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The calculation of turbulence statistics is considered the key unsolved problem of fluid mechanics,
i.e., precisely the computation of arbitrary statistical velocity moments from first principles alone. Using
symmetry theory, we derive turbulent scaling laws for moments of arbitrary order in two regions of a
turbulent channel flow. Besides the classical scaling symmetries of space and time, the key symmetries for
the present work reflect the two well-known characteristics of turbulent flows: non-Gaussianity and
intermittency. To validate the new scaling laws we made a new simulation at an unprecedented friction
Reynolds number of 10 000, large enough to test the new scaling laws. Two key results appear as an
application of symmetry theory, which allowed us to generate symmetry invariant solutions for arbitrary
orders of moments for the underlying infinite set of moment equations. First, we show that in the sense of
the generalization of the deficit law all moments of the streamwise velocity in the channel center follow a
power-law scaling, with exponents depending on the first and second moments alone. Second, we show
that the logarithmic law of the mean streamwise velocity in wall-bounded flows is indeed a valid solution of
the moment equations, and further, all higher moments in this region follow a power law, where the scaling
exponent of the second moment determines all higher moments. With this we give a first complete
mathematical framework for all moments in the log region, which was first discovered about 100 years ago.
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One of the most successful ideas to understand and
model turbulence was to use a statistical approach to
turbulent flows. However, Reynolds, had already recog-
nized that a complete statistical description of turbulence
always leads to an infinite sequence of equations. For a
solution of these equations, the sequence must be termi-
nated and an empirical closure needs to be introduced
which fundamentally deteriorates the prediction quality.
In addition to this fundamental difficulty, early turbu-

lence researchers discovered that for canonical flows a
universal behavior can be observed for the statistical
moments. These universal regions of applicability are
called turbulent scaling laws, and in this context, the
logarithmic law of the wall was first postulated by von
Kármán [1]. This, however, remained without any con-
nection to the Navier-Stokes equations or any use of “first
principles.” In the decades that followed, there were several
modifications of the log law (see, e.g., Ref. [2]), which also
lacked any reference to the Navier-Stokes equations.

On the other hand, the idea that turbulent scaling laws are
similarity solutions of statistical equations was probably
first proposed by von Kármán and Howarth [3] for the
decay of isotropic turbulence, and over time applied to
innumerable flows. Maybe the first explicit use of sym-
metries in turbulence is due to Oberlack [4] to generate
invariant solutions, which are synonymous with turbulent
scaling laws but are solutions of statistical equations.
Further work followed [5–7] even for complex flows with
rotation, wall transpiration, and many more. All these
approaches were limited to low order moments.
A central element of all these scaling laws was statistical

symmetries. They were first detected in Ref. [8] in the
infinite sequence of the multipoint moment equations
(MPME). Further, in Ref. [9] it was shown that these
symmetries are a measure of intermittency and non-
Gaussian behavior of turbulence—both of which illustrate
well-known, central characteristics of turbulent flows and
which with the latter found a unique quantification in terms
of symmetries.
The infinite sequence of the multipoint moment equa-

tions is formed from the Navier-Stokes equations,

∂Ui

∂t þUk
∂Ui

∂xk þ
∂P
∂xi − ν

∂2Ui

∂xk∂xk ¼ 0; i ¼ 1; 2; 3; ð1Þ
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∂Uk

∂xk ¼ 0; ð2Þ

where t ∈ Rþ, x ∈ R3, U ¼ Uðx; tÞ, P ¼ Pðx; tÞ, and ν
respectively represent time, position vector, instantaneous
velocity vector, pressure, and kinematic viscosity. When
dealing with statistical properties, typically, Reynolds’s
decomposition is used, i.e., Uk ¼ Ūk þ uk, where ¯ð·Þ
denotes averaging and uk is the turbulent fluctuations.
We depart here from the usual approach to analyze moment
equations based on the fluctuations and use instead
statistical moments that are composed of the full instanta-
neous velocities. Based on this, generic multipoint velocity
moments read

