Dynamics of induced mappings on symmetric products, some answers

Alejandro Illanes © and Verónica Martínez-de-La-Vega ©
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México 04510, Ciudad de México. (illanes@matem.unam.mx, vmvm@matem.unam.mx)

Communicated by A. Linero

Abstract

Let X be a metric continuum and $n \in \mathbb{N}$. Let $F_{n}(X)$ be the hyperspace of nonempty subsets of X with at most n points. If $1 \leq m<n$, we consider the quotient space $F_{m}^{n}(X)=F_{n}(X) / F_{m}(X)$. Given a mapping $f: X \rightarrow X$, we consider the induced mappings $f_{n}: F_{n}(X) \rightarrow F_{n}(X)$ and $f_{m}^{n}: F_{m}^{n}(X) \rightarrow F_{m}^{n}(X)$. In this paper we study relations among the dynamics of the mappings f, f_{n} and f_{m}^{n} and we answer some questions, by F. Barragán, A. Santiago-Santos and J. Tenorio, related to the properties: minimality, irreducibility, strong transitivity and turbulence.

2020 MSC: 54F16; 37B02; 54C05; 54F15.
KEYWORDS: continuum; dynamical system; induced mapping; irreducibility; symmetric product; turbulence.

1. Introduction

A continuum is a compact connected metric space with more than one point. Given a nonempty compact metric space X and integers $1 \leq m<n$ we consider the following hyperspaces of X :

$$
\begin{aligned}
& 2^{X}=\{A \subset X: A \text { is a nonempty closed subset of } X\}, \\
& F_{n}(X)=\left\{A \in 2^{X}: A \text { has at most } n \text { points }\right\}
\end{aligned}
$$

and the quotient space $F_{m}^{n}(X)=F_{n}(X) / F_{m}(X)$.
The hyperspace 2^{X} is considered with the Hausdorff metric [13, Theorem 2.2]. Given subsets U_{1}, \ldots, U_{k} of X, let

$$
\begin{aligned}
\left\langle U_{1}, \ldots, U_{k}\right\rangle= & \left\{A \in F_{n}(X): A \subset U_{1} \cup \cdots \cup U_{k}\right. \\
& \text { and } \left.A \cap U_{i} \neq \varnothing \text { for each } i \in\{1, \ldots, k\}\right\} .
\end{aligned}
$$

Then the family of sets of the form $\left\langle U_{1}, \ldots, U_{k}\right\rangle$, where the sets U_{i} are open subsets of X, is a base of the topology in $F_{n}(X)$ [13, Theorem 3.1]. The hyperspace $F_{n}(X)$ is called the $n^{t h}$-symmetric product of X. We denote the quotient mapping by $q_{m}: F_{n}(X) \rightarrow F_{m}^{n}(X)$ (or q_{m}^{n}, if necessary) and we denote by F_{X}^{m} the element in $F_{m}^{n}(X)$ such that $q_{m}\left(F_{m}(X)\right)=\left\{F_{X}^{m}\right\}$. A mapping is a continuous function. Given a mapping $f: X \rightarrow X$, the induced mapping $2^{f}: 2^{X} \rightarrow 2^{X}$ is defined by $2^{f}(A)=f(A)$ (the image of A under f). The induced mapping $f_{n}: F_{n}(X) \rightarrow F_{n}(X)$ (also denoted in some papers by $F_{n}(f)$) is the restriction of 2^{f} to $F_{n}(X)$. The induced mapping $f_{m}^{n}: F_{m}^{n}(X) \rightarrow F_{m}^{n}(X)$ (also denoted by $S F_{m}^{n}(f)$) is the mapping that makes commutative the following diagram [8, Theorem 4.3, Chapter VI].

A dynamical system is a pair (X, f), where X is a non-degenerate compact metric space and $f: X \rightarrow X$ is a mapping. Given a point $p \in X$, the orbit of p under f is the set $\operatorname{orb}(p, f)=\left\{f^{k}(p) \in X: k \in \mathbb{N} \cup\{0\}\right\}$. A dynamical system (X, f) induces the dynamical systems $\left(2^{X}, 2^{f}\right),\left(F_{n}(X), f_{n}\right)$ and $\left(F_{n}^{m}(X), f_{m}^{n}\right)$.
H. Hosokawa [12] was the first author that studied induced mappings to hyperspaces. Since then, this topic has been widely studied. The most common problem studied in this area is the following. Given a class of mappings \mathcal{M}, determine whether one of the following statements implies another:
(a) $f \in \mathcal{M}$,
(b) $2^{f} \in \mathcal{M}$,
(c) $f_{n} \in \mathcal{M}$,
(d) $f_{m}^{n} \in \mathcal{M}$.

