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Abstract

Let X be a metric continuum and n ∈ N. Let Fn(X) be the hyperspace
of nonempty subsets of X with at most n points. If 1 ≤ m < n, we con-
sider the quotient space Fn

m(X) = Fn(X)/Fm(X). Given a mapping
f : X → X, we consider the induced mappings fn : Fn(X) → Fn(X)
and fn

m : Fn
m(X)→ Fn

m(X). In this paper we study relations among the
dynamics of the mappings f , fn and fn

m and we answer some questions,
by F. Barragán, A. Santiago-Santos and J. Tenorio, related to the prop-
erties: minimality, irreducibility, strong transitivity and turbulence.
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1. Introduction

A continuum is a compact connected metric space with more than one point.
Given a nonempty compact metric space X and integers 1 ≤ m < n we con-
sider the following hyperspaces of X:

2X = {A ⊂ X : A is a nonempty closed subset of X},

Fn(X) = {A ∈ 2X : A has at most n points},
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and the quotient space Fn
m(X) = Fn(X)/Fm(X).

The hyperspace 2X is considered with the Hausdorff metric [13, Theorem
2.2]. Given subsets U1, . . . , Uk of X, let

〈U1, . . . , Uk〉 = {A ∈ Fn(X) : A ⊂ U1 ∪ · · · ∪ Uk

and A ∩ Ui 6= ∅ for each i ∈ {1, . . . , k}}.

Then the family of sets of the form 〈U1, . . . , Uk〉, where the sets Ui are open
subsets of X, is a base of the topology in Fn(X) [13, Theorem 3.1]. The
hyperspace Fn(X) is called the nth-symmetric product of X. We denote the
quotient mapping by qm : Fn(X)→ Fn

m(X) (or qnm, if necessary) and we denote
by Fm

X the element in Fn
m(X) such that qm(Fm(X)) = {Fm

X }. A mapping is
a continuous function. Given a mapping f : X → X, the induced mapping
2f : 2X → 2X is defined by 2f (A) = f(A) (the image of A under f). The
induced mapping fn : Fn(X)→ Fn(X) (also denoted in some papers by Fn(f))
is the restriction of 2f to Fn(X). The induced mapping fn

m : Fn
m(X)→ Fn

m(X)
(also denoted by SFn

m(f)) is the mapping that makes commutative the following
diagram [8, Theorem 4.3, Chapter VI].

Fn(X)
fn //

qm

��

Fn(X)

qm

��
Fn
m(X)

fn
m

// Fn
m(X)

A dynamical system is a pair (X, f), where X is a non-degenerate compact
metric space and f : X → X is a mapping. Given a point p ∈ X, the orbit of p
under f is the set orb(p, f) = {fk(p) ∈ X : k ∈ N ∪ {0}}. A dynamical system
(X, f) induces the dynamical systems (2X , 2f ), (Fn(X), fn) and (Fm

n (X), fn
m).

H. Hosokawa [12] was the first author that studied induced mappings to
hyperspaces. Since then, this topic has been widely studied. The most common
problem studied in this area is the following. Given a class of mappings M,
determine whether one of the following statements implies another:

(a) f ∈M,
(b) 2f ∈M,
(c) fn ∈M,
(d) fn

m ∈M.

Of course, this problem has also been considered for other hyperspaces. Dy-
namical properties of induced mappings on symmetric products have been con-
sidered in [2], [3], [4], [5], [6], [9], [10], [11] and [14]. In particular, in [4] and
[5], the properties of being: exact, mixing, weakly mixing, transitive, totally
transitive, strongly transitive, chaotic, minimal, irreducible, feebly open and
turbulent were studied.
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The aim of this paper is to solve most of the problems posed by F. Barragán,
A. Santiago-Santos and J. Tenorio in [4] and [5], related to the properties:
minimality, irreducibility, strong transitivity and turbulence.

Throughout this paper the word space means a non-degenerate compact
metric space.