Hifng ¼ Hið1Þ…iðnÞ ¼ Uið1Þ ðxð1Þ; tÞ � � �UiðnÞ ðxðnÞ; tÞ: ð3Þ

The moment hierarchy equation is derived by multiplying
Eq. (1) by n − 1 velocities at n − 1 different locations xðiÞ
and performing a formal statistical averaging. The resulting
MPME based on the instantaneous velocities for any order
n reads

∂Hifng

∂t þ
Xn

l¼1

�∂Hifnþ1g½iðnÞ↦kðlÞ�½xðnÞ ↦ xðlÞ�
∂xkðlÞ

þ ∂Iifn−1g½l�
∂xiðlÞ

− ν
∂2Hifng

∂xkðlÞ∂xkðlÞ
�

¼ 0: ð4Þ

Here, Iifn−1g½l� contains the pressure, while further details
may be taken from Refs. [6,8].
The definitions (3) and the equations (4) are the basis of

the symmetry theory. However, for the following compari-
son with the direct numerical simulation (DNS) data, we
only consider one-point statistics; i.e., we apply x ¼ xð1Þ ¼
xð2Þ ¼ � � � ¼ xðnÞ and, hence, the Hifng reduce to one-point
moments. Further, as we presently limit ourselves to the
moments of the streamwise velocity U1, we subsequently
only consider the nth moment Un

1 .
The key property of the MPME for the following

analysis is that (i) the system is linear and (ii) a coupling
among moment equations exists only between the equa-
tions of order n and nþ 1. For a symmetry consideration,
system (4) is considerably simpler but mathematically fully
equivalent to the classical method based on Reynolds
decomposition [8].
A symmetry refers to a variable transformation

x� ¼ ϕðx; y;aÞ; y� ¼ ψðx; y; aÞ which leaves a differential
equation form invariant when it is written in the new �
variables, i.e., if the following holds:

Fðx; y; yð1Þ; yð2Þ;…; yðpÞÞ ¼ 0

⇔ Fðx�; y�; y�ð1Þ; y�ð2Þ;…; y�ðpÞÞ ¼ 0; ð5Þ

where yðpÞ denotes the set of all pth derivatives of y.
We focus here on the two scaling symmetries admitted

by the Navier-Stokes equations in the limit of vanishing
viscosity, which read

TSx=St∶ t� ¼ eaSt t; x� ¼ eaSxx;

U� ¼ eaSx−aStU; P� ¼ e2ðaSx−aStÞP; ð6Þ

which for the moments transform to

T̄Sx=St∶ t� ¼ eaSt t; x�ðiÞ ¼ eaSxxðiÞ;

U� ¼ eaSx−aStU�; H�
fng ¼ enðaSx−aStÞHfng: ð7Þ

OnceEqs. (7) are implemented intoEq. (4), the scaling factors
cancel, and they are indeed a symmetry transformation.
Note that viscosity is symmetry breaking, because unlike

the Euler equation, which possesses two scaling sym-
metries, the Navier-Stokes equation admits only one
scaling symmetry. In turbulence, however, viscosity acts
only on the smallest scales with a length dimension of the
order of Kolmogorov length. This fact is the basis of a
multiscale expansion in the correlation space r in Ref. [10],
in which it was shown that the velocity moments in the
limiting case ν → 0 possess two scaling symmetries, i.e., in
principle exactly like the Euler equation.
Besides these classical mechanical symmetries, the

key for the new scaling laws to be derived below is the
statistical symmetries. These symmetries cannot be directly
identified in the Navier-Stokes equations, but only in the
statistical equations derived from them, such as Eq. (4), and
they thus also describe purely statistical properties of turbu-
lence. The first one is a translation symmetry in the moments,

T̄ 0
fng∶ t� ¼ t; x�ðiÞ ¼ xðiÞ;

U� ¼ U þ a; H�
fng ¼ Hfng þ aHfng; ð8Þ

which corresponds to non-Gaussianity (seeRef. [9])while the
statistical scaling symmetry,

