.1.2. Ray Tracing

The other prevalent technique for drawing 3D graphics, and the main focus of this
work, is ray tracing.

This technique models light transport for generating digital images. It does this tra-
cing a path from an imaginary eye through each pixel in a virtual screen and calcula-
ting the color of the object visible through it. Each ray is tested for intersection with
some subset of the objects in the scene. Once identified the object, it estimates the
incoming light at the intersection point and read the material properties of the object
to calculate the final color of the pixel.

Although counter intuitive, sending rays from the camera towards the scene is many
orders of magnitude more efficient than doing it the other way around. This is due
to the vast majority of rays coming from a light source not reaching the viewer’s eye,
thus saving a lot of computation in paths that are never recorded. We take the short-
cut of assuming that a given ray intersects the view frame. After a certain number
of reflections or distance traveled by a ray without intersecting anything, that ray
ceases to travel and the pixel’s value is updated. Figure 2.2 shows an overview of this
algorithm extracted from the Wikimedia (File:Ray trace diagram.svg, 2022).

Compared to rasterizing, all the techniques based in ray tracing are generally slower
yet provide higher fidelity results than it’s counterpart. This made it so that originally
it was applied in tasks that could tolerate a relatively long render time, such as film
production or still image generation. Applications where rendering speed is critical,
like videogames, were less suited for these algorithms. However, since 2018, real
time ray tracing has become more feasible thanks to hardware acceleration becoming
standard in commercial graphics cards.
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State of the Art

Figura 2.2: Overview of the ray tracing algorithm with spheres as our only geometry
and a single light source.

2.1.2.1. Mathematical foundation

We will now look at the mathematical definition of ray tracing applied to a rectangular
viewport, which is the focus area of this work.

Our inputs are:

* An eye position E ∈ R3

* A target position T ∈ R3

* A field of view θ ∈ [0, π]. For humans, we can assume it’s about 90 degrees
(≈ π

2 radians)

* The number of square pixels in the vertical and horizontal directions in the
viewport m, k ∈ N

* The actual number of pixels i, j ∈ N, 1 ≤ i ≤ k ∧ 1 ≤ j ≤ m

* A vertical vector that indicates the up and down direction −→v ∈ R3. Usually −→v =
[0, 1, 0] (the roll component determines the viewport’s rotation around it’s center
C, where the axis is the ET rotation).

We can see an illustration of these components in figure 2.3, extracted from the Ray
Tracing Wikipedia article (Ray Tracing (graphics), 2022).

With these inputs, our goal is to find the position of the center of each viewport pixel
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2.1. Rendering Techniques

Figura 2.3: Ray tracing schema with all the input components.

Pij. This will allow us to find the line going from the eye E through that pixel, and
describe that ray by the point E and the vector

−→
R ij = Pij − E (or its normalization

−→r ij).

We start by finding the coordinates of the bottom left viewport pixel P1m, and the
subsequent ones by shifting along the directions paralell to the viewport (vectors
−→
b n and −→v n), multiplied by the pixel size. The equations below include a distance d
between the eye E and the viewport. This value will be reduced when normalizing the
rays −→r ij, and as such can be interpreted as d = 1 and removed from the calculations.

As a pre-calculation we normalize the vectors
−→
t ,

−→
b and −→v , shown in figure 2.3, which

are paralell to the viewport. This process is explained in equations 2.1, 2.2 and 2.3.

−→
t = T − E,

−→
b =

−→
t ×−→v (2.1)

6
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−→
t n =

−→
t∥∥∥−→t ∥∥∥ ,

−→
b n =

−→
b∥∥∥−→b ∥∥∥ (2.2)

−→v n =
−→
t n ×

−→
b n (2.3)

Note that the viewport center is C = E +
−→
t nd.

We then calculate the viewport sizes hx and hy, divided by 2 including the inverse
aspect ratio m−1

k−1 . This is done in equation 2.4.

gx =
hx
2

= d ∗ tanθ
2
,gy =

hy
2

= gx
m− 1

k − 1
(2.4)

Next, we calculate the vectors used for shifting to the next pixel, qx and qy, along the
directions paralell to the viewport

−→
b and −→v , from the bottom left pixel p1m. This is

shown in equations 2.5 and 2.6.

−→q x =
2gx
k − 1

−→
b n,−→q y =

2gy
m− 1

−→v n (2.5)

−→p 1m =
−→
t nd− gx

−→
b n − gy

−→v n (2.6)

If we consider Pij = E + −→p ij and the ray
−→
R ij = Pij − E = −→p ij, we get the normalized

rays in equation 2.7.

−→p ij =
−→p 1m +−→q x(i− 1) +−→q y(j − 1),−→r ij =

−→
R ij∥∥∥−→R ij

∥∥∥ =
−→p ij

∥−→p ij∥
(2.7)

2.2. Ray Tracing Technologies

As previously said, though the ray tracing technique has existed for several decades
now, it is only in recent years that GPU acceleration has made it usable for real time
applications. This acceleration comes from one of several libraries or rendering APIs
that offer the programmer a quick and easy way to interact with the graphics card.

It’s also worth mentioning that we could technically develop a GPU-accelerated ray
tracer with any rendering library from the last two decades, since anything that gives
us control over the GPU could be used for parallelizing the required operations and
give us a considerable speed increase. An example of this would be the Compute
Shaders in OpenGL, which could process an image that we could then draw to a
texture in screen made of two triangles. However, we will only be looking at libraries
that include functionality exclusively dedicated to ray tracing.

Some of these libraries have legacies that extend to the era of rasterized-only graphics,
while others were made from the ground up just for ray tracing. At the same time,
each of them was designed with a specific use case in mind, be it real time graphics
or achieving a higher image fidelity. We will now be looking at what we considered the
most prominent library for each use case,
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2.2. Ray Tracing Technologies

2.2.1. Vulkan

First announced by the Khronos Group at GDC 2015 as the "next generation OpenGL",
Vulkan is intended to be used in high-performance real-time 3D graphics for inter-
active applications such as videogames (Van Bogaert, Bonatto, Fachada, y Lafruit,
2022) (Nikolaev, Frolov, y Ryzhova, 2022). It offers higher performance and lower
level control than popular graphics APIs at the time such as OpenGL or DirectX 11.

It is intended to provide a series of advantages over it’s predecessor, OpenGL, as well
as other APIs. Mainly, Vulkan offers lower overhead, more direct control over the GPU
and lower CPU usage. It was originally developed from AMD’s Mantle (Mantle, Wikipe-
dia, 2022), taking many features and concepts from it. These were later adopted by
other APIs, such as DirectX12 and Metal.

Some of it’s advantages compared to other APIs at the time were:

* Provides a unified API for desktop and mobile devices, in contrast with OpenGL,
which had two different APIs for each (OpenGL and OpenGL ES).

