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Abstract: Armor damage due to wave attack is the principal failure mode to be considered when
designing conventional mound breakwaters. Armor layers of mound breakwaters are typically
designed using formulas in the literature for non-overtopped mound breakwaters in non-breaking
wave conditions, although overtopped mound breakwaters in the depth-induced breaking wave zone
are common design conditions. In this study, 2D physical tests with an armor slope H/V = 3/2 are
analyzed in order to better describe the hydraulic stability of overtopped mound breakwaters with
double-layer rock, double-layer randomly-place cube and single-layer Cubipod® armors in depth-
limited breaking wave conditions. Hydraulic stability formulas are derived for each armor section
(front slope, crest and rear slope) and each armor layer. The front slope of overtopped double-layer
rock structures is more stable than the front slope of non-overtopped mound breakwaters in breaking
wave conditions. When wave attack increases, armor damage appears first on the front slope, later
on the crest and, finally, on the rear side. However, once the damage begins on the crest and rear
side, the progression is much faster than on the front slope, because more wave energy is dissipated
through the armored crest and rear side.

Keywords: mound breakwater; hydraulic stability; overtopped breakwater; armor damage;
depth-limited waves; breaking waves; Cubipod®

1. Introduction

The armor damage on mound breakwaters due to wave attack is the first problem to
assess in the design phase. Extensive literature can be found reporting different hydraulic
stability formulas to design the armor layer of mound breakwaters [1–3]. Although most
mound breakwaters are built in the depth-limited wave breaking zone, most of the afore-
mentioned formulas were developed using physical tests conducted in non-breaking wave
conditions with null or insignificant overtopping (crest freeboard higher than two times the
design significant wave height). Herrera et al. [4] found that the formulas derived in non-
breaking conditions are not fully valid in breaking conditions, since the breakwater must
withstand wave storms with a percentage of waves breaking before reaching the structure.

Another key aspect to consider in mound breakwater design is the current context of
climate change. Overtopping risk in coastal structures is even more relevant due to rising
sea levels and more extreme wave storms. Higher sea levels will reduce dimensionless
crest freeboards leading to higher overtopping rates. In overtopped mound breakwaters
(crest freeboard similar to the design significant wave height), part of the wave energy
passes through the structure [5]; the wave energy is dissipated not only in the armored
front slope, but also in the armored crest and rear slope. Thus, the hydraulic stability of
the front slope, crest and rear slope becomes relevant for design purposes and related to
the overtopping. Vidal et al. [6] reported that the hydraulic stability of overtopped mound
breakwaters was dependent on the dimensionless crest freeboard, Fd = Rc/Dn50, where
Rc is the crest freeboard and Dn50 = M50/ρr is the nominal diameter of the armor rocks,
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M50 is the median rock mass and ρr is the mass density of the rocks. As Fd decreases, the
overtopping rate increases, the hydraulic stability of the front slope increases while that of
the crest and rear slope decreases. Thus, special attention is required to design the armor
crest and rear slope in overtopped mound breakwaters.

Argente [7] performed 2D physical tests with overtopped mound breakwaters
(0.4≤ Rc/Hm0 ≤ 2.0 and 1.5≤ Rc/Dn ≤ 4.7, where Hm0 = 4 (m0)0.5 is the spectral significant
wave height) with double-layer rock, double-layer randomly-place cube and single-layer
Cubipod® armors in depth-limited breaking wave conditions. This author proposed for-
mulas to describe the hydraulic stability of these structures using the 5-power relationship
between the design wave height and the armor damage recommended by [2,8] for non-
overtopped and non-breaking wave conditions. Nevertheless, recent studies [4,9] found a
6-power relationship when depth-induced breaking wave conditions are considered.

This study reanalyzes the data by [7] to examine the hydraulic stability of overtopped
mound breakwaters with armor slope H/V = 3/2 and with double-layer rock, double-layer
randomly-place cube and single-layer Cubipod® armors in depth-limited breaking con-
ditions. New hydraulic stability formulas are proposed assuming a n-power relationship
between the design wave height and the armor damage. The exponent of the power is esti-
mated in order to better describe armor damage in depth-limited breaking wave conditions.
This paper is organized as follows. In Section 2, a review of the literature on the hydraulic
stability of low-crested mound breakwaters in breaking wave conditions is presented. In
Section 3, data reported in [7] are described. In Section 4, the experimental database is
analyzed. In Section 5, results of the analysis of the armor damage of the tested overtopped
mound breakwaters are discussed; the influence of the armor unit, the armor section and
overtopped conditions are specified. Finally, in Section 6, conclusions are drawn.

2. Literature Review

As mentioned in the previous section, most studies in the literature related to the
stability of mound breakwaters analyzed non-overtopped structures in non-breaking
wave conditions. Here, the literature on the hydraulic stability of mound breakwaters is
briefly reviewed, focusing on mound breakwaters located in the surf zone with relevant
overtopping rates.

2.1. Armor Damage Measurement

Armor damage is typically assessed considering both quantitative and qualitative
methods. Although a quantitative analysis provides a reasonably objective value for armor
damage, qualitative criteria are needed to characterize the severity of the damage. Here,
both quantitative and qualitative methods are summarized.

