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Abstract—Motor current signature analysis has become a
widespread fault diagnosis technique for induction machines,
because it is non-invasive, and requires low resources of hardware
(a current sensor) and software (a fast Fourier transform). Nev-
ertheless, its industrial application faces practical problems. One
of its most challenging scenarios is the detection of broken bars in
induction machines working at very low slip, like large machines
with a very small rated slip, or unloaded induction motors in
off-line tests. In these cases, the leakage of the main supply
component can hide the fault harmonics, even with a severe fault.
Diverse solutions to this problem have been proposed, such as the
use of smoothing windows, advanced spectral estimators, or the
removal of the supply component. Nevertheless, these methods
modify the spectral content of the current signal or add a high
computational burden. In this work, a new approach is proposed,
based on the analysis of the current with a very fine spectrum,
obtained via simple zero padding, followed by the extraction
of a practically leakage-free conventional, coarse spectrum. The
method is experimentally validated by the diagnosis of a broken
bar fault in a 3.15 MW induction motor.

Index Terms—Condition monitoring, fast Fourier transforms,
fault diagnosis, induction machines, spectral leakage.

I. INTRODUCTION

CAGE induction machines (IMs) are a key component
of modern industrial processes, due to their robustness

and low maintenance requirements. Nevertheless, they can
fail, which may cause heavy economical losses due to the
unexpected shutdown of complex industrial production lines.
Condition based maintenance (CBM) [1] can help reduce this
risk by detecting machine faults at an incipient stage [2], [3].

One of the most frequent faults of cage induction machines
is the cage winding failure, specially in motors that directly
drive high-inertia loads (such as fans), in motors with frequent
starts and stops, and in case of poorly manufactured cage
windings [4], [5]. This fault must be detected as early as
possible, because it can produce heat damage to the rotor core,
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an increase of the current for a given load, and a reduction of
the torque and efficiency [4].

A broken bar fault [6] generates characteristic fault har-
monic components [7] in the spectrum of the current, at
frequencies fbb given by [8]

fbb = f1(1± 2ks) k = 1, 2, 3 . . . , (1)

where f1 is the frequency of the supply component, and s is
the slip. Their strength is proportional to the fault severity [9],
and is usually expressed as the ratio between the power of the
fault harmonic and the supply component, in dB

îdB(fbb) = 20 · log10

(∣∣∣̂i(fbb)∣∣∣/∣∣∣̂i(f1)
∣∣∣) (2)

A value of îdB(fbb) in (2) greater than -45 dB can be
considered as a clear indication of a cage winding fault [4].

In spite of the simplicity of (1) and (2), this method faces
practical problems that can make unfeasible its industrial
application, solved with the techniques proposed in this work:
• Small errors in the measurement of the frequency f1

and the amplitude î(f1) of the supply component may
produce important errors in the estimation of the position
(1) and power (2) of the fault harmonics in the current
spectrum.

• At very low slip, the spectral distance between the fault
harmonics and the supply component, f1 · 2ks, can be
very small [10]. As the supply component dominates the
current signal, its spectral leakage at this short distance
usually hides completely the fault harmonics [11], of a
much lower amplitude (up to 200 times lower [4]).

Therefore, a reliable diagnostic system requires a sharp
power spectrum, free of the leakage due to the supply compo-
nent, with distinguishable peaks at the correct position of the
fault harmonics. In the technical literature, this goal has been
achieved using different approaches:
• High resolution spectral estimation methods have been

proposed using an eigen-based decomposition of the
signal current in [12], an spectral estimator based on
Rayleigh quotients in [13], Taylor-Kalman filters in cas-
cade with a sub-sampling scheme in [9], or rotational
invariance techniques in [14]. In particular, a precise
method for measuring the frequency and the amplitude



of the supply component with high accuracy using spec-
tral interpolation with the amplitudes of the largest two
spectral components bins has been presented in [15].
This approach was termed as the interpolated FFT (IFFT)
in [16]. In [17], [18] a three-point interpolation schema
is proposed to reduce the amplitude error about ten
times compared with the usual one-point method, and
in [19] it has been expanded to a nine-point method,
which decreases systematic errors but increases noise
distortion. An iterative weighted phase averager (IWPA)
has been presented in [20], which can even distinguish
sinusoids with a frequency separation smaller than the pe-
riodogram’s resolution limit. Nevertheless, this approach
requires a new iteration to obtain each new component as
the strongest peak of the remaining residual and then to
re-estimate the parameters of all the previously obtained
components.