Of course, this problem has also been considered for other hyperspaces. Dynamical properties of induced mappings on symmetric products have been considered in [2], [3], [4], [5], [6], [9], [10], [11] and [14]. In particular, in [4] and [5], the properties of being: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, minimal, irreducible, feebly open and turbulent were studied.

The aim of this paper is to solve most of the problems posed by F. Barragán, A. Santiago-Santos and J. Tenorio in [4] and [5], related to the properties: minimality, irreducibility, strong transitivity and turbulence.

Throughout this paper the word space means a non-degenerate compact metric space.

We are aware that some of our proofs can be copied to obtain results with less restrictions either on the spaces or in the functions, however we consider that, point out the more general setting under each result holds, is worthless and breaks the continuity of the paper.

2. Minimality

Let X be a space. A mapping $f: X \rightarrow X$ is minimal [1, p.7] if there is no nonempty proper closed subset M of X which is invariant under f (invariance of M means that $f(M) \subset M)$; equivalently, if the orbit of every point of X is dense in X. The mapping f is totally minimal if f^{s} is minimal for each $s \in \mathbb{N}$.

Given $n \in \mathbb{N}$, in this section we consider the following statements.
(1) f is minimal,
(2) f_{n} is minimal, and
(3) f_{1}^{n} is minimal.

In [4, Theorem 4.18], it was proved that (2) implies (3), (3) implies (1), (2) implies (1), (1) does not imply (2) and (1) does not imply (3), for the case that X is a continuum. Moreover, in [4, Question 4.2] it was asked whether (3) implies (2). The following theorem solves this question and even when it has a very simple proof, it shows that the question and several results on minimal induced mappings are irrelevant.

Theorem 2.1. Let X be a space, $f: X \rightarrow X$ a mapping and $1 \leq m<n$. Then:
(a) $f_{n}\left(F_{1}(X)\right) \subset F_{1}(X)$,
(b) $f_{m}^{n}\left(F_{X}^{m}\right)=F_{X}^{m}$,
(c) for each $A \in F_{m}(X)$, $\operatorname{orb}\left(A, f_{n}\right) \subset F_{m}(X)$. Thus, $\operatorname{orb}\left(A, f_{n}\right)$ is not dense in $F_{n}(X)$ and f_{n} is not minimal, and
(d) $\operatorname{orb}\left(F_{X}^{m}, f_{m}^{n}\right)=\left\{F_{X}^{m}\right\}$. Thus, orb $\left(F_{X}^{m}, f_{m}^{n}\right)$ is not dense in $F_{m}^{n}(X)$ and f_{m}^{n} is not minimal.

Proof. Take a point $p \in X$. Then $f_{n}(\{p\})=f(\{p\})=\{f(p)\} \in F_{1}(X)$. Moreover, $f_{m}^{n}\left(F_{X}^{m}\right)=f_{m}^{n}\left(q_{m}(\{p\})\right)=q_{m}\left(f_{n}(\{p\})\right)=q_{m}(\{f(p)\})=F_{X}^{m}$. This proves (a), (b) and (d). The proof of (c) is similar.

Theorem 2.1 (b) implies that the mappings f_{n} and f_{m}^{n} are never minimal or totally minimal. Then proved results in which minimality or total minimality of f_{n} or f_{m}^{n} is either assumed or concluded become irrelevant or partially irrelevant, such is the case of the following results by Barragán, Santiago-Santos and Tenorio: Theorem 4.18, Corollary 4.19, Corollary 4.20 and Corollary 4.21 of [4]; Corollary 5.13 and Corollary 5.17 of [6].

3. Irreducibility

Let X be a space. A mapping $f: X \rightarrow X$ is irreducible [1, p.171] if the only closed subset A of X for which $f(A)=X$ is $A=X$;

Given $n \in \mathbb{N}$, in this section we consider the following statements.
(1) f is irreducible,
(2) f_{n} is irreducible,
(3) f_{1}^{n} is irreducible, and
(4) f_{m}^{n} is irreducible.

