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SUMMARY/ABSTRACT 

There are several studies on the heart morphogenesis in the vertebrate embryo, and in particular 

on how during the development of the heart tube bilateral symmetry is broken leading to 

morphogenesis with left-right asymmetry. Despite clinical and experimental findings, it is still 

not entirely clear how left-right patterning drives asymmetric morphogenesis, as the focus has 

generally been on a simple description of the direction of the loop. One way to overcome the 

conundrums in clinical research is to use predictive computational models to help explore shape 

variations during heart development, depending on the congenital anomaly to be studied. 

Heterotaxy, as a set of pathologies affecting the spatial structure of the heart due to left-right 

asymmetry (among others), can lead to cardiovascular diseases, so it is of particular relevance to 

find the origin of this anomaly and the different configurations that can lead to its emergence. 

One of them is known as "Transposition of the great arteries (TGA)" and is suspected to be due 

to a twist of the outflow tract (OFT) during morphogenesis. For this study we aimed to predict, 

through computational simulations and using discretization and finite element meshing methods, 

the morphogenesis of a heart model developed after the heart tube loop when the OFT region does 

not grow, mainly using the quantification of the twist angle. The results provide an insight into 

the mechanism of the cardiac loop, where the flipping tendency is to the right leading to a re-

organization of the ventricles as the first finding. This is relevant for congenital heart defects as 

well as for the estimation of the left-right pattern in the morphogenesis of the heart in order to get 

a better classification in the different classes of heterotaxy syndrome. 
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GLOSSARY 

Buckling: A mechanical instability, characterized by a sudden sideways deformation. It applies 

to the growth of the heart tube, when constrained between fixed poles, and thus undergoes looping 

as a result of buckling (also see Fig. 2). 

Cardiomyocytes: Cardiac muscular cells that are capable of spontaneously and individually 

contracting. They are also specialized in excitation and conduction of action potentials. 

Cell-fate mapping: This method is used by developmental biologists to determine which tissues 

and structures are embryonic in origin. Each cell type or group of cells is assigned a fate in the 

embryo, indicating which parts of the embryo will develop into which tissues. This process is 

called cell lineage tracing when it is carried out at a single-cell resolution. It is also used to track 

tumours' growth. 

Chirality: From the Greek ‘hand’, describes the asymmetric property of objects, such as the hand, 

which cannot be superimposed on their mirror image. 

Convergence-extension: The process by which cells within a tissue converge along one axis and 

extend along a perpendicular axis. This process drives tissue deformation during organogenesis, 

with a combined narrowing on one axis and elongation perpendicularly. 

Dorsal mesocardium: A dorsal tissue in amniotes, which initially attaches the heart tube to the 

dorsal pericardial wall, beneath the foregut. It is progressively broken during heart looping, 

corresponding to dorsal closure of the heart tube. 

Situs: Based on the term 'position' in Latin, this term describes whether an organ or segment of 

the heart is normal (situs solus), mirror-imaged (situs inversus) or incoherent (situs ambiguous or 

heterotaxy). 
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PREFACE 

1.1 Background 

Cardiovascular diseases are a major cause of medical care, hospital admissions, disability and 

other health consequences. According to data provided by the World Health Organization (WHO, 

2022), cardiovascular diseases are the leading cause of death and disability in the world, killing 

17.5 million people each year. A large proportion of these deaths are due to a group of syndromes 

known as heterotaxy. The heterotaxy syndromes are a class of diseases in which cardiac structures 

are misaligned with one another or with other organs, resulting in a number of congenital heart 

conditions. This results in a plethora of congenital heart diseases, including alterations of the 

visceral situs (Carro Hevia et al., 2011). 

 

1.2 Motivation 

One of the major significances of this type of cardiac anomaly resulting from heterotaxy is the 

high prevalence of congenital heart disease, many of which have a complex outcome, and 

extracardiac pathologies related to other surrounding organs. It is essential to know the origin and 

causes of a particular disease, as well as to determine its possible effects in a preventive manner, 

in order to understand it. However, the use of only experimental methods is not always the best 

approach to finding a solution. In situations where animal experiments are too slow, 

computational simulations offer scientific value, economic value, and ethical value. Therefore, 

this relatively easy-to-implement technology is enabling the medical and health sectors to benefit 

from technological advancements promoted by computational simulation. 

