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ABSTRACT Several approaches have been presented to identify Wiener-Hammerstein models, most of
them starting from a linear dynamic model whose poles and zeros are distributed around the static non-
linearity. To achieve good precision in the estimation, the Best Linear Approximation (BLA) has usually been
used to represent the linear dynamics, while static non-linearity has been arbitrarily parameterised without
considering model complexity. In this paper, identification of Wiener, Hammerstein or Wiener-Hammerstein
models is stated as a multiobjective optimisation problem (MOP), with a trade-off between accuracy and
model complexity. Precision is quantified with the Mean-Absolute-Error (MAE) between the real and
estimated output, while complexity is based on the number of poles, zeros and points of the static non-
linearity. To solve the MOP, WH-MOEA, a new multiobjective evolutionary algorithm (MOEA) is proposed.
From a linear structure, WH-MOEA will generate a set of optimal models considering a static non-linearity
with a variable number of points. Using WH-MOEA, a procedure is also proposed to analyse various linear
structures with different numbers of poles and zeros (known as design concepts). A comparison of the Pareto
fronts of each design concept allows a more in-depth analysis to select the most appropriate model according
to the user’s needs. Finally, a complex numerical example and a real thermal process based on a Peltier
cell are identified, showing the procedure’s goodness. The results show that it can be useful to consider
the simultaneously precision and complexity of a block-oriented model (Wiener, Hammerstein or Wiener-
Hammerstein) in a non-linear process identification.

INDEX TERMS Wiener-Hammerstein identification, multiobjective optimisation, evolutionary algorithm,
Pareto front.

I. INTRODUCTION

Mathematical models are used in several engineering fields
to describe the behaviour of dynamic systems. These models
are based on a set of ordinary or partial differential equa-
tions [1], [2] associated with physical phenomena that occur
in the system. However, it is not always possible in many
practical applications to know the precise relationships that
characterize a system. It is thus preferable to use simplified
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models obtained experimentally from a set of input-output
measurements. This way of building models is referred to in
the literature as systems identification [3]-[5].

When the system to be modelled has non-linearities,
the identification problem is not easy and selecting the
model structure is the most challenging decision. When
non-linearity is static, a good way to model nonlin-
ear systems is through block-oriented models consisting
of the interaction of linear time-invariant (LTI) dynamic
subsystems and static nonlinear elements (NL) [6], [7].
The most common block-oriented models are the Wiener,
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Hammerstein and Wiener-Hammerstein models. A Wiener
model is formed by an LTI block followed by an NL block [8],
while the permutation of these blocks results in a Hammer-
stein model [9], [10]. These two models are specific cases of
the Wiener-Hammerstein structure in which the NL block is
in the middle of two LTI blocks [11].

Several methods of identifying this type of models can
now be found in the literature. For Wiener-Hammerstein
models, the identification procedure generally begins with
the estimation of the linear dynamics, and the main chal-
lenge is to split the LTI blocks in two. A non-exhaustive
list of options includes, the ‘“brute-force” method and the
advanced method [12]; the scanning technique based on
the estimation of the quadratic/cubic best linear approxi-
mation (QBLA/CBLA) [13]; the non-parametric approach
based on the estimation of the QBLA [14]; fractional
approach [15]; WH-EA: An Evolutionary Algorithm for
Wiener-Hammerstein System Identification [16]; multi-
stage identification [17], [18]; classification of poles
and zeros using QBLA and manual tuning [19]; among
others [20]-[23].

Most methods focus on obtaining nonlinear models with
high precision using the BLA [7], [24], [25] as a starting point
for nonlinear identification. However, it should be noted that
the system under test must be excited with asymptotically
normally distributed signals (Riemann equivalence class) to
obtain the BLA [4], [27]. From a practical point of view,
not all processes are enabled to handle this class of signals.
An alternative approach based on a standard linear model and
multi-step signals is proposed in [28].

The nature of block-oriented models forces the user to
initially define the complexity of the dynamic part generally
represented by some poles and zeros and also the complexity
of the static nonlinear part. This is not an easy task, especially
in the case of Wiener-Hammerstein models, where two LTI
subsystems must be estimated. Some criteria are currently
available such as Minimum Description Length (MDL) [30],
Akaike information criterion (AIC) [29], Modified AIC
and MDL criteria [31], and Final Prediction Error (FPE)
[32], [33]. These help to define the complexity of the over-
all system dynamics. However, two or more different linear
structures can give the same value to a specific criterion,
or several criteria can offer opposite values for the same
linear structure. To date, there is no recipe to precisely define
the number of parameters to represent the static nonlinear
part. This leads to several identification tests with different
numbers of parameters until the desired accuracy is achieved.
This task can be tedious and even worse if the linear structure
is not well defined, since no matter how many parameters are
added to the static non-linearity, the unmodelled dynamics
will not be able to achieve good accuracy.

Of all these complications, the model’s applicability is an
important issue when estimating Wiener-Hammerstein mod-
els. Although accuracy can be important when selecting a
model, its complexity may also be a factor. For example,
in control applications, such as Model Predictive Control
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(MPC) [50], it is well known that controller performance will
depend largely on the model quality. However, the higher the
model complexity, the higher the computational cost required
to calculate the control action. In terms of the control algo-
rithm, there is a significant gap between the MPC based on
Wiener models [51], [52] or Hammerstein models [53] and
the MPC based on Wiener-Hammerstein models [54]. In this
work we thus consider a trade-off analysis between accuracy
and complexity in estimating the Wiener-Hammerstein model
and the identification problem is stated as an MOP.

Unlike linear models, defining a suitable structure (com-
plexity) in nonlinear models is not a simple task. For this
reason, the use of multiobjective optimisation (MO) in non-
linear identification is not new. Thanks to MO, it is possible
to generate a Pareto set to compare and analyse the com-
plexity and accuracy of different models in order to represent
the same process and avoid over-fitting problems. Applica-
tions of MO in nonlinear modelling includes the identifica-
tion of: the Volterra series [43], radial-basis function (RBF)
networks [44]-[46], Nonlinear Auto-Regressive eXoge-
nous (NARX) models [47], [48], Nonlinear Auto-Regressive
Moving Average models with eXogenous inputs (NAR-
MAX) [49], and Wiener-Hammerstein models [26]. This
last approach is based on genetic recombination and particle
swarm optimisation. During the search process, the algorithm
requires minimal user interaction, but even though a large
number of poles and zeros are allowed for both LTI subsys-
tems, good accuracy cannot be achieved since the optimisa-
tion problem does not use a linear approximation as a starting
point. Furthermore, a polynomial is used for the static non-
linearity, which is not recommended, since the sensitivity of
the coefficients increases with the degree of the polynomial.

In this paper, a new Multiobjective Evolutionary
Algorithm for Wiener-Hammerstein identification (WH-
MOEA) is proposed based on ev-MOGA (epsilon-variable
Multi-Objective Genetic Algorithm) [34] but using some new
genetic operators and others inherited from WH-EA [16].
WH-MOEA genetic operators perform a smart distribution
and fine-tune the linear dynamics while capturing the non-
linearity. To tackle model complexity, two new genetic opera-
tors are incorporated into WH-MOEA to increase or decrease
the number of points assigned to the static non-linearity.

The entire procedure includes the handling of several
design concepts (i.e. alternative initial model structures with
different number of poles and zeros) in separate optimisation
trials. Nonlinear model complexity is thus handled naturally
by the non-linearity with a variable number of points and
by the different structures tested in several WH-MOEA runs.
Due to the ad-hoc genetic operators of WH-MOEA, different
initial linear structures can lead to nonlinear models that
do not necessarily have a Wiener-Hammerstein structure,
so that Wiener models and Hammerstein models can also
be obtained. This may be attractive for the user since a
Wiener-Hammerstein model obtained in an optimisation run
can be compared to other Wiener or Hammerstein models
from other optimisation tests. This procedure can give the
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TABLE 1. Features of the most relevant Wiener-Hammerstein model identification methods presented in the last decade.

Identification method Excitation signal Initial linear  Two-step UIL Additional requirements Consider the
model procedure model’s complexity

Brute-force [12] Gaussian BLA Yes Very high No

Advanced method [12] Gaussian BLA No High Inverse of the BLA No

Scanning technique [13] Gaussian BLA Yes High QBL/CBLA No

Biosocial culture [26] Non-restricted Not required No Low Yes

Fractional approach [15] Gaussian BLA Yes Medium No

Modified fractional approach [21] Gaussian BLA Yes Medium No

Nonparametric QBLA [14] Gaussian BLA Yes High QBLA No

Multistage identification [17], [18] Random sequence No required No High No

Classification of poles and zeros [19] Gaussian BLA Yes Very high QBL/CBLA and manual tuning No

WH-MOEA Multi-step Standard model No Medium Yes

user a broader spectrum to decide on the best model. Accord-
ing to the available literature and estimation tools, this is
currently only possible using a different method for each type
of structure.

Compared with [26], this approach has two significant
advantages. It uses a linear approximation as a starting
point for nonlinear estimation. Although an additional step
is required, knowledge of linear dynamics leads to better
results. Also, different Pareto fronts (one for each initial linear
structure selected) can be compared in the multiobjective
space for an exhaustive trade-off analysis.