• Regarding the reduction of the spectral leakage, the
classical method consists in windowing the current signal
with a weighting window [21], [22], such as the Hanning
window [23], [24], the Hamming window [25], and many
others window types. Compared with the rectangular
window, the default one when sampling the current
signal during a limited acquisition time, other weighting
windows reduce the side lobe levels, thus improving
the detectability of weak frequency components. Nev-
ertheless, those windows also reduce the signal-to-noise
ratio (SNR) relative to the SNR of the default rectangle
window [21]. Moreover, a window with a very narrow
main lobe has a high spectral resolvability. In this regard,
the default rectangle window has the narrowest main lobe,
equal to the periodogram’s resolution limit. Some authors
propose alternatives solutions to the leakage problem such
as reducing the fundamental component of the current
[26], filtering it, using notch filters [27] and Kalman filters
[28], or rectifying the current signal [29].

Nevertheless, the aforementioned solutions depart from the
simplicity of the basic FFT-based approach. Interpolated FFTs
requires a greater computational effort, which depend on
the number samples used for performing the interpolation
procedure, and also on the number of iterations required, as
in IWPA. On the other hand, the use of weighting windows
different than the rectangular one reduce the SNR, increase the
frequency measurement uncertainty due to their wider main
lobe, and may distort the spectrum of the original current
signal, being a low pass filter in the frequency domain. For
example, the Hanning window doubles the base width of
the peaks of the fault harmonics, hampering their accurate
detection.

On the contrary, the novel method proposed in this work
uses only the Fourier transform as the signal processing
technique, with the default rectangular window to maximize
the spectral resolvability, and does not alter the spectral
content of the current signal. The problem of the high side
lobe levels of the rectangular window is solved by carefully
aligning the periodogram bins with the zeros of these side
lobes. The proposed approach is based on the calculation of a

fine spectrum of the zero-padded sampled current, followed
by the extraction of a leakage-free coarse spectrum, what
allows the detection of very small fault harmonics close to
the fundamental.

The structure of the paper is as follows: in Section II the
spectral leakage issue is analyzed, and in Section III, it is
evaluated for the case of a broken bar fault. Section IV presents
the proposed method, and in Section V it is validated by
applying it to a large industrial motor with a low rated slip,
and compared with the results obtained by interpolating the
FFT bins and using weighting windows. Finally, Section VI
presents the conclusions of this work.

II. SPECTRAL LEAKAGE IN THE CURRENT SPECTRUM

In this section, the problem of the spectral leakage of the
supply component of the machine current is analyzed. For
simplicity, in this section an ideal IM is considered, with a
stator current that only contains the supply component and
the principal fault harmonic components, k = ±1 in (1), that
is

i(t) = I cos
(
2πf1t

)
+ βI cos

(
2πf1(1± 2s)t

)
(3)

where β indicates the severity of the fault (β � 1).

A. Continuous Fourier Transform (CFT) of the Infinite-Length
Current Signal of an Ideal IM

The current i(t) in (3) is an infinite-length time signal which
spans from t = −∞ to t =∞. Its CFT, î(f), is given by

CFT
(
i(t)
)

= î(f) =

∫ ∞
−∞

i(t)e−i2πftdt (4)

which, applied to (3), gives

î(f) =
I

2
δ(f − f1) + β

I

2

(
δ(f − f1(1± 2s)

)
+

+
I

2
δ(f + f1) + β

I

2

(
δ(f + f1(1± 2s)

) (5)

where δ is the Kronecker delta function. As the transform of a
real signal exhibits Hermetian symmetry, î(f) = î∗(−f) [21],
only the positive frequencies of the current spectrum will be
considered from now on. Also, it will be assumed that the
supply frequency f1 is far enough from the origin (f = 0) so
that the leakage coming from the negative part of the spectrum
can be neglected. Therefore, (5) becomes

î(f) =
I

2
δ(f − f1) + β

I

2
δ
(
f − f1(1± 2s)

)
. (6)

Equation (6) constitutes the characteristic signature of a
broken bar fault: a spectral component at the frequency of
the supply component f1, and two sideband harmonics, at
frequencies given by (1), with a much lower amplitude. The
stator current signal of an ideal machine with a broken bar fault
i(t) and its CFT, î(f), given in (5) and (6), taking β = 0.02,
are plotted in Fig. 1.
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Fig. 1. Infinite-length stator current of an ideal induction motor with broken
bars (top), and its CFT (bottom) for a parameter β = 0.02 in (5) and (6),
showing the characteristic sideband harmonics at frequencies (1) as Kronecker
deltas in the frequency domain.

