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Abstract

We consider a new class of nonlinear mappings that generalizes two
well-known classes of nonexpansive type mappings and extends some
other classes of mappings. We present some existence and convergence
results for this class of mappings. Some illustrative examples presented
herein show the generality of the obtained results.
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1. Introduction

Let K be a nonempty subset of X of a Banach space (X , ‖.‖). A self-mapping
Ψ : K → K is 1-Lipschitz or nonexpansive if

‖Ψ(σ)−Ψ(υ)‖ ≤ ‖σ − υ‖
for all σ, υ ∈ K. A fixed point σ of the mapping Ψ is the point at which the
mapping is invariant, that is, Ψ(σ) = σ. In 1965, Browder [6, 7], Göhde [9]
and Kirk [10] initiated the existence theory for fixed points of nonexpansive
mapping, independently (cf. [8]). In general nonexpansive mapping are uni-
formly continuous on their domains. To generalize, extend and accommodate
discontinuous nonexpansive type mappings, many authors considered various
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classes of mappings [18, 11, 19, 2, 3, 14, 1, 8] for more details, see [15]. In
2008, Suzuki [18] considered a more general class of nonexpansive mappings
(also known as Suzuki type generalized nonexpansive mapping) and presented
some interesting results for these mappings:

Definition 1.1 ([18]). Assume that K is a nonempty subset of a Banach space
X . A mapping Ψ : K → K is said to satisfy condition (C) if

1

2
‖σ −Ψ(σ)‖ ≤ ‖σ − υ‖ implies ‖Ψ(σ)−Ψ(υ)‖ ≤ ‖σ − υ‖

for all σ, υ ∈ K.

In 2011, Aoyama and Kohsaka [3] introduced another class of nonexpansive
type mappings (called as α-nonexpansive mappings). This class of mappings
generalizes several classes of mappings including λ-hybrid and nonspreading
mappings. For more details one may refer to [11, 19, 2].

Definition 1.2. Let K be a nonempty subset of a Banach space X and Ψ :
K → K a self-mapping. Then Ψ is an α-nonexpansive if there exists an α < 1
such that

‖Ψ(σ)−Ψ(υ)‖2 ≤ α‖Ψ(σ)− υ‖2 + α‖Ψ(υ)− σ‖2

+(1− 2α)‖σ − υ‖2(1.1)

for all σ, υ ∈ K.

Remark 1.3. Even though, the class of α-nonexpansive mappings was consid-
ered in [3] for any real number α < 1, but Ariza-Ruiz et al. [4] pointed out
that for α < 0, this concept is trivial (see also [17]).

We note that α-nonexpansive and mappings satisfying the condition (C) are
independent, and need not be continuous on their domains of definitions, unlike
nonexpansive mappings. A couple of examples below illustrate these facts.

Example 1.4. Let K = [0, 5] ⊂ R with the usual norm on R. Assume that
Ψ : K → K is a self-mapping defined as:

Ψ(σ) =


1− σ, if σ ∈ [0, 1]

0, if σ ∈ (1, 5)

1, if σ = 5.

If σ < υ and (σ, υ) ∈ ([0, 5] × [0, 5])\((4, 5) × {5}), then it can be easily seen
that ‖Ψ(σ)−Ψ(υ)‖ ≤ ‖σ − υ‖ holds. If σ ∈ (4, 5) and υ = 5, then

1

2
‖σ −Ψ(σ)‖ =

σ

2
> 1 > ‖σ − υ‖ and

1

2
‖υ −Ψ(υ)‖ = 2 > ‖σ − υ‖.

Hence Ψ satisfies condition (C).

Contrarily, at σ = 0 and υ = 1

α‖Ψ(σ)− υ‖2 + α‖Ψ(υ)− σ‖2 + (1− 2α)‖σ − υ‖2 = 1− 2α ≤ 1 = ‖Ψ(σ)−Ψ(υ)‖2
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holds only if α = 0. But for α = 0, and σ = 9
2 , υ = 5, we get

‖Ψ(σ)−Ψ(υ)‖ = 1 >
1

2
= ‖σ − υ‖.