We are aware that some of our proofs can be copied to obtain results with
less restrictions either on the spaces or in the functions, however we consider
that, point out the more general setting under each result holds, is worthless
and breaks the continuity of the paper.

2. Minimality

Let X be a space. A mapping f : X → X is minimal [1, p.7] if there is no
nonempty proper closed subset M of X which is invariant under f (invariance
of M means that f(M) ⊂ M); equivalently, if the orbit of every point of X is
dense in X. The mapping f is totally minimal if fs is minimal for each s ∈ N.

Given n ∈ N, in this section we consider the following statements.

(1) f is minimal,
(2) fn is minimal, and
(3) fn

1 is minimal.

In [4, Theorem 4.18], it was proved that (2) implies (3), (3) implies (1), (2)
implies (1), (1) does not imply (2) and (1) does not imply (3), for the case
that X is a continuum. Moreover, in [4, Question 4.2] it was asked whether (3)
implies (2). The following theorem solves this question and even when it has
a very simple proof, it shows that the question and several results on minimal
induced mappings are irrelevant.

Theorem 2.1. Let X be a space, f : X → X a mapping and 1 ≤ m < n.
Then:

(a) fn(F1(X)) ⊂ F1(X),
(b) fn

m(Fm
X ) = Fm

X ,
(c) for each A ∈ Fm(X), orb(A, fn) ⊂ Fm(X). Thus, orb(A, fn) is not dense

in Fn(X) and fn is not minimal, and
(d) orb(Fm

X , fn
m) = {Fm

X }. Thus, orb(Fm
X , fn

m) is not dense in Fn
m(X) and fn

m

is not minimal.

Proof. Take a point p ∈ X. Then fn({p}) = f({p}) = {f(p)} ∈ F1(X).
Moreover, fn

m(Fm
X ) = fn

m(qm({p})) = qm(fn({p})) = qm({f(p)}) = Fm
X . This

proves (a), (b) and (d). The proof of (c) is similar. �

Theorem 2.1 (b) implies that the mappings fn and fn
m are never minimal or

totally minimal. Then proved results in which minimality or total minimality
of fn or fn

m is either assumed or concluded become irrelevant or partially ir-
relevant, such is the case of the following results by Barragán, Santiago-Santos
and Tenorio: Theorem 4.18, Corollary 4.19, Corollary 4.20 and Corollary 4.21
of [4]; Corollary 5.13 and Corollary 5.17 of [6].
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3. Irreducibility

Let X be a space. A mapping f : X → X is irreducible [1, p.171] if the only
closed subset A of X for which f(A) = X is A = X;

Given n ∈ N, in this section we consider the following statements.

(1) f is irreducible,
(2) fn is irreducible,
(3) fn

1 is irreducible, and
(4) fn

m is irreducible.

Using [4, Theorem 5.1], in [5, Theorem 4.1] it was shown that each one of
the statements (2), (3) and (4) implies (1). The authors of [4] and [5] supposed
that the spaces are continua, however, it is easy see that the proofs for these
results are valid for infinite compact metric spaces without isolated points. The
rest of the implications among (1), (2), (3) and (4) are left as questions in [4,
Questions 5.5] and [5, Question 4.2]. The purpose of this section is to complete
the proof that, in fact, all the statements (1)-(4) are equivalent.

Theorem 3.1. Let X be a space without isolated points, f : X → X a mapping
and 1 ≤ m < n. If f is irreducible, then fn is irreducible.

Proof. Suppose that f is irreducible.
Claim 1. If U is a nonempty open subset of X, then there exists p ∈ U

such that f(p) /∈ f(X \ U).
In order to prove Claim 1, let A = X \U . Then A is a proper closed subset of

X. Since f is irreducible, f is onto. Thus there exist q ∈ X such that q /∈ f(A)
and p ∈ X such that f(p) = q. Observe that p ∈ U . This finishes the proof of
Claim 1.

Claim 2. If U is a nonempty open subset of Fn(X), then there exists B ∈ U
such that B ∈ Fn(X) \ Fn−1(X) and f(B) /∈ fn(Fn(X) \ U).