B. CFT of the Measurable Current Signal of an Ideal IM

In the real world it is not possible to get a signal i(t) of
infinite duration. The diagnostic task has to be carried out
from measurable currents im(t) that can be captured during a
restricted acquisition time, Tacq . Thus, the starting point for the
fault diagnosis process is the measurable current, a continuous
function restricted to a specific time interval, defined as

im(t) = i(t) t ∈ [0, Tacq] (7)

Nevertheless, for calculating the CFT of im(t), it is neces-
sary to define it in the interval −∞ < t <∞; for this reason, it
is advisable to introduce the time-expanded measurable current
ime(t), which is defined as (see Fig. 2, top)

ime(t) =

 0 −∞ < t < 0
i(t) 0 ≤ t ≤ Tacq
0 Tacq < t < ∞

(8)

In this way, a CFT can be associated to the time-restricted
signal im(t), as the CFT of ime(t)

CFT
(
ime(t)

)
= îme(f) =

∫ ∞
−∞

ime(t)e
−i2πftdt (9)

On the other hand, ime(t) can be also defined as the product
of the infinite duration current signal i(t) and a rectangular
window of unit height and duration Tacq , rectTacq (t)

ime(t) = i(t) · rectTacq (t) (10)

As ime(t) is the product of two functions in the time domain
(10), its CFT is the convolution (∗) in the frequency domain
of the CFTs of these two functions,

CFT
(
ime(t)

)
= CFT

(
i(t)
)
∗ CFT

(
rectTacq (t)

)
(11)

The CFT of the rectangular window is the sinc function,

CFT
(
rectTacq (t)

)
= sinc(f · Tacq) =

sin(πf · Tacq)
πf · Tacq

(12)

Replacing (6) and (12) in (11) gives the CFT of the time-
expanded measurable current signal, îme(f),

îme(f) ≈ I

2
sinc

((
f − f1) · Tacq

)
+

+ β
I

2
sinc

((
f − f1(1± 2s)) · Tacq

) (13)

The time-expanded measurable current signal of a machine
with a broken bar fault ime(t) and its CFT (13) (in dB,
β = 0.02) are represented in Fig. 2, showing the characteristic
sidelobes generated by the rectangular time window, with a
width ∆f = 1/Tacq . It should be noted that, in the spectrum
of Fig. 2, besides the expected harmonics at frequencies f1,
f1(1−2s) and f1(1+2s), the CFT has non-zero amplitude at
every other frequency, due to the finite acquisition time Tacq .
It is also worth mentioning that the rectangular time window
is the one with the narrowest main lobe for a given acquisition
time.
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Fig. 2. Time-expanded measurable stator current ime(t) of an ideal induction
motor with broken bars (β = 0.02), obtained during an acquisition time Tacq
(top), and its CFT (bottom), with the characteristic sidelobes produced by the
finite acquisition time. The current signal has infinite length, with a zero value
outside the rectangular time window of length Tacq .

C. Fine Discrete Fourier Transform of the Current Signal
In practical applications, the stator current is sampled during

a time Tacq , at a rate fs. This generates a discrete sequence
of N = Tacq · fs samples, is[n], n = 0, . . . , N − 1, whose
spectrum has N frequency bins, with a separation given by the
width of the lobes of the rectangular time window of Fig. 2,

∆f = fs/N = 1/Tacq (14)

As in (8), a time-expanded sampled signal ise[n] can
be defined by zero-padding the original signal is[n], of N
elements, giving a new sequence of N ′ >> N elements ise[n],
as

ise[n] =

{
is[n] n = 0, . . . , N − 1

0 n = N, . . . , N ′ − 1
(15)

The ise[n] signal is a better approximation to the time-
expanded measurable current ime(t) (continuous signal) than
the raw sampled signal is[n]. Its discrete Fourier transform
(DFT) is given by

îse[k] =

N ′−1∑
n=0

ise[n] · e− 2πi
N′ kn k = 0, . . . , N ′ − 1 (16)



As N ′ increases, the separation between the frequency bins
in the DFT spectrum of ise[n] decreases, and tends to the
continuous CFT spectrum of ime(t), so (16) can be considered
as a fine DFT (fDFT) associated to the sampled signal is[n];
it is not the continuous CFT of ime(t) in (13), but a finite set
of N ′ bins corresponding to a fine sampling approximation of
the CFT at the points k ·∆f ′ = k · fs/N ′, k = 0, . . . , N ′− 1.
That is

fDFT
(
is[n]

)
= îse[k] ≈ CFT

(
ime(t)

)∣∣∣
f=(k∆f ′)

=

= îme(k ·∆f ′) k = 0, . . . , N ′ − 1
(17)

Taking into account (14) and (13), finally (17) becomes

fDFT
(
is[n]

)
= îse[k] ≈ I

2
sinc

((
k∆f ′ − f1

)
/∆f

)
+

+ β
I

2
sinc

((
k∆f ′ − f1(1± 2s)

)
/∆f

)
k = 0, . . . , N ′ − 1

(18)
as represented in Fig. 3.
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Fig. 3. Time-expanded sampled stator current ise[n] of an ideal induction
motor with broken bars (β = 0.02) zero-padded up to N ′ elements, (top),
and its corresponding fDFT (blue circles, bottom). The fDFT samples the
CFT of ime(t) (thin, black, line bottom) at points separated ∆f ′ = fs/N ′.