It is not easy to standardize the quantitative armor damage to mound breakwaters in
a manner valid for different armor units, number of layers and slopes. Several criteria for
quantitative armor damage can be found in the literature, but the most commonly used
criterion is the measurement of the dimensionless armor damage. The dimensionless armor
damage parameter is defined as S = Ae/Dn

2, where Ae is the average eroded cross-section
area, and Dn = M/ρ is the nominal diameter or equivalent cube size, being M the median
mass of the armor unit, and ρ the mass density of the armor unit. Ae can be determined
using mechanical or laser profilers as well as the visual counting method [10], assuming
a constant armor porosity during the erosion process. However, Gómez-Martín and
Medina [11] indicated that these conventional methods were not adequate when analyzing
armor units with significant Heterogeneous Packing, HeP (e.g., cube armors). The HeP
failure mode, further explained in [12], involves an increase in the local packing density
in the lower area of the armor and a reduction in the local packing density in the upper
area, due to an undesired face-to-face arrangement of the armor units. Gómez-Martín
and Medina [11] also proposed the Virtual Net method to analyze the armor damage
considering the changes in the porosity of the armor and, thus, the HeP. The Virtual Net
method divides the armor into strips of constant width (w = aDn) and length (l = bDn). The
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dimensionless damage is measured in each strip (Si) considering the porosity evolution in
time and space. The equivalent dimensionless armor damage parameter (Se) is obtained by
integrating Si over the slope, as shown in Equation (1).

Se = ∑I
i=1Si = ∑I

i=1a
(

1− 1− pi
1− pi0

)
= ∑I

i=1a
(

1− φi
φi0

)
(1)

where a is the number of rows in the strip, I is the number of strips, pi = 1 − (NiDn
2/wl) is

the armor porosity of the strip i, being Ni the number of armor units within the strip i, p0i
the initial armor porosity of the strip i, Φi = n (1 − pi) the packing density of the strip i,
being n the number of armor layers, and Φ0i the initial packing density of the strip i. In the
present study, the Virtual Net method is used in order to consider the HeP failure mode.

As previously mentioned, qualitative analysis of damage is also required to properly
describe the severity of the armor damage. Losada et al. [13] and Vidal et al. [14] proposed
four qualitative levels of armor damage for conventional double-layer armors:

• Initiation of Damage (IDa): some units are lost from the upper armor;
• Initiation of Iribarren’s Damage (IIDa): a large area of the upper armor is damaged, so

the extraction of units from the bottom armor layer is possible;
• Initiation of Destruction (IDe): the filter is clearly visible due to the extraction of at

least one element from the bottom armor layer;
• Destruction (De): several elements from the filter layer are removed.

In order to describe the severity of damage on conventional mound breakwaters with
single-layer armors, Gómez-Martín [15] defined three levels of armor damage:

• Initiation of Damage (IDa): some isolated units are removed from the armor, producing
holes whose size is close to the size of the armor units;

• Initiation of Destruction (IDe): several adjacent units are removed from the armor,
producing cracks and holes whose size is larger than the armor unit. The filter is
clearly visible;

• Destruction (De): several elements from the filter layer are removed.

In the present study, two levels of armor damage are considered: Initiation of Damage
(IDa) and Initiation of Destruction (IDe).

2.2. Hydraulic Stability of Mound Breakwaters in Breaking Wave Conditions

Most hydraulic stability formulas are based on the stability number, Ns = H/∆Dn,
where H is the design wave height, ∆ = (ρ − ρw)/ρw is the relative submerged mass density,
ρ is the mass density of the armor units, and ρw is the mass density of the sea water.
Hudson [1] proposed Equation (2), the most widely used stability formula, which was
validated using physical tests with regular waves in non-breaking wave conditions. KD
is the stability coefficient which depends on the type of armor unit, armor placement, the
number of layers in the armor and the section of the breakwater (trunk or head); cotα is the
armor slope.

H
∆Dn50

= (KD cot α)1/3 (2)

In order to account for the depth-limited wave breaking conditions, USACE [16,17]
proposed reducing the value of KD in Equation (2). According to [16], KD = 4.0 for double-
layer rough-angular rock armor in non-breaking wave conditions while KD = 3.5 for the
same armor in breaking wave conditions. On the other hand, USACE [17] recommended
applying KD = 4.0 for double-layer rough-angular rock armor in non-breaking wave
conditions and KD = 2.0 for the same armor in breaking wave conditions. It should be
noted that [16] proposed using H = Hs = H1/3 (average of the one-third highest waves)
while [17] recommended H = H1/10 (average of the one-tenth highest waves) in non-
breaking wave conditions and H = Hb (Hb = 0.78hs, where hs is the water depth at the toe of
the structure) in breaking wave conditions.
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Van der Meer [2] performed physical tests focused on the hydraulic stability of rock
armors and combined these results with those by [18]. A wide range of stability numbers
(1 ≤ Hs/∆Dn ≤ 4), armor slopes (1.5 ≤ cotα ≤ 6.0) and structural permeabilities were
covered. Most of these tests were conducted in non-breaking wave conditions. Based on
this experimental database, Van der Meer [2] proposed Equation (3).

Hs

∆Dn50
= 6.2S0.2P0.18Nz

−0.1ξm
−0.5 f or ξm < ξmc (plunging waves)

Hs

∆Dn50
= 1.0S0.2P−0.13Nz

−0.1 cot α0.5ξmP f or ξm > ξmc (surging waves)
(3)

where ξmc = (6.2P0.31tanα0.5)1/(P+0.5) is the critical breaker parameter, 0.1 ≤ P ≤ 0.6 represents
the permeability of the structure, Nz is the number of waves and ξm = tanα/(2πHs/[gTm

2])0.5

is the surf similarity parameter calculated using the mean period (Tm).
Van der Meer [2] conducted 293 tests in non-breaking wave conditions but also 16 physi-

cal tests in breaking wave conditions on a bottom slope m = 1/30 and 3.3 ≤ hs/∆Dn50 ≤ 6.5,
where hs is the water depth at the toe of the structure. A permeable structure with cotα = 2.0
composed of rocks with Dn50 = 3.6 cm was considered. Based on these additional tests,
Van der Meer [2] proposed replacing Hs in Equation (3) by H2%/1.4, where H2% is the
average of the 2% highest waves. Note that H2%/Hs ≈ 1.4 for a Rayleigh distribution.