By way of summary, the novelty of this paper lies in two
main aspects:

1) The development of a new multiobjective algorithm
with specific genetic operators for the identification of
Wiener-Hammerstein models and their specific cases,
i.e., Wiener models and Hammerstein models.
Creation of a methodology that can compare differ-
ent design concepts (alternatives to the dynamic part
of the model) from an MO point of view (preci-
sion vs complexity) allowing the designer to analyse
different model candidates in a more informed way
and to choose the most suitable according to his/her
preferences.

2)

Thanks to this, the user will value the effect of adding
or removing poles or zeros from a model. For example,
a Wiener-Hammerstein model can be compared to models
of similar structure but with a greater or lesser number of
poles or zeros, or in case of subtracting complexity in the
dynamic part, the model is no longer Wiener-Hammerstein
and goes to a Wiener or a Hammerstein model. Comparing
different structures can be interesting because differences
in precision will justify whether or not to select the most
complex structure. Also thanks to WH-MOEA, it will also be
possible to compare several models with different complexity
in the static nonlinear part.

WH-MOEA has certain advantages over other
Wiener-Hammerstein identification methods. Table 1 sum-
marises the most important features of several of the methods
proposed in the last decade. As can be seen, most methods
use BLA as a starting point for nonlinear estimation and
are conditioned to use Gaussian excitation signals, and most
methods have a high User Interaction Level (UIL). In these
cases, user intervention is required to carry out intermediate
procedures, analyse results and make decisions. This aspect is
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even more critical in methods with a non-parametric approach
or where the QBLA/CBLA is required.

In line with previous work [28], WH-MOEA uses
multi-step signals, which, unlike Gaussian signals, are easy
to design, and almost all processes are enabled to be excited
by these signals. Even though estimation starts from a com-
pletely unknown static non-linearity, multi-step signals will
help to highlight the effects of the non-linearity on the sig-
nals used for the identification process. On the other hand,
WH-MOEA uses a standard linear model as a starting point
for non-linear estimation. This model can easily be obtained
from the step response, which is more practical, especially in
industrial processes. Rigorous BLA estimation may require
the use of more than one Gaussian excitation and each sig-
nal must be carefully designed with appropriate frequency
content.

Regarding the UIL, WH-MOEA does not require inter-
mediate procedures since the genetic operators are enabled
to distribute the dynamics of the initial linear model when
fine-tuning the location of the poles and zeros and captur-
ing nonlinearity. Finally, assuming that the process under
test is affected by a static non-linearity, the user does not
need to enter the structure to be identified in the algorithm.
WH-MOEA will find a set of models, which may have a
Wiener, Hammerstein, or Wiener-Hammerstein structure.

The rest of this paper is organised as follows. In Section 2
the Wiener-Hammerstein formulation is presented together
with the necessary assumptions, after which the multiobjec-
tive optimisation problem is stated. In Section 3 the evolu-
tionary algorithm (WH-MOEA) is described in detail. Next,
a guide is given for the application of this approach together
with a summary of WH-MOEA parameters in Section 4.
In Section 5 the application of this approach and results
are presented, while the concluding remarks are reported in
Section 6.

Il. WIENER-HAMMERSTEIN FORMULATION AND
PROBLEM STATEMENT

A. WIENER-HAMMERSTEIN SYSTEM

A Wiener-Hammerstein model is formed by a static
nonlinear block (f(v(?), pn1)) sandwiched between two
LTI blocks Gy (s, py) and Gp(s, pp). The structure of a
Wiener-Hammerstein model is shown in Figure 1, where
u(t) and y(¢) are the model input and output, respectively,
while v() and w(t) are internal variables that cannot usually
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u(t) u(t) w(t) (t)
————{Gu(s, Pw) F(o(), pri) G (s, pn) ———

FIGURE 1. Wiener-Hammerstein model structure.

be measured. In general terms, a Wiener-Hammerstein model
can be mathematically described by:

y(t, p) = Gi(s, pn)f (Gu(s, pyw)ult), Put) ey
p = [pWﬂ pnlv ph] (2)

where vectors p, and pj contain the parameters of G,
and Gy, respectively, while vector p,; contains the static
non-linearity parameters. Let the LTI subsystems be rep-
resented as rational transfer functions in a continuous-time
domain in factorised form (zero-pole-gain):

[T (s + 2u)/ Gw,)
Gw = ,; 3
O = 1T 5+ pu) /@) )
102, (s + zn)/(zny)
G = 4
) [15, (s + pr)/(Pny) @)

while static non-linearity is represented by a piece-wise
linear function:

w(t) = f(v(), pni)- &)

In (3), —pw, withi = 1...n, and —z,, withi = 1...n,
represent the poles and zeros of the front subsystem G,,,, while
in (4), —pp, with i = 1...n, and —z;, withi = 1...n4
represent those of the Gj, block. In both LTI subsystems s
is the complex Laplace variable. Notice that static gains of
both LTI subsystems have been normalized to 1 since the
nonlinear block will absorb the real gains. On the other hand,
in (5) py,y contains the abscissas and ordinates that define the
breakpoint locations of the piece-wise linear function. Under
this configuration, vectors p,,, pp, and p,; would be defined
as follows:

Pw = [Zwl s Zwy o+« Zwyps Pwis Pwy - - -pw,,a] (6)
Pr = [2hys Zhy -+ Zhyg> Phys Phy - Phyel @)
Pnt = [Vi, V2, ...V, Wi, Wo, .. Wyl (8)

where the pair (v;, w;) defines the location of a breakpoint and
n is the number of breakpoints assigned to represent the static
non-linearity.

The identification problem is presented as a search prob-
lem in which the elements of vectors py, pp, and p,; must
be found from input and output measurements. It should be
taken into account that parameters ng, np, n., ng and n define
the model complexity but are unknown beforehand. They will
be known after the optimisation algorithm has distributed
the dynamics of the initial linear model, whose number of
poles (npoles = ng + n¢) and zeros (Mgeros = np + ng) is
known in advance. Since parameter n is variable, the user
must indicate the minimum and maximum number of points
allowed (11,5, < n < nyqy) for the nonlinear block.
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Zeros G orG_~ PolesG orG
w h w h

Static nonlinearity

Abscissa Ordinate

FIGURE 2. Structure of an individual with its coded genetic information.

Thanks to the unified approach proposed in [28], the for-
mulation presented here is also applicable to Wiener
and Hammerstein models, which are specific cases of
Wiener-Hammerstein structure when one of the two LTI
blocks lacks dynamics. In the case of Hammerstein models
G,, = 1 and p,, do not exist, while neither do G, = 1 and
pr in Wiener models. In any case, the user will not need to
specify the model structure to be identified, but rather the
algorithm will decide the best structure (Wiener, Hammer-
stein or Wiener-Hammerstein) from the measured data set.

B. GENETIC CODING AND SEARCH SPACE FOR
NONLINEAR OPTIMISATION

This approach uses a multiobjective optimisation algorithm
to solve the identification problem detailed in the previous
section. This algorithm is based on a population of individuals
in which each individual represents a solution of the problem.
All the individuals contain coded genetic information on the
structure and parameters of a model. This genetic information
is composed of three segments (Figure 2). The first one, P,
contains information on the pole and zero locations. A second
segment C contains binary information classifying poles and
zeros, i.e. which ones belong to G,, and which to Gj,. Segment
B contains breakpoint coordinates representing the static
non-linearity and varies in size between individuals. It can
also change from generation to generation. This variation will
be exploited to generate a set of optimal solutions (models of

different complexity).
In P, the field zrq, ..., zr,, contains the real zeros, while
fields zcy, ..., zcue and ziq, ..., ziye contain the real and

imaginary parts of the complex zeros, respectively. In the
same way, pri, . .., prmy contains the real poles of the model,
while fields pcy, ..., pcme and piy, . . ., pine contain the real
and imaginary parts of the complex poles, respectively. The
vector C contains a binary code that indicates how the poles
and zeros of the initial linear model are distributed between
the two LTI subsystems. Field xz1, . . . , XZnc4nr indicates how
the zeros should be distributed, while field xp1, . . ., XPmctmr
indicates the poles’ distribution. Values of mr, nr, mc and nc
are obtained directly from the structure of the initial linear
model and indicate the number of real poles and zeros as
well as the number of pairs of complex conjugate poles
and zeros respectively. The vector B contains information
on the location of the breakpoints used to represent the
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Pole-zero locations
Zeros Poles
p=[-14 -0.8‘ 06 -07] -1.1,-21,-05,-32] 1.3 ]

Real Imag. Real Imag.

Pole-zero classification
c=\ ] | 1,1,0,0,0 ‘

Zeros G, or G, Poles G, orG,

Static nonlinearity

B= -1.2,0.1,2.2, 3.6, 3.7

Abscissa Ordinate

G G,

(s+0.8)
G+ L0)(s+0.7+ 130)(s + 0.7 — 1.37)

(s4+1.440.6)(s + 1.4 = 0.60)
(s+2.1)(s+0.5)(s+3.2)

FIGURE 3. Example of an encoded individual and the resulting nonlinear
model.

static non-linearity. The pairs (v;, w;) with i = 1...n, indi-
cate the coordinates in the two-dimensional v — w plane of
the n breakpoints.

