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ABSTRACT  

Computational neuroscience is one of the most state-of-the-art disciplines for studying the human 

brain and its intricate mechanisms. To this aim, computational whole-brain models have become a 

very powerful tool. These models represent the brain as a network with a predefined number of nodes, 

where each node corresponds to a brain area and the connections between them are based on an 

empirically determined structural connectivity matrix. On this structure, a set of differential equations 

is used to simulate brain activity. This approach is highly useful when investigating complex brain 

dynamics with mathematical modeling, such as deep sleep models. In this context, the structural 

connectivity matrix is constructed based on an arbitrarily chosen brain atlas or parcellation. This study 

aims to analyze the effects of the parcellation´s granularity on a deep sleep whole-brain model. 

Therefore, the number of discrete brain areas is gradually increased using a local-global parcellation 

of the human cerebral cortex. As the brain is hierarchically organized, the resolution of the brain 

parcellation can be easily augmented resulting in several cortical parcellations consisting of 100, 200, 

and 500 parcels. In order to analyze the effects of increasing regional granularity, the model is built 

and run with the formerly described datasets using neurolib, a computational framework for whole-

brain modeling written in Python. Its performance is then evaluated by comparing the simulated 

output with empirical recordings. Finally, the model analysis aims to determine what spatiotemporal 

patterns the model produces at different levels in order to establish whether there are significant 

differences between them. 

Keywords: Whole-brain model; brain atlas; brain parcellation; deep sleep brain dynamics; 

functional connectivity 
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RESUMEN  

La neurociencia computacional es una de las disciplinas más avanzadas para estudiar el cerebro 

humano y sus intrincados mecanismos. Para ello, los modelos computacionales de cerebro 

completo se han convertido en una herramienta muy efectiva. Dichos modelos representan el 

cerebro como una red con un número predefinido de nodos correspondientes a áreas cerebrales 

conectados entre sí en base a una matriz de conectividad estructural empírica. Sobre esta 

estructura, se utiliza un conjunto de ecuaciones diferenciales para simular actividad cerebral.  Este 

enfoque es muy útil para investigar dinámicas cerebrales complejas mediante modelos 

matemáticos, como los modelos de sueño profundo. En este contexto, la matriz de conectividad 

estructural se construye en base a un atlas cerebral o parcelación cortical elegida arbitrariamente. 

Este estudio pretende analizar los efectos de la granularidad de la parcelación en un modelo de 

cerebro completo en estado de sueño profundo. Para ello, se aumenta gradualmente el número 

de áreas cerebrales discretas utilizando una parcelación local-global de la corteza cerebral 

humana. Debido a la naturaleza jerárquica de la corteza cerebral, la resolución de la parcelación 

cerebral puede aumentarse fácilmente, dando lugar a varias segmentaciones compuestas por 100, 

200 y 500 parcelas. Para analizar los efectos del aumento de la granularidad regional, se construye 

el modelo y se ejecuta con los conjuntos de datos descritos anteriormente utilizando neurolib, un 

marco computacional para el modelado cerebral completo desarrollado en Python. A 

continuación, se evalúa su rendimiento comparando el resultado simulado con los registros 

empíricos. Por último, el análisis del modelo pretende determinar qué patrones espacio-

temporales produce el modelo en los distintos niveles para establecer si existen diferencias 

significativas entre ellos. 

Palabras clave: Modelado cerebral completo; atlas cerebral; parcelación cerebral; dinámica de 

sueño profundo; conectividad funcional 
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RESUM 

La neurociència computacional és una de les disciplines més avançades per a estudiar el cervell 

humà i els seus intricats mecanismes. Per a això, els models computacionals de cervell complet 

s'han convertit en una eina molt efectiva. Aquests models representen el cervell com una xarxa 

amb un nombre predefinit de nodes corresponents a àrees cerebrals connectats entre si sobre la 

base d'una matriu de connectivitat estructural empírica. Sobre aquesta estructura, s'utilitza un 

conjunt d'equacions diferencials per a simular activitat cerebral. Aquest enfocament és molt útil 

per a investigar dinàmiques cerebrals complexes mitjançant models matemàtics, com els models 

de somni profund. En aquest context, la matriu de connectivitat estructural es construeix sobre la 

base d'un atles cerebral o parcel·lació cortical triada arbitràriament. Aquest estudi pretén analitzar 

els efectes de la granularitat de la parcel·lació en un model de cervell complet en estat de somni 

profund. Per a això, s'augmenta gradualment el nombre d'àrees cerebrals discretes utilitzant una 

parcel·lació local-global de l'escorça cerebral humana. A causa de la naturalesa jeràrquica de 

l'escorça cerebral, la resolució de la parcel·lació cerebral pot augmentar-se fàcilment, donant lloc 

a diverses segmentacions compostes per 100, 200 i 500 parcel·les. Per a analitzar els efectes de 

l'augment de la granularitat regional, es construeix el model i s'executa amb els conjunts de dades 

descrites anteriorment utilitzant neurolib, un marc computacional per al modelatge cerebral 

complet desenvolupat en Python. A continuació, s'avalua el seu rendiment comparant el resultat 

simulat amb els registres empírics. Finalment, l'anàlisi del model pretén determinar quins patrons 

espaciotemporals produeix el model en els diferents nivells per a establir si existeixen diferències 

significatives entre ells. 

Paraules clau: Modelatge cerebral complet, atles cerebral, parcel·lació cerebral, dinàmica de 

somni profund, connectivitat funcional 
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1. INTRODUCTION  
The human brain presents different types of oscillatory behavior depending on its state. During 

deep sleep, slow oscillations (SOs) appear and they characterize slow-wave sleep (SWS), a 

particular form of non-REM sleep [1]. These waves travel through the cortex generating neural 

activity transitions with low frequencies (<1Hz), which occur between up- and down-states where 

neurons are constantly firing or present almost no activity, respectively. SOs play a central role 

during memory consolidation [1] and are therefore an important mechanism for human life. 

Oscillatory brain dynamics such as SOs are processes of a complex nature. Thus, they can be 

difficult to study on an empirical level, as neuroimaging methods or EEG recordings offer the 

possibility to observe them at a macroscopic level, but not of illustrating the underlying 

mechanisms. To this aim, computational whole-brain models have become a very powerful tool. 

These models represent the brain as a network with a predefined number of nodes, where each 

node corresponds to a brain area. The connections between them are based on an empirically 

determined structural connectivity (SC) matrix, which is derived from probabilistic diffusion tensor 

imaging (DTI) tractography.  On this structure, a set of differential equations that compound each 

particular model is used to simulate brain activity, leading to firing rates of single nodes as an 

output. This first output can then be transformed to a simulated BOLD signal using the 

hemodynamic Balloon-Windkessel model [2][3]. By comparing simulated firing rates and BOLD 

signals to empirical recordings, electroencephalography (EEG) and resting state functional 

magnetic resonance imaging (fMRI) respectively, the model can be optimized and fitted to the 

empirical data (Figure 1). 
 

 

One such model, which accurately reproduces SO dynamics, is the sleep model developed in [4], 

where a key finding is that the connectome (defined as “the comprehensive set of neuronal 

connections of a species' central nervous system” [5]) shapes the oscillatory dynamics. In the 

particular case of SOs, they travel from frontal to posterior regions as waves of silence [4]. This 

behavior is correlated with the node’s degree, which describes the sum of connections of a single 

node [6]. The regions with lower node degree are more likely to change into a non-activation state 

Figure 1: Structure and workflow of the whole brain model [4].  
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(down-state) given the fact that they receive less excitatory input from other nodes. In this context, 

the role of the structural connectivity matrix is crucial, because it establishes the node degree by 

describing the internodal connections.  