Van Gent et al. [3] performed additional physical tests in breaking and non-breaking
conditions on bottom slopes m = 1/30 and 1/100 with rock armors with permeable and
impermeable core. The tested rock armored structures considered cotα = 2.0 and 4.0,
and Dn50 = 2.2 and 3.5 cm. Van Gent et al. [3] combined their experimental database
with that by [19] to validate Equation (4) within the ranges 1.5 ≤ hs/∆Dn50 ≤ 11 and
0.5 ≤ Hs/∆Dn ≤ 4.5; in total, 207 tests were used.

H2%

∆Dn50
= 8.4S0.2P0.18Nz

−0.1ξs−1
−0.5 f or ξs−1 < ξmc (plunging waves)

H2%

∆Dn50
= 1.3S0.2P−0.13Nz

−0.1 cot α0.5ξs−1P f or ξs−1 > ξmc (surging waves)
(4)

where ξs−1 = tanα/(2πHs/[gTm−1,0
2])0.5 is the surf similarity parameter calculated using

the spectral period Tm−1,0 = m−1/m0, in which mi is the i-th spectral moment obtained
as mi =

∫ ∞
0 S( f ) f id f , being S(f ) the wave spectrum. Equations (3) and (4) have several

common elements.
In order to account for Dn50 of the core of the structure, Gent et al. [3] also derived

Equation (5).
Hs

∆Dn50
= 1.75

(
1 +

Dn50core
Dn50

)(
S√
Nz

)0.2
cot α0.5 (5)

Prevot et al. [20] carried out physical tests with rubble mound breakwaters in breaking
wave conditions on a bottom slope m = 1/30. These authors compared their experimental
results with Equations (3) and (4) and concluded that the best estimations were given by
Equation (4).

Herrera et al. [4] also analyzed the armor damage of non-overtopped rock armors and
depth-limited breaking wave conditions. In total, 45 physical tests within the experimental
ranges 1.0 ≤ Hm0/∆Dn ≤ 2.5 and 3.8 ≤ hs/∆Dn ≤ 7.5 were performed on a bottom slope
m = 2% using conventional rock armored structures with cotα = 1.5 and Dn50 = 3.18 cm.
Herrera et al. [4] did not find that the wave steepness sm = Hm0/Lm and water depth at
the toe hs significantly influenced the armor damage, and recommended using Hm0 at a
distance of 3 times hs from the toe of the structure as design wave height. These authors
derived Equation (6) to describe the hydraulic stability rock armors in breaking wave
conditions, where Se is the equivalent dimensionless armor damage.
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Se = 0.066
(

Hm0

∆Dn50

)6
(6)

Recently, Etemad-Shahidi et al. [9] examined the 791 physical tests by [2,3,10,18]
on non-overtopped rubble mound breakwaters and considered Equation (7) as valid for
both breaking and non-breaking conditions within the ranges 1.0 ≤ Hs/∆Dn ≤ 4.3 and
1.35 ≤ hs/Hs ≤ 19.68.

Hs

∆Dn50
= 4.5 CpNz

−0.1S1/6ξs−1
−7/12(1− 3m) f or ξs−1 < 1.8 (plunging waves)

Hs

∆Dn50
= 3.9 CpNz

−0.1S1/6ξs−1
−1/3(1− 3m) f or ξs−1 ≥ 1.8 (surging waves)

(7)

where Cp = (1 + [Dn50 core/Dn50]3/10)3/5 is the coefficient of permeability.
After describing the formulas given in the literature to assess the hydraulic stability of

rock-armored breakwaters, it can be concluded that no consensus exists regarding neither
the variables involved nor the power of the relationship between Ns and the dimensionless
armor damage when the breakwater is placed in depth-limited breaking wave conditions.
The 5-power relationship recommended by [8] based on [17] and Equations (3) and (4)
for non-breaking wave conditions must be assessed when compared to the 6-power rela-
tionship proposed by Equations (6) and (7) valid for structures in depth-limited breaking
wave conditions.

Gómez-Martín et al. [21] carried out 2D physical model tests to analyze the trunk
hydraulic stability of single- and double-layer Cubipod® armors in depth-limited regular
wave breaking and non-overtopping conditions with horizontal foreshore (m = 0) and
armor slope cotα = 1.5. Gómez-Martín et al. [21] proposed Equation (8) to design safe
Cubipod® armored breakwaters (cotα = 1.5) on gentle bottom slopes (0 ≤ m ≤ 2%), for
any deep-water wave climate, regardless of the wave height at the toe of the structure,
considering a design water depth (h) at a distance three times the water depth at the toe of
the structure, h = hs (1 + 3 m).

Dn >

(
h

7∆

)
f or double-layer Cubipod(r) armors

Dn >

(
h

6.2∆

)
f or single-layer Cubipod(r) armors

(8)

2.3. Hydraulic Stability of Overtopped Mound Breakwaters

As previously mentioned, most studies focus on the hydraulic stability of non-
overtopped mound breakwaters and only consider the damage to the front slope. However,
when overtopping rates become relevant, the hydraulic stability of the crest and rear side
of the structure must be considered. In this section, the literature related to the hydraulic
stability of overtopped mound breakwaters is reviewed.

The European project DELOS (Environmental design of low-crested coastal defense
structures) was one of the main projects analyzing the performance of low-crested struc-
tures. During this project, 2D and 3D physical tests were performed to analyze the hydraulic
stability of the head and trunk of low-crested mound breakwaters. However, most of the
existing studies on low-crested structures consider breakwaters with very high overtopping
with crest levels similar to the mean water level. Thus, their behavior is different from
overtopped mound breakwaters with crest freeboards similar to the design significant
wave height.