All the parameters of vector p are encoded in vectors P, B
and C. Figure 3 shows an example of how an individual has
been coded to represent a nonlinear model in which the initial
linear model has six poles (four reals and two complexes) and
three zeros (one real and two complexes). According to this
structure, mr = 4, nr = 1, mc = 1 and nc = 1. On the other
hand, it is assumed that static non-linearity is represented
with five points (n = 5). Notice the correspondence between
vectors C and P: if an element of vector C has the value 1,
the corresponding zero (or pole) of P is located in the input
LTI subsystem Gy, (s), while a 0 value in C indicates that it is
located in the output block Gy (ss). In Figure 3, the first element
of C is zero, so the first one of P belongs to G(s). Since the
first element of P contains the real part of a complex zero,
the output LTI subsystem must include this zero —1.4 4 0.6i
and its conjugate —1.4 — 0.6i. Since the second element of
C is 1 then the second one of P is located in the input LTI
subsystem. Under this same logic, the poles are distributed
between both LTI subsystems.

As generations go by, the genetic information of individu-
als is modified by genetic operations to find the best solutions
to the identification problem. A modification in the genetic
information of P implies an exploration of new locations for
the poles and zeros, while a change in the genetic information
of C means that a new distribution of poles and zeros is tested.
On the other hand, a modification in B may imply a variation
in the number of breakpoints or a coordinates change of
the existing ones. In any case, individual modifications must
respect a search space, which must be adequately defined to
facilitate the convergence of the algorithm.

New pole and zero locations are bounded by P™ and P™4*
(components of vector P are element-wise bounded by vector
P™in and pmax) Bounds in P™" and P™®* are defined around
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the location of each pole or each zero of the initial linear
model. They can be set according to the sensitivity of poles
and zeros, i.e. the closer to the imaginary axis, the smaller
the search space, and conversely the farther to the imaginary
axis, the larger the bounds. By way of illustration, assuming
that the poles and zeros in the example of Figure 3 belong to
the initial linear model, vectors P™" and P™ could be set
as follows:

P™n—[—-17,-1.1,0.3, —1.0, —1.4, =2.6, —0.8, —4.2,1.0]

©)
P™*=[-1.1,-0.5,0.9, —0.4, —0.8, —1.6 — 0.2, —2.2,1.6]
(10)

In this case, bounds have been set so that the pole in —3.2
can move %1 around its value, the pole in —2.1 can move
40.5 around its value and all other poles and zeros have
a freedom of movement of £0.3. Since there is no recipe
to define the bounds precisely, others could be set for this
example. However, it should be noted that too large bounds
could cause the algorithm to converge more slowly, while too
small bounds could cause an ineffective exploration.

Regarding parameter bounds of non-linearity, WH-MOEA
takes the approach defined in [28], where a common search
space is defined to face the uncertainty of the location of
the static non-linearity around the dynamics. The bounds
will be vertically defined by the minimum (y;;i,) and max-
imum (¥4 ) values of the output signal, while the horizontal
bounds will be given by the minimum (u,,;,,) and maximum
(Umax) values of the multi-step input signal. To prevent dis-
orderly horizontal movement of breakpoints, movement of
each breakpoint will be constrained by the position of the
neighbouring breakpoints. In addition, to avoid an overlap,
a minimum distance between the breakpoints will be con-
sidered through the user-defined parameter «. The minimum
and maximum bounds that define the vertical and horizontal
search space of each breakpoint are expressed through:

Wmin(i) = Ymin for i=1...n (11)
W™ () = yypae for i=1...n (12)
) Umin ifi=1
me(i) — (13)
vieilt+oa ifi=2...n
vielr—a ifi=1...n—1
Umax ifi=n

where vectors W™ and W™ define the vertical search
space (y-coordinate) of the breakpoints and vectors V" and
V™M define horizontal ones (x-coordinate). The entire search
space of vector B is then defined as:

Bmax — [Vmax Wmax] ( 1 6)
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On the other hand, the binary code contained in vector C
is generated randomly but subject to the following consider-

ations:
o The number of poles assigned to a subsystem must

always be greater than or equal to the number of zeros
assigned to the same subsystem, i.e., the resulting system
cannot be improper. Therefore n, > np and n, > ny.

o The sum of the poles distributed between both subsys-
tems must be equal to the number of poles of the initial
linear model (14 + ne = Npojes)-

o The sum of the zeros distributed between both subsys-
tems must be equal to the number of zeros of the initial
linear model (np, + ng = nzepps).

C. MULTIOBJECTIVE OPTIMISATION PROBLEM
STATEMENT

A MOP with m objectives to minimise can be stated as
follows:

minf (x) (17)

where f(x) = [fi(x), £L(x)... fim(x)] is the vector-valued
objective function and x is the decision variable in the search
space D.

Since a MOP usually involves conflicting objectives,
there is no single solution that minimises all the objectives.
Instead, there will be a set of optimal solutions, known as
non-dominated solutions or Pareto solutions.

Definition 1 (Pareto Optimality [35]): An objective vec-
tor f(x?) is Pareto optimal if there is not another objective
vector f(x!) such that fi(x!) < fi(x?) foralli € [1, 2... m]
andﬁ(xl) <]j~(x2) for at leastone j,j € [1, 2... m].

Definition 2 (Dominance [36]): An objective vector f (x!)
is dominated by another objective vector f(x?) if fi(x?) <
fi(xl) foralli € [1,2... m] andﬁ(xz) < ﬁ(xl) for at least
onej,j € [1, 2... m]. This is denoted as f (x?) < f(x").

The Pareto set (set of optimal solutions) and its correspond-
ing Pareto front are therefore defined as follows:

Definition 3 (Pareto set, X},): The Pareto set is the set of
solutions in D that are not dominated by another solution in
D.

X, ={xeD| A& eD:f(x)<f(x)}

Definition 4 (Pareto Front, f(X)): Given a Pareto set,
X, the Pareto front is defined as

fXp) = {f@)lx € X,}.

Usually, X, contains an infinite number of solutions and,
for this reason, it is not possible to get it completely. There-
fore, a discrete set X; C X, such that f (X;) characterises
S (X)) is obtained. Note that the set X; is not unique.

For the identification problem, the decision variable x
is a vector formed by the concatenation of vectors P, B,
and C. Therefore, the optimisation problem would be stated
as follows:

min{[f;(x) f(01} (18)
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subject to: ™" < p < pmax (19)

B™" <B < B"™* (20)

ng = np (21)

ne > ny (22)

Ng + Ne = Npoles (23)

np + Ng = Ngeros (24)

x=[P, B, C] (25)

where

fix) = > |yN_ yrl (26)

L&) =ng+nc+np+ng+n 27

Notice how fi is related to model accuracy quantified by
the MAE between the estimated model output (y) and the
real output (y,) for a set of N samples, whilst f, represents
complexity model, measured by the number of poles, zeros
and points of the static non-linearity.

It should also be taken into account that the metrics defin-
ing the objectives f; and f> are independent of those that can
be used in the estimation and selection of linear structures,
which, as explained in Subsection IV-B, is a preliminary step
to multiobjective optimisation.

IIl. WIENER HAMMERSTEIN MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM (WH-MOEA)
WH-MOEA is an improvement of WH-EA algorithm [16]
to address the identification of Wiener, Hammerstein and
Wiener-Hammerstein models under a multiobjective opti-
misation approach. WH-MOEA adopts some genetic oper-
ators and coding from the WH-EA algorithm, whilst the
structure and functioning are acquired from ev-MOGA algo-
rithm [34]. Arguably, WH-MOEA is therefore an elitist mul-
tiobjective evolutionary algorithm based on the concept of
e-dominance [37] for identification of block oriented models
(Wiener, Hammerstein, and Wiener-Hammerstein).
Balancing convergence and diversity is guaranteed in
WH-MOEA thanks to features inherited from ev-MOGA.
Basically, ev-MOGA tries to ensure that X ; converges toward
the Pareto set in a smart distributed manner along the Pareto
front with limited memory resources. To do that, 1) the
prevalence of dominant solutions in the population Pop and
the archive A with respect to the dominated solutions is
guaranteed, and 2) the objective space is split into a fixed
number of boxes, and only one solution can be stored in each
box. This avoids the need to use other clustering techniques
to obtain adequate distributions, and so considerably reduces
the computational cost [34], [37].

A. WH-MOEA ALGORITHM DESCRIPTION
The WH-MOEA algorithm is made up of two populations
(Pop and G) and one archive (A):

1) Pop is the main population. It explores the searching
space during the algorithm iterations. Its size is Nindp.
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2) Archive A is used to store the Pareto front approxi-
mation f (X;;). Its size Nindy is variable but bounded
because, as already mentioned, the target space is
divided into a finite number of boxes where, at most,
there can only be one solution.

3) Auxiliary population G is used to store new solutions
created in each iteration of the optimisation process. Its
size is Nindg, which must be an even number.

The pseudocode of the WH-MOEA algorithm is shown in

Algorithm 1, whilst its main steps are detailed as follows:

Algorithm 1 Pseudocode of WH-MOEA

1: Initialise population Pop(0);
: Initialise archive A as empty;
: Evaluate objectives f for all individuals in Pop(0);
: A(0) = store(A(0), Pop(0));
for g = 1 to MaxGen do

G(g) = create(A(g — 1), Pop(g — 1));

Evaluate objectives f for all individuals in G(g);

A(g) = store(A(g — 1), G(g));

Pop(g) = update(Pop(g — 1), G(g));
: end for
: Print solution A(MaxGen)

R A A A

—_ =
—_ O

Step 1. Pop(0) is initialised with Nindp individuals (can-
didate solutions). First individual is coded from the
initial linear model, as indicated in [16] and [28].
Next, this first individual undergoes all mutation
operations Nindp — 1 times to give rise to the rest
of the population.