When building the model, the SC matrix is based on an arbitrarily chosen brain atlas or parcellation. 

This study aims to analyze the effects of the parcellation´s granularity on a deep sleep whole-brain 

model. Therefore, the number of discrete brain areas is gradually increased using the local-global 

parcellation of the human cerebral cortex [7]. As the brain is hierarchically organized, the 

resolution of the brain parcellation can be easily augmented, resulting in several cortical 

parcellations consisting of 100, 200, and 500 parcels. Granularity is, in general, an interesting 

aspect to take into account, given the fact that most connections in the human brain are less than 

50mm apart, but there is no consensus on which granularity level is more adequate to simulate 

and study concrete brain dynamics, such as SOs. Roberts et. al [8] analyzed wave propagation 

patterns with a high resolution parcellation (513 brain areas were considered) based on the idea 

that these global oscillations are generated due to local interactions, which could be missed with 

coarser grained parcellations. On the other hand, Cakan et al. [9] used lower levels of resolution 

(80 nodes) to study spatiotemporal patterns, suggesting that high granularity is not a necessary 

condition for the formation and propagation of such waves. Consequently, the question addressed 

in this study is whether finer parcellation schemes offer the possibility to observe additional 

characteristics underlying the dynamics of SOs. Additionally, some studies show that the selection 

of the brain atlas influences the model’s outcomes [10].  All in all, the choice of the brain 

parcellation is not trivial and could lead to different results depending on the implementation.  

In order to analyze the effects of increasing regional granularity, the model is built and run with 

the formerly described datasets using Neurolib [2], a computational framework for whole-brain 

modeling written in Python. The study procedure starts with a state space analysis which aims to 

establish the model’s state with different parameter selection throughout all different levels of 

resolutions. This way, it can be seen whether the appearing states are maintained while increasing 

regional resolution. Secondly, oscillatory spatiotemporal patterns are observed at different 

granularity levels and the model’s performance is evaluated by comparing the simulated output 

with empirical recordings. Finally, a more concrete case of parameter selection is chosen from the 

work of Cakan et al.  “Spatiotemporal Patterns of Adaptation-Induced Slow Oscillations in a Whole-

Brain Model of Slow-Wave Sleep” [9]. In this study, an evolutionary optimization was run in order 

to find the optimal parameter selection for a deep sleep model. Now, this work aims to use the 

same obtained optimal parameter values for reproducing the results of Cakan et al.  with different 

resolution levels and investigate whether there are significant differences in spatiotemporal 

patterns, as well as in the statistical properties of the simulated outputs. 
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2. THEORETICAL FRAMEWORK 
There are two basic states of sleep in mammals: rapid-eye-movement (REM) sleep and non-REM 

sleep. Both appear as different phases which alternate during the whole sleep process. While REM 

sleep presents a more awake-like state of the brain, SOs appear during SWS, which is part of non-

REM sleep and travel through the cortex, generating high-amplitude waves in the local field 

potential. These waves are generated locally, but spread as global waves of silence through the 

brain cortex [4]. The travelling direction is determined by the brain connectome, which is 

heterogeneously structured, causing SOs to propagate with a preferred direction from anterior to 

posterior brain areas [4].  

The different kinds of neural stages during sleep are associated with consolidation processes for 

different types of memories. In the SWS case, it is assumed that it serves in declarative memory 

consolidation. In this context, the Active System Consolidation Hypothesis establishes that newly 

obtained memories are reactivated during SWS, a mechanism that allows them to transfer from a 

temporary (hippocampus) to a long-term (neocortex) storage site [1].  SOs are able to reach 

hippocampal memory units through a top-down control over subjacent oscillation processes with 

lower amplitude, specifically thalamo-cortical spindles and hippocampal ripples. These smaller and 

faster oscillations combine forming spindle-ripple events which serve to the reactivation of 

memory representations (Figure 2).  

 

The reactivation of memory trace areas during sleep can be observed through brain activation 

imaging techniques, such as functional magnetic resonance (fMRI) or positron emission 

tomography (PET). Several studies showed clear signs of reactivation of memory related areas 

(hippocampal and parahippocampal regions) in humans during SWS after a hippocampus-

dependent learning process. This was achieved through, for example, evaluating neural 

reactivation after a spatial learning task taking regional cerebral blood flow (rCBF) as an activity 

marker [11]. In addition, similar levels of enhanced EEG coherence (which describes the 

correspondence in the neural activation patterns between two or more brain regions) were found 

Figure 2: Model of the active system consolidation during sleep [1]. 
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while carrying out a word-learning task and during the following SWS [12]. These results are 

coherent with the Active System Consolidation Hypothesis and therefore support the role of SOs 

as a higher level phenomenon in control of spindle-ripple events, which mediate the hippocampo-

neocortical interaction leading to memory consolidation.  

However, even though the reactivation of memory related brain areas can be observed using the 

former mentioned imaging techniques, computational modelling is a useful approach for their 

characterization as it offers a mechanistic understanding of the underlying processes and gives us 

the possibility of exploring a wide range of parameters. In the case of SWS, there are studies 

showing the appropriateness of implementing whole brain models in order to analyze this kind of 

brain dynamics [4]. This approach is highly convenient to gain a deeper understanding of the 

phenomena occurring during SWS as it is based on structural and functional connectivity data 

which play a crucial role when it comes to travelling waves such as SOs.  
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3. PROJECT OBJECTIVES 

The goals of this project are, firstly and from a more general perspective, to gain a deeper 

understanding on the role of the atlas parcellation in whole-brain modelling. More concretely, this 

study aims to prove whether there are significant differences in the state of the model, as well as 

in the appearing spatiotemporal patterns and statistics when the level of resolution is increased. 

This way, the importance of having consistent results with the different parcellations can be 

enlightened, as this aspect should be taken into account when comparing results with different 

model constructions.  

  



 

Analysis of the brain atlas’ granularity influence in a deep sleep whole-brain model 

 

19 

 

4. METHODS AND MATERIALS 

4.1. Empirical Data  

The empirical data used in this study is the same as in the work of Cakan et al. [9], where all specific 

parameters from the acquisition and preprocessing techniques are presented in detail. Structural 

and resting-state fMRI data were acquired from a group of 27 older adults at the 

Universitätsmedizin Greifswald. Both structural and functional data were obtained using the same 

system, a 3T Siemens MAGNETOM Verio Syngo b17 MR scanner.  