* Vulkan is multiplatform and available in multiple modern operating systems,
not being locked to any operating system or device form factor. In this sense
it’s more similar to OpenGL than to DirectX 12. It currently runs on Android,
Linux, BSD Unix, QNX, Nintendo Switch, Raspberry Pi, Stadia, Fuchsia, Tizen,
Windows 7, 8, 10 and 11, iOS, tvOS and macOS. It is worth noting that the
Apple platforms require the usage of MoltenVK, a library that converts Vulkan
code to Metal.

* Lower CPU usage through the use of low level optimizations such as batching
operations together. This leaves the CPU free for longer periods of time, allowing
it to do more work in the meantime.

* Multi-threading friendly design, in contrast with OpenGL 4 and DirectX 11. The-
se were developed with single-core CPUs in mind and had to be expanded later
on to be executable in multiple cores. Thanks to this, Vulkan offers better sca-
lability on multi-core CPUs.

* Pre-compiled shaders. Shaders are programs executed in the GPU, and as such
they need to be compiled. The prevalent method for doing this was that each
rendering API supported a specific language (OpenGL with GLSL, DirectX with
HLSL, etc.) and came with it’s own compiler for it. This compiler was executed
at application runtime to translate from a shading language into machine code
readable by the GPU. In contrast, the Vulkan driver expects code already com-
piled into an intermediate language known as SPIR-V (Standard Portable Inter-
mediate Representation). This pre-compilation reduces the application’s initiali-
zation time and allows for a larger variety of shaders to be used per scene. Now
the driver only needs to optimize the intermediate code, and developers have an
easier way of obfuscating propietary shaders, since this is no longer stored as
souce code.

* Vulkan employs an extension system in which the programmer must explicitly
ask for the functionality they require, therefore reducing unnecesary overhead
and code size. It is through this system that it provides ray tracing support, by
means of the VK_KHR_ray_tracing extension.

8
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Due to it’s low overhead and customization capabilities Vulkan is widely used in the
videogame industry. We see almost every major game engine (Unity, Unreal Engine,
CryEngine, Frostbite, Godot, etc.).

2.2.2. OptiX

Released in 2009 as part of Nvidia GameWorks, OptiX (Parker y cols., 2010) is a ray
tracing API that offloads computations to the GPU through CUDA. This means it’s
only available for Nvidia’s graphics products. While in previous versions it was con-
sidered a high level API, since version 7 it has become much lower level, giving an
extensive control to the programmer on how memory and processes are managed.
Despite of this, it’s still at a higher level than most other rendering APIs, being de-
signed to encapsulate the entire algorithm of which ray tracing is a part, not just the
ray tracing itself. This allows for the engine to execute the broader algorithm with
greater flexibility and without changes on the application side. Aside from rendering,
OptiX is also used in areas where line-of-sight is important, namely optical and ac-
coustical design (Blyth, 2021) (Hursky y Abawi, 2013), radiation and electromagnetic
research (Felbecker, Raschkowski, Keusgen, y Peter, 2012) (Niu, He, y Jin, 2021),
artificial intelligence queries (Callicott y Zarko, 2021) and collision analysis (Vassilev,
2012). OptiX works using CUDA kernels, instructions supplied by the user, that in-
dicate how a ray should behave in a specific situation to simulate a complete tracing
process. A ray might have different behaviours when hitting different surfaces. OptiX
allows us to customize these behaviours with kernels, written in CUDA’s own flavour
of C or PTX code, that are linked together when used by the engine.

The usage of an OptiX ray tracer usually involes the following steps:

1. Define programs for:

* Ray Generation. Wether rays can be shot in paralell, in a perspective fashion,
like a gradient field, etc.

* Ray Missing. What to do when a ray doesn’t interact with any object.

* (Optional) Exception Program. What to do when a ray cannot be shot for
some reason.

* Bounding Box. This provides a bounding box intersection test for a given
object.

* Intersection Program. How a ray behaves when intersecting with geometry.

2. Define material programs for anyhit and closesthit. These determine the ray
behaviour upon it’s first intersection (closest hit) or subsequent intersections
(any hit).

3. Define buffers. These are memory regions that allow the host and device (CPU
and GPU) codes to communicate.

4. Define scene geometry hierarchy. This generates a tree graph of the scene to be
rendered, including objects, groups and selectors among others.

OptiX is also capable of scaling transparently across multiple GPUs. This feature,
along with it’s higher overhead compared to Vulkan, make it so it’s more used for

9



2.2. Ray Tracing Technologies

higher image fidelity applications than the Khronos library. If we look at the list of
companies that employ it, we find names like Autodesk, Pixar or Redshift.

10



Chapter 3

Analysis

In this chapter we will explain the problem and objectives we’re tackling with this
work, as well as our requirements and experiments performed.

3.1. Problem and objectives

As discussed in the State of the Art chapter, there are many ways to accelerate a
ray tracing application, and not all of them work the same way. When building a ray
tracer, it’s important to know the differences between the technologies behind this
acceleration in order to pick the one that best suits our requirements.

As explained in the Introduction, we have nailed down the two most relevant options
to Vulkan and OptiX. Our objective is to analyze how each of them behave when
varying the rendering quality and scene complexity.

For our objectives to be met and our experiments to be performed we will need the
following:

* Ray Tracer capable of rendering with the Vulkan API and its ray tracing exten-
sion and Ray Tracer capable of rendering with the OptiX library, both capable
of drawing images as similar as possible. Both renderers may be the same ap-
plication with some mechanism to switch APIs, but they could also be separate
projects with equivalent features. They will also need to be parametrized, so our
automation tools can run our experiments from the command line.

* Set of experiments to run on both renderers. These must test different am-
mounts of scene geometry and image quality settings, like screen resolution.

* Automation system to run our set of experiments in a consistent and replicable
way.

* Result visualization system, to plot the results from our experiments.

3.2. Experiment Design

The first step before starting to record any data or implementing any renderers was to
decide what kind of experiments we wanted to run. After reading recent publications
on the topic of ray and path tracing, we settled for the same measurements done by
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Nvidia at the last GTC, when they introduced some advances in real-time path tracing
(Clarberg y cols., 2022). These are frame time, acceleration structure building time,
and memory usage.

Figura 3.1: Render times over 1000 frames with a frame buffer resolution of
7680x4320, while drawing the model of a viking room with textures. It can be obser-
ved how in a very short span of time, the rendering time of the exact same geometry
and effects can hugely change.