Van der Meer et al. [22] summarized the results published by [23] and classified low-
crested structures into three categories: (1) dynamically stable reef breakwaters, (2) statically
stable low-crested structures with the crest above the mean water level and (3) statically
stable submerged breakwaters. Regarding the second category, statically stable low-crested
structures, Van der Meer et al. [22] concluded that their front slope was between 20% and
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30% more stable than the front slope of non-overtopped structures. These authors also
proposed applying Equation (9) as a reduction factor to estimate the required size of rock
armor calculated with formulas for non-overtopped breakwaters.

RF =
1

1.25− 4.8
Rc

Hm0

√
s0p

2π

(9)

where s0p = 2πHm0/gTp
2 is the fictitious wave steepness. Equation (9) can be applied within

0 ≤ Rc
Hm0

√
s0p
2π ≤ 0.052.

Vidal et al. [6] tested rubble mound breakwaters with armor slope H/V = 3/2 within
the ranges −0.63 ≤ Rc/Hm0 ≤ 1.00 and −2.01 ≤ Fd = Rc/Dn50 ≤ 2.41. These authors
divided the model in four sections to analyze the hydraulic stability: (1) front slope,
(2) crest, (3) rear slope and (4) total section. Vidal et al. [6] observed that the stability of the
front slope decreased with increasing values of Fd while the stability of the crest increased
for higher values of Fd. In addition, the minimum stability for the rocks in the armored
crest was determined for a null crest freeboard. Burger [24] reached similar conclusions
when reanalyzing the data by [6,25].

Later, Vidal et al. [26] conducted new physical tests with emerged and submerged
rubble mound breakwaters with H/V = 1/2 and 1/1.15, and four crest freeboards within
−4 ≤ Fd ≤ 4. The authors proposed threshold values for the damage parameter S for IDa,
distinguishing between the three sections of the armor: S (IDa) = 1.0 for the front slope
and crest and S (IDa) = 0.5 for the rear slope. Vidal et al. [26] also derived a quadratic
relationship between Fd and the stability number for IDa, Ns50 = H50/∆Dn50, where H50 is
the average of the 50 highest waves of the incident wave train, given by

Ns50 = AFd
2 + BFd + C (10)

where A, B and C are empirical coefficients calibrated for the three sectors of the armor.
Van der Linde [27] performed the first tests on overtopped mound breakwaters with

precast concrete armor units. This author tested XBlock-armored mound breakwaters with
H/V = 4/3 within the range −0.8 ≤ Fd ≤ 0.8. Later, Muttray et al. [28] reanalyzed the data
provided by [27] and recommended values of Ns to design low-crested mound breakwaters
with XBlock on the armor layer.

Argente et al. [29] carried out physical model tests on overtopped mound breakwaters
(0.3 ≤ Rc/Hm0 ≤ 2.6) with armor slope H/V = 3/2 in depth-limited breaking conditions on
a bottom slope m = 2%. Three armor layers were considered: double-layer rock (rock-2L),
double-layer randomly-place cube (cube-2L), and a single-layer Cubipod® (Cubipod®-1L)
armors. No significant damage was observed for Cubipod®-1L. Argente et al. [29] proposed
a relationship between Se and Ns for rock-2L and cube-2L given by

Se
0.2 = C1Ns + C2 (11)

where C1 and C2 are empirical coefficients calibrated for rock-2L and cube-2L armors, as
shown in Table 1, and Ns is calculated with Hm0 estimated at a distance of 3hs from the toe
of the model [4]. Note that the 5-power relationship between the design wave height and
the armor damage recommended by [8] for non-breaking wave conditions was assumed.

Table 1. Value of coefficients C1 and C2 for Equation (11) given by [29].

Armor Sector C1 C2

Rock-2L Front slope 0.633 −0.056
Cube-2L Front slope 0.137 0.621
Cube-2L Crest 0.240 0.362
Cube-2L Rear slope 0.255 0.113
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Recently, the database compiled by [29] was extended by [7], who performed addi-
tional physical tests on m = 4% considering the same three armors (rock-2L, cube-2L and
Cubipod®-1L) and similar experimental ranges, 0.4≤ Rc/Hm0 ≤ 2.0 and 1.5 ≤ Rc/Dn ≤ 4.7.
Although no significant differences were observed in the quantitative data regarding armor
damage, Argente [7] analyzed m = 2% and m = 4% separately. Using the extended database,
Argente [7] re-fitted Equation (11).

It should be noted that in Equation (11) the 5-power relationship between the design
wave height and the armor damage for non-overtopped and non-breaking wave conditions
was assumed. However, both [4,9] found a 6-power relationship better to describe the
armor damage on rubble mound breakwaters in depth-limited breaking wave conditions.
Therefore, the exponent of the power must be assessed in order to determine the optimal
exponent when describing the hydraulic stability of overtopped mound breakwaters in
depth-limited breaking wave conditions.

3. Experimental Methodology

Two-dimensional physical tests were performed by [7] in the wave flume (30 × 1.2 × 1.2 m)
of the Laboratory of Ports and Coasts at the Universitat Politècnica de València (LPC-UPV).
Two configurations of the wave flume were considered: (1) a continuous ramp with a
bottom slope m = 4%, and (2) a 6.25 m-long m = 4% ramp followed by a 9.0 m-long m = 2%
ramp. These bottom slope configurations are depicted in Figure 1.
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Figure 1. Longitudinal cross-sections of the configurations at the LPC-UPV wave flume.