We prove Claim 2. Since X does not have isolated points, Fn(X)\Fn−1(X) is
dense in Fn(X). Then there exists D = {p1, . . . , pn} ∈ (Fn(X)\Fn−1(X))∩U .
Then there exist pairwise disjoint open subsets U1, . . . , Un of X such that for
each i ∈ {1, . . . , n}, pi ∈ Ui and D ∈ 〈U1 . . . , Un〉 ⊂ U . By Claim 1, for each
i ∈ {1, . . . , n}, there exists ui ∈ Ui such that f(ui) /∈ f(X \ Ui).

Define B = {u1, . . . , un}. Clearly, B ∈ Fn(X) \ Fn−1(X). Suppose that
there exists E ∈ Fn(X) \ U such that f(E) = f(B). Given i ∈ {1, . . . , n},
let ei ∈ E be such that f(ei) = f(ui). By the choice of ui, ei ∈ Ui. Thus
E ∈ 〈U1 . . . , Un〉 ⊂ U , a contradiction. This proves that f(B) /∈ fn(Fn(X)\U).
This finishes the proof of Claim 2.

We are ready to prove that fn is irreducible. Let A be a proper closed
subset of Fn(X) and U = Fn(X) \ A. By Claim 2, there exists B ∈ U such
that B ∈ Fn(X) \ Fn−1(X) and f(B) /∈ fn(A). Therefore fn(A) 6= Fn(X) and
fn is irreducible. �

Theorem 3.2. Let X be an space without isolated points, f : X → X a map-
ping and 1 ≤ m < n. If fn is irreducible, then fn

m is irreducible.
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Proof. Suppose that fn
m is not irreducible. We will prove that fn is not ir-

reducible. Then there exists a proper closed subset A of Fn
m(X) such that

fn
m(A) = Fn

m(X). Let B = q−1
m (A ∪ {Fm

X }). Then B is a closed subset of
Fn(X).

We check that B 6= Fn(X). Set U = Fn
m(X) \ A. Then U is a nonempty

open subset of Fn
m(X). This implies that q−1

m (U) is a nonempty open subset
of Fn(X). Since X does not have isolated points, Fn(X) \ Fn−1(X) is dense
in Fn(X). So, there exists G ∈ (Fn(X) \ Fn−1(X)) ∩ q−1

m (U). Thus qm(G) ∈
U \ {Fm

X } = Fn
m(X) \ (A ∪ {Fm

X }). Hence G /∈ B. Therefore B 6= Fn(X).
Now, we prove that fn(B) = Fn(X). Since fn is surjective, we have that

f is surjective [4, Theorem 3.2]. Take E ∈ Fn(X). In the case that E =
{q1, . . . , qk} ∈ Fm(X), with k ≤ m. Since f is surjective, for each i ∈ {1, . . . , k}
there exists pi ∈ X such that f(pi) = qi. Thus {p1, . . . , pk} ∈ Fm(X) =
q−1
m (Fm

X ) ⊂ B. Therefore E = fn({p1, . . . , pk}) ∈ fn(B). Now we suppose that
E /∈ Fm(X). Let A ∈ A be such that fn

m(A) = qm(E). Let B ∈ Fn(X) be
such that A = qm(B). Then B ∈ B. Since qm(E) = fn

m(A) = fn
m(qm(B)) =

qm(fn(B)) and E /∈ Fm(X), we have that {E} = q−1
m (qm(E)) = fn(B). There-

fore E ∈ fn(B). We have shown that fn(B) = Fn(X). Therefore fn is not
irreducible. Therefore, we have shown that if fn

m is not irreducible, then fn is
not irreducible. �

Corollary 3.3. Let X be a space without isolated points, 1 ≤ m < n and
f : X → X a mapping. Then the following statements are equivalent.

(1) f is irreducible,
(2) fn is irreducible, and
(3) fn

m is irreducible.