 

1.3 Previous requirements 

In order to create the work, it has been necessary to have the data of the model to which the 

preprocessing, processing, and development of the various models executed were subsequently 

applied. This information is being provided by a researcher affiliated with the Pasteur Institute in 

Paris, who has requested collaboration from the UPC to prepare the study, which is part of a 

previously initiated research paper. Furthermore, it was necessary to have a cluster at the 

Department of Applied Mathematics III at the UPC since the simulations took too much time for 

their correct execution and convergence, specifically from the LaCan group, a HPC Beowulf 

cluster with 33 compute nodes (1 acquired in 2013, 3 acquired in 2015, 2 acquired in 2016, 20 

acquired in 2018 and 7 acquired in 2020), one master node and one storage node. All nodes are 

connected using an Infiniband network. 
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INTRODUCTION 

Heart morphogenesis 

In vertebrates, the heart is the first organ to form, and has a vital role in the distribution of nutrients 

and oxygen in the embryo. Initially it functions as a cardiac tube and is principally composed of 

a contractile myocardium that is essential for its action as a central pump. Subsequently, 

regionalization of this structure takes place, and in adult birds and mammals this leads to the 

formation of the four-chambered heart (Buckingham et al., 2005). This organ is an asymmetric 

organ. Particularly, in humans it is positioned on the left side of the thoracic cavity. In addition, 

it is partitioned in two halves, driving a double blood circulation. The atrial and ventricular 

chambers, as well as the great vessels, in the left and right halves of the heart have distinct 

anatomical features, which are adapted to the systemic and pulmonary circulation, respectively 

(Desgrange et al., 2018). 

Through cell-fate mapping studies, histological sectioning, and 3D reconstructions, animal 

models have provided a wealth of biological information on the earliest structures of the 

developing heart (Ivanovitch et al., 2017).  Given the ethical concerns associated with studying 

human embryos, we do not have a lot of data on human development to compare to animal 

models. It is therefore vital to construct human models of heart development that can allow for 

the examination of innate cellular behavior and its effect on cardiac morphogenesis and function. 

Researchers are proposing to use stem cell-derived cardiac cell populations with modern tissue 

engineering approaches to develop models of the earliest structure in the sequence of embryonic 

cardiac development, namely, the linear cardiac tube (Mandrycky et al., 2020). 

The primitive heart tube is one of the earliest structures to form in the human embryo just 3 weeks 

after fertilization. It is highly conserved among vertebrates that the rightward bend or loop of the 

heart tube is the first event that breaks developmental symmetry. For the correct alignment of 

cardiac chambers and thus for the establishment of the double blood circulation, this looping of 

the heart is required. Having left-right patterning in humans is associated with a wide range of 

conditions known as heterotaxy, with an incidence of about 1/10000, including defects in the 

lung, spleen, liver, stomach, intestine and also complex cardiac malformations, which will 

determine patient outcome (Lin et al., 2014; Guimier et al., 2015). For example, in Nodal mutants 

(Brennan et al., 2002), the direction of the cardiac loop is randomized, but the looping process 

still occurs. Researchers Brown and Wolpert (1990) hypothesized the existence of an additional, 

organ-specific mechanism to generate the asymmetry in growth in a random fashion. However, 

the basis of such a mechanism for loop formation in the heart tube remains enigmatic (Le Garrec 

et al., 2017). 
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Tube Looping formation 

● State of the art  

First, a linear heart tube is composed of two layers of dormant heart cells (cardiomyocytes) 

surrounding a layer of cardiac jelly, which keeps the cardiomyocytes from coming into contact 

with a layer of endocardial cells lining the hollow lumen (Männer et al., 2019; Sizarov et al., 

2011). Researchers found that certain regions of the linear heart tube are destined to become the 

atrial and ventricular chambers of the adult heart (Fig. 1A) (Van Vliet et al., 2012). Shortly after 

the linear heart tube forms, it begins to increase in size and rotate, or loop, by intrinsic and 

extrinsic mechanisms to the right side to create a C-shaped curve (C-shaped heart tube). As a 

result, the section of the heart tube that becomes the ventricles relocates downward, forming the 

S-shaped heart tube. During the final stage of the loop, the aorta nestles between the developing 

atria to form a four-chambered organ. 

 

 

 

 

 

 

Figure 1.(A) SEM images of the developing human heart tube from a linear heart tube, C-looped, S-looped, and four-chambered heart 

(4 ch). Future outflow tracts (OFT; yellow), ventricles (V; blue), and atria (A; purple) are color coded to highlight the complex 

structural transition that the heart tube undergoes during morphogenesis. Color coding is a rough anatomical estimation and not exact 

(Oostra et al., 2007). 

 

● Intrinsic and extrinsic mechanisms 

In the context of the deformation of tubular organs, intrinsic mechanisms are determined by the 

interaction between cells within the tube, while extrinsic mechanisms are determined by the 

external forces acting on the tube, such as those at the tube's edges or those resulting from 

embryonic processes external to the tube. 

For intrinsic mechanisms, we consider growth rate and orientation. Rate may be the result of cell 

proliferation or growth, while orientation implies that cells can perceive a reference axis, at a 
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tissue or embryonic level, so that the tissue becomes polarized and the cells behave accordingly. 

One of the best ways to assess these parameters outside the animal model environment is through 

computational simulations. With these it is possible to define a pattern of growth zones (with a 

higher growth rate, but a constant orientation, and vice versa) capable of generating the tube loop. 

These models provide an indication of how intrinsic mechanisms might contribute to the 

formation of tube loops, yet these mechanisms must be confirmed experimentally based on correct 

morphogenesis of isolated tubes. 