Firstly, the structural image data was acquired through high-resolution anatomical T1 images. On 

the other hand, for diffusion data, the images were obtained with a single-shot echo-planar 

imaging (EPI) sequence. In both cases, the preprocessing consisted in segmentation of the brain 

and artifact removal carried out using a semi-automated pipeline implemented in the FSL toolbox,  

a comprehensive library of analysis tools for MRI, fMRI and DTI data [13]. The latter is a technique 

which offers the possibility to obtain the anatomical structure of the brain connectome through 

probabilistic tractography. More concretely, probabilistic tractography estimates the pathways 

that originate at any given seed voxel based on intra-voxel crossing fibers and provides 

quantitative information about the probability of structural connectivity that a white matter tract 

will pass through any other voxel in the brain [14] . In order to compute the structural connectivity 

matrices from the probabilistic tractography data, every connection strength � between two areas � and � was calculated as the average between the connection strength ��� and ���, so that the SC 

matrix is symmetrical. Furthermore, connectivity matrices were normalized by dividing every entry 

by the maximum connectivity value so that all entries were in the range [0;1]. Nevertheless, the 

construction of the model was based on a single structural connectivity matrix which consisted on 

the average of all the subject-specific matrices.  The obtained connectivity value between every 

two regions is multiplied by a coupling strength parameter (Kgl) in order to determine every specific 

coupling strength. The fiber length matrix was also obtained through averaging every individual 

fiber length matrix and in this case, the matrix entries are divided by the signal propagation speed 

value (vgl) to form a time-delay matrix [9]. 

The resting state fMRI images were attained by scanning the participants during 12 minutes with 

TR = 2000ms and TE = 30ms, and data preprocessing was conducted using the FEAT toolbox [9], a 

software toolbox for high quality model-based fMRI data analysis [8]. This way, artifacts and non-

brain tissue were removed and the fMRI images were linearly registered to each subject’s 

anatomical data. Finally, for every brain region, the average BOLD time series was calculated [9]. 

 

4.2. The local-global parcellation of the human brain cortex 

The human brain cortex has been traditionally subdivided into several brain areas, following the 

idea that every cortical area serves a different function and presents its particular architecture and 

connectivity patterns [15].  However, as the brain is hierarchically organized, each area can 

potentially be subdivided into smaller parcels. For instance, the motor cortex presents intra-areal 

heterogeneities, given the fact that the different body parts are represented as distinct 



 

Analysis of the brain atlas’ granularity influence in a deep sleep whole-brain model 

 

20 

 

neurobiological units [16]. Functional neuroimaging techniques such as fMRI or PET are powerful 

non-invasive tools which allow to distinguish different brain areas and even subareal parcellations 

[17]. The latter seem to be captured when implementing resting-state fMRI (rs-fMRI), an imaging 

technique which offers the possibility to obtain resting-state functional connectivity (RSFC) data. 

RSFC measures the synchronization of rs-fMRI time series between different brain areas and is 

therefore not a direct insight of anatomical connectivity. Nevertheless, RSFC reflects the 

organization of large-scale task-evoked circuits as it is delimited by anatomical constraints [18].  

The challenge of parcellating the brain through rs-fMRI has been faced through two different major 

approaches: the local gradient and the global similarity approach. On the one hand, the local 

gradient method delimits the parcels by detecting abrupt changes in RSFC patterns, which are 

understood as borders between different areas [19]. Some studies show, that the results obtained 

following the local gradient approach are similar to histological delineation of cortical areas [19]. 

On the other hand, the global similarity method exploits the idea that one brain area is associated 

to a specific function. Therefore, it clusters regions with similar rs-fMRI signals or RSFC patterns 

regardless of spatial proximity [20]. All in all, while the local gradient approach distinguishes areas 

with high intra-areal homogeneity [21], the global similarity approach differentiates parcels which 

are homogeneously connected [22]. Taking into account the strengths that the different 

approaches present, the option of integrating them can be seen as a solution in order to generate 

parcellations that are not only homogeneous internally, but also regarding the connectivity 

aspects. 

Following this idea, Schaefer et al. [7] developed a gradient-weighted Markov Random Field 

(gwMRF) model that combines the local gradient and global similarity approach, generating the 

local-global parcellation of the human cerebral cortex [7]. The concept behind the model is the 

following: a balance is found between a global similarity objective, which clusters voxels with 

similar T1 intensities, and a local smoothness objective, which encourages adjacent voxels to be 

labeled the same if the local RSFC gradient is low [7]. This way, a good compromise is reached 

between functional and connectional homogeneity, and architectonic boundaries. In addition, 

different levels of parcel resolution can be achieved by subdividing regions, therefore, in this study 

parcellations of 100, 200 and 500 areas are implemented.  

Overall, the choice of a parcellation when studying the brain plays a crucial role, because it offers 

the possibility to reduce dimensionality, as working with the data at voxel level resolution is 

problematic due to the amount of computational resources that would be required and the 

inefficiency this would generate. However, dimensionality reduction has to maintain the 

characteristics of the studied data and therefore, in this case, the local-global parcellation (also 

known as Schaefer parcellation [7]) is an appropriate approach to be faithful both to histological 

and connectivity features of the acquired images.  
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Figure 3: Composition of the ALN model [26]. 

4.3. The ALN model 

4.3.1. Neural-Mass Model 

Each cortical region consists of a neural mass model, which attempt to model the dynamics of a  

large number of neurons clustered as one brain region [23]. The current modelling framework 

implements graph theory by representing the brain as a network of nodes (one for each brain area) 

interconnected by edges.  This is an appropriate approach when dealing with a vast population of 

neurons, because working at single neuron level is computationally not efficient. The mass model 

is built by applying mean-field theory to populations of excitatory and inhibitory neurons. This 

means, in order to study the behavior of a high-dimensional system, a simpler approximated model 

is generated by averaging over the activity of the neurons in the populations [24]. In other words, 

instead of having one activity variable for each neuron in the network, there is one activity variable 

for an entire population of identical neurons. This way, the degrees of freedom are reduced 

considerably.  

The considered neuron model is an adaptive exponential integrate-and-fire (AdEx) model [25], 

which reproduces the sub- and supra-threshold voltage traces of pyramidal neurons from cerebral 

cortex successfully [26]. In this approach, an exponential spike mechanism is combined with an 

adaptation equation in order to simulate neural activity [27]. In general, the dimensionality 

reduction reached through the neural-mass model offers the possibility to simulate and analyze a 

brain model in a faster and more efficient way. Moreover, the mean-field neural mass model has 

been previously validated against higher resolution spiking neural networks [25].  

Regarding the excitatory and inhibitory populations, a delay-coupling mechanism connects both 

of them and the excitatory population is also equipped with a somatic adaptation feedback 

mechanism. The populations and the links between them are illustrated in Figure 3, where the 

excitatory population is represented in red (��) and the inhibitory population (�) in blue. The 

subpopulations are connected via a delay-coupling mechanism and a somatic adaptation feedback 

coming from the excitatory subpopulation. The latter is activity dependent, which means that in a 

high-activation regime, it leads to hyperpolarizing currents that destabilize the neurons in the up-

state causing a fall into the down-state [9]. On the other hand, in a low-activation state, the 

inhibitory adaptation currents will decrease (with a specific timescale ��) until the current 

excitatory input is strong enough to drive the system back to the up-state. This balance causes a 

slow oscillation between up and down-states [9]. The adaptation mechanism is governed by the 

adaptation strength parameter  . Also, both instances receive external input currents ����with a 

standard deviation  !���. 
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4.3.2. Model Equations 

In this section, the equations from the linear-nonlinear cascade model used for defining each 

node’s dynamics in the whole brain model simulations are presented. A more detailed 

mathematical derivation of the model’s equations is provided in the references [28] [25] and 

underlying dynamical mathematical descriptions such as those for synaptic currents are presented 

in the work of Cakan et al. [9].   