Step 4. Function store checks individuals in Pop(g) that
might be included in the archive A(g) taking into
account e-dominance concept.

Step 6. Function create creates new individuals of G(g) by
using procedure and genetic operators described in
Subsection III-B.

Step 8. Function store checks individuals in G(g) that
might be included in the archive A(g) taking into
account e-dominance concept. Besides, individuals
from A(g), which are e-dominated by individuals in
G(g), will be eliminated.

Step 10. Function update updates Pop(g) with individuals
from G(g). Every individual G(g) is compared with
an individual that is randomly selected from the
individuals in Pop(g). The individual who is not
dominated will be the one who remains at Pop(g).

B. DESCRIPTION OF CREATE FUNCTION AND

GENETIC OPERATORS

Function create creates G(g) by using Algorithm 2. This pro-
cedure is repeated Nindg/2 times until G(g) is filled. A new
individual is created by altering the genetic information of
an existing individual in the main population Pop(g), which
is selected at random with ;. The genetic alteration is given
by the mutations M.1, M.2, M.3, M.4, M..5, and the crossover
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Algorithm 2 Pseudocode of create Function
1: Random selection of a individual () of Pop(g);

Random selection of a individual (7) of A(g);
Compute y(g);
if rpz < y(g) then

Compute 7(g);

if 7 < Nmin + n(g) then

Mutation M.2
else
Mutation M.3

end if
: else
Mutation M.1;
: end if
if r. < & then

Mutation M.4;
: end if
. if r;; < P,y then

Mutation M.5;
end if
if r., < P., then

Crossover C.3;
: end if

R A A A o

RN = m s
D QY X IINRERNQ

Algorithm 3 Pseudocode of Mutation M.5

1: Compute P

2: if P, < 0.5 and size(B/2) < npqx then

3:  Increase a breakpoint

4: else if P,y > 0.5 and size(B/2) > ny;, then

5:  Compute the slopes of all segments

6:  Find the two consecutive segments with the most sim-
ilar slopes

7. Compute the difference (Dy) between these two
slopes

8 if |Ds| < 1.0 x 1073 then

9: Remove the breakpoint that is common to both seg-
ments
10:  endif
11: end if

C.3. In this last genetic operation the individual selected from
Pop(g) and an individual from the archive A(g) randomly
selected by r» exchange information.

Each genetic operation acts on a certain portion of an
individual’s information. As can be seen in Algorithm 2,
to expand diversity and avoid premature convergence, not all
genetic operations are applied at the same time. A random
process and control parameters y(g), Hmin, 1(g), &, Pcr, and
P,; decide which genetic operators should be applied. The
random number 7,z,;; € (0, 1]is compared with y(g) to decide
if the location of a pole/zero is mutated with M.1 or whether
the location of a breakpoint is mutated with either M.2 or
M.3. This last selection depends on the random number
Fmm € (0, 1] and the control parameter 17(g). On the other
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Algorithm 4 Pseudocode of Crossover C.3
1: Compute Cyq
2: if Cg, =1 then
3:  Individuals 7; and rp cross all genetic information
contained in P
: elseif Cg, = 2 then
5:  Individuals r; and r, cross all genetic information
contained in B
: else if Cy, = 3 then
7. Individuals r; and rp cross all genetic information
contained in C
8: end if

A~

=4

hand, parameter £ defines the probability that an information
alteration will occur in C (binary code for the classification
of the dynamics). This alteration is handled by mutation M.4,
and also its occurrence depends randomly on the value of
re € (0.1]. Similarly, mutation M.5 and crossover C.3 are
randomly selected through random numbers r,; € (0, 1]
and re € (0, 1] respectively. Parameter P,; defines the
probability that mutation M.5 occurs, while parameter P,
defines the probability that crossover C.3 occurs.

Control parameters adjust the probabilities of mutation
and crossover. The parameters y(g) and 7(g) change through
generations, while fixed parameters nyin, &, Pcr, and Py
are considered tuning parameters of the algorithm. However,
through examples where WH-MOEA and its precursors have
been used, it has been possible to establish through trial and
error appropriate values depending on the results obtained.
These values have been used in both identification problems
addressed in this paper.

During the first generations, y(g) is close to one which
gives a high probability of a mutation occurring on the
segment that contains genetic information on the position
of the breakpoints; the probability of a mutation occurring
on the segment containing genetic information on the loca-
tion of the poles and zeros is therefore low. Parameter y(g)
decreases as the generations pass so that in the last gener-
ations the algorithm will modify both portions of genetic
information with equal probability. The way the y(g) param-
eter works is justified by the fact that static non-linearity is
entirely unknown, so the algorithm should focus more on this
portion of genetic information during the first generations.
As non-linearity takes shape, the algorithm will increase the
probability that new positions for the poles and zeros will also
be explored, so that the dynamics will be refined. Similarly,
the control parameter 7(g) allows the probability of selecting
between M.2 and M.3 mutations to be variable. During the
first generations, mutation M.3 is not so necessary since this
genetic operation concentrates breakpoints in the curvatures
to achieve higher accuracy. As long as the non-linearity does
not take shape, the concentration of points in the curves will
have no significant effect. The mutations M.1, M.2, M.3,
and M.4 are inherited from the WH-EA, therefore further
information on how these genetic operations work as well as
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the calculation of the parameters y(g) and 1n(g) can be found
in [16]. In this section, a brief description of these genetic
operations and new genetic operators (mutation M.5 and
crossover C.3) are briefly explained.

o Mutation M.1. A gene (element) of P is randomly
selected to be modified. This modification involves
exploring a new position for the corresponding pole or
zero within the search space. The following mathemati-
cal expression describes this genetic operation:

P = p™ + Ny(0, 0% (g)) (28)

where, N,(0, 02(g)) is a random number with Gaussian
distribution and variable standard deviation o 2(g). p!
contains the current value of the selected gene to be
mutated, while p™" contains the result of the mutation.
In each generation g, the standard deviation is calculated
with the following expressions:

A o2
2 s ini
= S B 29
o°(g) 100 1 5 (29)
+ 8 * O atio
2,2 )2
ratio MaxGen — 1

As generations go by, o%(g) will reduce its value from an

initial value (03”.) to a final value (aezn 4)- In the last gen-

erations, mutations on P will be more subtle to achieve a

fine-tuning of the parameters. The rate of decrease of the

standard deviation (or%m ,) depends on ai%u., crezn 4 and the
predefined number of algorithm generations (MaxGen).

Both 031 ; and O’ezn 4 are user-defined parameters that must
be configured before the execution of the algorithm. Ay
is a measure of the scanning space that can be calculated
with the upper and lower limit of the search space of the
corresponding pole or zero.

o Mutation M.2. A pair of B genes are randomly selected
to be modified. These genes are matched and represent
the coordinates of a breakpoint. The new values of the
selected genes are calculated with the same procedure
used in the mutation M.1. Two random numbers with
Gaussian distribution (N,(0, 02(g) and N,,(0, 02(g)))
are thus required. N, (0, o2(g)) is used to mutate the
gene of the abscissa of the selected breakpoint, while
N, (0, az(g) is used to mutate the gene of the ordinate of
the same breakpoint. As in mutation M.1, o%(g) varies
from 03”. to Ueznd to control the aggressiveness of the
mutations and fine-tune the breakpoints.

o Mutation M.3. This genetic operation is applied to B
and allows the breakpoints to jump to each other so that
they can concentrate on the curvatures. The two genes
that define the position of a breakpoint are randomly
selected. The selected breakpoint must jump to a new
location which will be in a segment defined by two other
breakpoints. This segment is also chosen randomly.
The new abscissa is computed as the midpoint between
the two breakpoints that form the segment over which
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the point will jump, while the new ordinate will be cal-
culated using a quadratic interpolation and information
on the breakpoints near the location where the jump
occurred. Quadratic interpolation will help to make a
smooth transition from a point when it jumps to a spe-
cific segment.