Therefore, Ψ is not an α-nonexpansive mapping for any α ∈ [0, 1).

Example 1.5. [14]. Let K = [0, 4] ⊂ R endowed with the usual norm. Define
Ψ : K → K as follows:

Ψ(σ) =

{
0, if σ 6= 4,

2, if σ = 4.

Then it can be easily verified that Ψ is α-nonexpansive mapping for α ≥ 1
2 .

However Ψ is not a mpping satisfying the condition (C) for σ ∈ (2, 3] and
υ = 4.

In [14], we introduced the following class of mappings:

Definition 1.6. Suppose K is a nonempty subset of a Banach space X , and
Ψ : K → K a self-mapping. Then Ψ is called a generalized α-nonexpansive
mapping if there exists an α ∈ [0, 1) such that

1

2
‖σ −Ψ(σ)‖ ≤ ‖σ − υ‖ implies

‖Ψ(σ)−Ψ(υ)‖ ≤ α‖Ψ(σ)− υ‖+ α‖Ψ(υ)− σ‖+ (1− 2α)‖σ − υ‖(1.2)

for all σ, υ ∈ K.
The implication in inequality (1.2) is more restrictive than in (1.1), and

therefore the above mapping does not contain α-nonexpansive mapping, prop-
erly. The present paper deals with this problem. Indeed, we consider a class of
mappings which properly contains the class of α-nonexpansive mappings. To
show the generality of the class of mappings considered herein, we present some
illustrative examples. We also obtain the Demi-closedness principle in Banach
spaces. Further, we employ a three step iterative method to approximate the
fixed point of mapping considered herein.

2. Preliminaries

Now onwards, R denotes the set of real numbers and N the set of natural
numbers.

Definition 2.1. Assume that K is a nonempty subset of a Banach space X .
A self-mapping Ψ : K → K is a quasinonexpansive mapping if

‖Ψ(σ)− w†‖ ≤ ‖σ − w†‖
for all σ ∈ K and w† ∈ F (Ψ).

A Banach space X is said to be uniformly convex, for each ε ∈ (0, 2], there
exists δ > 0 such that the following holds: for each σ, υ ∈ X

‖σ‖ ≤ 1

‖υ‖ ≤ 1

‖σ − υ‖ ≥ ε

⇒
∥∥∥∥σ + υ

2

∥∥∥∥ ≤ 1− δ.
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Definition 2.2 ([16]). Let X be a normed space and K nonempty subset of X .
A mapping Ψ : K → K is said to satisfy Condition (I) if there exists a function
f : [0,∞)→ [0,∞) with the following properties:

• f is nondecreasing;
• f(r) > 0 for all r ∈ (0,∞) and f(0) = 0;
• ‖σ −Ψ(σ)‖ ≥ f(d(σ, F (Ψ))) for all σ ∈ K,

where d(x, F (Ψ)) denotes distance of x from F (Ψ).

A Banach X satisfies the Opial conditions [13] if for each weakly convergent
sequence {σn} ⊂ X having weak limit σ, we have

lim inf
n→∞

‖σn − σ‖ < lim inf
n→∞

‖σn − υ‖

for all υ ∈ X , σ 6= υ. It can be easily seen that on passing through appropri-
ate subsequences, the lower limit can be replaced with upper limits in Opial
property. The sequence {σn} is an approximate fixed point sequence for Ψ (in
short, a.f.p.s.) if lim

n→∞
‖σn −Ψ(σn)‖ = 0.

3. C-α nonexpansive mapping

We introduce the following notion of C-α nonexpansive mapping

Definition 3.1. Suppose K is a nonempty subset of a Banach space X and
Ψ : K → K a self-mapping. We say Ψ is a C-α nonexpansive mapping if

1

2
‖σ −Ψ(σ)‖ ≤ ‖σ − υ‖ implies ‖Ψ(σ)−Ψ(υ)‖2

≤ α‖Ψ(σ)− υ‖2 + α‖Ψ(υ)− σ‖2 + (1− 2α)‖σ − υ‖2(3.1)

for all σ, υ ∈ K, where α ∈ [0, 1).