The steady-state and transient dynamics of each population can be determined by solving a set of 

ordinary differential equations defined by a low-dimensional linear-nonlinear cascade model [24], 

[25]. The parameters appearing in the equations are summarized in [9] Table 1.  Each brain region 

is represented by a node formed by two subpopulations: excitatory (E) and inhibitory (I) 

populations, so " ∈ {�, �}. The following equations establish the dynamics of every node:  

�� '��'� =  ��()*+�, + �����+�, + ��./+�, − ��+�, 

 

 

  (1) 

 ��()*+�, =  1��2̅��+�, + 1�
2̅�
+�, 

 
(2) 

!�4+�, =  5 21�64  !7,�64 +�, �7,6 �891 +  :�6+�,;  �8 +   �7,6 +  !���,�4
6 ∈{�,
}  

 

(3) 

The first equation (1) describes the dynamics of the total membrane current ��, which are defined 

by the incoming synaptic (��()*
) and external input currents (�����) as well as by the external noise 

contribution (��./).  Here, the considered means and also variances are for all neurons inside of a 

population. Secondly, the synaptic current is defined by the parameters 1�6, which describe the 

maximum synaptic current coming from a completely active population " to < or vice versa (2). In 

the third equation (3) the variance of the membrane currents !�4 is calculated taking into account 

the synaptic parameter 1�6 , other variances such as the synaptic variance ( !7,�64 , and the external 

input variance (!���,�4 ) as well as the involved time constants,  �7,6 for synaptic phenomena and  �8 for membrane dynamics. The parameter :�6 represents the mean effective input rate from 

population < to " and occurs under a specific transition delay. Its mathematical definition contains 

the parameters =>? as the global coupling strength, ��� as a connection measure between regions 

i and j and @�� as elements from the fiber length delay matrix. The detailed definition of :�6  

dynamics is presented in the references [9].  

Moreover, precomputed transfer functions are implemented at every time step to define the 

input-dependent adaptive timescale ��, the population’s instantaneous spike rate :� and mean 

membrane potential AB�  (CD,E,F+��, !�,,).  
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Finally, the mathematical definition of the adaptation currents is presented as follows:  

'�G̅'� =  �GHI+J+AB�+�, − �G, − �G̅, +  K  :�+�, 

 

 

  (4)    

 

In (4), an adiabatic approximation is used to define the mean adaptation currents in terms of the 

firing rate :� of the population [9]. The adaptation current acts as an inhibitory mechanism and its 

dynamics are slower compared to the membrane currents. However, in the study of Cakan et al. 

and therefore in this one as well, the adaptation current is only defined by the finite spike-triggered 

adaptation parameter   L9N while the the adaptation parameter J is set to 0. The reason of setting J to 0  is mainly because no new states appeared with a finite J compared to when only   was 

varying [25].   

4.4. Neurolib 

In this study, all simulations and analysis procedures are carried out using Neurolib, a simulation 

framework for whole brain neural-mass modeling written in Python. In general, the computational 

framework allows the user to load structural and functional datasets in order to build the model, 

manage the model’s parameters, perform simulations and store their outputs in for further 

analysis. Moreover, other functionalities can be used to optimize the model comparing the outputs 

against empirical data. In Figure 4, the framework architecture is presented in a schematic way. A 

detailed description of the library can be found in the references [2] as well as at 

https://github.com/neurolibdev/neurolib.  

Following the presented structure, in this work the class Dataset is used in order to handle the 

empirical data, which is then used to build and simulate the model through the Model class. For 

the state-space exploration, the BoxSearch class is implemented, and this way a parameter box 

search for a given model and a range of parameters is performed. Finally, Neurolib’s 

postprocessing functions are used in the in further analysis sections in order to study the appearing 

spatiotemporal patterns and reproduce several figures from the work of Cakan et al.  

 

Figure 4: Neurolib Framework architecture [2]. 
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4.5. State Space Analysis 

The analysis in this current study starts with a parameter exploration in which the behavior of the 

system is observed when the mean input currents to the excitatory (�����) and inhibitory (�
���) 

populations are changed. The rest of the parameters are taken from the exploration in [9] (=>? =200, �G = 600P2) . More concretely, the input currents vary from 0.0 to 4.0 in 51 steps and the 

maximum excitatory rate of the system, as well as the dominant frequency of each node are 

measured. The goal is to establish the state of the model for different parameter configurations. 

In order to do so, the model is run for 30s for every point in the diagram, leading to a total of 51 x 

51 simulations for the whole-brain network, where every simulation is initialized randomly and 

carried out without adding external noise (!./ = 0 PA ∗ P2HR/4).  Moreover, the state space 

diagrams are computed without adaptation ( = 0TU) and with adaptation ( = 20TU).  

When plotting the results of the exploration as bifurcation diagrams, the bifurcation points of the 

system are marked through transition lines which separate the different states. These were 

defined by thresholding different measures in the output of the model in order to classify the state. 

Following this idea, the model can occupy one of four states: up, down, bi-stable or oscillatory.   

Firstly, the up- and down-states are stable states in which the network is either firing or silent, 

respectively. Secondly, the bi-stable state is defined as a non-oscillatory regime in which a node 

can be pushed from a stable down-state to a stable up-state with an external stimulus or vice versa. 

In order to classify a point as bi-stable, a decaying stimulus first in the negative and then in the 

positive direction is applied to the excitatory population of every node. Therefore, if a node was in 

the bi-stable regime, it would fall to the down-state and subsequently jump to the up-state as a 

result of the stimulus. The state of the model is defined as bi-stable if after the stimulus had 

dropped to 0 (after 8s) a difference in the mean firing rate in any brain area of at least 10Hz was 

detected. For this measure, the mean firing rate is calculated in a 2s time window. The 10Hz 

threshold was established in the work of Cakan et al. as it was “less than the smallest difference in 

firing rate between any down- and up-state in the state space” [9].  

Continuing with the oscillatory regions, they were classified as such when the oscillation amplitude 

of the firing rate was larger than 10Hz in at least one brain area. The 10Hz threshold is again taken 

from the work of Cakan et al. as “all oscillatory states had a larger amplitude across the entire state 

space” [9].  This establishes the limit for the amplitude of the firing rate oscillation, ergo the 

differences in the appearing firing frequencies, which is not to be confused with the actual 

frequency in which one node is firing. On the other hand, the criterion of classifying a point in the 

diagram as oscillatory if at least one single node of the whole network is on oscillatory regime is 

based on the fact that the regions in which state transitions from stable to oscillatory states occur 

gradually for each brain area can be disregarded in the analysis as they are very narrow [9].  

Two different oscillatory states can be observed, a fast and a slow limit cycle (LC). On the one hand, 

the fast oscillations are generated by the coupling of excitatory and inhibitory populations and 

characterized by a range of frequencies between 15 and 35 Hz [9]. On the other hand, the slow 

limit cycle arises from the destabilization of the bi-stable state due to the adaptation mechanism. 
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This generates slow oscillations with frequencies around 0.5-2Hz [9]. This phenomenon will be 

explained in detail in the results section.  

 

4.6. Spatiotemporal Analysis 

The goal of the spatiotemporal analysis is to investigate whether the appearing dynamical patterns 

vary when the regional resolution is increased. Therefore, the measurement of the 

interhemispheric synchrony will be implemented. This is a measure that allows to identify different 

states and transitions in the model. Here, the travelling SOs can be identified as regions of high 

synchrony which occur when the silent wave is spreading and many areas remain inactive at the 

same time.  