D. Conventional, coarse DFT of the Current Signal

Usually, the DFT of the sampled current signal is built using
only the N samples obtained during the acquisition time, Tacq ,
without zero padding, that is,

îs[k] =

N−1∑
n=0

is[n] · e− 2πi
N kn k = 0, . . . , N − 1 (19)

This choice leads in fact to generate the coarsest spectrum
for a given acquisition time, with a distance between frequency
bins equal to ∆f (14). Therefore, the conventional, coarse
DFT (cDFT) of is[n] consists of a finite set of N bins
calculated through (19), corresponding to a coarse sampling
approximation of the CFT of ime(t) at the points k · ∆f =
k · fs/N, k = 0, . . . , N − 1. That is

cDFT
(
is[n])

)
= îs[k] ≈ CFT

(
ime(t)

)∣∣∣
f=(k∆f)

=

= îme(k ·∆f) k = 0, . . . , N − 1
(20)
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îs[k]

0

N − 1

is[n]

Fig. 4. Sampled stator current is[n] of an ideal induction motor with broken
bars (N elements, no zero-padding β = 0.02) (top), and its corresponding
conventional cDFT (red circles, bottom). The cDFT samples the continuous
CFT of ime(t) (thin, black line, bottom) at points separated ∆f = fs/N .
This choice gives only one sample per sidelobe of the CFT, the coarsest
possible spectrum for a given acquisition time. The supply frequency lies on
a bin of the cDFT in this example.

Taking into account (13) and (14), finally (20) becomes

cDFT
(
is[n])

)
= îs[k] ≈ I

2
sinc

(
k − f1/∆f

)
+

+ β
I

2
sinc

(
k − f1 · (1± 2s)/∆f

)
k = 0, . . . , N − 1

(21)
This expression of the conventional cDFT can also be

deduced by setting ∆f ′ = ∆f in (18).
From (21), it follows that the cDFT samples the CFT of

ime(t) at a single point per lobe of the rectangular time
window (see Fig. 4). Therefore, it can be considered a coarse
subset of the fDFT. Fig. 5 shows graphically the relationship
between (13), (18) and (21). From a diagnostic point of
view, it is clear that the fault harmonics are better identified
in the cDFT spectrum (Fig. 5, red line) than in the finer
fDFTspectrum (Fig. 5, blue circles). Nevertheless, this is only
true if the cDFT bins are chosen as the fDFT bins with the
minimum leakage, as proposed in this paper.
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Fig. 5. Comparison between the CFT of the stator current of a faulty machine
(thin, black line), its fDFT (blue circles) and its cDFT (thick, red line). The
supply frequency coincides with a bin of the cDFT in this example.



III. QUANTIFICATION OF THE SPECTRAL LEAKAGE

As shown in Section II, in the case of a current signal
measured during a finite acquisition time Tacq , the harmonic
components of the current are no longer represented in its
spectrum by peaks (Kronecker delta functions). Instead, each
component gives rise to a function with defined values for
all frequencies. This effect, the spectral leakage, is especially
important in the case of the supply component, since its
amplitude in the current signals used in fault diagnosis is
usually two orders of magnitude greater than the rest of the
harmonic components.

The first term of (13) reflects the effect of the supply
component on the harmonic amplitude at every frequency of
the CFT spectrum. Therefore, it is denoted as îme(f)

∣∣
fund

,
and gives the theoretical expression of the leakage as

îme(f)
∣∣
fund

≈ I

2
sinc

(f − f1

∆f

)
(22)

Fig. 6 plots the modulus of (22), in dB, in the proximity of
the supply frequency (50 Hz). From (22), and observing Fig. 6,
the following properties of the leakage can be deduced:
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Fig. 6. Modulus of the theoretical spectral leakage (22) produced by the
supply component in its proximity.

• The leakage function (22) evolves cyclically, describing
sidelobes around the supply frequency, of width ∆f =
1/Tacq . It presents steep changes, of more than 250 dB in
a extremely narrow frequency interval around its minima,
as seen in Fig. 6.

• For a given frequency f , the leakage depends on the
argument of the sinc function in (22), that is, the distance
between f and the supply frequency f1, expressed as a
multiple of the width ∆f of the sidelobes.

• There is a reduced set f0z of leakage free frequencies,
corresponding to the minima in Fig. 6, whose distance to
the supply frequency is an integer multiple of the lobe
width (f0z − f1 = kz · ∆f , with kz ∈ Z), thus making
null (22).