« Mutation M.4. This genetic operation is applied to C and
generates new combinations of poles and zeros to give
rise to the dynamics of the two LTI subsystems. Each
time this mutation is required, a new binary code subject
to (21)-(24) is randomly generated in C.

o Mutation M.5. This genetic operation is applied to B.
Under certain conditions it can increase or reduce the
number of breakpoints used to represent static non-
linearity. The way this genetic operation works is syn-
thesised in Algorithm 3. A possible increase or decrease
is determined by the random number P,; € (O, 1].
An increase of one breakpoint will occur as long as the
individual selected to mutate does not contain in B the
maximum amount of breakpoints allowed (71,4 ). If an
increase is required, a new breakpoint will appear on
a randomly selected segment. As with mutation M.3,
the abscissa of the new breakpoint will be calculated as
the midpoint between the two breakpoints that define the
selected segment, while the ordinate will be calculated
using a quadratic interpolation and the coordinates of
three neighbouring breakpoints. For a decrease to occur,
two conditions must be met in addition to P,y > 0.5. The
first condition is that B must not contain the minimum
number of breakpoints allowed (7, ), while, the second
condition allows a decrease to occur as long as a break-
point is located on a straight line, that is, in a redundant
position. To verify this condition, the slopes of all seg-
ments joining two breakpoints will be calculated. The
slope of each segment will be compared with the slope of
the segment on the right. The two consecutive segments
with the smallest difference in slope will contain the
breakpoint that is likely to be eliminated. These two
slopes will be compared again; if the absolute value of
the difference is close to zero, the breakpoint that is com-
mon to the two segments will be removed. Closeness to
zero is quantified by a fixed value of 1.0 x 1073, This
procedure aims to eliminate unnecessary breakpoints.

o Crossover C.3. This genetic operation allows an indi-
vidual from the main population Pop(g) to exchange
genetic information with an individual from the archive
A(g) (front of Pareto), for which two random integers
are generated. The first integer (1 € [1, size(Pop(g))])
is used to randomly select the individual of Pop(g),
while the second integer (2 € [1, size(A(g))]) is used to
randomly select the individual of A(g). Each individual
of both Pop(g) and A(g) has three portions of genetic
information (P, B, and C), however, the exchange of
information between the two individuals will be of only
one portion, for which another random integer is gen-
erated (Cye € [1,3]). This number will decide which
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portion of the genetic information will be exchanged
(see Algorithm 4).

IV. USING WH-MOEA TO COMPARE DESIGN CONCEPTS:
A PROCEDURE

A. COMPARING DESIGN CONCEPTS BY THE

MOP APPROACH

When dealing with a MOP design problem, it is quite com-
mon to consider different alternatives (design concepts), i.e.
ideas on how to solve the problem. It is possible to define an
independent optimisation problem for each of these design
concepts [38] and when they share the same objectives they
can easily be compared directly in the objective space by
simply comparing their respective Pareto fronts. For example
in [39], this idea is used to compare alternative slide model
control structures, in [40] to compare different loop pairings
and in [41] to analyse the performance of different battery
models.
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FIGURE 4. Comparison of three design concepts in a bi-objective space.

Figure 4 shows an example in which the Pareto fronts of
three design concepts are compared in a two-dimensional
objective space. Notice that as design concept DC2 com-
pletely dominates design concept DC3, concept DC2 will be
preferred over concept DC3. However, DC2 does not com-
pletely dominate concept DC1 or vice versa. If the designer
has a preference for solutions in Zone 1, solutions from
concept DC2 would be selected, as in this zone concept
DC2 dominates concept DC1. Whilst if Zone 2 was preferred,
the designer should choose solutions from concept DC1. This
illustrative example shows how interesting it is to use the
MOP optimisation approach when comparing possible design
concepts. In the end, the designer would choose the final
solution taking into account the dominance between concepts
and his/her specific preferences.

In this paper, an initial linear model is used as a starting
point for nonlinear estimation. Most of the time, the model
is selected from a ranking based on a specific criterion.
However, under the assumption that there are any other useful
criteria giving more candidates, the idea of design concepts
arises so more than one initial linear model should be tested.
Then, each linear structure will give rise to a design concept.
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TABLE 2. WH-MOEA tuning parameters.

Parameter Description
MaxzGen Maximum number of generations.
Nindp Population size.
Nindg Size of the auxiliary population G.
n_boxy Number of divisions for the objective fi.
n_boxo Number of divisions for the objective fs.
Nmazx Maximum number of breakpoints
Nomin Minimum number of breakpoints
« Minimum distance between two breakpoints on the abscissa axis
o2 o2 Initial and final standard deviations for control of the aggressiveness of mutations M.1 and M.2
Nmin Minimum probability for selection of mutation M.2. The maximum probability for this selection is 1.
Probability to modify with mutation M.4 the genetic information related to the classification of poles and zeros.
P, Probability to modify with mutation M.5 the number of breakpoints for static non-linearity
P, Probability of crossover between an individual of Pop and an individual of A

Furthermore, if you sort the list of initial candidates by a cri-
terion, several models with similar values could be obtained
and therefore one might add other criterion to perform the
initial selection. In these case, it is worth to evaluate more
than one linear structure.

B. PROCEDURE DEFINITION

Using WH-MOEA as a tool for nonlinear identification can
not only get a specific model, but also a set of models
with different features for effective decision-making based
on particular needs. The suggested procedure is defined as
follows:

Step 1 (Establish a set of Candidates Using a Standard Lin-
ear Identification Method): Since WH-MOEA can fine-tune
the initial linear model, a classical step test can be used. The
ranking can be made according to the structure of the models
(number of poles and zeros) and one or more performance
criteria. For example, the mean squared error (MSE) could
be used; however, to avoid over-modelling the MDL criteria
or any others, mentioned in Section I, can be useful.

Step 2 (Choose the Design Concepts): From this set of
candidates, you have to select some initial linear structures
to be tested. Each one will correspond to a design concept.
It may be that two or more structures present similar values
to a performance criterion or you may have two or more
conflicting candidates for the best of their respective criteria.
However, other less complex linear structures can also be
selected. A comparison of the Pareto fronts of various design
concepts will help in adequate decision-making.

Step 3 (Prepare a Multi-Step Excitation Signal and Per-
forms an Experiment With the Process Under Identification):
The input signal must ensure that the system output reaches
steady state. For static non-linearity to be appropriately cap-
tured, different step amplitudes must allow a scan of the entire
process operating range. A minimum distance between two
consecutive steps must be considered [28] to highlight static
non-linearity. Finally, excite the process under identification
with this signal and record its output for a given sampling
period.

Step 4 (Set the Bounds): From the minimum and maximum
values of the input (i, and up,qx) and output (Vi and yiax)
signals, define the search space bounds for static non-linearity
using equations (11) to (14).
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Step 5 (Run WH-MOEA for Each Design Concept): Table 2
shows the list of WH-MOEA parameters that must be pre-
viously assigned to carry out each run. The bounds P™"
and P™* must also be previously defined as a function of
the sensitivity of the poles and zeros. At the end of each
WH-MOEA execution a Pareto front is obtained.

Step 6 (Perform a Decision Making Analysis): Each Pareto
front contains a set of models with different performances.
For trade-off analysis, draw all the Pareto fronts on the same
graph. Evaluate selected models on the estimation and vali-
dation data sets for a final decision.

V. APPLICATION OF WH-MOEA PROCEDURE, RESULTS
AND DISCUSSION

To show the effectiveness and usefulness of the methodol-
ogy presented, two application examples are included in this
section. The first consists of a numerical example, a process
with a pure Wiener-Hammerstein structure, while the second
is a real thermal process based on a Peltier cell. WH-MOEA
parameters were set to the same values for both identifi-
cation problems: £ = 0.25; Py = 0.33; P, = 0.33
and 7, = 0.30. The initial and final standard deviations
for mutations were set to 20 and 1, respectively.

u(t) —3.72(s—4.50) v(t) w(t)

g 1.55(s+0.70) | Y(®)
(5+5.28)(s2+3.165+3.17) NL

(s+0.54)(s+2.01)

FIGURE 5. Numerical example: Wiener-Hammerstein structure.

A. APPLICATION 1: NUMERICAL EXAMPLE

Figure 5 shows the Wiener-Hammerstein process used for
this example. Static non-linearity (Syz ) consists of a sigmoid
hyperbolic tangent function “tansig’ (31), which symmetri-
cally saturates large values of the independent variable. Also,
Gaussian noise with a power of —40db was added on the
system output to emulate a real situation.

Sy = SO[1 + tansig(0.07(v(t) — 50))] 31)

Step 1 (Establish a set of Candidates Using a Standard
Linear Identification Method): First, an experiment for initial
linear identification was designed. Since input range was
between O and 100 units a constant signal with amplitude
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50 units was injected into the system until it reached steady-
state. On this operating point, the process was excited with
a small input change of 2.5 units and a duration of 15s
(Figure 6). During the experiment, input and output data were
recorded with a period of 50ms. Offset was removed from the
data to avoid problems with initial conditions.
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FIGURE 6. Input and output data for linear estimations of WH process.
Top: Simulated system output. Bottom: Input signal.

TABLE 3. Set of candidates of initial linear models for WH process. Model
Ga7/6p Was excluded since its MDL value was very high.

Model MSE MDL

Gsp 6.318 x 1073 3.412 x 1073
G1z/3p 2.283 x 1074 1.254 x 1074
Gas/sp 2.186 x 10~4 1.220 x 10~*
Gap 1.732 x 1073 9.539 x 107%
Giz/ap 2.201 x 10~4 1.228 x 10~
Gasap 1.486 x 104 8.506 x 10~°
Gs./ap 9.315 x 10~° 5.479 x 10~°
Gsp 5.504 x 1074 3.092 x 1074
Gi2/5p 2.114 x 10~4 1.201 x 10*
Gaz/5p 8.143 x 10~° 4.781 x 1075
Gs./5p 8.139 x 10~° 4.850 x 10~°
Gep 4.580 x 10~4 2.610 x 10~*
G1z/6p 4.721 x 1074 3.028 x 10~*
G3./6p 8.126 x 10~° 4.928 x 1075

Fifteen initial linear models were estimated from 3" to 6
order considering only strictly proper systems and no more
than three zeros. For each structure, a linear model was esti-
mated using the Matlab System Identification Toolbox [42]
with the t#fest command. The MSE and the modified MDL
were calculated on the estimation data set. The results of these
estimates are shown in Table 3. According to the modified
MDL criteria, the best model is two zeros - five poles (G2;/5p)
which is consistent with the actual dynamics of the WH
process under consideration.