Using [4, Theorem 5.1], in [5, Theorem 4.1] it was shown that each one of the statements (2), (3) and (4) implies (1). The authors of [4] and [5] supposed that the spaces are continua, however, it is easy see that the proofs for these results are valid for infinite compact metric spaces without isolated points. The rest of the implications among (1), (2), (3) and (4) are left as questions in [4, Questions 5.5] and [5, Question 4.2]. The purpose of this section is to complete the proof that, in fact, all the statements (1)-(4) are equivalent.

Theorem 3.1. Let X be a space without isolated points, $f: X \rightarrow X$ a mapping and $1 \leq m<n$. If f is irreducible, then f_{n} is irreducible.

Proof. Suppose that f is irreducible.
Claim 1. If U is a nonempty open subset of X, then there exists $p \in U$ such that $f(p) \notin f(X \backslash U)$.

In order to prove Claim 1, let $A=X \backslash U$. Then A is a proper closed subset of X. Since f is irreducible, f is onto. Thus there exist $q \in X$ such that $q \notin f(A)$ and $p \in X$ such that $f(p)=q$. Observe that $p \in U$. This finishes the proof of Claim 1.

Claim 2. If \mathcal{U} is a nonempty open subset of $F_{n}(X)$, then there exists $B \in \mathcal{U}$ such that $B \in F_{n}(X) \backslash F_{n-1}(X)$ and $f(B) \notin f_{n}\left(F_{n}(X) \backslash \mathcal{U}\right)$.

We prove Claim 2. Since X does not have isolated points, $F_{n}(X) \backslash F_{n-1}(X)$ is dense in $F_{n}(X)$. Then there exists $D=\left\{p_{1}, \ldots, p_{n}\right\} \in\left(F_{n}(X) \backslash F_{n-1}(X)\right) \cap \mathcal{U}$. Then there exist pairwise disjoint open subsets U_{1}, \ldots, U_{n} of X such that for each $i \in\{1, \ldots, n\}, p_{i} \in U_{i}$ and $D \in\left\langle U_{1} \ldots, U_{n}\right\rangle \subset \mathcal{U}$. By Claim 1, for each $i \in\{1, \ldots, n\}$, there exists $u_{i} \in U_{i}$ such that $f\left(u_{i}\right) \notin f\left(X \backslash U_{i}\right)$.

Define $B=\left\{u_{1}, \ldots, u_{n}\right\}$. Clearly, $B \in F_{n}(X) \backslash F_{n-1}(X)$. Suppose that there exists $E \in F_{n}(X) \backslash \mathcal{U}$ such that $f(E)=f(B)$. Given $i \in\{1, \ldots, n\}$, let $e_{i} \in E$ be such that $f\left(e_{i}\right)=f\left(u_{i}\right)$. By the choice of $u_{i}, e_{i} \in U_{i}$. Thus $E \in\left\langle U_{1} \ldots, U_{n}\right\rangle \subset \mathcal{U}$, a contradiction. This proves that $f(B) \notin f_{n}\left(F_{n}(X) \backslash \mathcal{U}\right)$. This finishes the proof of Claim 2.

We are ready to prove that f_{n} is irreducible. Let \mathcal{A} be a proper closed subset of $F_{n}(X)$ and $\mathcal{U}=F_{n}(X) \backslash \mathcal{A}$. By Claim 2, there exists $B \in \mathcal{U}$ such that $B \in F_{n}(X) \backslash F_{n-1}(X)$ and $f(B) \notin f_{n}(\mathcal{A})$. Therefore $f_{n}(\mathcal{A}) \neq F_{n}(X)$ and f_{n} is irreducible.

Theorem 3.2. Let X be an space without isolated points, $f: X \rightarrow X$ a mapping and $1 \leq m<n$. If f_{n} is irreducible, then f_{m}^{n} is irreducible.

Proof. Suppose that f_{m}^{n} is not irreducible. We will prove that f_{n} is not irreducible. Then there exists a proper closed subset \mathcal{A} of $F_{m}^{n}(X)$ such that $f_{m}^{n}(\mathcal{A})=F_{m}^{n}(X)$. Let $\mathcal{B}=q_{m}^{-1}\left(\mathcal{A} \cup\left\{F_{X}^{m}\right\}\right)$. Then \mathcal{B} is a closed subset of $F_{n}(X)$.