There can also be extrinsic mechanisms that lead to tube loop formation, as in chick intestinal 

rotation, where the dorsal mesentery shows left-right asymmetry in its cellular architecture, which 

is dictated by left Nodal/Pitx2 determinants. Consequently, the dorsal mesentery tilts, exerting 

forces on the intestinal tube attached to it (Davis et al., 2008). It is also possible that other extrinsic 

mechanisms are involved, such as convergence-extension (Chen et al., 1998; Iwaki and Lengyel, 

2002; Karner et al., 2009; Wang et al., 2005), or buckling, a concept proposed over a century ago 

that illustrates, when the heart tube grows longitudinally with a fixed distance between its poles, 

the tube is deformed. 

Both intrinsic and extrinsic mechanisms show that the geometry of the growth patterns is crucial 

to determining whether the final tube adopts a helical or S-shaped shape. The tube will deform in 

2D if the growth patterns are within the same plane along the tube axis (Fig. 2Aii, Bii, Cii). In 

contrast, a helical shape requires breaking this flat configuration. There are different methods for 

achieving this: by introducing a third differential growth zone (Fig. 2Ai), by establishing a 120° 

separation on the circumference between the zones that define the orientation bias (Fig. 2Bi) or 

by introducing asymmetries that influence buckling (Fig. 2Ci). 

Generally, these types of computer simulations point to potential mechanisms that could explain 

a heart-specific random generator of asymmetry, as described by Brown and Wolpert (1990), 

researchers mentioned above. Furthermore, intrinsic and extrinsic mechanisms are not mutually 

exclusive and can operate in concert to generate morphogenesis. There have however been 

explant studies that have shown that isolated cardiac tubes do have a curvature (Manning and 

McLachlan, 1990), indicating that intrinsic rather than extrinsic factors are responsible for cardiac 

loop formation. The explants generated a C-shaped tube, but not a helical shape. Additionally, 

surgical disconnection of only one pole (the arterial pole) impaired cardiac looping (Kidokoro et 

al., 2008). Thus, the role of intrinsic and extrinsic factors in the cardiac loop remains unclear and 

the basis of such a mech-anism for the looping of the heart tube remains relatively unintelligible. 
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Theoretical basis of the computational models 

To carry out the experimental problems and the changes of the mechanical behaviour of the tissue 

through computational simulations it is crucial to employ fractional viscoelastic models and 

magnetic resonance imaging, together to develop the behaviour of the tissue, the heart in our case. 

Accordingly, basic potential functions (W) and force contributions (g) are established for this type 

of problem, leading to a rapid derivation of expressions for implementation in finite element 

models (Bonet and Wood, 1997). It should be borne in mind that this part has already been 

developed by research at the Pasteur® Institute, so we start from a meshed model to which we 

will then apply the viscoelasticity formulae computationally, as well as the boundary conditions. 

We next describe briefly the main aspect of the computational model: 

Figure 2. Theoretical intrinsic and extrinsic mechanisms of tube looping. Simulations of tube looping with a finite element model 

(described by Le Garrec et al.,2017). Three looping mechanisms (differential growth, oriented growth or buckling; A-C).  (A) 

Differential growth within the heart tube. Higher (dark red) longitudinal growth (i.e. along the tube axis) can be generated in three bands 

positioned along the tube length in a helical configuration (right in the upper band, ventral in the middle band, left in the lower band). 

Two bands of higher longitudinal growth can be generated on either side (left/right) of the tube to create a flat-S shape (Aii). (B) 

Oriented growth within the heart tube. Simulations assume uniform growth rates in a large band (red). The direction of growth is 

determined by a morphogen, synthesized at a central source and degraded in two sinks, at each pole of the tube (black arrows). In the 

3D setting (Bi), the sinks are positioned at 120° relative to each other, leading to a helical shape. In the 2D setting (Bii), the sinks are 

positioned on each side of the tube, leading to a flat-S shape. (C) Buckling, as an example of an extrinsic mechanism. In contrast to the 

previous simulations, the two poles of the tube are fixed in all three directions (black bars). All along the tube, growth is uniform except 

at the poles, where growth is higher. The 3D setting (Ci) positions regions of high growth at 120° relative to each other, producing a 

helix. In 2D mode (Cii), regions with high growth are positioned on either side (left/right) of the tube, resulting in a flat S. 
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Viscoelasticity 

We assume a decomposition of the total displacements u into an elastic component 𝒖𝑒 and a 

viscous component 𝒖𝑣 (u = 𝒖𝑒 + 𝒖𝑣), as well as a multiplicative decomposition of the 

deformation gradient F = 𝑭𝑣 ⋅ 𝑭𝑒. According to a Maxwell model, we will assume a stress value 

common to the viscous and elastic part: 

𝑆 =
𝜕𝑊(𝑬𝒆)

𝜕𝑬𝑒
= 𝜂𝑬𝑣 

The integral of this equation will allow the viscous deformation to be calculated from the elastic 

deformation 𝑬𝑒 (or the total, since 𝑭𝑒 = (𝑭𝑣) − 1). The elastic deformation can be obtained by 

minimizing the elastic energy (or mechanical equilibrium): 