* Acceleration Structure Building Time: as the name suggests, this is a spa-
tial data structure that speeds up the search for triangles, distance fields and
other geometry primitives in a given scene. Ray tracing applications use these to
achieve better performance. For example, it’s much faster to look for ray inter-
sections by traversing a hierarchical structure of Axis Aligned Bounding Boxes
than to check a ray against every triangle in a scene. These structures are ty-
pically comprised of a single Top Level Acceleration Structure (TLAS) containing
multiple Bottom Level Acceleration Structures (BLAS), which encode a single 3D
model each with a 3x4 transformation matrix. These structures are usually im-
plemented in hardware. The time it takes for them to be built can be relevant
on the general application’s startup time for a static scene such as the ones
we will be testing, and for runtime performance in case of scenes with dynamic
geometry, where this structure will need to be rebuilt for every animation step.

* Frame Time: videogames and the media that traditionally covers them have en-
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Analysis

Model name Triangles Vertices
Single Triangle 1 3
Viking Room 2000 2600
BMW 385079 249772
Sponza 262267 184330
Hairball 2880000 1441098

Cuadro 3.1: Scenes that will be used to test the ray tracing libraries compared in this
work. We have selected a single 3D model from each order of magnitude in terms of
size.

Model name Triangles Vertices Texture size
Human 25422 29708 0
ISCV2 383511 193212 0
Gallery 998831 499314 0

graved in the general public the notion that Frames Per Second (FPS) is the most
important performance metric in an interactive graphical application. While this
is probably true for the end user experience, the FPS count can be affected by a
miriad of things outside of the rendering system, such as GPU-CPU synchroni-
zation, physics simulation, etc. As this work aims to compare only the rendering
performance of each library, we will only be measuring the time it takes to write
the rendered images to a frame buffer. Due to the huge variance of running ti-
mes inside a modern Operating System, the render times can vary wildly as well
(as we can see in 3.1). To mitigate this, we will take the time measurements over
a fairly long period of time (1000 frames) and describe the results statistically
in order to get a more precise idea of the rendering time that’s less subject to
flukes.

* Memory Usage: quite self-explanatory, the last factor we consider of great im-
portance is the video memory consumption of the process. This can be a limiting
factor on the hardware requirements of a particular application, since execeding
the user’s GPU’s memory capabilities will force it to resort to the use of swap
memory from the system RAM, significantly impacting the performance due to
an abundance of copying between the two.

All these variables will be tested while rendering different ammounts of geometry and
scene complexity. In order to simplify the development of all renderers, each scene
will be comprised of a .obj file. The Single Triangle model was built in-house, the
Viking Room was obtained from (Overvoorde, s.f.), and the rest were obtained from
Morgan McGuire’s Computer Graphics Archive (McGuire, 2022). They all can be seen
at table 3.2 and in figures 3.2, 3.3 and 3.4.

After testing these models we encountered some discrepancies with the Acceleration
Structure Build Times we expected for each of them. This can be seen in more detail
in the Results chapter. We added some extra models for further testing. Their features
can be seen in table 3.2.
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3.2. Experiment Design

Figura 3.2: BMW 3D model used during our experiments

Figura 3.3: Sponza 3D model used during our experiments

Finally, we considered it will be of use comparing how each library performed in dif-
ferent hardware configurations. We gathered all the available hardware compatible
with GPU accelerated ray tracing, and used it to run the same experiments. This
hardware is summarized in table 3.2. This will not only allow us to check how dif-
ferent GPUs handle the same workload, but also how they do it inside a virtualized
environment: the Intel Core i9 machine is not running the software in bare metal,
but rather virtualizing Windows under QEMU.
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Figura 3.4: Hairball3D model used during our experiments

CPU GPU RAM OS
Intel Core i7-12700K, 3.60
GHz

Nvidia GeForce
RTX 3070

16 GB Windows 11, 64 bit

AMD Ryzen 5 3600
3.6GHz BOX

Nvidia GeForce
RTX 2070 Super

16 GB Windows 10, 64 bit

Intel Core i5-9600K,
3.7GHz

Nvidia GeForce
RTX 3060 Ti

16 GB Windows 10, 64 bit

Intel Core i9-9900K
(12/16 cores), 3.6GHz

Nvidia GeForce
RTX 3080

16 GB
Virtual Machine with
Linux Host, Windows
10 64 bit guest

Intel Core i7 10th gen
Nvidia GeForce
RTX 3080

32GB Windows 10, 64 bit

AMD Ryzen 7 3800x,
3.9GHz

Nvidia GeForce
RTX 2070 Super

64GB Windows 11, 64 bit

Intel Core i9-12900F
Nvidia GeForce
RTX 2060

32GB Windows 10, 64 bit



3.2. Experiment Design
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Chapter 4

Design

In this chapter we will explain the applications we developed for this work at a high
level. We will skip the experiment automation and plot generation parts of the softwa-
re, since they are either scripts with a couple of loops that run all the configurations
we deemed necessary or simply read data from text files and plot them. Instead, we
will be focusing on the two ray tracers we built for this work.

4.1. Vulkan Ray Tracer

4.1.1. Rasterized

The rasterized version of the renderer is quite simple in its design, with a single mono-
lithic Application class handling almost everything and a few helper data structures
(Vertex, QueueFamilyIndex, SwapchainSupportDetails and UniformBufferObject) for
storing and grouping together information. This instance of the renderer is much
bigger than the following ones due to us not relying on almost any external library
and having to handle all the low level operations ourselves, thus resulting in a high
ammount of initialization functionality. To all this we added one more class that
encapsulates all the performance measuring functionality, which we called Frame-
PerformanceCounter.

4.1.2. Ray Traced

For the ray traced version of the Vulkan renderer we refactored and simplified most
of the Application class To achieve this, we left an important part of both the initiali-
zation and memory cleanup to the Nvvk library. The UML class diagram in figure 4.1
shows the resulting hierarchy. Finally, we included our own FramePerformanceCo-
unter class for measuring performance.
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Figura 4.1: UML class diagram for the raytraced Vulkan renderer.



Design

4.2. OptiX Ray Tracer

For this ray tracer we further encapsulated different functionalities to improve code
reusability. This meant increasing the complexity of the class hierarchy. The full
diagram can be seen in figure 4.2.

Here we see a central Renderer class thaat serves much as the Application class from
the Vulkan renderer. However, we have encapsulated the window functionality in it’s
own class hierarchy (GLFWWindow, GLFWCameraWindow). Also, we took the camera
manipulation system from the 2019 SIGGRAPH OptiX course (Wald, 2022). This sys-
tem is highly customizable and perfectly functional, though it adds a fair ammount
of complexity to the diagram. This last part includes the classes CameraFrame, Ca-
meraFrameManip and it’s inheritants. To the class GLFWWindow we also added our
FramePerformanceCounter.
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Figura 4.2: UML class diagram for the OptiX ray tracer.



Design

4.3. Flow charts

All the renderers follow the same high level flow. In this section we will be looking at
the different processes that they perform.

4.3.1. Initialization

All renderers start by an initialization process, which we see in detail in figure 4.3. In
this they:

1. Read desired window width and height, and model path desired to render, from
command line arguments. A couple of fail-safes were placed to have default va-
lues for these parameters, in case none were provided. These were added to ease
the development process, allowing us to run our software from the development
enviroment.