We check that $\mathcal{B} \neq F_{n}(X)$. Set $\mathcal{U}=F_{m}^{n}(X) \backslash \mathcal{A}$. Then \mathcal{U} is a nonempty open subset of $F_{m}^{n}(X)$. This implies that $q_{m}^{-1}(\mathcal{U})$ is a nonempty open subset of $F_{n}(X)$. Since X does not have isolated points, $F_{n}(X) \backslash F_{n-1}(X)$ is dense in $F_{n}(X)$. So, there exists $G \in\left(F_{n}(X) \backslash F_{n-1}(X)\right) \cap q_{m}^{-1}(\mathcal{U})$. Thus $q_{m}(G) \in$ $\mathcal{U} \backslash\left\{F_{X}^{m}\right\}=F_{m}^{n}(X) \backslash\left(\mathcal{A} \cup\left\{F_{X}^{m}\right\}\right)$. Hence $G \notin \mathcal{B}$. Therefore $\mathcal{B} \neq F_{n}(X)$.

Now, we prove that $f_{n}(\mathcal{B})=F_{n}(X)$. Since f_{n} is surjective, we have that f is surjective [4, Theorem 3.2]. Take $E \in F_{n}(X)$. In the case that $E=$ $\left\{q_{1}, \ldots, q_{k}\right\} \in F_{m}(X)$, with $k \leq m$. Since f is surjective, for each $i \in\{1, \ldots, k\}$ there exists $p_{i} \in X$ such that $f\left(p_{i}\right)=q_{i}$. Thus $\left\{p_{1}, \ldots, p_{k}\right\} \in F_{m}(X)=$ $q_{m}^{-1}\left(F_{X}^{m}\right) \subset \mathcal{B}$. Therefore $E=f_{n}\left(\left\{p_{1}, \ldots, p_{k}\right\}\right) \in f_{n}(\mathcal{B})$. Now we suppose that $E \notin F_{m}(X)$. Let $A \in \mathcal{A}$ be such that $f_{m}^{n}(A)=q_{m}(E)$. Let $B \in F_{n}(X)$ be such that $A=q_{m}(B)$. Then $B \in \mathcal{B}$. Since $q_{m}(E)=f_{m}^{n}(A)=f_{m}^{n}\left(q_{m}(B)\right)=$ $q_{m}\left(f_{n}(B)\right)$ and $E \notin F_{m}(X)$, we have that $\{E\}=q_{m}^{-1}\left(q_{m}(E)\right)=f_{n}(B)$. Therefore $E \in f_{n}(\mathcal{B})$. We have shown that $f_{n}(\mathcal{B})=F_{n}(X)$. Therefore f_{n} is not irreducible. Therefore, we have shown that if f_{m}^{n} is not irreducible, then f_{n} is not irreducible.

Corollary 3.3. Let X be a space without isolated points, $1 \leq m<n$ and $f: X \rightarrow X$ a mapping. Then the following statements are equivalent.
(1) f is irreducible,
(2) f_{n} is irreducible, and
(3) f_{m}^{n} is irreducible.

4. Strong transitivity

Let X be a space. A mapping $f: X \rightarrow X$ is strongly transitive [15, p.369] if for each nonempty open subset U of X, there exists $r \in \mathbb{N}$ such that $\bigcup_{i=0}^{r} f^{i}(U)=X$.

Given $1 \leq m<n$, in this section we consider the following statements.
(1) f is strongly transitive,
(2) f_{n} is strongly transitive,
(3) f_{1}^{n} is strongly transitive, and
(4) f_{m}^{n} is strongly transitive.

Using [4, Theorem 4.13], in [5, Theorem 3.17] it was shown that (2) implies (1), (2) implies (3), (2) implies (4), (3) implies (1), (4) implies (1), (1) does not imply (2), (1) does not imply (3) and (1) does not imply (4). The authors of [4] and [5] supposed that the spaces are continua, however it is easy to see that the proofs for these results are valid for non-degenerate compact metric spaces without isolated points.

The questions whether the rest of the implications hold are contained in [4, Question 4.1] and [5, Question 3.18]. With the following theorem we show that all these implications hold.

Theorem 4.1. Let X be a space without isolated points, $f: X \rightarrow X$ a mapping and $1 \leq m<n$. If f_{m}^{n} is strongly transitive, then f_{n} is is strongly transitive.