We discuss some fundamental properties of C-α nonexpansive mapping.

Proposition 3.2. Let Ψ : K → K be a mapping satisfying the condition (C).
Then Ψ is a C-α nonexpansive mapping.

In the next example we show that the reverse implication is not true, in
general.

Example 3.3. Let (`2, ‖.‖2) be the Banach space of square-summable se-
quences endowed with its standard norm. Assume that {en} is the canonical
basis of `2. Define

K := conv{e1, e2} = {µe1 + (1− µ)e2 : µ ∈ [0, 1]},

where conv{e1, e2} denotes the convex closure of {e1, e2}. Now, define Ψ : K →
K as follows:

Ψ(µe1 + (1− µ)e2) =

e1, if µ = 0,
(e1 + e2)

2
, otherwise.
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Then Ψ is C- 13 nonexpansive mapping. Indeed, if σ := e2 and υ := µe1 + (1−
µ)e2, µ ∈ (0, 1], we have

‖Ψ(σ)−Ψ(υ)‖2 =

∥∥∥∥e1 − (e1 + e2
2

)∥∥∥∥
2

=

∥∥∥∥e1 − e22

∥∥∥∥
2

=

√
2

2
,

‖Ψ(υ)− σ‖2 =

∥∥∥∥e1 + e2
2

− e2
∥∥∥∥
2

=

∥∥∥∥e1 − e22

∥∥∥∥
2

=

√
2

2
,

‖Ψ(σ)− υ‖2 = ‖e1 − (µe1 + (1− µ)e2)‖2 = (1− µ)
√

2

‖σ − υ‖2 = ‖e2 − (µe1 + (1− µ)e2)‖2 = µ
√

2.

Therefore, for α = 1
3

1

3
‖Ψ(σ)− υ‖2 +

1

3
‖Ψ(υ)− σ‖2 +

(
1− 2

3

)
‖σ − υ‖2 =

1

3
(1− µ)

√
2 +

1

3

√
2

2
+

1

3
µ
√

2

=

√
2

2
= ‖Ψ(σ)−Ψ(υ)‖2.

By the convexity of function t 7→ t2, we obtain

(‖Ψ(σ)−Ψ(υ)‖2)2 ≤ 1

3
(‖Ψ(σ)−υ‖2)2+

1

3
(‖Ψ(υ)−σ‖2)2+

(
1− 2

3

)
(‖σ−υ‖2)2.

Contrarily, if σ := e2 and υ := 1
3e1 + 2

3e2, then

1

2
‖υ −Ψ(υ)‖2 =

1

2

∥∥∥∥1

3
e1 +

2

3
e2 −

(e1 + e2)

2

∥∥∥∥
2

=
1

12
‖e1 − e2‖2

=
1

12

√
2 ≤ 1

3

√
2 = ‖σ − υ‖2

and ‖Ψ(σ) − Ψ(υ)‖2 =
√
2
2 > 1

3

√
2 = ‖σ − υ‖2. Therefore, Ψ does not satisfy

the criterion of condition (C). Note that
(e1 + e2)

2
is a fixed point of Ψ.

A generalized α-nonexpansive mapping is C-α nonexpansive mapping but
the reverse implication is not true (see Example 3.5 below).

Proposition 3.4. Assume that K is a nonempty subset of a Banach space X
and Ψ : K → K a generalized α-nonexpansive mapping for all α ∈ [0, 12 ]. Then

Ψ is C-α nonexpansive mapping for α ∈ [0, 12 ].