• For the rest of frequencies, f − f1 = df ·∆f , with df 6∈
Z, the leakage depends mainly on the fractional part of
df , rather than its total value (in the proximity of the
supply frequency). For example, with a distance between
frequency bins ∆f = 0.1 Hz, (Tacq = 10 s), the leakage
is mainly determined by the hundredths of Hz in (f−f1);
if ∆f = 0.01 Hz, (Tacq = 100 s), which is relevant are
the thousandths of Hz in (f − f1).

A. The Picket Fence Error

The frequencies of the bins of the cDFT are given by
fk = k ·∆f , k = 0, . . . , N − 1. However, it is very unlikely
that the frequencies of the supply component f1 and of the
fault harmonics fbb (2) exactly match any of the frequencies
fk. Therefore, they are approximated by the nearest discrete
frequencies f1 app = k1∆f and fbb app = kbb∆f , respec-
tively, which may lead to errors (picket fence errors) in the
estimation of the amplitudes and frequencies of the analyzed
components.

B. Oscillations of the Network Frequency

In large electrical systems in quasi stationary functioning,
a frequency error is inherent and necessary for self regulation
of the system. The system frequency oscillates in a range
of ±150 mHz around the rated frequency, and depends on
the deviation of the predicted demand against the actual one,
which varies randomly. The deviation between the actual value
of the supply frequency and its assumed value (equal to
the rated mains frequency f1r), when calculating the current
spectrum by means of the cDFT, determines the appearance
of picket fence and leakage errors, which frequently make
the diagnosis unfeasible. Fig. 5 shows an ideal case in which
f1 ≡ f1r = 50 Hz. In these conditions the supply frequency
exactly matches one of the cDFT bins, thus its measured
amplitude exactly matches the actual one (no picket fence
error). In addition, the rest of the cDFT bins are separated
from the supply frequency by an integer number of lobes.
Therefore, they are not affected by its leakage, the resulting
cDFT spectrum is very clear (red line), and the characteristic
peaks of the fault harmonics are clearly discernible. On the
contrary, Fig. 7 has been obtained by imposing a deviation
of the supply frequency of just 5 mHz (f1 = 50.005 Hz). In
this case, the leakage of the supply component is much bigger
than the amplitude of the fault harmonics, which makes them
undetectable (misdiagnosis).
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(thin, black line), its fDFT (blue circles), and its conventional cDFT (thick, red
line). The supply frequency lies in the middle of two bins of the conventional
cDFT in this example.



IV. PROPOSED METHOD FOR THE REDUCTION OF THE
LEAKAGE IN THE CURRENT SPECTRUM

The first term of (18), which will be designated as
îse[k]

∣∣
fund

as in (22), is the theoretical value of the leakage
produced by the supply component at each k bin of the fDFT,

îse[k]
∣∣
fund

≈ I

2
sinc

((
k∆f ′ − f1

)
/∆f

)
k = 0, . . . , N ′ − 1

(23)
The maximum picket fence errors in the frequency and in the
amplitude of the supply component occurs when its actual
frequency lies in the middle of two fDFT bins (f1 = k1∆f ′±
∆f ′/2), as shown in Fig. 7. In this case,
• the maximum frequency error, ε1f,max, is given by

ε1f,max = (k1∆f ′ − f1) =
∆f ′

2
(24)

• the maximum amplitude error, ε1A,max, is given by

ε1A,max =î[f1]− îse[k]
∣∣
fund

≈

≈ I

2
− I

2
sinc

(
(k1∆f ′ − f1)/∆f

)
=

=
I

2

(
1− sinc

(
∆f ′/2∆f

)) (25)

For comparison purposes, it is convenient to introduce the
padding ratio RN as the ratio between the number of samples
used in the fDFT (N ′) and in the cDFT (N ),

RN = N ′/N = (fs/N)/(fs/N
′) = ∆f/∆f ′ (26)

Thus, substituting (26) in (24) and (25), the maximum picket
fence errors of the supply component, in frequency (Hz) and
amplitude (in % of its actual value), are

ε1f,max =
∆f

2RN

ε1A,max,% ≈ 100
(

1− sinc
( 1

2RN

)) (27)

Expression (27) shows that the maximum errors in fre-
quency and amplitude are inversely proportional to the padding
ratio RN . The cDFT (RN = 1) has a maximum amplitude
error (see Fig. 8) of 36.34%, while the fDFT, with the padding
ratio RN = N ′/N = 10 used in this work, has a maximum
error of only 0.41%, a 100-fold error reduction. From Fig. 8
it is justified that the use of padding ratios greater than 10
does not introduce appreciable improvements in the reduction
of the amplitude error.
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Fig. 8. Maximum value of the amplitude error, which occurs when the actual
supply frequency lies in the middle of two DFT bins, as a function of the
padding ratio RN . It can be reduced from 36.34% in the cDFT to 0.41% in
the fDFT, with the padding ratio RN = 10 used in this work.