Mound breakwaters with armor slope H/V = 3/2 and rock toe berms were tested.
Three armor layers were considered: (1) double-layer randomly placed rock (rock-2L with
Dn50 = 3.18 cm), (2) double-layer randomly-placed cube (cube-2L with Dn = 3.97 cm) and
(3) single-layer Cubipod® (Cubipod®-1L with Dn = 3.79 cm). The initial packing density of
the tested armors was Φ = (1 − p) = 0.63, 0.59 and 0.60 for rock-2L, cube-2L and Cubipod®-
1L, respectively. To guarantee the toe berm hydraulic stability during the experiments,
tests carried out on a bottom slope m = 2% were conducted using a medium-sized rock
toe berm (Dn50 = 2.3 cm) while tests conducted with m = 4% were performed with a larger
rock toe berm (Dn50 = 3.9 cm). The same filter and core materials were considered for the
three armor layers; a filter layer with Dn = 1.78 cm and a core with Dn = 0.68 cm were
placed under the armor. Figure 2 shows the tested cross-section whereas Table 2 provides a
summary of the characteristics of the materials used during the tests.

Runs of 1000 random waves were generated following a JONSWAP spectrum (γ = 3.3).
The AWACS wave absorption system was activated to avoid multireflections in the wave
flume. Neither low-frequency oscillations nor piling-up were significant during the tests.
The LPC-UPV wave flume prevents piling-up by allowing water to recirculate through a
double floor.
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Table 2. Characteristics of the materials used during the physical tests.

Material M or M50 (g) ρ or ρr (g/cm3) Dn or Dn50 (cm)

Rock (armor) 86.77 2.68 3.18
Cube 141.51 2.27 3.97

Cubipod® 121.06 2.22 3.79
Rock (filter) 15.40 2.73 1.78
Rock (core) 0.68 2.72 0.68

Two water depths (hs) at the toe of the structure were tested for each model and
foreshore configuration (m = 2% and 4%). All tests except those corresponding to cube-2L
with m = 2% were performed with hs = 20 cm and 25 cm. Tests with cube-2L on m = 2%
were conducted with hs = 25 cm and 30 cm. For each water depth at the toe (hs), Hm0
and the peak period (Tp) at the wave generation zone were calculated so as to maintain
approximately constant the wave steepness (s0p = Hm0/L0p = 2πHm0/(gTp

2)) through each
test series (s0p = 0.02 and 0.05). For each s0p, Hm0 at the wave generation zone (Hm0,g)
was augmented in steps of 1 cm from no damage to initiation of destruction of the armor
layer or wave breaking at the wave generation zone. Table 3 shows the range of the main
variables during the tests. Note that wave characteristics (Hm0 and Tp) are provided at a
distance of 3hs from the toe of the structure following recommendations by [4].

Table 3. Structure and wave characteristics of the physical tests.

m Armor B [m] #Tests hs [m] Rc [m] Hm0 [m] Tp [s]

2%

Rock-2L 0.26
15 0.20 0.15 0.06–0.12 1.0–2.2
15 0.25 0.10 0.06–0.13 1.0–2.2

cube-2L 0.27
30 0.25 0.11 0.05–0.16 1.0–2.7
24 0.30 0.06 0.06–0.18 1.0–2.2

Cubipod®-1L 0.24
30 0.20 0.12 0.06–0.15 1.0–2.7
30 0.25 0.07 0.06–0.17 1.0–2.7

4%

rock-2L 0.26
20 0.20 0.15 0.05–0.14 1.0–2.4
18 0.25 0.10 0.06–0.13 1.0–2.2

cube-2L 0.27
30 0.20 0.16 0.05–0.17 1.1–2.4
30 0.25 0.11 0.06–0.18 1.0–2.7

Cubipod®-1L 0.24
28 0.20 0.12 0.06–0.17 1.0–2.4
30 0.25 0.07 0.06–0.18 1.0–2.7

Eleven capacitive wave gauges were installed to measure water surface elevation all
along the wave flume. Five wave gauges (S1 to S5) were placed in the wave generation
zone following [30]; S1 to S5 were used to separate incident and reflected waves in the
wave generation zone. Four wave gauges (S6 to S9) were installed close to the model at
distances from the model toe 5hs, 4hs, 3hs and 2hs, respectively. It should be noted that
depth-induced wave breaking takes place in the model zone, so the existing methods to
separate incident and reflected waves are not reliable. Two extra wave gauges were placed
in the middle of the breakwater crest (S10) and behind the breakwater model (S11); S10
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was used to analyze the overtopping layer thickness [31] whereas S11 was used to detect
possible phenomena of water piling-up. Overtopping discharges were recorded using a
weighting system located behind the model [32].

Three cameras were also installed perpendicular to front slope, crest and rear side
of the armor in order to analyze the armor damage using the Virtual Net method (see
Figure 3). Photographs were taken before starting the tests and after each test run.
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4. Data Analysis

In Section 3, the experimental set up and instrumentation are described. Here, data
from the described experiments are analyzed; the incident wave characteristics in the model
zone and the equivalent dimensionless armor damage (Se) after each test are obtained
using the Virtual Net method.

4.1. Wave Analysis

As mentioned in Section 3, wave gauges S1 to S5 were placed close to the wave
maker. The LASA-V method [33] together with wave gauges S1 to S5 were used to separate
incident and reflected waves in the wave generation zone. Note that LASA-V method can
be applied to nonstationary and nonlinear irregular waves. However, it is not possible to
separate incident and reflected waves using methods in the literature when wave breaking
occurs. Therefore, the SwanOne model [34] was applied to characterize waves in the model
zone. The SwanOne model uses the input incident wave conditions to fit a JONSWAP
spectrum (γ = 3.3) in the wave generation zone. This spectrum is propagated along a given
bathymetry and the Composite Weibull distribution recommended by [35] is assumed to
characterize the wave height distribution in shallow foreshores. Since the SwanOne model
considers frequencies within a range typical for prototype scale (0.03–0.8 Hz), a reference
scale 1/30 was assumed in this study.