𝛿𝑊(𝑬𝒆) = ∫ 𝑺: 𝛿𝑬𝑒𝑑𝑉 = 𝛿𝒙𝑎 ∙ 𝒈𝑎
0

Ω

 

Adding Growth 

A multiplicative decomposition of the deformation gradient is used to add growth to the model: 

F = 𝑭𝑒 ⋅ 𝑭𝑔 

The stresses are due to the elastic component 𝑭𝑒 only, i.e. 𝑬𝒆 = 
1

2
 (𝑭𝑒

𝑇𝑭𝑒) , with 𝑭𝑒= F 𝑭𝑔
−1. The 

stress in the intermediate configuration is given by: 

 𝑆𝑒 = 𝐽𝑒𝑭𝑒
−1 σ𝑭𝑒

−𝑇   

For computing the residual, the elastic energy is solely dependent on the elastic component 

W(𝑬𝐸). This is conjugated to the nodal positions 𝒙𝑎, resulting in the expression: 

𝒈𝒆 = ∫
𝛿𝑤(𝑬𝑒)

𝛿𝑭𝑒
𝑭𝑔

−𝑇∇𝑁𝑎𝑑𝑉
0

Ω𝑒
 

Contact setting 

There are a multitude of prototypes to be simulated in which contact influences the final result 

and which must therefore be taken into account when setting the parameters of the model. A quick 

manner to simulate contact problems is by adding a contact potential that penalizes material inter-

penetrability. If the contact surface is assumed flat, this may be achieved by using a signed 

distance (n: normal vector, 𝒙𝑐: a point on the flat surface, 𝒙𝑚: the point that contacts the surface): 

d = −𝒏𝑇(𝒙𝑚−𝒙𝑐) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Taking into account the expression in d, it turns out that d>0 is an admissible region, while d<0 

is the admissible region. As a consequence, a potential function for simulating contact may be 

expressed as: 

U c=
𝑝

𝑞
< 𝑑 >𝑞 

with p a penalty parameter, and q an exponent. The operator < d > is 0 when d < 0, and equal to 

d otherwise. The value q = 2 is a common choice, but gives rise to non-smooth derivative (forces) 

at d = 0, while for q = 3 the function gc = ∇U c is C1 for d = 0, giving better convergence 

properties. 

For the solution of the non-linear equation 𝒈𝑒 + 𝒈𝑐 = 0 we use the Newton-Raphson process. 

 

Aims of the study 

Following this line, in this project we wanted to develop an analysis of the asymmetric right-left 

pattern in the morphogenesis of the mouse heart, based on the data provided by a simulation from 

images obtained by high-resolution electron microscopy (HREM) of the mouse embryo with a 

growth of 9.5 hours of development. The specific objectives of the study were the following: 

● To carry out a discretization of the tubular geometry of the heart using finite element 

techniques. 

● Apply the boundary conditions and non-isotropic growth parameters to evaluate the 

orientation of the buckling process. 

● Simulate the cardiac loop for visualization and comparison of experimental images. 

 

 

 

 

 

 

 

 

(7) 
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RESEARCH METHODOLOGY  

Our data are based on a novel staging system for early cardiac development, based on the shape 

of the heart tube. It consists of eight stages of formation (Fig.3) and, to better characterize the 

shape changes during the cardiac loop, 3D images were acquired and reconstructed according to 

the different developmental moments of each stage. Of these, the E8.5g stage is particularly 

interesting, as this is where the first sign of left-right asymmetry occurs, with the tilting of the 

tube axis. Our model is based on state 8.5i-8.5j, with a morphogenesis development of 9.5 hours. 

Figure 3. Stages depicting the progression of heart looping in the mouse. (A) Schematic representation of shape changes during the 

formation and looping of the heart tube (orange) in the E8.5 mouse embryo. (B). 3D reconstructions of heart shapes from HREM 

images at each stage of heart looping. All the reconstructions are aligned with the notochord vertical (green), the arterial and venous 

poles up and down, respectively. L, left; LA, left atrium; LV, left ventricle; OFT, outflow tract; R, right; RA, right atrium; RV, right 

ventricle. Scale bar: 100 mm (Le Garrec et al., 2017). 
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The file type we have worked with is STereoLithography, abbreviated as STL. This format 

defines the geometry of the 3D objects, excluding colour, texture or physical properties that are 

present in other CAD formats. The format includes the surface mesh of triangular elements with 

three nodes per element. 

First, we pre-process our STL model, i.e. the first objective is to apply a correct volumetric 

discretization through finite element techniques. 

 

Data pre-processing 

It is common for this type of models to have a large number of elements and nodes, and they do 

not always form a closed surface structure, but rather have certain "loose" elements or nodes that 

prevent the creation of the volume of the surface system. 

● Mesh reduction and cleaning with Autodesk MeshMixer 

This pre-processing was started with the Autodesk MeshMixer tool. This is one of the free 3D 

software products offered by Autodesk, which offers several useful features for 3D modeling and 

printing. The software is available for Windows and Mac OS and is based on surface modeling. 