A. Reduced Leakage Spectrum Extracted from the fDFT

To present the process of generating the reduced leakage
spectrum of the current signal proposed in this work, a
particular case has been represented in Fig. 9, in which the
actual supply frequency, f1 = 50.033 Hz, does not match
exactly its rated value f1r = 50 Hz (f1 6= f1r). The solid
black line in Fig. 9, top, represents the function îme(f)

∣∣
fund

.
Superimposed on this graph, the function îse[k]

∣∣
fund

is plotted
(small black circles), showing the leakage of the supply com-
ponent. The highlighted circles mark the bins of the cDFT of
the sampled current (̂is[k]). The largest one coincides with the
rated frequency, f1r, which does not exactly match its actual
value f1, in this example.

As discussed in Section III, the function îme(f)
∣∣
fund

is null
at frequencies f0z whose distance to f1 is an integer multiple
of ∆f ; these frequencies are given by the condition

îme(f)
∣∣
fund

= 0→ f0z − f1

∆f
= kz →

→ f0z = f1 + kz ·∆f kz ∈ Z
(28)

Therefore, in the spectrum of îme(f), the bins at frequencies
f0z = f1 + kz · ∆f are free of leakage. Unfortunately, it is
highly unlikely that the spectrum îse[k] of an actual sampled
signal contains the set of bins placed exactly at frequencies
f0z , due to the shape of the leakage function (Fig. 6). In this
case, all the bins will be affected by the leakage of the supply
component, specially in its proximity.

However, it is always possible to select a set of N bins
separated each other ∆f Hz, with the minimum achievable
leakage for a given signal and padding ratio RN . This set,
that will be designated as ’reduced leakage DFT’ (RLDFT),
consists of the fDFT bins that are closest to the frequencies f0z

(highlighted red circles in Fig. 9, bottom). The bin correspond-
ing to the supply component (at a frequency k1 ·∆f ′ in Fig. 9,
bottom) belongs to this set, and can be easily identified as the
dominant peak in the fDFT spectrum. The remaining bins of
the RLDFT are simply those separated from it a frequency
equal to integer multiples of ∆f (28), as

k0z ·∆f ′ = k1 ·∆f ′ + kz ·∆f → k0z = k1 + kz ·RN
0 < k0z ≤ N, kz ∈ Z

(29)
The coefficients k0z can be calculated more easily as

k0z = m+ z z = 0, . . . , N − 1 (30)

where
m = k1 −RN · floor(k1/RN ) (31)

As shown in Fig. 9, m represents the offset of the
RLDFT bins with respect to those of the conventional cDFT.
In this case, an offset of just m = 3 bins leads to a 60 dB
reduction of the leakage error.

B. Practical Application Scheme of the Proposed Approach

The steps for the practical application of the proposed
method for reducing the supply component leakage are:

1) Sampling the stator current, im(t), during an acquisition
time Tacq , at a rate fs. This produces a sequence of
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îme(f )
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Fig. 9. Leakage amplitude in the generic case in which the actual supply frequency (f1=50.033 Hz) does not exactly match its rated value (f1r=50 Hz).
The highlighted circles in the top figure correspond to the conventional cDFT, with a separation between frequency bins ∆f = 0.1 Hz. The highlighted red
circles in the bottom plot indicate the bins of the fDFT in which the leakage is minimal, that is, the RLDFT bins. They have the same frequency separation
as the cDFT, ∆f , but with a much lower leakage. In the case represented in this figure, RN = 10 and m = 3, reaching the RLDFT a reduction of the
supply spectral leakage of more than 60 dB regarding the conventional cDFT. Besides, the actual supply frequency is better approximated by the fDFT, with
a value of f1 app = 50.03 Hz, than by the cDFT, whose maximum peak is found at 50 Hz.

N = Tacq ·fs samples, is[n] (n = 0, . . . , N −1), with a
separation between frequency bins of ∆f = 1/Tacq =
fs/N Hz.

2) Obtaining the time-expanded sampled signal by zero
padding the sampled signal as

ise[n] =

{
is[n] n = 0, . . . , N − 1

0 n = N, . . . , N ′ − 1
(32)

From a practical point of view, it is convenient to choose
a padding ratio RN first and then calculate N ′ = N ·
RN . Increasing RN allows to reduce leakage more, but
increases the computational cost. In this work a ratio
RN = 10 is chosen (N ′ = 5 · 106 samples).