Step 2 (Choose the Design Concepts): According to the
results in Table 3, the linear structure G5, might be con-
sidered for nonlinear estimation; however, as mentioned in
Section IV, others can also be considered. Models with six
poles would not be a good option since there are other
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FIGURE 7. Performance of linear models (design concepts) chosen for
nonlinear estimation of WH process. To distinguish between models,
a magnification is depicted on a portion of data.

less complex models that can achieve similar performance.
As model G3;/5, has a zero in —119, far from the system
dominant dynamics, all the models more complex than G»,/5p
would be discarded.

The effect of non-minimum phase zero in this example is
remarkable. The MSE of model G1;/3, (4 zero-pole) is better
than that of model G4, having the same number of param-
eters. It is even better than more complex models without
zeros, such as models Gs;, and Gég),. For this reason, models
without zeros will not be considered for nonlinear estimation.

According to this analysis, linear structures G1;/3p, G2z/3p,
Glz/4pa GZZ/4p, G3z/4ps Glz/5p, and G22/5p would be gOOd
options for nonlinear estimation. Each of these structures
will give rise to a design concept for nonlinear estimation.
Table 4 shows the poles and zeros of each design concept,
while Figure 7 shows a comparison of their performance. For
convenience sake, from now on each design concept will use a
nomenclature as indicated in the first column of Table 4. This
nomenclature is preceded by the characters “DC” followed
by an indication of the number of poles and zeros of the linear
structure.

Step 3 (Prepare a Multi-Step Excitation Signal and Per-
forms an Experiment With the Process Under Identification):
Two multi-step signals were designed, one for estimation and
one for validation purposes (see Figure 8). The amplitude
of the steps in both signals was handled randomly, lasting
25s each. The minimum step amplitude was set to 15 units.
The estimation signal was designed with 50 steps, while the
validation signal was designed with 30 steps. The proposed
WH process was simulated twice in Matlab using estimation
and validation multi-step inputs. In both experiments, pro-
cess input and output were recorded with a sampling period
of 50ms.

Step 4 (Set the Bounds): From the estimation data set,
the minimum and maximum values of the input and output
signals were obtained (uin, = 0, Umax = 100, yin =
—0.024 and ypae = 99.933). The vertical search space for
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TABLE 4. Selected initial linear models (design concepts) for nonlinear identification of WH process.

Design Concept Model Poles Zeros
DC — 2z5p Gazy/5p [-5.873; —1.812; —0.550; —1.609 £+ 0.893¢] [4.459; —0.719]
DC — 1z5p G1z/5p [-0.729; —2.168 + 8.6997; —1.238 4 1.4701] [4.896]
DC — 3z4p 3z/4p [—-0.974; —0.451; —1.465 4 1.3084] [8.880; 5.081; —0.504]
DC — 2z4p Gaz/ap [—0.794; —0.249; —1.289 £ 1.4004] [3.750; —0.256]
DC — 1z4p Giz/4p [—33.92; —0.732; —1.250 £ 1.4914] [4.089]
DC — 2z3p Gazy/3p [—0.733; —1.254 4+ 1.4921] [27.52; 4.193]
DC — 1z3p 12/3p [—0.726; —1.214 4+ 1.4731] [3.866]
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FIGURE 8. Estimation (top) and validation (bottom) input signals for nonlinear identification of WH process.

all breakpoints was defined with y,,;, and v, using (11)
and (12) respectively:
W™ (i) = —0.024 for i=1...n
W™ () = 99.933 for i=1...n

(32)
(33)

whilst u;, and up,, values were used internally by
the algorithm to define the variable limits V™" and V"%
using (13) and (14) respectively. It should be noted that the
horizontal search space of each breakpoint is variable and
depends on the position of the neighbouring breakpoints.

Step 5 (Run WH-MOEA for Each Design Concept):
According to selected design concepts (Table 4), seven
bi-objective optimisation problems were stated as in Subsec-
tion II-C. WH-MOEA was thus executed seven times, each
one fed with a different initial linear model (design concept).
The configuration parameters in Table 5 were used for all the
executions. Table 6 shows how the first individual in the pop-
ulation (P?) was coded for each design concept and the lower
(P™n) and upper (P™%) exploration bounds to refine the
locations of the poles and zeros (defined individually around
each pole or zero). It should be borne in mind that there is no
recipe to set precisely the bounds but, the higher the interval
the more exploration (slower algorithm convergence). A good
alternative is to set the bounds based on the sensitivity of each
pole or zero. Those closest to the imaginary axis are more
sensitive to changes so their exploration bounds may be small,
while a greater degree of freedom can be given to the poles
and zeros furthest from the imaginary axis.

After the seven WH-MOEA runs, a total of 82 different
models were obtained. Table 7 shows the number of models
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TABLE 5. Summary of WH-MOEA parameter settings for nonlinear
estimation of WH process.

Parameter  Value Parameter  Value
MazxGen 2.0 x 10° n_boxa 16
Nindp 5.0 x 104 Nmaz 26
Nindg 4 Nomin 10
n_box 50 « 0.641

obtained in each design concept. This table also specifies how
each model has been labelled.

Step 6 (Perform a Decision Making Analysis): To make an
effective analysis of the results obtained, the Pareto fronts of
all design concepts must be compared in a two-dimensional
objective space. According to the number of design concepts
stated for this example, seven Pareto fronts were obtained.
Given the high precision achieved by the models of design
concept DC — 2z5p, the corresponding Pareto front will be
analysed separately. Figure 9 shows a graph of this Pareto
front which contains 14 Wiener-Hammerstein models with
the same dynamic structure. The distribution of the poles and
zeros of these 14 models is consistent with the real dynamics
of the proposed example. Undoubtedly, the fact of having
the same structure as the real example has meant that the
precision of all these models cannot be achieved by any model
of the other fronts, even by the models of design concept
DC — 3z4p, which has the same complexity level devoted
to representing the dynamic part. In this case, the nonlinear
estimates have highlighted the different degrees of accuracy
that models of these design concepts can achieve. This differ-
ence is not so apparent on inspecting Table 3, which contains
the results of the linear estimates, i.e. the MAE achieved
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TABLE 6. Coding of the first individual in the population and exploration
bounds to refine the poles and zeros (design concepts for identification
of the numerical example).

DC — 2z5p
nc=0,nr=2, mec=1,mr=3
P™*™ [3.959, —0.819, —1.709, —6.373, —2.112, —0.650, 0.793]

PY  [4.459, —0.719, —1.609, —5.873, —1.812, —0.550, 0.893]
Pm™az 4959, —0.619, —1.509, —5.372, —1.512, —0.450, 0.993)]

DC — 1z5p
nc=0,nr=1,mc=2, mr=1
P™*™ [4.396, —2.468, —1.438, —0.929, 7.699, 1.170]
PIO [4.896, —2.168, —1.238, —0.729, 8.699, 1.470]
pm™ao® 5396, —1.868, —1.038, —0.529, 9.699, 1.770]

DC — 3z4p
nc=0,nr=3, mec=1, mr =2
p™*™ [7.880, 4.581, —0.604, —1.765, —1.174, —0.551, 1.008]
Pl0 [8.880, 5.081, —0.504, —1.465, —0.974, —0.451, 1.308]
P™aT 19880, 5.580, —0.404, —1.165, —0.774, —0.351, 1.608]

DC — 2z4p
nc=0,nr=2, me=1, mr =2
pP™*™ [3.250, —0.356, —1.589, —0.994, —0.349, 1.100]
Pl0 [3.750, —0.256, —1.289, —0.794, —0.249, 1.400]
pP™az 4250, —0.156, —0.989, —0.594, —0.149, 1.700]

DC — 1z4p
nc=0,nr=1,mc=1 mr =2
P™*™ [3.589, —1.550, —40.92, —0.932, 1.192]
PlO [4.089, —1.250, —33.92, —0.732, 1.492]
pP™az (4589, —0.950, —26.92, —0.532, 1.792]

DC — 223p
nc=0,nr=2,mec=1, mr=1
P™*™ [20.52, 3.693, —1.554, —0.933, 1.192]
Pl0 [27.52, 4.193, —1.254, —0.733, 1.492]
pP™a® [34.52, 4.693, —0.954, —0.533, 1.792]

DC —123p
nc=0,nr=1,mec=1, mr=1
P™*™ [3.366, —1.514, —0.926, 1.173]
Py [3.866, —1.214, —0.726, 1.473]
P™a% (4366, —0.914, —0.526, 1.773]

TABLE 7. Number of models obtained for each design concept.

Design Number of

Concgept models Labels

DC—225p 14 []\42,25;;7 ]\4225107 s M2j5p
DC-1z5p 10 [M]125P, M%ZSP,..., M, 3P
DC-3z4p 12 [MJ‘BMP, M%Z4p7..., M7
DC-2z4p 14 [M524P, M%Z“P,..., M7
DC-1z4p 13 [M]IZ“”, M%“p,..., M, 5P
DC-2z3p 10 [M%ZZ’W, M%ﬁp,..., M3
DC-IZSP 10 [Ml z3p7 ]\42z3p7 . M1§3p]

by initial models G5, and G3g4p is 8.143 x 107 and
9.315 x 107> while their MDL is 4.781 x 107> and 5.479 x
1073, respectively. Apparently, it seems that both models
have similar performances. However, with nonlinear estima-
tions, the importance of selecting the appropriate structure
has been highlighted.