2. Initialize the windowing and input systems are initialized. Despite some low-
level differences these all depend on GLFW, so the process is exactly the same
for all renderers.

3. Initialize the renderer itself. This process is highly dependent on each API, but
it’s mostly sequential, checking the hardware we are running it in is supported
and filling data structures. This is specified in detail in the Development chapter.

4. (Only in ray traced renderers) store Acceleration Structure build time, since this
process was performed during the renderer initialization.

5. Finally, we get to the main loop, which we’ll explain in detail next. After exiting
this loop, the program ends.

4.3.2. Main loop

Once the renderer is initialized we get to the main loop. This can be seen in figure
4.4. Ours is not much different than a typical real time graphics applications, with
only a couple of additions. Our loop consists mainly on the following steps:

1. Initialize our Frame Performance Counter object, in order to store the time taken
to render several frames. This process also sets a frame counter to 0.

2. Check if the operating system is asking to close the window. This is done ty-
pically by pressint the "X"button, Alt + F4 or something similar. Most graphics
applications mainly depend on this method for deciding when to shut down, ho-
wever for our automation purposes this wasn’t enough, since it would leave the
renderer running indefinitely. If the OS has asked to close the window, we jump
to step 10. If not, continue to the next step.

3. Take current time before starting the rendering process.

4. Render frame to framebuffer. This is done differently in each API, but can be
easily isolated from the presentation stage.

5. Take current time to measure how long it took to render a frame.

6. Calculate rendering time and store it.
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4.3. Flow charts

7. Present rendered frame to screen. This process is separated from the rendering
part, so we can know exactly how much it took to simply generate the image.
Even though this part is not being measured, we decided to leave it in to monitor
what the renderer was doing. In the OptiX ray tracer this is done by displaying
the frame buffer’s contents as a texture with two triangles that perfectly fit the
screen. In the Vulkan ones this is done via the presentation queue.

8. Increased the rendered frame counter.

9. Check if the rendered frame counter has reached the limit we set for it, in this
case 1000. If it did, continue on. If not, go back to step 2. This is the way in which
we automated our tests, automatically finishing the program when reaching a
desired limit.

10. Free any resources left by the renderer. This process varies depending on the
API used, but both OptiX (CUDA) and Vulkan require a manual cleanup by the
programmer. After this, we end.

In summary, our main loop is mostly the same with a couple of key differences:

* An additional check to terminate the application if we reach a limit (usually
1000) of timed frames.

* Two separated routines for rendering a frame to a frame buffer and to present
this frame buffer to the screen.
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Figura 4.3: Renderer initialization process flow chart.



4.3. Flow charts

Figura 4.4: Renderer main loop flow chart.
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Chapter 5

Development

In this chapter we will cover the development of all the software employed during the
realization of this work, as well as the planning and design of the experiments we
desire to make for the benchmarking of both libraries.
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5.1. Implementation

In this section we will discuss the process of implementing everything that went into
this work. The code written for this comparison can be divided in three categories:

* Two different renderers with as close as function parity as we could, and relying
in the same third party libraries for interacting with the operating system and
file I/O.

* A series of scripts to automate testing and write performance data to disk.

* A system for generating the plots and graphs in this work from the performance
data generated.

In both renderers we used TinyObjLoader and stb_image for loading 3D models in
.obj format and GLFW for handling the window and user input. The phases of loading
models and presenting the rendered image to the screen are out of the scope of this
work, so they will be left out of every measure we do. As such, we do not measure the
time for loading models and presenting an image to the screen.

5.1.1. OptiX Renderer

First developed by Nvidia around 2009, this ray tracing API allows to offload compu-
tations to one or multiple Nvidia GPGPUs using their own technology CUDA. This
API is heavily documented in their programming guide, and several beginner-level
tutorials have been made for it.

We took the course from SIGGRAPH 2019/2020 by Ingo Wald to build a simple 3D
model viewer capable of simple lighting. Our resulting renderer is very much a typical
one consisting of:

* A Ray Generation program on device (GPU) that computes pixel colors. This is
called from CUDA, although it requires a launch parameters struct to be both in
device and host (CPU) memory. This structure will encode things like the camera
data and acceleration structure (AS). It allows for compaction in the AS, but we
will not be diving in it’s implementation details here. The program will also need
sub-programs for when a ray either misses or hits scene geometry. This CUDA
code is compiled and embedded into the C++ host code during compilation.

* A pipeline, which will handle the kind of programs that we want to run. For this
we will need to create an OptiX Context and Module with the embedded CUDA
code and set up the required program groups that will go into such pipeline
(raygen, miss, hit group). Finally, with all this information we can initialize an
OptiX Pipeline.

* A Shader Binding Table (SBT), which will handle the exact configuration for the
programs we will be running. It’s a set of ray generation, miss and hit group
records to run. Each record contains a header and user-supplied data, like per-
mesh CUDA texture objects. All these records are filled during creation of the
SBT and need to be uploaded to a CUDA buffer.

* A Frame Buffer in which to store the generated image. After measuring the ren-
dering time, we copied the buffer’s contents to a GLFW window using OpenGL.
This allowed us to get immediate feedback on what the renderer was doing.



Development

In order to add hard shadows to the scene, we implemented a new ray type with it’s
own closest hit and any hit programs (in this case all the work happens in the any
hit one, with the others doing nothing for shadows). To keep the development time
reasonable we assume all surfaces are opaque, killing the ray upon it’s first occlusion.
As a result of this second ray type, the Hitgroup Program Group has two entries (one
for radiance rays and one for shadow rays) and the SBT has to create two records
per mesh. In our case we use the same data in both records, although this is not
mandatory.

Finally we ported the resulting code from OptiX 7.3 to 7.5, it’s latest version. This
required only a couple of minimal changes.

From that starting point we instrumented the ported code in order to measure frame
rendering time, acceleration structure building time and memory consumption, as
well as parametrizing values for frame buffer width and height and which 3D model
to load. We used the chrono library from the C++ STL and it’s high_resolution_clock
for measuring time and the function cudaMemGetInfo() to consult the memory usage.
We built all this functionality in a class FramePerformanceCounter that handled data
recording and file I/O, making it easy to share this functionality between renderers.

5.1.2. Vulkan Renderer

This phase was the lengthiest of the whole development process. Vulkan is highly
explicit, requiring the programmer to recreate the whole rendering pipeline and con-
figure every stage for drawing even the simplest scenes. The following steps require
significantly less effort, though it does not decrease as greatly as it does with OptiX.