3) Calculating the fDFT of is[n], as the DFT of ise[n]
(fDFT(is[n]) = îse[k]). Once N ′ is set, the separation
between frequency bins is ∆f ′ = fs/N

′ = ∆f/RN Hz.
4) Obtaining the best approximation to the frequency of the

main supply component, f1 app, as the frequency of the
bin with the maximum amplitude in the fDFT spectrum,
at index

k1 = f1 app/∆f
′ (33)

5) Calculating the parameter m, using (33) in (31).
6) Obtaining the RLDFT corresponding to the sampled

signal is[n]. It is built by selecting N elements of îse[k],

separated each other by RN elements, and starting from
the element with index m

RLDFT(is[n]) = îse[m+ k ·RN ] k = 0, . . . , N − 1
(34)

The RLDFT (34) is as coarse as the cDFT (20), having the
same separation between their frequency bins. Nevertheless,
the new set of the RLDFT bins, at frequencies

fk0z =
(
m+ k ·RN

)
·∆f ′ k = 0, . . . , N − 1 (35)

have been shifted the exact amount m ·∆f ′ needed to achieve
the minimum leakage for a given sampled current signal is[n]
and for a given padding ratio RN .

V. EXPERIMENTAL VALIDATION

The proposed method has been applied to the diagnosis
of a broken bar fault in a large 3.15 MW motor (Appendix
A), and confirmed by a visual inspection of the rotor. The
motor current has been sampled at a rate fs = 5 kHz during
an acquisition time Tacq = 100 s, with a distance between
frequency bins of ∆f = 0.01 Hz. The measured motor slip is
s = 0.0018, and the power spectrum of the current signal,
Fig. 10, obtained with the conventional cDFT, shows the
supply component at 49.98 Hz. Substituting these values in
(1), the expected frequencies of the fault harmonics are 49.80
Hz and 50.16 Hz, for k = ±1, and 49.62 Hz and 50.24 Hz, for



k = ±2. Nevertheless, due to the leakage of the fundamental,
there are no visible peaks in the spectrum at these frequencies,
in spite of such a long acquisition time (misdiagnosis).
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Fig. 10. Power spectrum of the stator current of the faulty machine, with
a broken bar fault. Due to the leakage of the supply component, the fault
harmonics, expected at 49.62 Hz, 49.80 Hz, 50.16 Hz and 50.24 Hz, are not
visible.

In Fig. 11 the reasons of this misdiagnosis are revealed using
the fDFT, obtained with a padding ratio RN = 10:
• The cDFT bins have been calculated at frequencies with

a significant leakage of the fundamental.
• The frequency (49.98 Hz) and the amplitude of the

highest peak in the cDFT spectrum are far from the actual
values of the supply component.
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Fig. 11. CFT of the current of the faulty machine (thin, black line), and
conventional cDFT of the current (red circles). As the cDFT, in this case,
samples the CFT at points where the sidelobes are not minimum, the leakage
completely hides the fault harmonics.

In Fig. 12, the proposed method to solve these problems is
depicted. The frequency of the supply component, measured
in the fDFT (thin, black line), is f1 app = 49.982 Hz, with a
maximum error less than 0.41%, regarding its exact, unknown
value (see Section IV). Following the steps 4-6 of Section
IV-B, the RLDFT is built (red circles in Fig. 12), by selecting
the bins of the fDFT whose distance from f1 app is an integer
multiple of the lobe width ∆f = 0.01 Hz.

Fig. 13 shows the final result. In the RLDFT (red line), un-
like in the conventional cDFT (blue line), the fault harmonics
are clearly visible, their frequencies agree with the theoretical
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Fig. 12. CFT of the stator current of the faulty machine (thin, black line),
and RLDFT of the current signal (red circles). The RLDFT samples the CFT
of ime(t) at points where the leakage of the supply component is minimum.

ones (1) up to the mHz, and their amplitudes (for k = ±1)
are greater than -45dB (-37.73 dB), which is an indication of
a broken bar fault [4], thus avoiding the misdiagnosis.
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Fig. 13. Comparison between the conventional cDFT of the current of the
faulty machine (thin, blue line), presented in Fig. 10, and the RLDFT obtained
with the proposed method (thick, red line). The RLDFT practically avoids
the leakage of the supply component, clearly shows the broken bar fault
harmonics, and gives the supply frequency with milihertz precision.

It is worth mentioning that the current signal analyzed in
this section has been obtained from a machine operating under
real conditions, in an industrial process. As can be seen in
the spectra presented in Fig. 10, Fig. 12 and Fig. 13 this
signal contains multiple components apart from those related
to the fault, caused by noise and the non-ideal character of



the machine. In this section the proper functioning of the
proposed method has been verified despite the existence of
these harmonic components, whose existence is unavoidable
in actual machines operating in industrial environments.