T̄ 0
s∶ t� ¼ t; x�ðiÞ ¼ xðiÞ;

U� ¼ eaSsU; H�
fng ¼ eaSsHfng; ð9Þ

is due to the linearity of moment Eq. (4) and is a measure of
intermittency as has been proven in Ref. [9]. With this,
invariant solutions can now be constructed from the afore-
mentioned symmetries (see, e.g., Ref. [6] and the
Supplemental Material [11]). The characteristic system for
the invariant solution for every Un

1 reads
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dx2
aSxx2 þ ax2

¼ dŪ1

½ðaSx − aStÞ þ aSs�Ū1 þ aH1f1g
¼ � � �

¼ dUn
1

½nðaSx − aStÞ þ aSs�Un
1 þ aH1fng

; ð10Þ

wherewewant to recall aSx, aSt, andaSs are the parameters of
the three-parameter scaling group. Combining the groups (7)
and (9) and using the one-point limit, we obtain

T̄scale∶ x�2 ¼ eaSxx2; Ū�
1 ¼ eaSx−aStþaSsŪ1;…;

Un
1
� ¼ enðaSx−aStÞþaSsUn

1: ð11Þ

For the integration of Eq. (10), there are two cases to be
distinguished and their solutions correspond to the log and
center region [12]. The key parameter for the log law is the
wall shear stress velocity uτ ¼

ffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
, where τw is the wall

shear stress and ρ is the density. uτ uniquely determines the
only velocity scale in the problem. For a given specific
value, this implies that a scaling of the mean velocities
according to Eq. (11) with arbitrary aSx, aSt , and aSs is no
longer feasible. Hence, in terms of symmetry theory, uτ is
symmetry breaking for the mean velocity and for the group
parameters in Eq. (11) this implies aSx − aSt þ aSs ¼ 0.
Using this during the integration of Eq. (10) we obtain

Ū1 ¼
a1
aSx

ln
�
x2 þ

ax2
aSx

�
þ C̃1; ð12Þ

Un
1 ¼ C̃n

�
x2 þ

ax2
aSx

�
ωðn−1Þ

−
aH1fng

ðn − 1ÞðaSx − aStÞ
;

with C̃n ¼ ecnðn−1ÞðaSx−aStÞ; ð13Þ

where C̃1 and cn represent integration constants and
ω ¼ 1 − aSt=aSx. The three central results here are that
in the log region for the mean velocity (i) the moment n ¼ 1
follows a logarithmic law, (ii) the moments n > 1 behave
like a power law, and (iii) the exponents for all nth moments
are determined by a single parameter which is the exponent
ω for the second moment.
In the second case no a priori symmetry breaking scale

is introduced into Eq. (10); i.e., the factors ðaSx − aSt þ
aSsÞ;…; nðaSx − aStÞ þ aSs are all assumed to be nonzero.
This results in power laws for all moments n, including the
first moment n ¼ 1. After the integration we observe that
the parameters aSx, aSt, and aSs only occur as ratios and
hence only two free parameters exist. If the exponents for
the first two moments, σ1 and σ2, are given, we arrive at

Un
1 ¼ C̃0

n

�
x2 þ

ax2
aSx

�
nðσ2−σ1Þþ2σ1−σ2

−
aH1fng

nðaSx − aStÞ þ aSs
;

with C̃0
n ¼ ec

0
n½nðaSx−aStÞþaSt�; ð14Þ

where all c0n are again constants of integration, σ1¼
1−aSt=aSxþaSs=aSx, and σ2¼2ð1−aSt=aSxÞþaSs=aSx.
The latter exponents of the first two moments uniquely
determine the exponent of all higher moments.
The scaling laws (12)–(14) are to be validated in the

following using new DNS data of a plane turbulent channel
flow, with a Reynolds number of Reτ ¼ 104 using the code
LISO. The grid has roughly 80 × 109 points and the
simulation ran for 50 million CPU-hours on 2048 process-
ors. The details of this simulation are given in Ref. [12]. To
clearly delimit the log from the deficit region, in what
follows yþ stands for the wall-based variable used for the
log region; i.e., yþ ¼ 0 defines the wall. In the log region
Eqs. (12) and (13) variables are nondimensionalized using
ν and uτ, obtaining