5.1.2.1. Rasterization

We started by building a traditional rasterization renderer based on the one from the
Vulkan Tutorial (Overvoorde, s.f.), which allowed us to get familiar with the API before
using it for tracing rays, as well as giving us the opportunity of comparing ray traced
graphics to rasterized ones with as similar features as possible. We then instrumented
and parametrized it almost as we did with the OptiX renderer. The main difference
was querying for memory usage using the DirectX Graphics Infrastructure API (White
y cols., s.f.) as explained in There is a way to query GPU memory usage in Vulkan
- use DXGI (Sawichi, s.f.). Even though we could have used the Vulkan extension
VK_EXT_memory_budget, we decided against it since it was harder to figure out it’s
usage compared to the more straight forward DXGI.

5.1.2.2. Ray Traced

We expanded our rasterized Vulkan renderer following the course by Nvidia on this
very topic (Lefrançois, s.f.), which gave us a simple ray tracer capable of rendering 3D
models and adding some lights. On a high level, this renderer has similar components
to the one we wrote in OptiX, with some differences:

* Acceleration Structure (AS). As with the rasterized renderer, Vulkan is much
more explicit than even the relatively low-level OptiX 7, making us manually
convert our triangle geometry data into multiple structures that will be consu-
med by an AS Builder. This builder will then store it in one or multiple Bottom
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5.1. Implementation

Level Acceleration Structures (BLAS). As with the OptiX raytracer, we indicate
(to the AS Builder this time) that all our geometry is opaque, disabling calls to
the anyhit shader. Each BLAS also allows for memory compaction, reducing it’s
usage. Broadly speaking, it works by querying the initial (large) BLAS for only
the values we require, creating a new BLAS with a smaller size, copying the data
we have to the newly allocated one and destroying the large BLAS. It requires
waiting until a whole BLAS is built since only then we know how much memory
it actually uses.

With these BLASes we build a single Top Level Acceleration Structure (TLAS).
This is the entry point for the ray tracing scene descriptor, as we will explain
later, and stores all the geometry instances. Each instance is represented by a
transform matrix, a BLAS ID, an instance ID and a hit group index. This index
represents the shaders that will be invoked uppon hitting the stored object,
and are tied to the definition of the Shader Binding Table and the Raytracing
Pipeline, as we shall see. Since our renderer only uses one hit group, this index
will always be 0. Once all the configuring is done, we build the TLAS. We have
decided to optimize for ray tracing performance instead of memory size, though
this option doesn’t seem to be present in OptiX.

* Ray Tracing Descriptor Set. This component references external resources used
by shaders. In the rasterized graphics pipeline we can group the rendering ob-
jects by the materials they use, and draw all the objects that use some materials
all together. This way, we only need to bind the descriptor set that references
those materials while rendering the objects they use them. In Ray Tracing, ho-
wever, we can’t know which objects in the scene will be hit by a ray, and as such
any shader can be invoked at any time. Thus, we need to use a set of Descriptor
Sets containing all the resources necessary to draw the scene (like all the textu-
res of all the materials). Finally, since the Acceleration Structure contains only
position data, the geometry’s vertex and index buffers need to be passed to the
shaders so that they can manually look up the rest of the vertex attributes.

* Ray Tracing Pipeline. As mentioned earlier, we need to have every shader avai-
lable for execution at any time when raytracing, and the shaders to execute are
selected on the GPU at runtime. The structure that makes this selection possible
is a Shader Binding Table. This is essentially a table of opaque shader handles
(probably device addresses) analogous to a C++ v-table. As with everything in
Vulkan, we have to build this table ourselves. A high level overview of this pro-
cess is:

1. Load and compile shaders into VkShaderModules in the usual way.

2. Package said VkShaderModules into an array of VkPipelineShaderStage-
CreateInfo.

3. Create an array of VkRayTracingShaderGroupCreateInfoKHR. Each element
will eventually become an SBT entry. At this point, each shader group refe-
rences a single shader by it’s index in the array created created in the last
step.

4. Compile the two arrays created plus a pipeline layout (as usual) into a ray
tracing pipeline. This converts the array of shader indices into an array of
shader handles. We can query this at will.
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5. Allocate a buffer for the SBT and copy the handles to it.

The ray tracing pipeline is more similar to the compute pipeline than the ras-
terization pipeline: ray traces are dispatched in an abstract 3D space, with it’s
results manually written using imageStore. However, unlike the compute pipeli-
ne, we dispatch individual shader invocations, rather than local groups.

The entry point for ray tracing is the ray generation shader, which we call for
each pixel. It typically initializes a ray starting at the location of the camera
in the direction of the camera lens model at it’s corresponding pixel’s location.
It also has a miss shader and a closest hit shader, the workings of which we
explained in the State of the Art chapter.

The intersection shader is used to intersect user-defined geometry. This can be
useful for intersecting placeholders when using on-demand geometry loading,
or procedural geometry without tessellating it beforehand. We will not be using
this type of shader in this work, since it requires modifying how the accelera-
tion structures are built. Instead, we will solely use the ray-triangle intersection
test provided by the Vulkan extension, which returns 2 floats representing the
barycentric coordinates of the hit point inside a given triangle.

Finally, the any hit shader is executed in each potential intersection. When we
look for the closest hit point to the ray origin, we may find several candidates.
The any hit shader is often used to efficiently implement alpha testing so we
know if the ray traversal can continue. The default any hit shader is a simple
passthrough that returns the intersection to the traversal engine, which deter-
mines which intersection is the closest. We will not be using this shader during
this work as all our geometry is opaque.

* As mentioned before, the Shader Binding Table (SBT) works as the blueprint of
the ray tracing process. It helps selecting the shaders to use as an entry point,
in case of rays missing geometry, and which hit shader groups can be executed
for each geometry instance. The link between instances and shader groups is
created when setting up the geometry, as we provided a hit group ID in the TLAS
for each instance. This value is used to calculate the SBT index corresponding
to the hit group of said instance.

From an implementation standpoint, the SBT is just 4 arrays containing the
handles of the shader groups used in the ray tracing pipeline. There is one array
for each shader group, namely ray generation, miss, hit and callable (not used
in this work). Since we only have one shader of each type, for us each array is
just a handle to a group of shaders.

We employed the nvvk utilities at the Nvpro library (Nviidia, 2022) to facilitate building
this renderer. The same instrumentation and parametrization as in the rasterization
renderer was used here. We explain how this works and how we use it to automate
our tests in the Design chapter.
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5.1.3. Automation and Plotting

To get reproducible results in a reduced amount of time, we implemented a series
of Python scripts in order to run every renderer with every combination of scenes,
renderer settings (like use of shadows or textures) and framebuffer resolutions. Each
renderer run will handle saving their performance information to disk. We later plot-
ted these results in a single script using matplotlib to more easily gauge how each
library behaved under the same configuration. The whole suite of experiments ran
just under 10 minutes in every machine we tested it on.



Chapter 6

Results

In this chapter we will show the results obtained in this work. They will be divided
between the three metrics we chose to monitor (see section Experiment Design in the
Development chapter).