A. Comparison with the Classical FFT Approach

In this section the RLDFT is compared with the classical
FFT with weighting windows approach. First of all, the precise
frequency of the supply component must be obtained via FFT
interpolation, using the bin with the highest amplitude in the
spectrogram and its adjacent bins (see Fig. 14, top).
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Fig. 14. Bins used for interpolating the actual value of the frequency supply,
using the classical FFT (top), and its actual value read directly on the proposed
fDFT (bottom), with a padding ratio RN = 10. The filled red circles in both
plots are the bins calculated with the classical FFT, and the hollow blue circles
in the lower plot are the bins calculated with the zero-padded fDFT.

The interpolated value of the supply frequency is [15]

f1 = 49.98 +
2.01

5.11 + 2.01

1

100
= 49.9828 Hz (36)

This value is more accurate than the frequency obtained with
the classical FFT (49.98 Hz). It coincides with the frequency
of the bin with the highest amplitude in the fDFT spectrum,
Fig. 14, bottom (f1 app = 49.982 Hz). The same conclusion
can be applied to the amplitude of the supply component.

The spectrum of the experimental current has been obtained
using the classical FFT with two different weighting windows,
the Hanning and the Chebyshev ones (see Fig. 15), and it has
been compared with the RLDFT shown in Fig. 13. In both
spectra, shown in Fig. 16 and Fig. 17, it can be observed
that the RLDFT has a greater frequency resolvability, due to
the lower width of the main lobe of the rectangular window,
compared with the Hanning and Chebyshev windows (half and
a quarter, respectively, as seen in Fig. 15). This is specially
relevant around the principal fault harmonics, shown in a
zoomed view in both figures. Moreover, the RLDFT achieves
a greater leakage reduction than the classical FFT, and a higher
precision in the frequencies of the main supply component and
of the fault harmonics components.

About the required computing time, it takes 0.147 seconds
to obtain the RDLFT, while it takes 0.013 seconds to obtain
the classical FFT of the current with a weighting window,
with the computer platform described in Appendix B. This
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Fig. 15. Hanning and Chebyshev windows, in the time domain (left) and in
the frequency domain (right), used for comparing the results of the RLDFT
with the classical FFT approach.

49.5 49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4 50.5

Frequency (Hz)

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

(d
B

)

RLDFT

FFT Hanning

49.75 49.8 49.85
-60

-55

-50

-45

-40

-35

50.1 50.15 50.2
-60

-55

-50

-45

-40

-35

Fig. 16. Spectrogram of the current obtained with the RLDFT (red) and
with a classical FFT with a Hanning weighting windows (blue). The RLDFT
generates a sharper spectrogram, with well-defined peaks, especially around
the fault harmonics (at 49.802 Hz and 50.162 Hz, zoomed top view), and
with a lower spectral leakage.

increment in the computing time is due to the zero-padding of
the current signal, which increases its length by a factor equal
to the zero-padding ratio RN .

VI. CONCLUSIONS

The leakage problem is one of the main obstacles for a
reliable diagnosis of broken bar faults in large cage induction
machines, working at very low slip. In this case, the fault
harmonics are much smaller than the supply component and
very close to it, so they are usually hidden under the spectral
leakage in the conventional current spectrum. In this work,
a new method for significantly reducing the spectral leakage
of the supply component is proposed, thus improving the
diagnostic reliability and avoiding misdiagnoses. It consists
in obtaining a fine approximation to the CFT of the stator
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Fig. 17. Spectrogram of the current obtained with the RLDFT (red) and with
a classical FFT with a Chebyshev weighting windows (blue). The RLDFT
generates a sharper spectrogram, with well-defined peaks, especially around
the fault harmonics (at 49.802 Hz and 50.162 Hz, zoomed top view), and
with a lower spectral leakage.

current signal, the fDFT, by zero-padding the original sampled
signal. In this fine spectrum, the position and amplitude of
the supply component can be measured with a high precision.
In a second step, using the fDFT bins where the leakage
of the supply component is minimum, a reduced leakage
conventional spectrum (RLDFT) is built, where the fault
harmonics are clearly visible, even at extremely low slips. The
method has been validated with the diagnosis of broken bars
in a large cage induction motor.

APPENDIX A
RATED CHARACTERISTICS OF THE INDUCTION MACHINE

P = 3.15 MW, f = 50 Hz, U = 6 kV, I = 373 A,
n = 2982 rpm, cosϕ = 0.92 and number of bars = 56.

APPENDIX B
COMPUTER FEATURES

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM mem-
ory: 16 GB, Matlab Version: 9.6.0.1072779 (R2019a).
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