In order to compute the interhemispheric synchrony, the intrahemispheric coherence has to be 

calculated first. This is a quantification of the instantaneous coherence in the activation patterns 

of the nodes within a hemisphere. Using the Hilbert phase ϕj+t, at each node j, the coherence for 

a set of nodes S  is calculated in terms of an order parameter RS+t, L8N, given by (5).  

[(+�, =  1|]| ^5 
�Փ`+�,
� ∈ 7 ^ 

This measure is calculated for both right and left hemispheres. Next, the interhemispheric 

synchrony is defined as the sliding-window time-lagged cross-correlation between the two 

measures of intrahemispheric coherence. This measure is time-dependent (via the windowing) and 

it also depends on the cross-correlation lag.  Here, a window of 100ms with 90% overlap is used, 

as this allows for an increase in the smoothing at the expense of temporal resolution [8].  

Apart from the cross-correlation, the rate time-series (the raw output of the model) for the whole 

network is plotted for 20s in order to observe the activation patterns occurring during SOs. 

Moreover, the power spectra at the different resolution levels are computed o observe the 

spectral distribution of the appearing temporal patterns.  

Finally, in order to compare the obtained results at different levels of resolution with the empirical 

data, the simulated FC matrices are computed and compared to the empirical FC matrices. The 

simulated FC matrices are obtained via the simulated BOLD signal, which is governed by a set of 

differential equations that shape the hemodynamic response of a brain area to neural activity [2]. 

The simulated BOLD signal is obtained from the output of the model by applying a hemodynamic 

Balloon-Windkessel model [2][3]. In order to match the rate of fMRI recordings, the simulated 

BOLD signal is subsampled at 0.5Hz after numerical integration [2]. After that, it is possible to 

extract a simulated FC matrix through the Pearson correlation of the simulated BOLD signal 

between the different nodes. This simulated FC matrix is compared to the empirical one and 

correlation values are obtained (Pearson correlation of the lower triagonal of the two matrices) to 

quantify the fitting of the model to the empirical data. Note that for computing the simulated FC 

matrix, the first 5 volumes of the BOLD signal are eliminated as a transient to avoid artifacts. This 

correlation values between empirical and simulated FCs are then compared to the correlation 
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values between empirical FC and SC matrices, following the idea that structural connectivity alone 

explains a certain portion of the variance in the functional connectivity, but having an optimal 

model for the microcircuit can lead to explain a larger portion of this variance through the 

simulated FC matrix.  

 

4.7. Analysis of the atlas granularity’s influence when reproducing results from the 

work of Cakan et al. [9] 

In the work of Cakan et. al [9], spatiotemporal patterns and statistical measurements in a whole-

brain model of slow-wave sleep are analyzed. To this aim, the brain was parceled using the 

automatic anatomical labeling (AAL2) atlas defined in [29]. Hereby, they obtained 80 cortical 

regions. In this study, these results will be compared to the ones obtained with the local-global 

parcellation of the human brain [7] and higher levels of resolution. Note that, in the work of Cakan 

et al. [9], the model was fitted to the empirical data through an evolutionary optimization 

algorithm in order to perform the analysis in a point where the empirical data were reflected as 

accurately as possible. In this work, no optimization process was carried out. Instead, the same 

parameter values as in [9] was selected (����� = 3.3 PA ∗ P2HI, �
��� =  3.7PA ∗ P2HI,  =3.2TU, �G = 4765P2, =>? = 265, !./ = 0.37PA ∗ P2HR/4) so that it could be proven, whether 

the optimal parameter values remain the same when changing the parcellation scheme. As the 

simulation with the chosen parameter values showed different results as in [9], an exploration 

around this point was performed (varying   and �G) in order to obtain three points (one for each 

level of resolution) that were equivalent to the one analyzed in [9]. Parameters   and �G were 

selected for the exploration because, firstly, as the resolution level is increased, the adaptation 

parameter   may be increased as there are more regions that also have greater influence in each 

other in terms of adaptation (as the distance between them is smaller). In the cae of �G, the 

adaptation time constant, it was also varied as it also plays a role in the adaptation mechanism, 

which shapes the spatial pattern of slow-wave activity [9]. The equivalent points were evaluated 

in terms of frequency distribution (comparison of the power spectra with the one from the work 

of Cakan et al. [9] and the empirical power spectrum) and also by comparing the state plots, which 

will be explained below.  

In the reproduction of the figures in [9], firstly, the up- and down-states are detected by 

thresholding the firing rate of every brain area in a similar way to other studies [30],[31]. One 

region will be considered to be in the up-state if at any time �, its instantaneous firing rate is higher 

than the threshold :�+�, > 0.01 ∗ max+:�+�,,. If this does not apply, the region will be considered 

to be in the down-state. Also, states with a shorter duration than 50ms were replaced by the 

preceding state. The state measure was conducted both for 1 min and 10 min, and the latter were 

used to compute further statistics, so that a high level of robustness was ensured. The states plots 

were also compared to the firing rate averaged across all nodes in the network, in order to see 

how the defined state is reflected in it. In addition, the wave propagation through the cortex was 

observed by selecting the time of a well-defined down-state in the states plot and analyzing the 

state of the nodes shortly before and after this time instant.  
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On the other hand, for the analyzed statistics, some other measurements are calculated. Firstly, 

the node’s degree defines the level of connection from one node to the others. For one node �, 

the degree is computed as the sum of the � − row in the FC matrix and normalized by dividing it 

by the maximum value in the sum of the rows in the FC matrix. This way, the degree value will be 

in the interval [0,1].  

Moreover, the involvement time series �+�, is calculated as a fraction of the number of brain areas e in a given time � divided by the total number of nodes f. This measure is defined in the work of 

Cakan et al. [9] and previously in other studies as [32]. In this study, if not stated differently, the 

involvement in the down-state will be considered, as in [9]. Furthermore, a distinction between 

global and local waves is done based on the involvement time series. Therefore, a peak finding 

algorithm is implemented as explained in [9]. Oscillations are considered global if the amplitude in 

the involvement time series was larger than 50%, otherwise, when 25% < �+�, < 50% the 

phenomena are considered local, while oscillations with less than 25% involvement are discarded 

[9]. Note that this classification thresholds are taken from [32].  

Furthermore, other statistics are based on the whole-brain oscillation phase. In order to determine 

the mean phase of up- and down-state transitions for the global oscillations in every brain area, 

the global phase (C+�,) of SOs is computed via the Hilbert transform of the down-state 

involvement time series [9]. After bandpass filtering the �+�, signal as indicated in [9], it is 

converted to a complex-valued time series [+�, = U+�,exp +�C+�,, and this phase C+�, from [+�, 

is used as the phase for the whole-brain oscillations [9].  

Once all measures and statistics are computed, a comparison between them is performed 

throughout the different levels of resolutions. 
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5. RESULTS   

5.1. Results of the State Space Analysis  

Figure 5 shows the bifurcation diagrams of the whole-brain network for the different levels of 

resolutions with and without adaptation as a result of the state space analysis. Bifurcation 

diagrams of the whole-brain network are computed without adaptation ( = 0TU) and with 

adaptation ( = 20TU) across the different levels of resolution (100, 200 and 500 nodes). 