Looking at Figure 9, it can be clearly seen that the best
model in terms of accuracy is M 12Z5p . The precision (objective
f1) achieved by this model is 2.065 x 1072, while its complex-
ity level (objective f>) is 33 (2 zeros, 5 poles and 26 points for
the static non-linearity). This model would undoubtedly be
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FIGURE 9. Pareto front corresponding to the design concept DC — 2z5p.

the best option in terms of precision, but it should be borne in
mind that it is also the most complex model.

A great advantage of this approach is that the Pareto fronts
allow the performance of different models to be compared.
In addition, in each Pareto front it is also possible to analyse
the contribution of the number of breakpoints in terms of
precision. Looking at the Pareto front in Fizgure 9 it can be
seen that the accuracy achieved by model M, P i very close

to that achieved by model M12 P Considering the precision

between M 12 2517 and M 12 P g 100%, improvement of M 121517

concerning M32 P i only 3.85%. In this regard, M32 “P would
be preferred since it has five points less.

Figure 10 compares the other Pareto fronts. Analysing
these fronts one can notice that the best models in terms of
precision are on the front of design concept DC — 3z4p,
However, it should be noted that the models of this
design concept have the same complexity in the dynamic
part as the models of the design concept DC — 2z5p,
which achieved better accuracy. It would therefore not
make sense to select models from design concept
DC —3z4p, as there will always be an equally or less complex
model of design concept DC — 2z5p which will always be
more accurate.

Something similar occurs with models belonging to design
concepts DC — 1z5p and DC — 2z4p, all of which have the
same complexity in the dynamic part; however, the differ-
ence in accuracy is evident. This would exclude all models
that have one zero and five poles from the selection since
there will always be a model with the same complexity in
the dynamic part that has better performance in terms of
accuracy.

In the same way, the models of design concepts DC — 1z4p
and DC — 2z3p have equal complexity in the dynamic part,
so it would be interesting to compare them. At first glance,
the most complex model of each design concept (M ]1Z4p and
M 12 ) perform identically. However, as the number of static
nonlinearity points decreases, the models of the DC — 2z3p
Pareto set become more accurate. It is thus not practical to
select models from DC — 1z4p. Even if the precision of
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FIGURE 10. Comparison of Pareto fronts corresponding to design concepts DC — 1z5p, DC — 3z4p, DC — 2z4p, DC — 1z4p
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FIGURE 11. Performance of models my 223p

P, M:”p, and M
models of this front with a complexity level less than 21 were
analysed, their performance would be worse than models of
design concept DC — 1z3p, whose dynamic structure has one
pole less.

According to the analysis presented, there are some design
concepts whose models do not offer good performance. How-
ever, before discarding them, it would be essential to review
their dynamic distribution. For example from the previous
analysis, models from design concept DC —3z4p are not good
candidates since other models have better precision and the
same complexity in the dynamic part. Conversely, if models
with a Wiener or Hammerstein structure had appeared as a
result of WH-MOEA execution, any of them would have been
very attractive especially for control applications.'

IThis is not the case in this application example since the 84 estimated
models have a Wiener-Hammerstein structure
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on the estimation (top) and validation (bottom) data sets.

In this regard, the fronts from which models could be
selected to represent the system would be those of design
concepts DC —2z5p, DC —2z4p, DC —2z3p and DC — 1Z3p.
If high accuracy were required, the M32 “P model would be
a very good option, while in case of requiring models with
less complex dynamics, M§Z4p and M52Z3p would be good
candidates. Analysing the Pareto Front of design concept
DC —2z4p, as the rate of increase in accuracy vs complexity in
the M6224‘I7 toM 12 “ models decreases considerably, it does not
make much sense to extend the points in static non-linearity.
The same conclusion can be reached when analysing the

Pareto front of design conceg)t DC — 2z3p, in which the
3p

lines that join M52 P \with M 12 are almost vertical, showing
that the higher complexity model gives approximately the
same precision. Table 8 shows the complexity and accu-
racy achieved by the three models indicated. The accuracy

reached in the validation data set is also calculated (fiy).
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FIGURE 13. Enlargement of the transient stage of M:ZSP, M:”P, and M;ﬂp models with validation data.

TABLE 8. Details of the precision and complexity of models M;ZSP ,

2z4p

mg, and M:ﬂp (mp; indicates the total number of poles and zeros.).
Model f1 f1v f2 n Mpz
M§Z5” 2.550 x 1072 4510 x 10-2 28 21 7
M%ZA"’ 3.157 x 1071 3.916 x 10°1 25 19 6
MZ7P 3985 x 107!  4.827x10°' 23 18 5

Figure 11 shows their responses compared with the process
under identification. Figure 12 shows the breakpoint loca-
tions representing static non-linearity.

As can be seen in Figure 12, distribution of the points in
the three models is effective and the non-linearity has been
satisfactorily captured. This is reflected in Figure 11, where
there are no visible inaccuracies in steady state behaviour.
Differences can be seen on the transients due to non-modelled
dynamics in models M62 “ and M§ P This is shown in
greater detail in Figure 13, which highlights the differences.
Notice that model M32 @p reproduces the most accurate pro-
cess dynamics.

Although model M62Z4p can be seen to lack a pole, its
performance could be considered acceptable for certain uses.
The effect of the non-modelled dynamics is more apparent in
model M § “p , which tries to reproduce the real dynamics with
the effect of the non-minimum phase.

B. APPLICATION 2: THERMAL PROCESS

The second example consists of a lab-scale thermal process
based on a Peltier cell. The input system is the voltage (u,)
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TABLE 9. Ranking of estimated linear models for the thermal process.
Models G, and G5, have been excluded due to their MDL high values.

Structure MSE (°C) MDL
Gap 3.994 x 107%  13.981
G1:/2p 3.991 x 107%  13.972

3p 3.982 x 1072 13.940
Gi./3p  2.577x107%  9.020
Gi.jap  2575x107%  9.014
G1./5p 2.576 x 1073 9.018

applied to the Peltier cell actuator, which can vary between
0 and 4.5 Vdc. The temperature gradient between the hot
and cold surfaces (A7) was considered as the output of the
system. Further information on the process structure, lab test-
bench, and the linear model estimation procedure can be
found in previous work [28]. This non-linear real identifica-
tion procedure is shown below:

Stepl (Establish a Ranking of Candidates Using a Stan-
dard Linear Identification Method): The results of the linear
estimation are summarised in Table 9. As in the numerical
example, the MSE and the modified MDL criterion were
calculated for each model.

Step 2 (Choose the Design Concepts): According to the
modified MDL criterion and the MSE values, the best linear
model is G4, (four poles and one zero). However, the MDL
of models G1/3, and G1;/5p is very similar. Model Gy/3), has
one pole less than the best model, so it would be interesting
to compare the results obtained with the nonlinear estimation
from these two linear structures. On the other hand, model
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FIGURE 14. Input signals for nonlinear identification of the thermal process. Top: signal for estimation. Bottom: signal

for validation.

TABLE 10. Selected initial linear models (design concepts) for nonlinear
identification of thermal process.

Design Model Poles Zeros
Concept

DC—1z4p  Gy./4p [—4.461; —2.523; —0.340; —0.014] [-0.015]
DC—123p  Gi./3, [—1.493; —0.349; —0.014] [—0.016]
DC—122p  Gy./9, [-0.269; —0.012] [—0.013]

TABLE 11. Summary of WH-MOEA parameter settings for nonlinear
estimation of the thermal process.

Parameter  Value Parameter  Value

MazxGen 1.2 x 108 n_boxa 10
Nindp 4.0 x 104 Nmas 14
Nindg 4 Nomin 4
n_box 50 « 0.05

G1z/5p will be excluded as there are two less complex models
with slightly higher performance.

The remaining models G, G1z/2p, and G3p, have similar
performance and any of these could be a good option for
obtaining less complex nonlinear models. In this case, the lin-
ear structure G2, will be selected. The location of the poles
and zeros of the three selected structures for nonlinear estima-
tion are shown in Table 10. As in the numerical example, each
of these structures gives rise to a different design concept.

Step 3 (Prepare a Multi-Step Excitation Signal and Per-
forms an Experiment With the Process Under Identification):
Two multi-step signals were generated, one for estimation
and another for validation purposes. The estimation signal
was designed with 38 steps and the validation with 24 steps.
The steps in both signals lasted 700s, and the amplitude
changes were handled randomly within the entire range of
variation of signal u, (0 — 4.5V). To highlight the
non-linearity of the process, the minimum step amplitude
was constrained to 1.5V. The thermal process was excited
with both signals separately. After extinguishing the tran-
sient stage of the first step, the input and output data were
recorded with a sampling period of 100ms. The input signals
recorded for both estimation and validation tests are shown
in Figure 14.
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TABLE 12. Coding of the first individual in the population and
exploration bounds to refine the poles and zeros (design concepts for
identification of thermal process).