Ūþ
1 ¼ 1

κ
lnðyþÞ þ B; ð15Þ

Un
1
þ ¼ CnðyþÞωðn−1Þ − Bn; for n ≥ 2; ð16Þ

Cn ¼ αeβn; Bn ¼ α̃eβ̃n; for n ≥ 2; ð17Þ

where in κ, B, Bn, Cn, α, β, α̃, and β̃ we have subsumed
the various constants appearing in Eqs. (12) and (13)
and yþ ¼ yuτ=ν, Un

1
þ ¼ Un

1=u
n
τ . κ refers to the usual

von Kármán constant. We have obtained κ ¼ 0.394; see
discussion and comparison with other simulations [13–15]
in Ref. [12]. The shift in yþ by ax2 in Eqs. (12) and (13) has
been set to zero, although there are works [16] that suggest
a nonzero shift. However, the numerical value is small and
thus is negligible for large yþ. Interestingly, the data below
show that the cn in Eq. (13) are independent of n, so Cn
results in a simple exponential function in n. Actually, this
also results for Bn, although the reason for this is unknown.
Figure 1(a) shows the first central result of the present

work, which is the comparison between DNS data for the
moments n ≥ 2 and Eq. (16). A double logarithmic plotting
has been adopted to make the power laws visible more
clearly. The universal numerical value ω in Eq. (16) has
been chosen to ω ¼ 0.10 to match the DNS data and gives
the best fit for all higher moments up to n ¼ 6.
The two key results in Fig. 1(a) are (i) a nearly

perfect representation of the power law for all moments
solely based on the single parameter ω and (ii) the validity
of all moments in the log law’s range of validity of
yþ ≃ 400…2500.
From Fig. 1(a) one might get the impression that the

power-law scaling of Eg. (16) continues beyond the domain
yþ ≃ 400…2500; however, it does not, as can be shown
with the definition of a power-law indicator function:

Γn ¼
yþ

Un
1
þ þ Bn

dUn
1
þ

dyþ
¼ ωðn − 1Þ: ð18Þ
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DNS data are now inserted into Eq. (18) and compared
with the exact value ωðn − 1Þ in Fig. 1(b). It can be seen
that especially for higher moments the constant range of
validity stands out very clearly. The horizontal lines in
Fig. 1(b) denote the theoretical values ωðn − 1Þ, and even
for the highest moment with n ¼ 6 the deviation is less than
2.1%. As the lowest line in Fig. 1(b) we have included the
log-indicator function Γ ¼ yþ∂yþŪ

þ
1 ¼ κ−1.

Further, it is important to verify the exponential scaling
of Cn and Bn with n in Eq. (17) and an optimal agreement
with the DNS data is shown in Fig. 2, where also the scaling
of C0

n from Eq. (20) has been included. This scaling is due
to the fact that the constants of integration cn in Eq. (13)

emerging from Eq. (10) are independent of n and are all of
order one. The deeper background for this is not fully
evident so far.
In the center region of the channel the picture is quite

different. To facilitate the discussion, the variable x2 is used
here for the deficit law, with origin x2 ¼ 0 on the channel
center. A first symmetry-induced hint toward a power law
in the form (14) in the center of a channel flow is found in
Oberlack [4]. Therein, Oberlack formulated the mean
velocity in the form of a deficit law, which is presently
generalized for arbitrary moments of U1. For this purpose,
Eq. (14) is transformed accordingly and now has the
universal deficit form,