Horizontal and vertical axes indicate the mean input current to the excitatory (�����) and inhibitory 

(�
���) population respectively. Both input currents vary in the interval [0,4] in 51 steps. Stable 

states are denoted as “up” and “down”, whereas the bi-stable region is marked in a dashed green 

contour and indicated by “bi”. White contours cover the limit cycles, LCEI (fast limit cycle) and LCEA 

(slow limit cycle). Parameters are =>? = 200, �G = 600P2, !./ = 0PA ∗ P2HI(all other 

parameters are given in  [9] Table 1). At first glance it can be seen that the state space of the model 

is not affected by the granularity increment as the appearing states remain constant in the 

parameter space both with and without adaptation. 
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Figure 5: State space of the brain network.  
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On the one hand, without adaptation, the model’s dynamics show different states depending on 

the mean external input currents. There are two stable states, a down-state, where the network 

shows almost no activity and an up-state, in which an asynchronous firing in the microscopic level 

leads to a constant high firing rate [25]. These two stable states coexist in the bi-stable region 

marked with dashed green lines in the diagrams.  In addition, a fast limit cycle (LCEI) can be found 

in which the coupling of the excitatory and inhibitory subpopulations shows oscillations with 

frequencies between 15-35Hz. Note that there seems to be a numerical artifact appearing as a 

mark of a limit circle in the right bottom corner of the diagrams. To prove that there is no limit 

circle arising in this region, some firing rates of the model with the parameter selection leading to 

the abnormal limit circle were plotted. The plots (see Supplementary Figure 1 in appendix) showed 

this point as a normal up-state suggesting that there was some numerical artifact and no real limit 

circle is generated in that region.  

On the other hand, the bifurcation diagrams from the model with adaptation (Figure 5 , bottom 

row) which also remain constant throughout the different levels of resolution, show how the bi-

stable region is replaced with another limit cycle LCEA due to the activity-dependent adaptation 

mechanism. The hyperpolarizing currents triggered by the adaptation mechanism destabilize the 

nodes in the up-state in the bi-stable region and they decay to the down-state. Here, the inhibitory 

adaptation currents decrease (as they are activity dependent) and therefore, when the excitatory 

input is strong enough, the system jumps to the up-state again. All in all, this phenomenon 

(controlled by the adaptation parameter  ) generates a slow oscillation with frequencies around 

0.5-2Hz. This area where slow oscillations appear will be the region of interest for the 

spatiotemporal analysis.  

For the spatiotemporal analysis, the region of interest was the slow limit cycle (LCEA), so the 

following results are for the parameter selection ����� = 2.5 and �
��� = 2.0 where the dominant 

oscillation frequency is 1Hz (the rest of the parameters remain as specified in Figure 5).  

 

5.2. Results of the Spatiotemporal Analysis 

Figure 6 shows the results for the interhemispheric synchrony and the rates at the different 

granularity levels. As mentioned before, the parameter selection is ����� = 2.5 and �
��� = 2.0 and 

the rest of them remain as in Figure 5. Firstly, when analyzing the interhemispheric synchrony, it 

can be observed that there are clearly marked instants of time (every 1s approximately) where the 

value of the cross-correlation between both hemispheres is very high. This pattern appears 

through all different parcellations for the selected point and represents the spreading of SOs, 

where the silent wave travelling through the cortex generates great levels of coherence between 

the nodes. Hence, at least for this parameter combination, increasing the granularity does not lead 

to the emergence of new patterns observable in the interhemispheric synchrony. Moreover, this 

phenomenon can be observed in the firing rate plots, where nodes show higher firing rates also 

every 1s approximately and in great synchrony. The 1Hz dominant frequency of the spreading 

waves can also be observed in the power spectra which are added in the appendix (Supplementary 
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Figure 2).   However, in the rate plots, there is a small, but discernible difference, with onset and 

offset of up-states more desynchronized as the granularity is increased.  

 

 

 

On the other hand, when comparing the model’s output with the empirical recordings, the FC 

matrix plots in Figure 7 show similar results for the different parcellations. Note that, in general, 

the simulated FC values are higher than the values in the empirical FC matrices, mainly because of 

the absence of noise when simulating. Nevertheless, as it can be observed in the matrices, the 

appearing connectivity patterns are more similar to the empirical functional connectivity the 

higher the resolution is. In Table 1 (first row), the values for the matrix correlations are shown 

(correlation between empirical FC and SC matrices and correlations between empirical and 

simulated FC matrices) and this better fit for higher resolutions is also reflected in the case of +����� , �
���, = +2.5, 2.0,. A noticeable result is that for 500 nodes, the correlation value between 

simulated and empirical FC matrices is even higher than the correlation value for empirical FC and 

Interhemispheric synchrony Rates 

  

  

  

Figure 6: Spatiotemporal patterns with ����� = 2.5 and �
��� = 2.0 
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SC matrices. This could indicate that empirical functional connectivity is better explained when 

simulating with parcellations of higher resolution. 

The spatiotemporal analysis procedure was carried out for two other parameter points in the slow 

limit cycle with +����� , �
���, = +2.48, 1.84, and +����� , �
���,  = +2.30, 1.75,. While the outcomes 

for interhemispheric synchrony and firing rates were very similar to the plots in Figure 6 (see 

Supplementary Figure 3 and Supplementary Figure 5), the correlation values when comparing the 

simulated FC matrix o the empirical one showed different results (Supplementary Figure 4 and 

Supplementary Figure 6), which are also shown in Table 1. It can be seen that with +����� , �
���, = +2.48, 1.84, , a point that is very close to the one analyzed before, a better fit to the empirical 

data is still reached when the granularity level is increased. Moreover, the correlation value for 

500 nodes in the empirical versus simulated FC matrix is also higher than in the empirical SC-FC 

correlation. These higher correlation values are marked in bold font. However, when analyzing a 

parameter selection which is further away as +����� , �
���,  = +2.30, 1.75, , this relationship is no 

longer fulfilled. The correlation value between empirical and simulated FC matrices is increased 

when changing from 100 nodes to 200 nodes, but later, with 500 nodes, it slightly decreases again. 

Also, in this case, the correlation between empirical and simulated FC matrices is not over the 

correlation value between empirical FC and SC matrices for any level of resolution. This fact may 

indicate, that working with higher resolution levels can lead to better fitting, but only if the right 

parameter values are chosen. Therefore, in order to find the optimal parameter selection, an 

evolutionary optimization could be carried out, but this will remain out of this study.  

Table 1: Empirical versus simulated FC matrix correlation comparison. 

 

 

 

 

 

 

 

+klmno, kpmno, Empirical FC-SC corr. Simulated FC – empirical FC 

corr. +q. r, q. s, Sch100: 0.33 Sch100:  0.14 

Sch200: 0.31 Sch200:  0.25 

Sch500: 0.27 Sch500:  0.33 +q. tu, v. ut, Sch100: 0.33 Sch100:  0.11 

Sch200: 0.31 Sch200:  0.22 

Sch500: 0.27 Sch500:  0.30 +q. ws, v. xr, Sch100: 0.33 Sch100:  0.15 

Sch200: 0.31 Sch200:  0.24 

Sch500: 0.27 Sch500:  0.23 
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Figure 7: Comparison between empirical and simulated FC matrices with  ����� =2.5 and �
��� = 2.0   



 

Analysis of the brain atlas’ granularity influence in a deep sleep whole-brain model 

 

33 

 

5.3. Reproduced results from the work of Cakan et al. [9] 

The following results are the reproduction of the different plots and statistics from the work of Cakan 

et al. [9], more specifically Figure 4. In this figure, SOs are reflected in the average firing rate plot as 

well as in the state time series, which lead to select one SO and analyze its propagation through the 

brain. Moreover, the given statistics describe the distribution of local and global phenomena as well 

as the ones from state durations. Additionally, it is shown how the node degree influences the time 

spent in each state and how the transition phase correlates with the node coordinates. All in all, this 

measures allow for a deep analysis of the sleep model in terms of local and global phenomena as well 

as wave propagation patterns. The statistics were computed on a 10 min simulation in [9] and this 

duration was also used in this study. 