DC — 1z4p
nc=0,nr=1,mec=0, mr =4
pmmn [—0.055, —4.561, —2.623, —0.440, —0.054]
PY [-0.015, —4.461, —2.523, —0.340, —0.014]

1
pmax [0.025, —4.361, —2.423, —0.240, —0.010]
DC —123p
nc=0,nr=1,mc=0, mr=3
pmen [-0.056, —1.593, —0.449, —0.054]

P [—0.016, —1.493, —0.349, —0.014]

pm™aer  0.024, —1.393, —0.249, —0.010]
DC — 122p
nc=0,nr=1,mec=0, mr =2
pmen [—0.053, —0.369, —0.052]

P? [—0.013, —0.269, —0.012]
pP™a*  [0.027, —0.169, —0.010]

Step 4 (Set the Bounds): The minimum and maximum
values of the input and output signals were obtained from the
estimation data set. These values were: u;,;;, = OV, o =
4.50V, ymin = —53.957°C and ypqe = —0.181°C. As the
previous example, yyin and y,q values were used to create
Win and W | respectively and u,i, and i, to define the
variable limits V""" and V",

Step 5 (Run WH-MOEA for Each Design Concept):
According to the selected design concepts, three bi-objective
optimisation problems were stated, as in Subsection II-C. The
configuration parameters in Table 11 were used for all three
executions of WH-MOEA. For each design concept, the first
individual in the population was coded using the poles and
zeros of each initial linear model. The exploration bounds to
refine poles and zeros were defined according to its location
concerning the imaginary axis. In other words, the poles or
zeros furthest from the imaginary axis had a greater explo-
ration margin since they were less sensitive, while those
closer to the imaginary axis had a smaller exploration margin.
The codification of the first individual and the exploration
bounds to refine the poles and zeros of each design concept
are shown in Table 12.
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TABLE 13. Optimisation results for thermal process.

DC — 1z4p DC —1z3p DC —122p

Model _f1 f2 Model _f1 f2 Model fl fz
M 01650 15 MI?P 01654 16 MI*?P 02086 13
M]IZ4P 0.1714 13 M]IZ3P 0.1674 13 M]MP 0.2162 19
M%“P 0.1753 12 M%ﬁp 0.1812 11 Mji”p 0.2327 8
M%Z‘*P 0.2018 11 M%Z&" 0.1883 10 M,*? 08585 7T
M%Z4p 0.2328 10 M%Zi"" 0.2185 9

Mg™" 05999 9 Mg™" 04371 8

16+ -©-DC-12z4p estimation ||
~- DC-1z4p validation
15+ --DC-123p estimation |
14l ~0- DC-123p validation ||
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FIGURE 15. Comparison of Pareto fronts for nonlinear identification of
thermal process.

After optimisation of the design concept DC — 1z4p,
six Wiener-Hammerstein models were obtained. In all these
models, the two fast dynamic poles were located at the front
of the structure, whilst the two slow poles were located at the
rear. This is consistent with the real process structure: fast
poles are from the actuator dynamics while slow ones are
from the Peltier cell dynamics. Design concept DC — 1z3p
also resulted in six Wiener-Hammerstein models in which the
fast actuator dynamics were separated from the slow process
dynamics. Since this design concept does not consider the
fastest actuator pole, a single-pole was placed at the front
of the Wiener-Hammerstein structure. In the case of design
concept DC — 1z2p, four Hammerstein models were obtained
at the end of the generations. The resulting structure is consis-
tent, since the design concept does not consider the two fast
dynamic poles corresponding to the actuator.

Step 6 (Perform a Decision Making Analysis): Pareto fronts
of the three design concepts are shown in Figure 15 and
the model performance is quantified in Table 13. The best
process representation was obtained by model M 11 “p , which
has a complexity level of 15 (1 zero, 4 poles and 10 points
to represent static non-linearity). Models M21Z4p and M3l “p
have similar performances to M 11 “ but with less complexity.
(M2]Z4p and M31 “p represent static non-linearity with 2 and
3 less points respectively). Considering the improved preci-
sion from M, 61 oM 11 P as 100%, the improvement between
M21 “ and M31 “P is only 0.89% at the cost of adding one more
point to static non-linearity.
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On the other hand, accuracy increased between M 11Z4p and

M31Z4p represents only 2.37% of the total, costing 3 points

more in static non-linearity. It can therefore be concluded that
it is useless to increase the static non-linearity of this design
concept by more than 7 points because the improvement in
precision is negligible.

The most significant increase in accuracy occurs when
the complexity level changes from 9 to 10; in this case,
an increase of one point in static non-linearity represents an
84.4% improvement in model accuracy. This implies that the
performance of the M6IZ4[7 model (4 points for static non-
linearity) is poor and it should therefore be discarded from
the selection process.

Regarding the design concept DC — 1z3p, the precision
achieved by model MZIZSP (complexity level 13) is almost
equal to that achieved by model M 11 P (complexity level 16).
It should be noted that an increase of more than nine points
in static non-linearity does not mean a significant accuracy
increase (between M 11 P and M21Z3p , which represents only
0.73% of the total). In this design concept, the largest increase
in accuracy occurs when the complexity level changes from
8 to 9 and is 90% of the total. This implies that model
M61 @p , which uses four points to represent static non-linearity,
should be discarded due to its poor performance in terms of
accuracy.

On comparing complexity level 10 models M iﬁp and
MSl “P it can be seen that M iﬁp has better performance in

terms of accuracy despite having a pole less than M; “P_This
implies that it is more important to increase the number of
points than to add the missing pole in models with insufficient
static non-linearity points. As the number of points increases
this effect is less noticeable. This can be checked by compar-
ing models M ‘: “P and M31 3P which have a smaller accuracy
difference than the two models discussed above. Once the
static non-linearity has been captured with the necessary
number of points the effect of the missing pole in the second
model concept is very slight, so that the most accurate model
is that of the first design concept.

The Pareto front of the design concept DC —1z2p shows the
performances of four Hammerstein models. The most precise
model is M 11 P with a complexity level of 13 (10 points are
used for static non-linearity). Although the complexity could
have increased, the algorithm did not find any more models,
since increasing static non-linearity by more than 10 points
does not represent increased accuracy.
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FIGURE 16. Performance of the models M;”p , M;ﬂp , and M;np evaluated on the estimation (top) and

validation (bottom) data sets.
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FIGURE 18. Enlargement illustrates the differences in the transient responses of M;”P . M;”P ,and M;np for the

validation input.

On comparing DC — 122p front with DC — 1z3p and DC —
1z4p fronts, one can see the effect of omitting the two fast
actuator poles in the models. This shortcoming cannot even
be compensated by increasing the static non-linearity points.

As final part of the analysis, the designer can evaluate
the models of all fronts on a different data set (validation
set) than the one used for estimation. A practical example
of this is shown in Figure 15. The displacement of the three
Pareto fronts (models represented by diamonds) shows lower
accuracy than those achieved by the estimation data set.
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The Pareto front of the first model concept can be seen
to stand out more to the left, indicating that the difference
between the four-pole and three-pole models has become
wider in terms of precision. This particular situation can also
give the designer clues to select a suitable model.

Thanks to this approach it has been possible to compare
Wiener-Hammerstein and Hammerstein model structures.
Clearly, more complex models will be more accurate, how-
ever it will always be important to quantify their differences
and select the best, considering not only model accuracy but
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also complexity. For example, if you require an adequate
. .. . 122p
compromise between precision and complexity, model M,

could be selected as well as Miﬁp and M3124‘17 . Figure 15
shows a comparison of the performance of these models on
the estimation and validation data sets, while Figure 17 shows
how the break points were located to represent the static
non-linearity of each model.

Atfirst glance (Figure 16) it seems that the performances of
the three selected models are the same; however an enlarge-
ment of the image (Figure 18) shows the existing differ-
ences mainly in the transient stage. Notice how model le =4
(green) has a small difference with the other two models
with a Wiener-Hammerstein structure. If a simplified model
is required, le 2P would therefore be a good option.

VI. CONCLUSIONS

This paper describes a new method of identifying
nonlinear block-oriented models (Wiener, Hammerstein or
Wiener-Hammerstein) and demonstrates its effectiveness
with a complex numerical example and a real thermal pro-
cess. The procedure is based on WH-MOEA, a new mul-
tiobjective evolutionary optimisation algorithm which was
formulated ad-hoc to manage this type of block-oriented
model without previous knowledge about process structure.
The method highlights the importance of generating a set of
models with common targets and diverse performance -the
generated Pareto fronts can compare and analyse the trade-off
between precision and complexity. The procedure is therefore
not focused on the selection of a specific model, but rather on
showing the benefits of obtaining a wide range of models
with different features and giving the engineer a chance to
choose a final model according to his/her preferences. The
WH-MOEA procedure has two important advantages: on
one hand, by studying the Pareto front of a specific design
concept, the influence of a variation in breakpoints for the
static non-linearity on model precision can be analysed,
which is more useful to the user than other methods, as it
eliminates uncertainty about the number of breakpoints that
must be assigned to represent static non-linearity. On the
other hand, the design concept analysis can be used to com-
pare several candidates. For example, simpler models than
those recommended by the MDL criteria can be found with
acceptable performance. Finally, the procedure described
here contributes to solving the issue stated in many control
problems, where design requirements and user preferences
do not always point to model precision as the only objective,
as model simplicity can also be an influential factor in
decision-making.
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