Proof. Let σ, υ ∈ K and α ∈ [0, 12 ]. Note that 1−2α ≥ 0. Since Ψ a generalized
α-nonexpansive mapping, by implication in (1.2), we have

‖Ψ(σ)−Ψ(υ)‖ ≤ α‖Ψ(σ)− υ‖+ α‖Ψ(υ)− σ‖+ (1− 2α)‖σ − υ‖.
Considering the convexity of function t 7→ t2, we conclude that

‖Ψ(σ)−Ψ(υ)‖2 ≤ ‖Ψ(σ)− υ‖2 + ‖Ψ(υ)− σ‖2 + (1− 2α)‖σ − υ‖2.
That is, Ψ is C-α nonexpansive mapping for all α ∈ [0, 12 ]. �
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Example 3.5. Let K = [0, 3] ⊂ R endowed with the usual norm in R. Define
a mapping Ψ : K → K as follows:

Ψ(σ) =

{
σ
2 , if σ 6= 3,
5
2 , otherwise.

Then Ψ is C-α nonexpansive mapping for α = 3
4 . Indeed, if σ, υ 6= 3, then

3

4
|Ψ(σ)− υ|2 +

3

4
|Ψ(υ)− σ|2 +

(
1− 2× 3

4

)
|σ − υ|2

=
3

4

∣∣∣σ
2
− υ
∣∣∣2 +

3

4

∣∣∣υ
2
− σ

∣∣∣2 − 1

2
|σ − υ|2

=
7

16
σ2 +

7

16
υ2 − 1

2
συ

=

(
1

4
σ2 +

1

4
υ2 − 1

2
συ

)
+

3

16
σ2 +

3

16
υ2

≥ 1

4
σ2 +

1

4
υ2 − 1

2
συ

=
∣∣∣σ
2
− υ

2

∣∣∣2 = |Ψ(σ)−Ψ(υ)|2.

Again if σ = 3 and υ 6= 3, then

3

4
|Ψ(σ)− υ|2 +

3

4
|Ψ(υ)− σ|2 +

(
1− 2× 3

4

)
|σ − υ|2

=
3

4

∣∣∣∣52 − υ
∣∣∣∣2 +

3

4

∣∣∣υ
2
− 3
∣∣∣2 − 1

2
|3− υ|2

=
7

16
υ2 − 12

4
υ +

111

16

=

(
1

4
υ2 − 10

4
υ +

100

16

)
+

3

16
υ2 − 1

2
υ +

11

16
.

Since 3
16υ

2 − 1
2υ + 11

16 ≥ 0 for all υ ∈ [0, 3], we have

3

4
|σ −Ψ(υ)|2 +

3

4
|Ψ(σ)− υ|2 +

(
1− 2× 3

4

)
|σ − υ|2

≥ 1

4
υ2 − 10

4
υ +

100

16

=

∣∣∣∣52 − υ

2

∣∣∣∣2 = |Ψ(σ)−Ψ(υ)|2.

Contrarily at σ = 3 and υ = 2, we get

1

2
|σ −Ψ(σ) =

1

2

∣∣∣∣3− 5

2

∣∣∣∣ =
1

4
≤ 1 = |3− 2| = |σ − υ|
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and

α|Ψ(3)− 2|+ α|Ψ(2)− 3|+ (1− 2α)|3− 2| =

= α

∣∣∣∣52 − 2

∣∣∣∣+ α|1− 3|+ 1− 2α

=
1

2
α+ 2α+ 1− 2α = 1 +

1

2
α

<
3

2
=

∣∣∣∣52 − 2

2

∣∣∣∣ = |Ψ(σ)−Ψ(υ)|.

Hence Ψ is not a generalized α-nonexpansive mapping for any value of α ∈
[0, 1).

Proposition 3.6. Every α-nonexpansive is C-α nonexpansive mapping, but
the converse is not true.

Example 3.7. Let (`∞, ‖.‖∞) be the Banach space of all bounded real se-
quences endowed with the supremum norm. Assume that {en} is the canonical
basis of `∞. Define

K := {µe1 : µ ∈ [0, 1]}
Define Ψ : K → K as follows:

Ψ(µe1) =

{
0, if µ 6= 1,
e1
3
, if µ = 1.