Following [4], the SwanOne model is validated here using tests without a struc-
ture. An efficient passive wave absorption system was installed at the end of the flume
(Kr = Hm0,r/Hm0,i < 0.25) during the test without a structure. The measurements of these
test (total waves) were compared with results provided by the SwanOne model at both the
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wave generation zone (Figure 4a) and the model zone (Figure 4b). The comparisons at the
wave generation zone represent the capability of the SwanOne model to fit to the input
incident waves to a JONSWAP spectrum.
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Figure 4. The measured spectral wave height without a structure (total waves) compared to the incident spectral wave
height estimated by the SwanOne model: (a) in the wave generation zone, and (b) in the model zone.

Two statistics were used in this study to quantify the goodness of fit: (1) the correlation
coefficient (r), and (2) the coefficient of determination (R2). 0≤ r≤ 1 assessed the correlation,
and 0 ≤ R2 ≤ 1 estimates the proportion of variance explained by the model. Therefore,
the higher the r and the higher the R2, the better.

r =
∑No

i=1(oi − o)(ei − e)√
∑No

i=1(oi − o)2 ∑No
i=1(ei − e)2

(12)

R2 = 1−
1

No
∑No

i=1(oi − ei)
2

1
No

∑No
i=1(oi − o)2

(13)

where No is the number of observations; oi and ei are the observed and estimated values,
and o is the average observed value. Figure 4 shows a good performance of the SwanOne
model to estimate the incident significant wave height both in the wave generation zone
(R2 = 1.00) and the model zone (R2 = 0.97).

During the design phase of a mound breakwater, the design significant incident wave
height has to be estimated at the location where the mound breakwater will be built; thus,
Hm0 estimated by SwanOne is applied in this study to estimate the significant incident
wave height at the toe of the structure.

4.2. Armor Damage

In Section 2.1, quantitative and qualitative methods to analyze the hydraulic stabil-
ity of mound breakwaters are summarized. As previously mentioned, the Virtual Net
method by [11] is applied in this study in order to account for the HeP failure mode in the
quantitative analysis of armor damage. Pictures were taken perpendicular to the slope
using the cameras as shown in Figure 3 before starting the tests and after each test to
analyze the evolution of armor damage over time. The front slope, crest and rear slope
were divided into strips. The front slope and rear slope were divided in four strips of 3Dn
or 4Dn while one strip of 6Dn was considered on the crest. Only the central part of the
model was included in the analysis to avoid interference with the boundaries of the flume
or the instrumentation on the crest (see Figure 3). Si was calculated for each strip after each
test, and it was integrated to obtain Se. An example of the application of the Virtual Net
method on the rock-armored model is presented in Figure 5.
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Figure 5. Application of the Virtual Net method on the front slope of rock-armored model.

Qualitative levels of armor damage to the rock-2L and cube-2L models were estab-
lished according to [13,14]. Recommendations given by [15] were applied to determine
the qualitative levels of armor damage to the Cubipod®-1L model. IDa and IDe were
considered in this study for front slope (F), crest (C) and rear slope (R). Figure 6 presents
an example of the experimental results obtained for the cube-2L model.
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5. Stability Formulas for Overtopped Mound Breakwaters

In this section, the armor damage to overtopped mound breakwaters is described,
and hydraulic stability formulas are derived based on the experimental results from the
previous section. Results for m = 2% and 4% were considered as a single population, since
no significant differences in the distribution of Se were observed [7].
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In the following sections, hydraulic stability formulas are fitted for the different
sections of the armor (front slope, crest and rear slope) of each tested armor layer (rock-2L,
cube-2L and Cubipod®-1L). For further analysis, only values Se > 0.05 are considered. As
mentioned in Section 2.2, Herrera et al. [4] obtained a 6-power relationship between Hm0
and Se; this may indicate that the 5-power suggested for non-breaking wave conditions may
not be the best relationship in depth-limited breaking wave conditions. Thus, Equation (14)
is assumed to describe armor damage, similar to [4].

Se = K1Ns
K2 (14)

where K1 and K2 are empirical coefficients to be calibrated, and Ns = Hm0/∆Dn is the
stability number calculated with Hm0 given by the SwanOne model at a distance of 3hs
from the toe of the model, following the recommendations by [4,29].

5.1. Rock-Armored Model

The failure of the front slope of the rock-armored model was achieved before noticeable
overtopping discharges took place (Q = q/(gHm0

3)0.5 < 4 × 10−4, where q is the mean wave
overtopping discharge and g is the gravity acceleration), so the armor damage appeared
mainly on the front slope. Thus, only results for the front slope are used to calibrate
Equation (14) in this section; the best fit was obtained for K1 = 0.06 and K2 = 5 with R2 = 0.72.
Figure 7a shows the fit of Equation (14) with K1 = 0.06 and K2 = 5 to the experimental data,
as well as the IDa and IDe levels. Figure 7b compares the measured and estimated Se using
Equation (14) with K1 = 0.06 and K2 = 5; the 90% confidence interval (CI) is also given.
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Figure 7. Performance of Equation (14) with K1 = 0.06 and K2 = 5 to estimate armor damage of the
front slope of the rock-armored model: (a) Fitting to the measured data, IDa and IDe levels, and
(b) measured against estimated Se.

Equation (14) with K1 = 0.06 and K2 = 5 is valid within the ranges 1.0 ≤ Hm0/∆Dn ≤ 2.7
and 1.9 ≤ Rc/∆Dn ≤ 2.8. Based on this fitting, Ns (IDa) = 1.6 and Ns (IDe) = 2.5. The 90%
confidence interval of Equation (14) shown in Figure 7b was obtained assuming a Gaussian
error distribution and it is given by

Se|95%
5% = Se ± 1.64

√
var(ε) = Se ± 1.89 (15)

where var(ε) is the variance of the error.
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5.2. Cube-Armored Model

The front slope of the cube-armored model was more stable than that of the rock-
armored model, so higher overtopping discharges were reached during the tests
(Q < 9 × 10−3). Therefore, the armor damage to the front slope, crest and rear side are
described in this section.