Un
1
ð0Þ −Un

1

unτ
¼ C0

n

�
x2
h

�
nðσ2−σ1Þþ2σ1−σ2

; ð19Þ

with C0
n ¼ α0eβ0n; ð20Þ

and the exponent (0) in Un
1
ð0Þ refers to the values on the

center line at x2 ¼ 0 and, similar to Eq. (17), α0 and β0
subsume various constants and are presumed to be universal.
In Fig. 3 all moments for the new DNS at Reτ ¼ 104 are

shown in deficit form up to order n ¼ 6. Even with the eye,
it is visible that the curves have almost identical gradients,
i.e., are largely independent of n. A curve fit of the data
according to Eq. (19) reveals exactly this, namely that
σ1 ¼ 1.95 and σ2 ¼ 1.94 have almost the same values. A
comparison of the above exponents with the DNS data
shows an extremely good approximation and the error in
the exponents even for the highest moment n ¼ 6 is far
below 1%.

FIG. 2. Lines refer to coefficients Cn (solid line) and Bn (dash-
dotted line) defined in Eq. (17) with α ¼ 4.88, β ¼ 2.31,
α̃ ¼ 2.23, β̃ ¼ 2.74, and C0

n (dotted line) defined in Eq. (20)
with α0 ¼ 0.21, β0 ¼ 3.64; data points (þ), (þ�), and (×) are fitted
directly to DNS data at Reτ ¼ 104.

(a)

(b)

FIG. 1. Symbols n ¼ 1 (circle); n ¼ 2 (square); n ¼ 3 (dia-
mond); n ¼ 4 (triangle); n ¼ 5 (inverted triangle); n ¼ 6 (star)
DNS data. (a) Moments Un

1
þ, solid line: Eq. (16) with coef-

ficients fitted to DNS data for n ≥ 2. (b) Left axis: Γn according to
Eq. (18), solid line: Γn ¼ ωðn − 1Þ with ω ¼ 0.10 and n ≥ 2.
Right axis: log-indicator function Γ ¼ yþ∂yþŪ

þ
1 ¼ κ−1 accord-

ing to (15) with κ ¼ 0.394.
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Compared to the log region, the deficit law is signifi-
cantly less Reynolds number dependent. To demonstrate
this, we have added DNS data at Reτ ¼ 5200 [15] for
moments one and two. They collapse with the curves at
Reτ ¼ 104. Also, the values for σ1 and σ2 are identical.
In both the log region (Fig. 1) and the deficit region

(Fig. 3), it is visible that for the high moments, the
functions take on high numerical values and this is
significantly different than for moments formed on the
fluctuations alone. At first, it appears that the logarithmic
representation conceals errors for the high moments. In
fact, this is not the case, as can be easily seen by dividing all
the data by the corresponding C0

n in Fig. 3, for example.
The curves are thereby only shifted vertically and the
overall shape of each curve is preserved.
With σ1 ≈ σ2 the exponent of the scaling law (19) is a

constant and independent of the order n of the moments
which is referred to as anomalous scaling. The constant
exponent traces back to the statistical scaling symmetry aSs
in Eq. (9) which is a measure for the intermittent behavior
of turbulence. Hence statistical symmetries dominate in the
center of the channel.
For practical applications two central conclusions can be

drawn. First, the two scaling exponents for the first and
second moments are sufficient to calculate the scaling of all
higher moments. Specifically, these are for the log region κ
and ω in Eqs. (15) and (16) and for the deficit law σ1 and σ2
in Eq. (19). Second, this also has central implications
for turbulence model development. More precisely, the
statistical symmetries developed in this work should be
incorporated into turbulence models to make them repro-
duce the above-mentioned scaling laws [17].
Summarizing, we have shown how symmetry theory,

one of the main tools of physics in the 20th century, can be

used to overcome the problem related to the closure problem
of turbulence. This has been possible due to the availability
of a simulation at a Reynolds number large enough to clearly
show the logarithmic layer and a generalized deficit law in
the core region of the channel. Further research and finding
of new statistical symmetries seem to be essential for the
further development of this theory.

All data used in this paper can be downloaded from [18].
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