Then Ψ is a C- 1
10 nonexpansive mapping. Indeed, if σ = µ1e1, υ = µ2e1, where

µ1, µ2 ∈ [0, 1) then

‖Ψ(σ)−Ψ(υ)‖2∞ = 0 ≤ 1

10
‖Ψ(σ)−υ‖2∞+

1

10
‖Ψ(υ)−σ‖2∞+

(
1− 2× 1

10

)
‖σ−υ‖2∞.

Again if, σ = µ1e1, where µ1 ∈ [0, 23 ] and υ = e1, then

1

10
‖Ψ(σ)− υ‖2∞ +

1

10
‖Ψ(υ)− σ‖2∞ +

(
1− 2× 1

10

)
‖σ − υ‖2∞

=
1

10
‖e1‖2∞ +

1

10

∥∥∥e1
3
− σ

∥∥∥2
∞

+
4

5
‖e1 − σ‖2∞

≥ 1

10
+

4

5
× 1

9
=

17

90
>

1

9
= ‖Ψ(σ)−Ψ(υ)‖2∞.

If σ = µ1e1, where µ1 ∈
(
2
3 , 1
)

and υ = e1, then

1

2
‖σ−Ψ(σ)‖∞ =

1

2
‖σ‖∞ > ‖e1−σ‖∞ and

1

2
‖υ−Ψ(υ)‖∞ =

1

2

∥∥∥e1 − e1
3

∥∥∥
∞

=
1

3
> ‖e1−σ‖∞.

On the other hand, at σ = 9
10e1 and υ = e1,

1

10

∥∥∥∥Ψ

(
9

10
e1

)
− e1

∥∥∥∥2
∞

+
1

10

∥∥∥∥Ψ(e1)− 9

10
e1

∥∥∥∥2
∞

+

(
1− 2× 1

10

)∥∥∥∥ 9

10
e1 − e1

∥∥∥∥2
∞

=
1

10
+

289

9000
+

8

1000
=

397

9000
<

1

9
=

∥∥∥∥Ψ

(
9

10
e1

)
−Ψ(e1)

∥∥∥∥2
∞
.
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Thus Ψ is not 1
10 -nonexpansive mapping.

Proposition 3.8. Suppose that K is a nonempty subset a Banach space X and
Ψ : K → K a C-α nonexpansive mapping and has a fixed point. Then Ψ is
quasinonexpansive.

Proof. It follows from the proof of [14, Proposition 3.5]. �

Lemma 3.9. Suppose that K is a nonempty subset a Banach space X and
Ψ : K → K a C-α nonexpansive mapping. Then F (Ψ) is closed. In addition,
if K is convex and X is strictly convex, then F (Ψ) is convex.

Proof. The proof is much similar to proof [14, Lemma 3.6] �

4. Main results

Proposition 4.1 (Demiclosedness principle). Assume that K is a nonempty
subset of a Banach space X which has the Opial property and Ψ : K → K
be a C-α nonexpansive mapping. If {σn} converges weakly to a point σ and
lim
n→∞

‖Ψ(σn) − σn‖ = 0 then Ψ(σ) = σ. That is, I − Ψ is demiclosed at zero,

where I is the identity mapping on X .

Proof. Since the sequence {σn} is weakly convergent and lim
n→∞

‖Ψ(σn)−σn‖ =

0, both sequences {σn} and {Ψ(σn)} are bounded. First we assume that
lim sup
n→∞

‖σn − σ‖ = 0. Now by the triangle inequality, we get

‖σ −Ψ(σ)‖ ≤ lim sup
n→∞

‖σn − σ‖+ lim sup
n→∞

‖σn −Ψ(σ)‖

= lim sup
n→∞

‖σn −Ψ(σ)‖.