6.1. Rasterization Baseline

First of all and as a sanity check, we will compare the performance of a renderer
using ray tracing to one drawing the same geometry through rasterization. The model
chosen for this will be the Viking Room from the Vulkan Tutorial (Overvoorde, s.f.).

In the first place we will look at how video memory usage changes as the frame sizes
get bigger. We can see a comparison of how much memory both renderers employ in
graph 6.1. We see an expected increase in memory consumption as the frame buffer
resolutions get bigger, as well as a huge difference, of about an order of magnitude,
between the two methods for any given resolution. This is to be expected not only
because a bigger frame buffer will require more memory to be stored, but also because
the ray tracer requires to store an acceleration structure as well as all the possible
shaders bound at the same time.

Rasterized renderers have an initialization process quite different than raytraced ones
since they do not make use of an acceleration structure. Therefore, we cannot com-
pare it’s building time in this context.

To finish this part, we will compare frame times from both renderers in the same
fashion as the memory usage one: with the same model (Viking Room), we’ll run
them for 1000 frames and take the average time it took to render them at different
screen resolutions. We can see how they stack up in figure 6.2. This is very similar to
the memory usage comparison in that both frame times increase as the frame buffer
resolution grows, with the rasterized renderer finishing the job much quicker than
it’s counterpart. In any case, in this instance the performance difference is even more
exaggerated between the two, with rasterized graphics greatly surpassing ray traced
ones.
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Figura 6.1: GPU memory consumption when rendering the Viking Room 3D model
at a range of reasonable resolutions, using ray traced and traditionally rasterized
graphics. We can see a significant difference between the two, as well as an expected
increase as resolutions get higher.
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Figura 6.2: Single frame rendering time when drawing the Viking Room 3D model at a
range of reasonable resolution, using ray traced and traditionally rasterized graphics.
As with the memory consumption graph, we see how the two of them take longer to
finish in higher resolutions, while the rasterized renderer greatly outperforms the ray
traced one.
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6.2. Memory Usage

(a) BMW (b) Sponza

(c) Hairball

Figura 6.3: Memory consumption of OptiX and Vulkan (raytraced) when rendering
the 3D models BMW, Sponza and Hairball.

6.2. Memory Usage

To start the real comparison between Vulkan and OptiX we will look at the memory
usage in GPU across both libraries, all models and all resolutions. We can see how
much each model consumes in graph 6.3.

This is the first example of a trend we will start seeing throughout this chapter.
Vulkan, either despite or thanks to it’s explicitness when developing applications,
is able to load and render the same amount of geometry and detail as OptiX while
requiring only a fraction of the resources, in this case video memory. This remains
true while increasing the frame buffer size, with both libraries increasing the required
memory at a similar rate. One last remarkable thing is the Hairball test case. Here
we see the memory consumption for both libraries is very similar, which suggests the
two technologies tend to use a similar amount of resources when triangle counts tend
to infinity.
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(a) BMW (b) Sponza

(c) Hairball

Figura 6.4: Acceleration Structure Build Time of OptiX and Vulkan (raytraced) when
rendering the 3D models BMW, Sponza and Hairball. Sorted by rendering resolution.

6.3. Acceleration Structure Build Time

Next up we will be looking at the Acceleration Structure Build time across both libra-
ries. Although in our experiments this was only done once per program execution,
applications that perform animations or other form of dynamic geometry may need
to partly rebuild their AS as frequent as once per frame. Thus, the time it takes to do
so (although not all of it) could be counting towards the total time it takes to process
a full application cycle (along with rendering, and simulation, etc.).

If we plot the Acceleration Structure Building Times in the same way as we did with
the memory consumption, we get the graphs at figure 6.4. Mind the logarithmic scale
being used.

We can plainly see how the rendering resolution does not affect the accel build time.
This is to be expected, since a higher pixel count works with the same Acceleration
Structure as a lower pixel count. We will now rearrange the plots in figure 6.5 to see
how geometry amount affects acceleration structure build times.

A curious phenomenon is shown here. We initially expected the Hairball model to



6.3. Acceleration Structure Build Time

(a) 1280x720 (b) 1920x1080

(c) 2560x1440 (d) 3840x2160

Figura 6.5: Acceleration Structure Build Time of OptiX and Vulkan (raytraced) when
rendering the 3D models BMW, Sponza and Hairball. Sorted by model.

have the greatest acceleration structure build time. This is true for Vulkan where the
triangle count is directly proportional to the build time. In OptiX however, the first
spot is granted to Sponza, with about 10 times less triangles than the Hairball. This
could be due to this model having a wider variety of shapes formed by it’s triangles,
which could be harder to optimize, as opposed to the hairball, where everything is
more similar and packed together.

When comparing both libraries, even in the most discrepant case (Hairball), we see
Vulkan being at least slightly faster, around a 20 % on average across all cases and
in most of them simply a lot faster than OptiX when building the AS.

To further investigate why Sponza takes that much longer to build than other models,
we first timed each part of the building process separately. We see this in figure 6.6.
We observe how the distribution of times for each model is completely different. The
Hairball model takes the longest by far to build it’s TLAS, while Sponza takes it’s
much longer time mostly building the Bottom Level part, taking as little as the BMW
one in the Top Level stage.

Seeing this, we decided to expand this metric’s models testing pool to Human, ISCV2
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Figura 6.6: Acceleration Structure Build Times for each model, divided between the
TLAS and BLAS phases. We see great discrepancies in the distribution of time in each
case.

and Gallery. In figure 6.7 we see how their build times stack up to one another.

Figura 6.7: Acceleration Structure Build Times divided between the TLAS and BLAS
phases for the extra set of models (Human, ISCV2 and Gallery).

Finally, we decided to look at the number of BLASes generated for every model, to see
if that could explain why some took longer than others. In table 6.3 we see this. It’s
clear that a higher number of BLASes, and therefore meshes of a given scene, is more
relevant to the Acceleration Structure Build Time than the overall triangle count.
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6.3. Acceleration Structure Build Time

Model BMW Sponza Hairball Human ISCV2 Gallery
BLAS count 73 393 2 20 7 1

Cuadro 6.1: Number of Bottom Level Acceleration Structures in each scene tested. We
see how Sponza, despite having the highest triangle count, has the biggest ammount
of BLASes. This explains why it’s the scene taking the longest to build an Acceleration
Structure.
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6.4. Frame Time

Finally we will look at how long each technology takes to render a full frame. This
could be considered the most important metric to monitor, since rendering a frame
is something that will happen as often as possible, and therefore the amount of ti-
me it takes to do so will be more prevalent than updating or initializing geometry
structures.

As mentioned before, each frame will be rendered to a frame buffer and we will only
count the time it takes to do exactly that, although we will then display them in a
window so we can see what the renderer is doing.