In order to reproduce the figures, three equivalent points to the one analyzed in [9] (one for each 

level of resolution) are selected via a small exploration around the original one (whose parameters 

are ����� = 3.3PA ∗ P2HI, �
��� =  3.7PA ∗ P2HI,  = 3.2TU, �G = 4765P2, =>? = 265, !./ =0.37PA ∗ P2HR/4).  The equivalent points were obtained through a variation in   and �G (all other 

parameters remain constant) and are shown in Table 2. Several criteria were used to choose the 

equivalent points: the power spectra and the states plots. On the one hand, the power spectra of the 

three points were compared to the one of the point which is to reproduce from [9] (referred to as 

“AAL2”) and to the empirical power spectrum. The results can be seen in Figure 8, which shows how 

in all cases, there is a higher frequency peak at around 1Hz, which is consistent with the frequency 

distribution of SOs.  

Table 2: Parameter selection for the equivalent points. 

   �G 

Sch100 3.6 pA 4765 ms 

Sch200 4.0 pA 4965 ms 

Sch500 4.0 pA 4965 ms 

 

 

Figure 8: Comparison between power spectra. 
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On the other hand, the states plots (Figure 9) were compared to the ones in [9]. The results show 

similar plots, with more local than global phenomena and also some clearly marked global waves 

where almost all nodes are in the down-state at the same time. The latter can be observed as 

vertical blue lines. These results are put together with the average firing rate of all nodes (Figure 

9), whose shape is reflected in the states plots as the peaks and valleys correspond with the global 

up- and down-states respectively. Note that this results are constant through the different 

granularity levels. However, it can be seen that, the higher the resolution is, the less noise is 

observed in the average rate plots, which could indicate a greater synchrony between the different 

nodes generating the signal.  

Eventually, to check how the selected points fitted to the empirical data, the correlation between 

the simulated and the empirical FC matrixes was computed. The results (Table 3) show high 

correlation values between simulated and empirical FC matrices, which are also higher than the 

correlation values between empirical FC and SC matrices, meaning the selected points are a good 

fit to the empirical data. The plots of the comparison between empirical and simulated FC matrices 

for the equivalent points are added in the appendix (Supplementary Figure 7).   

 

Table 3: Empirical versus simulated FC matrix correlation comparison for the equivalent points. 

 

 

 

 

Parcellation 

Scheme 

y z{ Empirical FC-SC corr. Simulated FC – 

empirical FC corr. 

Sch100 3.6 pA 4765 ms 0.33 0.35 

Sch200 4.0 pA 4965 ms 0.31 0.38 

Sch500 4.0 pA 4965 ms 0.27 0.30 
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Figure 9: State plots and average firing rate for the equivalent points at 

different levels of resolution. 
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Furthermore, in order to observe whole-brain oscillations, in Figure 10, the wave propagation can 

be observed for the different selected points, for an interval of 1500. More concretely, this is the 

global wave observed in Figure 9. The results show how the SOs seem to start in the frontal right 

region and spread back and towards the left hemisphere. Depending on which nodes are the first 

transitioning again to the up-state, the network will jump again to the up-state starting in this 

region which will then propagate to the rest of the nodes. These results are corresponding to the 

ones in [9] in the fact that the silent wave seems to start in frontal regions (although with the 

Schaefer parcellation [7] it comes from the frontal right part concretely), but the return to the up-

state is different in every case. The wave-propagation patterns will be examined in more detail in 

the statistics.   

 

Coming to the statistical analysis, firstly, up- and down-state durations are exponentially 

distributed for all levels of resolution (Figure 12 A), similar to [9]. In general, up-states last longer 

than down-states. These results are consistent with the ones obtained empirically [30]. Regarding 

the distribution of the down-state involvement (Figure 12 B), it can be seen that most phenomena 

are local, as the proportion of nodes simultaneously taking part in the down-state shows lower 

values. This distribution remains as described for all parcellations and is also reflected in [9] and in 
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Figure 10: Wave propagation thorough the different levels of resolution 



 

Analysis of the brain atlas’ granularity influence in a deep sleep whole-brain model 

 

37 

 

human intracranial recordings [32]. In addition, when analyzing the inter-event interval for local 

and global oscillations (Figure 11 C), the plots show how local phenomena occur more frequently 

(shorter inter-event interval) than global ones. This happens for 100, 200 and 500 nodes, as well 

as in [9] and it can also be observed experimentally [33]. The next plots (Figure 11 D) show how, 

for all levels of resolution, down-states last longer when more brain areas are involved. The reason 

for this is that adjacent regions receive less input the more areas are in the down-state. 

Nevertheless, in the case of the up-state duration, it can be seen how duration values are increased 

with the involvement until it reaches around 65%, when greater adaptation inhibitory currents 

appear due to the high firing rates and the up-state duration is shortened again. This can be 

observed with 100, 500 nodes and in [9], but not as clear in the case of 200 nodes. Continuing with 

the relationship between firing rate and involvement (Figure 11 E), all parcellations show a 

proportional relationship between both of them, meaning that, the more regions are in the up-

state, the higher the average firing rates of SOs are [9].  Eventually, the relationship between the 

node degree and the time spent in each state (Figure 11 F) highlights how nodes with higher degree 

(i.e. higher connectivity to other nodes) spend more time in the up-state (and therefore less time 

in the down-state) as they receive stronger inputs from other regions. This relationship is shown 

for all levels of resolution as well as in [9].  

The statistical measurements analyzed until this point were all consistent throughout the levels of 

resolution and with the results from [9], however, when it comes to travelling wave patterns, the 

obtained outcome differs from the one in the work of Cakan et al.. Regarding the relationship 

between state transition phases and node coordinates (in [9] Figure 4 L)  there is a strong 

correlation between up-to-down and down-to-up transition phases and the coordinates of the 

brain areas, whereas here (Figure 12 A), this correlation does not appear at any level of resolution. 