Indeed, by Opial property

‖σ −Ψ(σ)‖ ≤ lim sup
n→∞

‖σn −Ψ(σ)‖ < lim sup
n→∞

‖σn − σ‖ = 0.

Thus Ψ(σ) = σ.

If we assume that lim sup
n→∞

‖σn − σ‖ = r > 0. Since lim
n→∞

‖Ψ(σn) − σn‖ = 0,

for large enough n, there exists a n0 ∈ N such that

1

2
‖σn −Ψ(σn)‖ ≤ ‖σn − σ‖ for all n ≥ n0.

By (4.5), we have

(4.1) ‖Ψ(σn)−Ψ(σ)‖2 ≤ α‖Ψ(σn)−σ‖2+α‖Ψ(σ)−σn‖2+(1−2α)‖σn−σ‖2.
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Now by the triangle inequality and (4.1), we have

‖σn −Ψ(σ)‖2 ≤ (‖σn −Ψ(σn)‖+ ‖Ψ(σn)−Ψ(σ)‖)2

≤ ‖σn −Ψ(σn)‖2 + ‖Ψ(σn)−Ψ(σ)‖2 + 2‖σn −Ψ(σn)‖‖Ψ(σn)−Ψ(σ)‖
≤ ‖σn −Ψ(σn)‖2 + α‖Ψ(σn)− σ‖2 + α‖Ψ(σ)− σn‖2

+(1− 2α)‖σn − σ‖2 + 2‖σn −Ψ(σn)‖‖Ψ(σn)−Ψ(σ)‖
≤ ‖σn −Ψ(σn)‖2 + α(‖Ψ(σn)− σn‖+ ‖σn − σ‖)2 + α‖Ψ(σ)− σn‖2

+(1− 2α)‖σn − σ‖2 + 2‖σn −Ψ(σn)‖‖Ψ(σn)−Ψ(σ)‖
≤ ‖σn −Ψ(σn)‖2 + α‖Ψ(σn)− σn‖2 + α‖σn − σ‖2

+2α‖Ψ(σn)− σn‖‖σn − σ‖+ α‖Ψ(σ)− σn‖2

+(1− 2α)‖σn − σ‖2 + 2‖σn −Ψ(σn)‖‖Ψ(σn)−Ψ(σ)‖.
This implies that

‖σn −Ψ(σ)‖2 ≤ (1 + α)

(1− α)
‖σn −Ψ(σn)‖2 +

2

(1− α)
(α‖σn − σ‖+ ‖Ψ(σn)−Ψ(σ)‖)

‖Ψ(σn)− σn‖+ ‖σn − σ‖2.
Therefore

lim sup
n→∞

‖σn −Ψ(σ)‖2 ≤ lim sup
n→∞

‖σn − σ‖2

as an application of Opial property we conclude that Ψ(σ) = σ. �

Theorem 4.2. Suppose X is a Banach space having the Opial property. As-
sume that K is a nonempty subset of X and Ψ : K → K a C-α nonexpansive
mapping such that Ψ admits an a.f.p.s.. Then Ψ has a fixed point.

Proof. Demiclosedness principle implies the conclusion. �

Noor [12] considered the following iterative process:
σ1 ∈ K
σn+1 = (1− ζn)σn + ζnΨ(υn)

υn = (1− γn)σn + γnΨ(wn)

wn = (1− δn)σn + δnΨ(σn), n ∈ N,

(4.2)

where {ζn}, {γn} and {δn} are sequences in [0, 1].

Lemma 4.3 ([20, p.484]). Assume that 0 < a ≤ ln ≤ b < 1 for all n ∈ N and
X is a uniformly convex Banach space. Suppose {σn} and {υn} are sequences
such that lim sup

n→∞
‖σn‖ ≤ r, lim sup

n→∞
‖υn‖ ≤ r and lim

n→∞
‖lnσn + (1− ln)υn‖ = r

hold for some r ≥ 0. Then lim
n→∞

‖σn − υn‖ = 0.