With it, you can design any type of part based on another model, more precisely in a triangular 

mesh. The menu available in this tool is more extensive, of which we will highlight the following 

(Fig. 4): 

Selection. On the left is the main panel. You can toggle between Brush and Lasso at the top. 

Lastly, we have the Size slider, which simply adjusts the size of the Brush/Sphere. 

▪ ctrl/cmd + g - Create a Facegroup. This key assigns a new Facegroup to the selected 

triangles. 

▪ Double click. The entire Facegroup, which is what we have made for our model, will be 

added to the selection. 

▪ Delete. This will simply delete any selected faces. 

Edit. Through this panel, we can reduce the mesh of our model uniformly, acquiring a smaller 

number of elements and nodes. By setting a specific reduction percentage we can then export the 

STL file in either binary or ASCII format. 
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We performed a reduction of the surface mesh, which initially had a total of 459147 nodes and 

918314 triangular elements. This procedure was performed in two steps: 

- Target reduction of 80% of uniform type and preserving the boundaires. 

- Re-target reduction of 30% with identical characteristics. 

The surface mesh was left with a closed configuration, without errors and with a total of 41773 

nodes and 83566 elements (Fig. 5). The file was exported in the same STL format. 

 

 

 

 

 

 

 

 

Figure 5. STL model after 80-30 reduction of the surface mesh. 

 

Figure 4. Main menu tools in Autodesk Meshmixer. 
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● Mesh volume and discretization with Gmsh 

Once the surface mesh reduction was done, we proceeded to obtain the mesh volume of our model. 

To do so, we used the Gmsh software. Gmsh is an automatic 3D finite element mesh generator 

with solution and post-processing modules. Christophe Geuzaine and Jean-François Remacle first 

developed it as academic software, but it has become a useful tool in these environments 

(Geuzaine and Remacle, 2009). The Gmsh program is free, cross-platform, and written in C++. 

It contains four modules: 

❖ Geometry. Using this module, it is possible to draw points, lines, surfaces, and volumes 

in order to create a desired figure. With *.geo files, these geometries can be imported or 

exported. 

❖ Mesh. This is the main function for which it was developed. Within this module, Gmsh 

comes with 1D, 2D, and 3D meshing algorithms. The algorithm has user-adjustable 

parameters such as element size intervals, the minimum number of points to mesh, etc. 

There are options to generate triangles and quadrilaterals in 2D as well as tetrahedra, 

hexahedra, prisms, and pyramids in 3D. We have primarily used this module for our data. 

❖ Solver. A finite element solver module that calls external systems to interact with in order 

to solve a finite element problem. 

❖ Post-processing. This module includes a large number of alternatives in terms of 

visualization, differential and vector operations and data export functionalities. 

Once our model was reduced, we obtained the volume of the STL mesh, for which we used the 

Geometry and Mesh menu. The result was a mesh volume of 311515 elements and 71518 nodes 

in total (Fig. 6), with which we exported the file in *.m format for further processing in Matlab. 

 

Figure 6. Representation of the optimized mesh of the volume and surface of the STL model. 
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Data processing 

After pre-processing our model data, we used Matlab and GiD software to develop the 

viscoelasticity problem, apply boundary conditions, establish growth and perform a subsequent 

analysis of results depending on whether these parameters were set globally throughout the heart 

or locally to simulate and predict growth based on these parameters. 

● Import into GiD and boundary conditions 

The GiD software is a universal, user-friendly, adaptive preprocessor and postprocessor for 

numerical simulations in science and engineering. From pre- to post-processing, it has been 

designed to meet all the needs of the community in the field of numerical simulation.  

Through this environment we apply the appropriate refinements to our mesh. In particular, we 

established the boundaries of the different structures of the heart, to which we then applied 

boundary and boundary conditions to set specific growth parameters. This division consisted of 

five areas: RV, right ventricle (red); LV, left ventricle (blue); RA, right atrium (pink); AVC, 

atrioventricular canal (yellow); OFT, outflow tract (green) (Fig. 7). We established in GiD the 

rigid material and the soft material, i.e., the right ventricle as rigid material and the OFT as soft 

material, since this is the area where no growth will be applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Representation of the model in GiD with the five regions marked and plotted to which different growth magnitudes are 

applied in the simulation. RV: Right Ventricle; LV: Left Ventricle; OFT: Outflow Tract; AVC: Atrioventricular Canal. 
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● Data processing in Matlab 

Once the separation of structures has been applied, we carry out all the processing of the different 

models in Matlab based on the parameters mentioned above. This program is a numerical 

computing and programming platform used by millions of engineers and scientists to analyze 

data, develop algorithms, and create models. It could be said that it is one of the most used 

programming languages today.  

It is worth remembering that there is a distinction between specified growth, which is the growth 

that would be obtained if each region grew independently of its neighbours (i.e. in mechanical 

isolation), and the resulting growth, which is the growth that is observed when the mechanical 

constraints of its neighbours are taken into account (i.e. the mechanically connected tissue). 