In a modern operating system, the time it takes to perform a certain task can vary a
lot depending on what other processes are running at the time. To counteract this,
we timed the render of 1000 frames for each parameter combination and statistically
described them. An example of that can be seen in figure 6.8.

Figura 6.8: Time taken for rendering 1000 frames when drawing the BMW 3D model
at 1280x720, using ray tracing. We see how the first frame takes much longer than
the rest of them to draw.

We decided to remove the first frame time from this average since, as you can see,
it tends to be a statistical outlier, messing with real world appreciable results. The
same graph from 6.8 results thus in 6.9.

With this preprocessing in place, we will first look at an overview for all models and



6.4. Frame Time

Figura 6.9: Time taken for rendering 1000 frames when drawing the BMW 3D model
at 1280x720, using ray tracing. We have removed the first frame time since it took
too long to draw in comparison with the rest.

resolutions in figure 6.10. For the most part the graphs show what one might expect:
render times get larger as screen resolution increases, with OptiX taking the longest
across all cases. There is however a slightly odd yet expected behaviour. As we see,
the model taking the longer to draw in both libraries is Sponza. The much bigger
Hairball shows times more similar to the BMW model, with about 10 times more
geometry. This suggests that complexity in shapes and textures may be more costly
to render than a higher triangle count.

This discrepancy between triangle count and processing time reminds to the Acce-
leration Structure Build Times, where OptiX also struggled the most to optimize the
Sponza geometry compared to the others. The main difference is here both libraries
have the most trouble to draw this particular scene.

To finish the Frame Time tests, we decided to analyze how the presence of textures
affects this metric. With that in mind, we rendered again the Sponza scene, at a
resolution of 1920x1080 with both libraries, while removing the textures. The results
from this test are shown in Figure 6.11. Here we see the same gap between both
APIs, with Vulkan being faster overall, but additionally we appreciate how it seems
unaffected by the presence of textures, while OptiX takes significantly longer to draw
the textured scene.
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(a) BMW (b) Sponza

(c) Hairball

Figura 6.10: Frame rendering times for each 3D model (BMW, Hairball and Sponza)
across both libraries and 4 reasonable resolutions, from 720p to 4k.
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Figura 6.11: Sponza scene rendered in Vulkan and OptiX, both with and without
textures, to compare how these affect render times.



Results

Ryzen 7 Ryzen 5
Outlier percentage 41.7 31.8
Bigger than median 308 95
Smaller than median 109 223

Cuadro 6.2: Statistical analysis of frame times when comparing a Ryzen 7 and Ryzen
5 processor using the same 2070 Super model of GPU.

6.5. Hardware comparison

As mentioned in the Development chapter, we ran our software in all the machines
we could gather from friends, family and fellow students. This will help us gauge
how the same workload is handled by different GPUs, how CPUs affect performance
while maintaining the same GPU and even how both libraries behave inside a virtual
machine.

6.5.1. Same GPU, changing CPU

We’ll start by comparing how a difference in CPU power affects all the metrics we’re
monitoring, except for memory usage of course. We have a couple of pairs of systems
with the same GPUs and different processors. We will be looking at two systems. One
has an AMD Ryzen 5 3700 BOX and the other an Intel Core i9-12900F. Both of them
are using an Nvidia 2070 Super.

We will start with OptiX. In graph 6.12 we see how acceleration structure build time
and frame times compare to one another when using two machines with a 2070
Super and AMD Ryzen 5 and 7 processors respectively. Some of the results data
went missing when trying to get the software to run on other people’s systems, so we
will not be comparing all the models’ metrics every time. Additionally, we have only
compared the render times at a 1920x1080 resolution to simplify the graphs.

In sight of the great number of statistical outliers present in said plot, we decided to
analyze our sample in further detail. The results we found can be seen in table 6.5.1.
Here we observe a high fraction of data points are indeed outliers, between a third and
a half of the samples in the two studied sets. Also we see how each of the outlier sets
tend towards a different end of its sample’s median, with the most powerful (Ryzen 7)
CPU having a greater count of slower outliers, while the more modest one (Ryzen 5)
tends to have relatively faster ones. Since there is no discernable pattern, we theorize
this variance is due to different system workload amounts during the rendering tests.

In both cases we see a marginal increase in performance (less time consumption) in
the system with the more powerful CPU. In all cases it’s small enough that it could be
considered noise, being a difference smaller than a 10 % every time. However, since
it happens accross all tested models and all the averages in render time, we can
determine it does have an impact on render and acceleration structure build times.

In Figure 6.13 we see the same comparison for Vulkan, only this time using a larger
pool of models. Note how in this case the model of CPU doesn’t seem as important,
with both of them registering shorter times depending on the metric and scene. We
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6.5. Hardware comparison

(a) Acceleration Structure Build Time (b) Frame Times

Figura 6.12: Acceleration Structure Build Time and Frame Render Time comparison
in OptiX when using an Nvidia 2070 Super in two systems with different CPUs. We
see how a faster CPU means better performance in both cases.

assume from this that Vulkan is not as dependent on the CPU as OptiX when it comes
to building an acceleration structure or rendering.
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(a) Acceleration Structure Build Time (b) Frame Times

Figura 6.13: Acceleration Structure Build Time and Frame Render Time comparison
in Vulkan when using an Nvidia 2070 Super in two systems with different CPUs. We
see more variation in which system does better, in contrast with the previous OptiX
test.



6.5. Hardware comparison

Hardware Virtual Machine Bare Metal
Time (microseconds) 400 100

6.5.2. Virtualization effects

Virtual machines are a staple of computing, indispensable when dispatching a job to
a server or running experiments in isolation. During the development of this work we
came across a curious use of these systems, in which people who primarily use Linux
run a small virtual machine for specific purposes, such as gaming or having access
to some software.

VM’s dedicated to gaming or any other graphically intensive work use GPU passth-
rough to have access to near bare metal performance. We will now analyze to what
extent this is true, by running our benchmark in a VM dedicated almost exclusively
to gaming by it’s user. According to them, it’s performance is almost identical to run-
ning the games bare metal, with some minimal additional stuttering. It’s worth noting
this virtual machine makes use of 12 out of the 16 cores available in it’s processor.

The comparison will not be exact, since the most similar system we had access to had
an Intel Core i7, compared to the i9 running the virtual machine. However, the GPU
is the same across both systems, which should be close enough for our purposes.
Unfortunately, due to driver issues, we will only be looking at the Vulkan data for
this case, since we couldn’t get the OptiX ray tracer to run on the Virtual Machine.

We’ll start by looking at the Acceleration Structure build time in 6.5.2. We see how
the virtualized system is three times slower than the bare metal one for this task,
despite having a more powerful processor. This makes sense to an extent, since this
task is relatively CPU-intensive, even though we just saw Vulkan depends less on this
component than on the graphics card.