Proof. Let \mathcal{U} be a nonempty open subset of $F_{n}(X)$.
Fix an element $A=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathcal{U}$, where $k \leq n$ and the cardinality of A is k. Let $W_{1}^{\prime}, \ldots W_{k}^{\prime}$ be pairwise disjoint open subsets of X such that for each $i \in\{1, \ldots, k\}, a_{i} \in W_{i}^{\prime}$ and $\mathcal{W}^{\prime}=\left\langle W_{1}^{\prime}, \ldots, W_{k}^{\prime}\right\rangle \subset \mathcal{U}$. For each $i \in\{1, \ldots, k\}$, choose an open subset W_{i} of X such that $a_{i} \in W_{i} \subset \operatorname{cl}_{X}\left(W_{i}\right) \subset W_{i}^{\prime}$. Let $\mathcal{W}=\left\langle W_{1}, \ldots, W_{k}\right\rangle$. Since X does not have isolated points, $F_{n}(X) \backslash F_{m}(X)$ is dense in $F_{n}(X)$ and the set $\mathcal{V}=\mathcal{W} \backslash F_{m}(X)$ is a nonempty open subset of $F_{n}(X)$. Observe that $q_{m}(\mathcal{V})$ is a nonempty open subset of $F_{m}^{n}(X)$. By hypothesis there exists $r \in \mathbb{N}$ such that $\bigcup_{i=0}^{r}\left(f_{m}^{n}\right)^{i}\left(q_{m}(\mathcal{V})\right)=F_{m}^{n}(X)$.

We claim that $\bigcup_{i=0}^{r}\left(f_{n}\right)^{i}\left(\mathcal{W}^{\prime}\right)=F_{n}(X)$. Take an element $B \in F_{n}(X)$. Let $\left\{B_{s}\right\}_{s=1}^{\infty}$ be a sequence in $F_{n}(X) \backslash F_{n-1}(X)$ such that $\lim _{s \rightarrow \infty} B_{s}=B$. Given $s \in \mathbb{N}$, there exist $D_{s} \in \mathcal{V}$ and $i_{s} \in\{0,1, \ldots, r\}$ such that $\left(f_{m}^{n}\right)^{i_{s}}\left(q_{m}\left(D_{s}\right)\right)=$ $q_{m}\left(B_{s}\right)$. This implies that $q_{m}\left(f^{i_{s}}\left(D_{s}\right)\right)=q_{m}\left(B_{s}\right)$.

Since $F_{n}(X)$ is compact, we may suppose that the sequence $\left\{D_{s}\right\}_{s=1}^{\infty}$ converges to an element $D \in F_{n}(X)$ and there exists $j \in\{0,1, \ldots, r\}$ such that for each $s \in \mathbb{N}, i_{s}=j$.

Given $s \in \mathbb{N}, q_{m}\left(f^{j}\left(D_{s}\right)\right)=q_{m}\left(B_{s}\right)$. Since $B_{s} \notin F_{m}(X)$, we obtain that $f^{j}\left(D_{s}\right)=B_{s}$. By the continuity of $f^{j}, f^{j}(D)=B$. Since $D_{s} \in \mathcal{V} \subset \mathcal{W} \subset$ $\operatorname{cl}_{F_{n}(X)}(\mathcal{W})$, we conclude that $D \in \operatorname{cl}_{F_{n}(X)}(\mathcal{W}) \subset\left\langle\operatorname{cl}_{X}\left(W_{1}\right), \ldots, \operatorname{cl}_{X}\left(W_{k}\right)\right\rangle \subset$ $\left\langle W_{1}^{\prime}, \ldots, W_{k}^{\prime}\right\rangle=\mathcal{W}^{\prime}$. Therefore $B \in\left(f_{n}\right)^{j}\left(\mathcal{W}^{\prime}\right)$. This finishes the proof that $\bigcup_{i=0}^{r}\left(f_{n}\right)^{i}\left(\mathcal{W}^{\prime}\right)=F_{n}(X)$, so, $\bigcup_{i=0}^{r}\left(f_{n}\right)^{i}(\mathcal{U})=F_{n}(X)$ and completes the proof of the theorem.