Understanding the mechanisms by which the resulting growth arises therefore requires knowledge 

of how genes influence the specified growth. When the specified growth is isotropic, genes have 

to control a single parameter, which is the local growth rate. However, in many cases specified 

growth can be anisotropic, requiring both growth orientations and growth rates to be under genetic 

control. Control of growth orientations requires the definition of a local axis (i.e. axiality, 

represented as a field of lines). In this sense, growth is similar to strain, which also has axiality. 

This similarity has led to the suggestion that tensions provide the main keys to guide growth. 

According to this tension-based axiality mechanism, gene activity influences tissue tensions, the 

orientations of which are transmitted to influence the molecular properties of cells, such as the 

cytoskeleton. These, in turn, modulate growth orientations, which in turn can influence the pattern 

of stresses. In this regard, we have developed a series of simplified hypothetical models that 

illustrate how growth and polarity can interact combinatorially during morphogenesis to generate 

a set of different shapes, with left-right asymmetry depending on the angle of orientation. 

(Kennaway et al., 2011). 

Finite Element Method (FEM) modelling of linear/non-linear viscoelastodynamics with 

growth 

During each simulation step, each element is deformed according to a growth tensor field defined 

from the hypotheses of the model. The constraint of continuity of the tissue implies that the 

resulting growth is different from the input growth, causing residual strain. Simulations are run 

using linear elastic assumptions to compute the output shape by minimizing residual strain energy 

(see Annex A.2-A.5). 

In a first model, growth was established in all described regions without applying a specific 

constraint. In a more refined model, the OFT was simulated as a displacement constraint on a set 

of nodes located along the output of the OFT (Fig. 8). These nodes were not allowed any 

displacement along the x, y and z axes. 
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The input parameters for growth were established as follows (see Annex A.6): 

1. The basic isotropic longitudinal growth, active in each heart element, was set to obtain a 

given increase in each region, so that if for OFT as a material a growth of 0.8 is set, it 

means that the size after the simulation will have increased by a factor of 1.8, i.e. 80% of 

its initial size. For the rest of the structures, the same process was carried out for both 

contact and non-contact models (Table 1 and 2). The corresponding value for the overall 

growth is 2% per time step. 

2. A constraint applied in the OFT structure for non-isotropic growth, so that a null value of 

growth was introduced to avoid the displacement of the nodes, keeping the rest of the 

structures with the same amount of longitudinal growth (Table 1). 

3. Isotropic growth with a magnitude higher than the initial values indicated in point 1 for 

the GrI and NGrI simulations (see Tables 1 and 2). These increases were, compared to 

the Gr and NGr simulations, by a factor of 1.8, which means that the size will grow by a 

factor of 2.8, i.e. by 180% for OFT. The same for all other structures in both the contact 

and non-contact models. 

4. A constraint applied in the OFT zone, introducing a null value in a similar way to point 

2, but maintaining the increments established in the previous point (Table 2). 

 

Figure 8. Illustration of the heart showing the OFT bounded region in orange, where no x-y displacements are 

allowed. 
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 Growth 

Steps 

Non-Contact 

Simulation OFT RV LV  RA 

Gr 0.8 1 1 0.7 2.1 50 

NGr 0 1 1 0.7 2.1 50 

GrI 1.8 2 2 1.7 3.1 50 

NGrI 0 2 2 1.7 3.1 50 

 

 

 

 

 

 

 

 

Simulations visualized in ParaView 

ParaView is an open source, cross-platform data analysis and visualization software that provides 

the ability to build visualizations to analyze data using qualitative and quantitative techniques. 

Data exploration can be done interactively in 3D or programmatically through ParaView's batch 

processing. It uses the Visualization Toolkit (VTK) as the data processing and representation 

engine, the format in which we develop the different simulated models (Fig. 11). 

 

 

 

 

 Growth Contact Parameters 

Steps 

Contact 

Simulation OFT RV LV  RA Contact A Contact MS 

GrC 0.8 1 1 0.7 2.1 
1e-5 1 

50 

NGrC 0 1 1 0.7 2.1 50 

GrIC 1.2 1.5 1.5 1.05 3.15 
1e-5 1 

50 

NGrIC 0 1.5 1.5 1.05 3.15 50 

Table 1. Set of the different simulations to evaluate the performance of the models as a function of the indicated parameters. Different 

growth values were tested on the structures, without taking into account the contact parameters, the OFT zone being the only one where 

no growth was applied for simulations NGr (Gr: Growth, NGr: Non-Growth, GrI: Growth Increased, NGrI: Non-Growth Increased). 

 

Table 2. Set of the different simulations to assess the performance of the models in terms of the parameters indicated. Different values 

of growth in the structures were tested, as well as the level of the contact parameters (Contact A and Contact MS), where the OFT zone 

was the only one where no growth was applied for simulations NGrC (GrC: Growth Contact, NGrC: Non-Growth Contact, GrIC: Growth 

Increased Contact, NGrIC: Non-Growth Increased Contact). 