Lemma 4.4. Suppose K is a nonempty closed convex subset of a Banach space
X . Let Ψ : K → K be a C-α nonexpansive mapping. Let {σn} be a sequence
defined by (4.2). If F (Ψ) 6= ∅, then the following postulation hold:

(1): max{‖σn+1−w†‖, ‖υn−w†‖, ‖wn−w†‖} ≤ ‖σn−w†‖ for all n ∈ N
and w† ∈ F (Ψ);
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(2): lim
n→∞

‖σn − w†‖ exists;

(3): lim
n→∞

d(σn, F (Ψ)) exists, where d(σ, F (Ψ)) denotes the distance from

σ to F (Ψ).

Proof. In view (4.2) and Proposition 3.8, we get

‖wn − w†‖ = ‖(1− δn)σn + δnΨ(σn)− w†‖
≤ (1− δn)‖σn − w†‖+ δn‖Ψ(σn)− w†‖
≤ (1− δn)‖σn − w†‖+ δn‖σn − w†‖
= ‖σn − w†‖.(4.3)

By (4.2), (4.3) and Proposition 3.8, we have

‖υn − w†‖ = ‖(1− γn)σn + γnΨ(wn)− w†‖
≤ (1− γn)‖σn − w†‖+ γn‖Ψ(wn)− w†‖
≤ (1− γn)‖σn − w†‖+ γn‖wn − w†‖
≤ (1− γn)‖σn − w†‖+ γn‖σn − w†‖
= ‖σn − w†‖.(4.4)

Using (4.2), (4.4) and Proposition 3.8, we get

‖σn+1 − w†‖ = ‖(1− ζn)σn + ζnΨ(vn)− w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖Ψ(υn)− w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖υn − w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖σn − w†‖
= ‖σn − w†‖.(4.5)

Combining (4.3), (4.4) and (4.5) proves (1). Also by (4.5) the sequence {‖σn−
w†‖} is bounded and hence monotone decreasing. Therefore lim

n→∞
‖σn−w†‖ ex-

ists and proves (2). Now, since ‖σn+1−w†‖ ≤ ‖σn−w†‖ for each w† ∈ F (Ψ) and
for all n ∈ N, d(σn+1, F (Ψ)) ≤ d(σn, F (Ψ)) for all n ∈ N. Thus {d(σn, F (Ψ))}
is a bounded sequence and monotone decreasing. Hence, lim

n→∞
d(σn, F (Ψ)) ex-

ists. �

Theorem 4.5. Let K, {σn} and Ψ be same as in Lemma 4.4. If F (Ψ) 6= ∅
and X is a uniformly convex Banach space. Then lim

n→∞
‖Ψ(σn)− σn‖ = 0.

Proof. Let w† ∈ F (Ψ). Then from Lemma 4.4, {σn} is bounded and lim
n→∞

‖σn−
w†‖ exists. Call it r. That is

(4.6) lim
n→∞

‖σn − w†‖ = r.

In view of (4.6) and Proposition 3.8 it implies that

(4.7) lim sup
n→∞

‖Ψ(σn)− w†‖ ≤ r.
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By (4.3) and (4.6), we get

(4.8) lim sup
n→∞

‖wn − w†‖ ≤ lim
n→∞

‖σn − w†‖ = r.

From (4.4) and (4.6), we get

(4.9) lim sup
n→∞

‖υn − w†‖ ≤ r.

In view of (4.9) and Proposition 3.8 it follows that

(4.10) lim sup
n→∞

‖Ψ(υn)− w†‖ ≤ r.

Similarly,

(4.11) lim sup
n→∞

‖Ψ(wn)− w†‖ ≤ r.