5. Turbulence

Let X be a space. A mapping $f: X \rightarrow X$ is turbulent [7, p.588] if there are compact non-degenerate subsets K and L of X such that $K \cap L$ has at most one point and $K \cup L \subset f(K) \cap f(L)$.

Given $1 \leq m<n$, in this section we consider the following statements.
(1) f is turbulent,
(2) f_{n} is turbulent,
(3) f_{1}^{n} is turbulent, and
(4) f_{m}^{n} is turbulent.

Using [4, Theorem 5.6] in [5, Theorem 4.5] it follows that (1) implies (2), (3) and (4). In [5, Questions 4.6], it was asked whether one of the rest of the possible implications holds, when X is a continuum.

The following example shows that (2) and (3) does not imply (1), when X is a compact metric space.

Problem 5.1. Does one of the statements (2), (3) or (4) implies another for a compact metric space?

Example 5.2. There exist a non-degenerate compact metric space X and a mapping $f: X \rightarrow X$ such that f_{2} and f_{1}^{2} are turbulent but f is not turbulent.

Define $X=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. For each $m \in \mathbb{N}$, let $a_{m}=\frac{1}{3 m-2}, b_{m}=\frac{1}{3 m-1}$ and $c_{m}=\frac{1}{3 m}$. Then

$$
X=\{0\} \cup\left\{a_{m}: m \in \mathbb{N}\right\} \cup\left\{b_{m}: m \in \mathbb{N}\right\} \cup\left\{c_{m}: m \in \mathbb{N}\right\}
$$

Define $f: X \rightarrow X$ by

$$
f(p)= \begin{cases}0, & \text { if } p=0 \\ c_{k}, & \text { if } p=a_{2 k-1} \\ b_{k}, & \text { if } p=a_{2 k} \\ a_{k}, & \text { if } p \in\left\{b_{2 k}, c_{2 k}, b_{2 k-1}, c_{2 k-1}\right\}\end{cases}
$$

Clearly, f is an onto mapping.
Suppose to the contrary that f is turbulent. Then there are compact nondegenerate subsets K and L of X such that $K \cap L$ has at most one point and $K \cup L \subset f(K) \cap f(L)$.

If there exists $k \geq 2$ such that $c_{k} \in K \cup L$, since $f^{-1}\left(c_{k}\right)=\left\{a_{2 k-1}\right\}$, we have that $a_{2 k-1} \in K \cap L$. Since $f^{-1}\left(a_{2 k-1}\right)=\left\{b_{4 k-2}, c_{4 k-2}, b_{4 k-3}, c_{4 k-3}\right\}$, there is $p \in\left\{b_{4 k-2}, c_{4 k-2}, b_{4 k-3}, c_{4 k-3}\right\} \cap K$ such that $f(p)=a_{2 k-1}$. Since $f^{-1}(p)=\left\{a_{i}\right\}$ for some $i>4 k-3>2 k-1$, we have that $a_{i} \in K \cap L$. Thus $\left\{a_{i}, a_{2 k-1}\right\} \subset K \cap L$, a contradiction. Thus $(K \cup L) \cap\left\{c_{k}: k \geq 2\right\}=\varnothing$. Similarly, $(K \cup L) \cap\left\{b_{k}: k \geq 2\right\}=\varnothing$. Therefore $K \cup L \subset\left\{a_{k}: k \in \mathbb{N}\right\} \cup$ $\left\{b_{1}, c_{1}\right\} \cup\{0\}$.

If there exists $k \geq 2$ such that $a_{k} \in K \cup L$, then there exists $k^{\prime}>2$ such that $\left\{b_{k^{\prime}}, c_{k^{\prime}}\right\} \cup(K \cup L) \neq \varnothing$. This contradicts what we proved in the previous paragraph. Thus $K \cup L \subset\left\{a_{1}, b_{1}, c_{1}\right\} \cup\{0\}$. Since $\left(\left\{a_{1}, b_{1}, c_{1}\right\} \cup\{0\}\right) \cap f^{-1}\left(b_{1}\right)=$ \varnothing, we have that $b_{1} \notin K \cup L$. Hence $K \cup L \subset\left\{a_{1}, c_{1}\right\} \cup\{0\}$. Since $\left(\left\{a_{1}, c_{1}\right\} \cup\right.$ $\{0\}) \cap f^{-1}\left(a_{1}\right)=\left\{c_{1}\right\}$ and $\left(\left\{a_{1}, c_{1}\right\} \cup\{0\}\right) \cap f^{-1}\left(c_{1}\right)=\left\{a_{1}\right\}$, we obtain that if $\left\{a_{1}, c_{1}\right\} \cap(K \cup L) \neq \varnothing$, then $\left\{a_{1}, c_{1}\right\} \subset K \cap L$, a contradiction. This proves that $K \cup L \subset\{0\}$, a contradiction. This completes the proof that f is not turbulent.