Next up we will look at frame render times across multiple models in figure 6.14.
We see how, opposite to the acceleration structure build time, the virtual machine
manages to draw frames marginally faster than the bare metal environment. The
difference between the two is so small that we could attribute it to noise, concluding
that the CPU isn’t really relevant when rendering a static scene. This is due to the
CPU being mostly idle once all data is uploaded to the GPU. Therefore the render time
will in essence only depend on the GPU’s capabilities.
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Figura 6.14: Frame render times in Vulkan across two machines with the same GPU
(Nvidia 3080). One of them is running the renderer under a virtual machine and
the other is doing so bare metal. We see a slight advantage towards the virtualized
approach in this side, which could be due to a mere coincidence. This would make
the GPU the only important element when drawing a given scene.
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Chapter 7

Conclusions

In this chapter we will explain our personal conclusions from doing this work, as well
as possible future works.

My main goal as a student in choosing this particular project was to further my
understanding of ray tracing and modern rendering, beyond what casual tutorials in
my spare time could give me. I believe this has been achieved, since we had to build
not one but two, although basic, functioning ray tracers with technologies that are
currently in use in the graphics industry. Not only this, but I was also able to learn
other technologies to aid in their development, such as Nvidia Nsight, as well as know
what to look for when evaluating rendering applications.

This master’s degree has a bigger focus on machine learning than computer graphics
and during the school year you have to develop several projects in that area. Combi-
ning those and my bachelor’s thesis in computer science, which also revolved around
ML, I have gathered some experience that was useful in comparing that field to com-
puter graphics. I believe there are two key differences:

* The development time is much longer in this field than in ML. At least for a
majority of projects of equivalent scope and level of difficulty in both areas, a
project in computer graphics will usually require to build most of the stuff from
scratch, and/or work at a much lower level than machine learning. ML, on
the other hand, has a much richer ecosystem of libraries, frameworks and pre-
trained models that is quite easy to take advantage of. This makes the process
of experimentation on something brand new much faster, since you usually just
need to cobble some stuff together to get most of what you want running.

* The experiment running time is hugely different in both areas. Machine Lear-
ning, specially Deep Learning, has reached a point where it requires increasingly
larger ammounts of computation to improve it’s results, making it’s experiments
take hours, days or even weeks to run for projects not more ambitious than this.
I’ve seen my fellow students leave experiments running for unfathomable am-
mounts of time in quite powerful machines, without reaching state of the art
results. This pales in comparison to the time it took me to run my benchmark
in user-grade systems, taking less than 10 minutes; the only exception to this
was the dedicated AS build time experiment, which took a few hours.

This discrepancy between development and running time could very well compensate
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itself, making the total amount of time dedicated to a project in one field or the other
pretty much equivalent.

Most importantly, the conclusions from comparing both APIs, in no particular order
of importance, are the following:

* Vulkan has an overall longer development time required to achieve equivalent
results as the ones we could get in OptiX. The explicitness it requires for sea-
mingly trivial tasks, while guaranteeing a higher degree of control over what the
driver is optimizing for, require the programmer to either depend on more third
party libraries for tasks like managing memory or configuring the graphics pi-
peline, or spend longer amounts of time developing that logic themselves than if
they were using OptiX.

* The aforementioned explicitness required for coding in Vulkan also allows it to
have an overall better performance, both in processing time and in memory
consumption, as we shall now break down.

* Ray Tracing takes much longer than Rasterization to render a frame indepen-
dently of screen resolution, at least inside the reasonable range of them we
tested. It also has a much higher video memory consumption, sometimes by
orders of magnitude.

* The most used metrics used to evaluate performance of a ray tracing renderer
are Acceleration Structure Build Time, Memory Consumption and Frame Render
Time.

* Vulkan takes exponentially longer to build the Acceleration Structure for a scene
as the ammount of triangles in the scene increases. OptiX’ build time, on the
other hand, increases with the number of Bottom Level Acceleration Structures
(i. e. individual meshes) in said scene increases. This last growth more closely
resembles a linear increase.

* Independently of the last point, and in all the scenes we tested, OptiX always
takes longer to build the AS for a given scene than Vulkan does.

* Both libraries take longer to render a frame as the resolution increases, as ex-
pected, since the total number of rays increases linearly with the pixel count.

* In the testing we did, OptiX took fractionary longer to render a scene when this
included textures than when it didn’t, while Vulkan took effectively the same
amount of time to render both, independently of the presence of textures.

* Independently of the last point and in the testing we did, when rendering the
same frame, OptiX always takes longer than Vulkan to do so.

* Both Vulkan and OptiX can work without issue in a virtualized environment with
GPU passthrough. In the testing we did, virtualized environments had perfor-
mance on-par with bare-metal systems with the same GPU. The main difference
between both was the CPU, which we’ll discuss next.

* While common knowledge may lead us to believe that a better CPU may signifi-
cantly increase performance, rendering is primarily GPU-bound. In the testing
we did, systems with more powerful GPUs only registered a marginally faster
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performance. This probably due to the CPU being mostly idle once all the requi-
red data has been uploaded to the GPU, at least in static scenes.

An unrelated note on a completely personal tone: this work has made me realize how
behind are the typical development tools in the graphics industry in comparison to
others. The most typical development environment for computer graphics, aside from
a few exceptions, is Visual Studio running on Windows. Coming from the Unix-based
world, these tools seem sluggish, tight and slow in comparison, as well as hard to
learn in some cases. And I use Vim.

Finally, the experience of coding in Vulkan is something equivalent to using PyTorch
for Deep Learning. The low level and explicit approach of these libraries helps you
understand in greater detail how some processes work. In the same way that PyTorch
makes you understand how a neural network is trained in comparison to running
model.fit in Keras, configuring every step of the graphics pipeline in Vulkan makes
you understand it in greater depth. The same goes for the modern ray tracing pipeline
and both libraries I used here, with OptiX having a (relatively) higher level approach,
serving as a gentle introduction. In this way it could be considered an equivalent to
OpenGL.

7.1. Future work

There are a few areas in which this project could be expanded upon. These are:

* Testing with dynamic geometry. This would allow for a higher number of tests
in the Acceleration Structure Build Time part, since the AS needs to be rebuilt
when geometry changes.

* Advanced Ray Tracing implementations. Due to the short time frame for this
work and having to do everything almost from scratch, the ray tracers we used
for testing were fairly basic. There are tones of features that could be added to
them, like reflections, different types of materials, etc.

* Porting to Falcor. Halfway through the development of this project (when most
of the code was written), Nvidia released Falcor (Kallweit y cols., 2022). I believe
using this framework would have made it much easier to implement a softwa-
re that traces rays, in comparison to our approach of doing everything from
scratch. Additionally, it would have made it much easier to run and iterate on
a larger number of experiments, as well as testing other rendering APIs such as
DirectX 12.
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