Also, the down state duration values (Figure 12 B) are higher in the middle part and not in the front 

(as shown in [9] Figure 4 I). In addition, the values of the transition phases (Figure 12 C) are firstly, 

not as spread (in a smaller interval) and not homogeneous in the frontal areas (as in [9] Figure 4 

K). All these results are not consistent with the theory that SOs travel in a preferred direction from 

anterior to posterior regions. The suggested reason why these results differ from the ones in [9] is 

the degree distribution. Note that in the AAL2 parcellation [29], there is a strong correlation 

between the node degree and their coordinates in the y-axis (i.e. from anterior to posterior areas), 

meaning that the nodes in the frontal regions have lower degree values. Therefore, the nodes in 

the frontal areas receive less inputs and are therefore more likely to be responsible for starting 

SOs as waves of silence. Nevertheless, in the Schaefer parcellation [6], this relationship is no longer 

true, or at least not as evident as in the AAL2 parcellation [29]. The node degree and the 

coordinates in the y-axis show linear correlation (Figure 12 D), but with lower values than in AAL2 

as shown in Figure 13 taken from [9] and Table 4. Also, the degree distribution from the AAL2 [29] 

and Schaefer parcellation [6] differ from each other in the fact that the AAL2 parcellation [29] 

contains more nodes with lower degree values and the distribution is in general wider than in the 

Schaefer parcellation [7], where degree values are not that spread and the distributions are 

therefore narrower. This can be seen in Figure 14. 
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Figure 11: Statistical measures from the 10 min simulation  
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Figure 12: Statistical measures of wave propagation patterns from the 10 

min simulation 

 



 

Analysis of the brain atlas’ granularity influence in a deep sleep whole-brain model 

 

40 

 

 

Table 4: Linear regression values between node degree and coordinates. 

 

 

  

 AAL2 Sch100 Sch200 Sch500 

 Slope  r-

value 

p-

value 

Slope  r-

value 

p-

value 

Slope  r-

value 

p-

value 

Slope  r-

value 

p-

value 

X 2.02 0.01 0.92 -9.38 -0.04 0.66 1.56 0.01 0.92 3.88 0.02 0.71 

Y -71.81 -0.32 0.004 -22.21 -0.09 0.34 -58.47 -0.24 0.001 -44.32 -0.18 8.76 

z 60.87 0.53 4.12 65.79 0.43 6.85 77.38 0.44 6.41 55.94 0.31 3.09 

Figure 14: Degree distributions (Kernel densities and histograms) 

 

Figure 13: Node degree and node coordinates correlation from the work of 

Cakan et al. [9] 
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6. DISCUSSION AND CONCLUSIONS 

Computational whole-brain models are an innovative and useful technique to analyze and gain a 

deeper understanding of complex brain dynamics. In this field, the implementation of neural mass 

models serves to reduce dimensionality of the system and allows for suitable and more efficient 

simulations. Following this idea, when modelling the brain as a network of connected nodes which 

represent single brain areas composed of larger neuron populations, the choice of the brain 

parcellation can influence the output of the model.  

In this work, an analysis has been carried out in order to check whether the increase in regional 

resolution has an impact in the results of a deep sleep whole-brain model, particularly focusing in 

SOs. Regional granularity is an important factor, as connections between human brain areas are 

less than 50mm apart, but there is no consensus about the regional level of resolution when 

simulating and analyzing SOs. Therefore, the goal of this study was to explore whether there are 

significant differences in the appearing spatiotemporal patterns when the level of granularity is 

increased. To this aim, different aspects of the behavior of the model have been examined.  

Firstly, it has been proven that the state space of the model is not influenced by the usage of a 

different parcellation scheme, nor by the increase of the number of nodes (Figure 5). Also, for the 

examined points, the appearing spatiotemporal patterns remained almost constant across the 

different levels of resolution (Figure 6). A potential explanation for the lack of differences in the 

interhemispheric synchrony which should also be investigated in future work is the fact that SOs 

propagate from anterior to posterior regions, rather than in lateral direction. These very similar 

results across all granularity levels are favorable in sense of computational efficiency, as working 

with lower levels of resolutions is considerably faster. However, there were signs that working with 

a higher parcellation resolution could explain a larger portion of empirical functional connectivity 

patterns, if the optimal parameter space was chosen (Table 1). This is a significant result, because 

of the importance of the connectome in brain dynamics, especially in SOs, which are shown to be 

guided by it [4]. For this reason, in order to analyze SOs through whole-brain modelling, a good 

fitting to the connectivity data is required and this aspect can be improved through higher 

resolution parcellations at expense of time and computational resources.  

On the other hand, many statistical measures show constant distributions across the different 

levels of granularity (Figure 11) showing that, in general, there are more local than global 

oscillatory phenomena and their durations are homogeneously distributed for all levels of 

resolution. SOs can be observed with every parcellation scheme and show similar patterns in terms 

of frequency and involvement, but the origin of where the SOs are generated is not clear in this 

study. Other work as [9] show consistent results with the theory that SOs spread from anterior to 

posterior regions, but the results obtained here are diverse. Other studies such as [34] (where 

different source modelling methods were used to identify the origin of SOs) also concluded that 

there seems to be heterogeneity in the origin of SOs. Here, they established that qualitatively, the 

average sleep SO probably begins in anterior regions and spreads back afterwards, but each 

particular spontaneous wave showed different propagation patterns [34]. Therefore, future work 

should also try to quantify the origin of SOs in order to clarify this aspect.  
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The suggested reason for the appearing differences in the wave propagation patterns is the node 

connectivity distribution (reflected in the node degree measures, Figure 14). SOs simulated with 

parcellations with a lower node degree in the frontal areas (such as the AAL2 used in [9]) do indeed 

emerge in frontal areas, as these nodes receive less input from their neighbors and are therefore 

more likely to remain silent. However, when the degree distribution changes, this rule is no longer 

fulfilled. This fact is shown in the current results with the Schaefer parcellation [7], where the node 

degree has a narrower distribution with higher node degree values in general (also in the frontal 

regions). Given these results, another suggestion for future lines of research is to examine the role 

of the node degree distribution in the dynamics of SOs. Therefore, the node degree could be 

manipulated manually and the effects on the wave travelling patterns could be examined.  

It should also be noted that the chosen points for reproducing the results from [9] when 

substituting the parcellations scheme in this study show a reasonably good fit to the empirical data 

in terms of simulated and empirical FC matrix correlation, as the obtained correlation values are 

between  0.3 and 0.38 (Table 3). However, given the fact that the correlations are lower than in 

[9], where the best score was 0.56 when adaptation was considered, it would be warranted to run 

an evolutionary optimization with the new parcellation to check whether other parameter 

configuration could yield a higher fit.  

All in all, this study shows how the choice of parcellation resolution can be a crucial aspect when 

dealing with computational whole-brain models, specifically in the case of studying SOs, and 

should therefore be taken into account not only for simulating but also when it comes to analyze 

the results and compare them to the work of others. One more time, the importance of the node 

connection degree distribution should be noted. Hence, it should be obtained in a way that the 

brain networks are reproduced as closely as possible, in order to obtain results that are realistic 

and representative.  
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Supplementary Figure 2: Power spectra for the different levels of 

resolution of the selected point in the spatiotemporal analysis 

Supplementary Figure 1: Firing rates from the network in the artifact region 

with ����� = 4 and   �
��� = 0.5 
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Supplementary Figure 3: Spatiotemporal patterns  with ����� = 2.48 and �
��� = 1.84 
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Supplementary Figure 4: Comparison between empirical and simulated FC 

matrices with  ����� = 2.48 and �
��� = 1.84 
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Supplementary Figure 5: Spatiotemporal patterns with ����� = 2.3 and �
��� = 1.75 
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Supplementary Figure 6: Comparison between empirical and simulated FC 

matrices with  ����� = 2.3 and �
��� = 1.75 
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Supplementary Figure 7: Comparison of empirical and simulated FC matrices of 

the three equivalent points chosen for the reproduction of the statistic in [9] 