Now, we check that f_{2} is turbulent. Define

$$
\begin{aligned}
\mathcal{K} & =\left\{\left\{a_{m}, b_{m}\right\} \in F_{2}(X): m \in \mathbb{N}\right\} \cup\{\{0\}\}, \text { and } \\
\mathcal{L} & =\left\{\left\{a_{m}, c_{m}\right\} \in F_{2}(X): m \in \mathbb{N}\right\} \cup\{\{0\}\} .
\end{aligned}
$$

Then \mathcal{K} and \mathcal{L} are compact non-degenerate subsets of $F_{2}(X)$ and $\mathcal{K} \cap \mathcal{L}=$ $\{\{0\}\}$.

Given $m \in \mathbb{N},\left\{a_{m}, b_{m}\right\}=\left\{f\left(c_{2 m}\right), f\left(a_{2 m}\right)\right\}=f_{2}\left(\left\{c_{2 m}, a_{2 m}\right\}\right) \in f_{2}(\mathcal{L})$. Moreover, $\left\{a_{m}, b_{m}\right\}=\left\{f\left(b_{2 m}\right), f\left(a_{2 m}\right)\right\}=f_{2}\left(\left\{b_{2 m}, a_{2 m}\right\}\right) \in f_{2}(\mathcal{K})$. Since $\{0\}=\{f(0)\}=f(\{0\}\})=f_{2}(\{0\}) \in f_{2}(\mathcal{K}) \cap f_{2}(\mathcal{L})$. We have shown that $\mathcal{K} \subset f_{2}(\mathcal{K}) \cap f_{2}(\mathcal{L})$. Similarly, $\mathcal{L} \subset f_{2}(\mathcal{K}) \cap f_{2}(\mathcal{L})$. Therefore, f_{2} is turbulent.

Using $\mathcal{K}_{0}=q_{1}(\mathcal{K})$ and $\mathcal{L}_{0}=q_{1}(\mathcal{L})$, it can be proved that f_{1}^{2} is turbulent.

Acknowledgements. This paper was partially supported by the projects "Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III", (IN 106319) of PAPIIT, DGAPA, UNAM; and "Teoría de Continuos e Hiperespacios, dos" (AI-S-15492) of CONACYT. The authors wish to thank Leonardo Espinosa for his technical help during the preparation of this paper.

References

[1] J. Auslander, Minimal Flows and their Extensions, North-Holland Math. Studies, Vol. 153. North-Holland, Amsterdam, 1988.
[2] F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity and symmetric products, Turkish J. Math. 44, no. 2 (2020), 491-523.
[3] F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. (N.S.) 27 (2021), 61-80.
[4] F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on n-fold symmetric product suspensions, Glas. Mat. Ser. 51 (71) (2016), 453474.
[5] F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on n-fold symmetric product suspensions II, Topology Appl. 288 (2021), 107484.
[6] F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties of the dynamical system $\left(\mathcal{S F}_{m}^{n}(X), \mathcal{S} \mathcal{F}_{m}^{n}(f)\right)$, Appl. Gen. Topol. 21, no. 1 (2020), 17-34.
[7] L. S. Block and W. A. Coppel, Stratification of continuous maps on an interval, Trans. Amer. Math. Soc. 297, no. 2 (1986), 587-604.
[8] J. Dugundji, Topology, Allyn and Bacon, Inc. 1966.
[9] J. L. Gómez-Rueda, A. Illanes and H. Méndez-Lango, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45, no. 9-10 (2012), 1180-1187.
[10] G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367-401.
[11] G. Higuera and A. Illanes, Fixed point property on symmetric products, Topology Appl. 159 (2012), 1-6.
[12] H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. 41 (1989), 1-6.
[13] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math. Vol. 216, Marcel Dekker, Inc. New York and Basel, 1999.
[14] D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), 169-179.
[15] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378.