Equation (14) was calibrated for the front slope, crest and rear side using the exper-
imental data in Section 3. The best fit of Equation (14) for the front slope was obtained
with K1 = 0.05 and K2 = 3 with a goodness-of-fit of R2 = 0.78. Figure 8a presents the fit of
Equation (14) with K1 = 0.05 and K2 = 3 to the experimental data together with the IDa
level. Figure 8b compares the measured Se with the estimations provided by Equation (14)
with K1 = 0.05 and K2 = 3, as well as the 90% confidence interval.
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the front slope of the cube-armored model: (a) Fitting to the measured data and IDa level, and
(b) measured against estimated Se.

The empirical coefficients K1 = 0.05 and K2 = 3 for Equation (14) were calibrated
within the ranges 1.0 ≤ Hm0/∆Dn ≤ 3.6 and 1.2 ≤ Rc/∆Dn ≤ 3.2. Based on this calibration,
Ns (IDa) = 2.5. IDe level was reached in just one test with Se = 3.7, which corresponds to
Ns (IDe) = 4.3 when applying Equation (14), but it is beyond of the experimental ranges
of the fitted formula. The 90% confidence interval of Equation (14) shown in Figure 8b is
calculated, assuming a Gaussian error distribution, as

Se|95%
5% = Se ± 0.46 (16)

As mentioned above, the crest and rear side of the cube-armored model were damaged
due to the significant overtopping discharges. Equation (14) was then fitted for the armored
crest; the best results were obtained with K1 = 0.005 and K2 = 5 with R2 = 0.62. In Figure 9a,
the performance of Equation (14) when using K1 = 0.005 and K2 = 5 to estimate the damage
to the armored crest is presented together with IDa level. Figure 9b compares the measured
Se with the estimations given by Equation (14) with K1 = 0.005 and K2 = 5, as well as the
90% confidence interval.

The values of K1 = 0.005 and K2 = 5 for Equation (14) are valid within the ranges
1.2 ≤ Hm0/∆Dn ≤ 2.7 and 1.1 ≤ Rc/∆Dn ≤ 3.6. Based on this formula, Ns (IDa) = 3.0.
Similar to the front slope, one test presented IDe level with Se = 3.4. If Equation (14)
with K1 = 0.005 and K2 = 5 is applied, Ns (IDe) = 3.7 is obtained. It should be noted that
it is beyond the experimental ranges of the fitted formula. Assuming a Gaussian error
distribution, the 90% confidence interval of Equation (14) shown in Figure 9b is obtained as

Se|95%
5% = Se ± 0.80 (17)
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Regarding the rear side, the best fit for Equation (14) was obtained with K1 = 6 × 10−4

and K2 = 6 with a goodness-of-fit of R2 = 0.65. In Figure 10a, the fit of Equation (14) is
shown when using K1 = 6 × 10−4 and K2 = 6 with the experimental data together with
IDa level. Figure 10b compares the measured Se and the estimated Se when applying
Equation (14) with K1 = 6 × 10−4 and K2 = 6, as well as the 90% confidence interval.
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K1 = 6 × 10−4 and K2 = 6 are applicable within the ranges 1.6 ≤ Hm0/∆Dn ≤ 3.6
and 1.1 ≤ Rc/∆Dn ≤ 3.2. If the derived relationship is applied, Se (IDa) = 0.6 leads to
Ns (IDa) = 3.2. The damage level IDe was not achieved in any test. The 90% confidence
interval of Equation (14) shown in Figure 10b is determined assuming a Gaussian error
distribution as

Se|95%
5% = Se ± 0.36 (18)
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5.3. Cubipod®-Armored Model

The Cubipod®-1L armor had a higher hydraulic stability than did the rock-2L and
cube-2L armors. Therefore, high overtopping discharges were reached during the tests
(Q < 9 × 10−3), similar to the tests conducted with cube-2L. However, since no damage
appeared on the rear slope, only the armor damage to the front slope and crest is described
in this section. It should be noted that very low levels of damage were reached during these
tests (Se < 1), so it was not possible to calibrate Equation (14) properly. Figure 11 provides
the data of the armor damage to the front slope of the Cubipod®-1L model, as well as
the IDa level. Se (IDa) = 0.4 corresponds approximately to Ns (IDa) = 3.5, obtained as the
average value of the observed Ns (IDa). The damage level IDe was not observed in any test.
These results are valid within the ranges 2.0 ≤ Hm0/∆Dn ≤ 3.9 and 1.5 ≤ Rc/∆Dn ≤ 2.6.
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With regard to the crest, the low levels of armor damage in the experimental data
(0.05 < Se < 1.5) did not allow Equation (14) to be calibrated properly, as was the case of
the front slope. Se (IDa) = 0.7 corresponds approximately to Ns (IDa) = 3.5; Ns (IDa) = 3.5
was obtained as the average value of the observed Ns (IDa). The damage level IDe was
not reached in any test. Figure 12 presents the data of armor damage to the crest of the
Cubipod®-1L model, as well as the IDa level. These results are valid within the ranges
2.2 ≤ Hm0/∆Dn ≤ 3.9 and 1.5 ≤ Rc/∆Dn ≤ 2.6.
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5.4. Influence of the Armor Unit and the Armor Sector

In the previous sections, the hydraulic stability of overtopped mound breakwaters
with rock-2L, cube-2L and Cubipod®-1L armors was described. Here, the armor damage to
the different armor layers and armor sections is compared. Table 4 summarizes the results
of the previous sections.

Table 4. Summary of the results of the analysis of the armor damage to overtopped mound breakwaters.