. 
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RESULTS 

As mentioned above, it is important to note the effect of contact between the mesh elements of 

our base model in different areas of the model. An alternative to adding a contact potential is to 

directly remove the existing one in the desired area. We know that these connections could cause 

irregularities when post-processing our data, so we proceeded to remove the contact elements 

using GiD. However, we realized that by removing this contact, the domains overlapped, which 

is not quite similar to reality, so it became necessary to incorporate the contact function into the 

programming of the simulations. For this reason, we decided to make a comparison between both 

types of configurations, with and without contact (Fig. 9). 

For the contact configuration, we set up different functions so that the simulations could converge 

during their running for each increment. Among these, two parameters should be highlighted, the 

value of the penalty parameter of the potential function, which in the programmed nomenclature 

is set as "Contact A", so that the lower its value the easier the convergence will be since the 

contact forces are reduced; and the master parameter set as "Contact MS", since it tries to find the 

nodes at a minimum distance from the slave triangles. This means that for the value MS=1 only 

the contact of the nodes on one side is applied with respect to the contact of the opposite surface, 

for MS=2 the nodes and the surface are exchanged, and with MS=3 restrictions are applied on the 

nodes on both sides (see Annex A.1). 

 

Evaluation and quantification of the Angle Twist 

To assess the pattern of right-left asymmetry due to non-isotropic growth, we chose two 

representative pairs of nodes. Both were located in the RV and VI, one closer to the caudal region 

and the other closer to the cranial region. The nodes were sufficiently separated and coincided 

approximately in the plane of the x-axis. In each simulation obtained, we quantified the vectors 

linking each pair of nodes, so that we compared the angle between the two vectors from one 

simulation to another. 
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A1 A2 

B1 

C1 C2 

B2 

Non-Contact                                                        Contact 

Figure 9. Contact and non-contact regions. A1-A2) contact and non-contact between OFT and AVC regions; B1-B2) contact 

and non-contact between RV and RA regions; C1-C2) contact and non-contact between RV and OFT regions. 
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● Non-Contact Models 

There was rotation between simulated models Gr-NGr, and between simulated models GrI-NGrI, 

with corresponding parameters. When counteracting the first two simulations, the maximum 

angle reached was 6.1338° on average, while for the next two, it reached a sharp rotation of 

46.4923° on average, both measured in the plane of the ventral-dorsal axis for a growth of 49 

steps (Fig. 10 and 11), as not all models converged on the proposed steps. According to these 

data, performing the two-sample t-test assuming unequal variances, a statistically high significant 

difference was obtained with a p-value of 3,36861E-20 (Table 3). The angle of rotation is positive, 

so that rotation is generated in the transverse plane (XY), along the cranial-caudal axis to the right 

(Fig. 14). A slight rotation is also observed in the coronal plane (YZ), along the ventral-dorsal 

axis to the left (Fig. 15). 

Non-contact 

Compared simulations Max. angle of twist Steps p-value 

Gr NGr 
6,6142 º 

49 

3,36861E-20 
5,6535 º 

GrI NGrI 
59,2287 º 

49 
33,7560 º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Determination of the maximum angle between each pair of simulations, as well as the p-value for the t-student test, as a 

function of the number of steps and the growth parameters set per model in Table 1. 

Figure 10. For both pairs of nodes in simulations Gr-NGr, the angle of twist is shown as a function of the growth increase. 
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● Contact Models 

For the simulations with contact there was likewise rotation between simulated models GrC-

NGrC, and between simulated models GrIC-NGrIC with the corresponding parameters. By 

counteracting the first two simulations, we obtained a linear increase of the rotation angle, with a 

maximum reached for 47 increments of 7.6070º and 7.0103º for the representative RV-LV node 

pair measured in the plane of the ventral-dorsal axis (Table 4; Figure 12). In the case of GrIC-

NGrIC, the rotation angle had a sharp difference from increment 13-15, although on this occasion 

the simulation converged until step 37. The maximum angle reached for the node pair was 

68.2672º and 49.5631º, respectively, and in the same plane (Figure 13). For these data, a two-

sample t-test (GrC-NGrC versus GrIC-NGrIC) assuming unequal variances yielded a clearly 

statistically significant difference with a p-value of 1.75049E-09 (Table 4). For the models with 

contact, the angle of twist is also positive, so that the rotation is generated in the same way in the 

transverse plane (XY), along the cranial-caudal axis to the right (Fig. 16). A subtle rotation can 

again be seen in the coronal plane (YZ), along the ventral-dorsal axis to the left (Fig. 17). 

 

Contact 

Compared simulations Max. angle of twist Step p-value 

GrC NGrC 
7,6070 º 

47 

1,75049E-09 
7,0103 º 

GrIC NGrIC 
68.2672 º 

37 
49,5631 º 

59,2287

33,7560
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Figure 11. For both pairs of nodes in simulations GrI-NGrI, the angle of twist is shown as a function of the growth increase. 