4. Strong transitivity

Let X be a space. A mapping f : X → X is strongly transitive [15, p.369]
if for each nonempty open subset U of X, there exists r ∈ N such that⋃r

i=0 f
i(U) = X.

Given 1 ≤ m < n, in this section we consider the following statements.

(1) f is strongly transitive,
(2) fn is strongly transitive,
(3) fn

1 is strongly transitive, and
(4) fn

m is strongly transitive.

Using [4, Theorem 4.13], in [5, Theorem 3.17] it was shown that (2) implies
(1), (2) implies (3), (2) implies (4), (3) implies (1), (4) implies (1), (1) does not
imply (2), (1) does not imply (3) and (1) does not imply (4). The authors of
[4] and [5] supposed that the spaces are continua, however it is easy to see that
the proofs for these results are valid for non-degenerate compact metric spaces
without isolated points.
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The questions whether the rest of the implications hold are contained in [4,
Question 4.1] and [5, Question 3.18]. With the following theorem we show that
all these implications hold.

Theorem 4.1. Let X be a space without isolated points, f : X → X a mapping
and 1 ≤ m < n. If fn

m is strongly transitive, then fn is is strongly transitive.

Proof. Let U be a nonempty open subset of Fn(X).
Fix an element A = {a1, . . . , ak} ∈ U , where k ≤ n and the cardinality of A

is k. Let W ′1, . . .W
′
k be pairwise disjoint open subsets of X such that for each

i ∈ {1, . . . , k}, ai ∈ W ′i and W ′ = 〈W ′1, . . . ,W ′k〉 ⊂ U . For each i ∈ {1, . . . , k},
choose an open subset Wi of X such that ai ∈ Wi ⊂ clX(Wi) ⊂ W ′i . Let
W = 〈W1, . . . ,Wk〉. Since X does not have isolated points, Fn(X) \ Fm(X)
is dense in Fn(X) and the set V = W \ Fm(X) is a nonempty open subset
of Fn(X). Observe that qm(V) is a nonempty open subset of Fn

m(X). By
hypothesis there exists r ∈ N such that

⋃r
i=0(fn

m)i(qm(V)) = Fn
m(X).

We claim that
⋃r

i=0(fn)i(W ′) = Fn(X). Take an element B ∈ Fn(X). Let
{Bs}∞s=1 be a sequence in Fn(X) \ Fn−1(X) such that lims→∞Bs = B. Given
s ∈ N, there exist Ds ∈ V and is ∈ {0, 1, . . . , r} such that (fn

m)is(qm(Ds)) =
qm(Bs). This implies that qm(f is(Ds)) = qm(Bs).

Since Fn(X) is compact, we may suppose that the sequence {Ds}∞s=1 con-
verges to an element D ∈ Fn(X) and there exists j ∈ {0, 1, . . . , r} such that
for each s ∈ N, is = j.

Given s ∈ N, qm(f j(Ds)) = qm(Bs). Since Bs /∈ Fm(X), we obtain that
f j(Ds) = Bs. By the continuity of f j , f j(D) = B. Since Ds ∈ V ⊂ W ⊂
clFn(X)(W), we conclude that D ∈ clFn(X)(W) ⊂ 〈clX(W1), . . . , clX(Wk)〉 ⊂
〈W ′1, . . . ,W ′k〉 = W ′. Therefore B ∈ (fn)j(W ′). This finishes the proof that⋃r

i=0(fn)i(W ′) = Fn(X), so,
⋃r

i=0(fn)i(U) = Fn(X) and completes the proof
of the theorem. �

5. Turbulence

Let X be a space. A mapping f : X → X is turbulent [7, p.588] if there are
compact non-degenerate subsets K and L of X such that K ∩ L has at most
one point and K ∪ L ⊂ f(K) ∩ f(L).

Given 1 ≤ m < n, in this section we consider the following statements.

(1) f is turbulent,
(2) fn is turbulent,
(3) fn

1 is turbulent, and
(4) fn

m is turbulent.