By (4.2), (4.4) and Proposition 3.8, we have

‖σn+1 − w†‖ = ‖(1− ζn)σn + ζnΨ(υn)− w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖Ψ(υn)− w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖υn − w†‖
≤ (1− ζn)‖σn − w†‖+ ζn‖σn − w†‖
= ‖σn − w†‖,

or

‖σn+1 − w†‖ ≤ ‖(1− ζn)σn + ζnΨ(υn)− w†)‖ ≤ ‖σn − w†‖,
it implies that

r ≤ lim
n→∞

‖(1− ζn)σn + ζnΨ(υn)− w†)‖ ≤ r.

Then,

(4.12) lim
n→∞

‖(1− ζn)σn + ζnΨ(υn)− w†)‖ = r.

By (4.10), (4.11), (4.12) and Lemma 4.3, we get that

(4.13) lim
n→∞

‖σn −Ψ(υn)‖ = 0.

In view of the triangle inequality and Proposition 3.8, we obtain

‖σn − w†‖ ≤ ‖σn −Ψ(υn)‖+ ‖Ψ(υn)− w†‖
≤ ‖σn −Ψ(υn)‖+ ‖υn − w†‖

By (4.13), we have

lim
n→∞

‖σn − w†‖ ≤ lim
n→∞

‖σn −Ψ(υn)‖+ lim inf
n→∞

‖υn − w†‖

≤ lim inf
n→∞

‖υn − w†‖.

It follows that

(4.14) r ≤ lim inf
n→∞

‖υn − w†‖.
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Using (4.2), (4.9) and (4.14), we get

(4.15) r = lim
n→∞

‖υn − w†‖ = ‖(1− γn)(σn − w†) + γn(Ψ(wn)− w†)‖.

In view of Lemma 4.3, and (4.6), (4.11), (4.15), we have

(4.16) lim
n→∞

‖σn −Ψ(wn)‖ = 0.

By triangle inequality and Proposition 3.8, we have

‖σn − w†‖ ≤ ‖σn −Ψ(wn)‖+ ‖Ψ(wn)− w†‖
≤ ‖σn −Ψ(wn)‖+ ‖wn − w†‖,

using (4.16) it follows that

(4.17) r ≤ lim inf
n→∞

‖wn − w†‖.

Combining (4.8) and (4.17) together we get

(4.18) lim
n→∞

‖wn − w†‖ = 0.

By (4.2) and Proposition 3.8, we have

‖wn − w†‖ = ‖(1− δn)σn + δnΨ(σn)− w†‖
≤ (1− δn)‖σn − w†‖+ δn‖Ψ(σn)− w†‖
≤ (1− δn)‖σn − w†‖+ δn‖σn − w†‖
= ‖σn − w†‖.

This implies that

r ≤ lim
n→∞

‖(1− δn)(σn − w†) + δn(Ψ(σn)− w†)‖ ≤ r.

Therefore, we get

(4.19) lim
n→∞

‖(1− δn)(σn − w†) + δn(Ψ(σn)− w†)‖ = r.

In view of Lemma 4.3 and (4.6), (4.7), (4.19), it follows that lim
n→∞

‖Ψ(σn) −
σn‖ = 0. �

Theorem 4.6. Let X be a uniformly convex Banach space having the Opial’s
property, K, Ψ and {σn} same as in Theorem 4.5. If F (Ψ) 6= ∅ then {σn}
weakly converges to a fixed point of Ψ.

Proof. This can be completed following [14, Theorem 5.8]. �

Theorem 4.7. Suppose that K, X , {σn} and Ψ are same as in Lemma 4.4.
Let F (Ψ) 6= ∅ and lim inf

n→∞
d(σn, F (Ψ)) = 0. Then the sequence {σn} strongly

converges to a fixed point of Ψ.

Proof. This can be completed following [14, Theorem 5.9]. �
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Theorem 4.8. Assume that K is a subset of a uniformly convex Banach
spaceX . Let Ψ and {σn} are same as in Theorem 4.5 and. Let Ψ satisfy condi-
tion (I) with F (Ψ) 6= ∅. Then the sequence {σn} strongly converges to a fixed
point of Ψ.

Proof. This can be completed following [14, Theorem 5.10]. �
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