Armor Layer ∆Dn (cm)
Front Slope Crest Rear Side

K1 K2 Ns (IDa) K1 K2 Ns (IDa) K1 K2 Ns (IDa)

rock-2L 5.34 0.06 5 1.6 - - - - - -
cube-2L 5.04 0.05 3 2.5 0.005 5 3.0 6 × 10−4 6 3.2

Cubipod®-1L 4.62 - - 3.5 - - 3.5 - - -

First, the different results from the three tested armor layers are discussed. Although
similar ∆Dn were tested for the different armor units, significant differences can be observed
in their hydraulic stability, as shown in Table 4. It can be concluded that Cubipod®-1L was
much more stable than cube-2L and rock-2L. Figure 13 compares the armor damage data
and the fitted stability curves for the three tested armor layers.
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In Figure 13, the formulas derived in the previous sections are also compared; formulas
for cube-2L were much steeper than observations for Cubipod®-1L for both the front armor
and crest. As [12] observed, single-layer Cubipod® armors are much more stable than
conventional double-layer cube ones.

In order to evaluate the differences observed in the armor sections, cube-2L results
are further analyzed. Figure 14 presents the formulas developed in this study for the front
slope, crest and rear slope of cube-2L.

In Figure 14, armor damage is seen to appear first on the front slope. As Hm0 increases,
armor damage starts on the crest and, later, on the rear slope. Therefore, higher Hm0 are
required to begin the erosive process of the armor on the crest and rear slope. However, the
damage curves are steeper for the crest and rear slope (higher power, K2, in Equation (14));
the damage evolves faster on the crest and rear slope than on the front slope.
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5.5. Comparison with Non-Overtopped Structures

After analyzing the experimental results of armor damage in this study, a comparison
between the new formulas derived here and formulas in the literature is performed. First,
Equations (5) and (6) given by [3,4], respectively, for non-overtopped rubble mound
breakwaters in breaking conditions are compared to Equation (14) with K1 = 0.06 and
K2 = 5 for the front slope of overtopped rubble mound breakwaters. Equation (5) given
by [3] can be rewritten for the data in this study as

Hs

∆Dn50
= 1.75

(
1 +

0.68
3.18

)(
S√

1000

)0.2
1.50.5 = 1.3S0.2 → S = 0.767Ns

5 (19)

Figure 15 compares Equation (14) with K1 = 0.06 and K2 = 5 and Equations (5) and (6)
developed by [3,4], respectively. It should be noted that for rock armors, HeP failure mode
is not dominant, so S ≈ Se [4]. Note that different experimental set-ups were used in the
compared studies, as shown in Section 2.

In Figure 15, it is shown how the front slope of overtopped mound breakwaters
is much more stable than that of non-overtopped structures; a much gentler trend is
observed in the hydraulic stability curve of overtopped mound breakwaters. In overtopped
structures, as Hm0 increases, overtopping becomes more frequent and a relevant part of the
wave energy is dissipated by the overtopping phenomenon, as well as through the crest
and rear slope. Less energy is supported by the front slope, making it more stable than
structures with null overtopping.

Significant differences can be also observed between Equation (5) given by [3] and
Equation (6) developed by [4]. Higher levels of armor damage are predicted by [3] for
the same Ns, as previously observed in [4]. This may be due to the differences in the
measurement procedure; Van Gent et al. [3] used a surface profiler while [4] applied the
Virtual Net method. In addition, the formula by [3] was developed for a single sea state
whereas the formula by [4] considered cumulative damage in a succession of sea states as
done in the tests for the present study.

Finally, Equation (8) given by [21] for non-overtopped single-layer Cubipod® armors
in depth-limited breaking wave conditions is compared to the experimental data for
the single-layer Cubipod® model. A minimum nominal diameter Dn,min = 3.70 cm was
provided by Equation (8) for the worst case in this study (m = 4% and hs = 0.25 cm).
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Dn,min = 3.70 cm < Dn = 3.79 cm agrees with the high hydraulic stability observed during
the tests, although Equation (8) was developed on gentler bottom slopes (0 ≤ m ≤ 2%).
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6. Conclusions

The hydraulic stability of the armor layer of mound breakwaters has been the subject
of much study over the years, since this is the main failure mode of this type of coastal
structure. Most studies were conducted in non-overtopped and nonbreaking wave condi-
tions, although overtopped mound breakwaters in depth-limited breaking wave conditions
are common and increasingly relevant in the current context of climate change and sea
level rise.

In this study, 2D physical tests reported in [7] are examined in order to describe the
armor damage to overtopped mound breakwaters in breaking wave conditions with armor
slope H/V = 3/2 and three different armors: double-layer rock (rock-2L), double-layer
randomly-place cube (cube-2L) and single-layer Cubipod® (Cubipod®-1L).

Hydraulic stability formulas were developed assessing the exponent of the power
relationship between the design wave height and the armor damage, following recommen-
dations by [4,9]. Thus, Equation (14) was fitted for each armor section and each armor unit
obtaining coefficients in Table 4; Ns for Initiation of Damage (IDa) level is also presented.

Cubipod®-1L models were much more stable than those built with rock-2L and cube-
2L, although similar ∆Dn were tested. Mound breakwater models with cube-2L were also
more stable than those considering rock-2L armors. The front slope of overtopped mound
breakwaters was much more stable than that of non-overtopped mound breakwaters, since
part of the wave energy was dissipated through the crest and rear slope.

In addition, it is worth noting that armor damage started on the front slope for low
values of Hm0. As Hm0 was increased, damage reached the crest and, later, the rear slope.
However, once the erosive process started, damage evolved faster on the crest and rear
slope. Therefore, as Hm0 increases for the same Rc, more wave energy is dissipated through
the armored crest and rear slope, making them a critical part on the armor design.
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