Using [4, Theorem 5.6] in [5, Theorem 4.5] it follows that (1) implies (2),
(3) and (4). In [5, Questions 4.6], it was asked whether one of the rest of the
possible implications holds, when X is a continuum.

The following example shows that (2) and (3) does not imply (1), when X
is a compact metric space.
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Problem 5.1. Does one of the statements (2), (3) or (4) implies another for
a compact metric space?

Example 5.2. There exist a non-degenerate compact metric space X and a
mapping f : X → X such that f2 and f2

1 are turbulent but f is not turbulent.

Define X = {0}∪ { 1
n : n ∈ N}. For each m ∈ N, let am = 1

3m−2 , bm = 1
3m−1

and cm = 1
3m . Then

X = {0} ∪ {am : m ∈ N} ∪ {bm : m ∈ N} ∪ {cm : m ∈ N}.
Define f : X → X by

f(p) =


0, if p = 0,

ck, if p = a2k−1,

bk, if p = a2k,

ak, if p ∈ {b2k, c2k, b2k−1, c2k−1}.
Clearly, f is an onto mapping.
Suppose to the contrary that f is turbulent. Then there are compact non-

degenerate subsets K and L of X such that K ∩ L has at most one point and
K ∪ L ⊂ f(K) ∩ f(L).

If there exists k ≥ 2 such that ck ∈ K ∪ L, since f−1(ck) = {a2k−1}, we
have that a2k−1 ∈ K ∩ L. Since f−1(a2k−1) = {b4k−2, c4k−2, b4k−3, c4k−3},
there is p ∈ {b4k−2, c4k−2, b4k−3, c4k−3} ∩ K such that f(p) = a2k−1. Since
f−1(p) = {ai} for some i > 4k − 3 > 2k − 1, we have that ai ∈ K ∩ L. Thus
{ai, a2k−1} ⊂ K ∩ L, a contradiction. Thus (K ∪ L) ∩ {ck : k ≥ 2} = ∅.
Similarly, (K ∪ L) ∩ {bk : k ≥ 2} = ∅. Therefore K ∪ L ⊂ {ak : k ∈ N} ∪
{b1, c1} ∪ {0}.

If there exists k ≥ 2 such that ak ∈ K ∪ L, then there exists k′ > 2 such
that {bk′ , ck′}∪ (K ∪L) 6= ∅. This contradicts what we proved in the previous
paragraph. Thus K∪L ⊂ {a1, b1, c1}∪{0}. Since ({a1, b1, c1}∪{0})∩f−1(b1) =
∅, we have that b1 /∈ K ∪ L. Hence K ∪ L ⊂ {a1, c1} ∪ {0}. Since ({a1, c1} ∪
{0}) ∩ f−1(a1) = {c1} and ({a1, c1} ∪ {0}) ∩ f−1(c1) = {a1}, we obtain that if
{a1, c1} ∩ (K ∪ L) 6= ∅, then {a1, c1} ⊂ K ∩ L, a contradiction. This proves
that K ∪ L ⊂ {0}, a contradiction. This completes the proof that f is not
turbulent.

Now, we check that f2 is turbulent. Define

K = {{am, bm} ∈ F2(X) : m ∈ N} ∪ {{0}}, and

L = {{am, cm} ∈ F2(X) : m ∈ N} ∪ {{0}}.

Then K and L are compact non-degenerate subsets of F2(X) and K ∩ L =
{{0}}.

Given m ∈ N, {am, bm} = {f(c2m), f(a2m)} = f2({c2m, a2m}) ∈ f2(L).
Moreover, {am, bm} = {f(b2m), f(a2m)} = f2({b2m, a2m}) ∈ f2(K). Since
{0} = {f(0)} = f({0}}) = f2({0}) ∈ f2(K) ∩ f2(L). We have shown that
K ⊂ f2(K) ∩ f2(L). Similarly, L ⊂ f2(K) ∩ f2(L). Therefore, f2 is turbulent.
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Using K0 = q1(K) and L0 = q1(L), it can be proved that f2
1 is turbulent.
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