 

Table 4. Determination of the maximum angle between each pair of simulations, as well as the p-value for the t-student test, as a 

function of the number of steps and the growth parameters set per model in Table 2. 
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Figure 12. For both pairs of nodes in simulations GrC-NGrC, the angle of twist is shown as a function of the growth increase. 

 

Figure 13. For both pairs of nodes in simulations GrIC-NGrIC, the angle of twist is shown as a function of the growth increase. 
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Figure 14. Illustration of the models at simulation increment 22 (A) Non-contact Gr model; (B) Non-contact NGr model. Both 

images were captured in the transversal plane (XY) where the variation of both rotation angle and distance can be observed between 

the representative RV-LV nodes (green line) and an extra pair of nodes between OFT-LV (yellow line). 
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Figure 15. Illustration of the same models as in figure 13. Here we can see the coronal YZ plane, with the rotation (albeit more 

subtle) on its caudal-cranial axis between the representative nodes. 
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Figure 16. Illustration of the models at simulation increment 47: (GrC) Contact Gr model; (NGrC) Contact NGr model. Both 

images were captured in the same transversal plane (XY) where the variation of both rotation angle and distance can be observed 

between the representative RV-LV nodes (green line) and an extra pair of nodes between OFT-LV (yellow line). 
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 Figure 17. Illustration of the same models as in figure 15. Here we can see the coronal YZ plane, with the slight rotation on its 

caudal-cranial axis between the representative nodes. This time the advancement of the RV over the LV can be seen to a greater 

extent. 

 

GrC 

NGrC 
Caudal 

Cranial 

R L 

Caudal 

Cranial 

R L 



Simulation of left-rigth asymmetry in heart morphogenesis 

  31 
 

● Non-Contact vs Contact 

The following graph (Fig. 18) shows the overall differences in the rotation angle for the first 

vector for the contact and non-contact simulations. In general, the sudden change is observed in 

both types when the growth of the simulation is higher (Gr → GrI and NGr → NGrI). However, 

we can see that the differences between the models with OFT and without OFT growth are only 

high when we apply a higher increment, i.e. for GrI-NGrI, in both contact and non-contact 

simulations. Nevertheless, this is not seen visually (Fig. 19 and 20). 
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Figure 18. Comparison of the angle of rotation as a function of the increment between the simulations with and without 

contact, for the models with and without growth in the first vector (pair of nodes) analyzed. 
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Figure 19. Illustration of the transverse plane (XY) of the non-contact models between increments 1-37 for GrI-NGrI simulations. 

The angle of rotation can be seen, albeit slightly in comparison to that observed in the numerical quantification. 

 

Figure 20. Illustration of the transverse plane (XY) of the models with contact between increments 1-37 for the GrIC-NGrIC 

simulations. The angle of rotation can be seen, albeit slightly in comparison to that observed in the numerical quantification. 
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DISCUSSION AND CONCLUSIONS 

We have performed a 3D reconstruction of the growth of the mouse heart loop in different models, 

in which a certain region known as the outflow tract (OFT) did not support development, leading 

to an analysis of what kind of left-right asymmetry is generated in the formation of the heart in 

this case. For the simulations with the contact removed in certain areas of the mesh we applied 

non-isotropic growth in the five regions, where the results obtained indicate that there is a rotation 

during heart development when the heart size grows according to the Gr-NGr data (Table 1). This 

rotation leads to a more asymmetric development of the RV and LV, with the RV being more 

anteriorly positioned due to the non-growth of the OFT. This asymmetry was considerably greater 

when the increase in heart size was simulated more steeply, i.e. as a function of the GrI-NGrI data 

(Table 1), which leads us to believe that this abrupt difference between one applied growth and 

the other is due to the inaccuracy of the functions in the simulation, as well as the elimination of 

the elements in the contact zones. 

In the case of the simulations with contact, where it was decided to develop the necessary 

functions so that the simulation could converge in these areas during the model increments, the 

rotation was generated with the same tendency as in the previous case for GrC-NGrC (Table 2), 

although with a slight increase in the angle (Table 4). Similarly, the asymmetry was even greater 

when applying the final size increment after simulation (GrIC-NGrIC), with the angle differences 

being statistically significant to a large extent, although for these models the percentage increase 

of the structures was smaller than in the case of the non-contact simulations. This led us to believe 

that, although the simulations after contact was applied converged better and gave a more realistic 

result, they did not accurately meet our goal of quantifying the rotation angle precisely.  

It should be noted that in the development of the code and its optimization, it would be necessary 

to smooth the contact areas after reduction in the mesh of the heart of the starting model, leading 

to better convergence and a more rigorous simulation for each increment. Furthermore, it is 

important to note that for all simulated models certain oscillations were obtained during the 

increments, especially for the GrI-NGrI case, hence considerable differences were found between 

the quantified pairs of nodes. 

In spite of the uncertainties that are revealed throughout each simulation, it is clear that the trend 

in left-right asymmetry during heart morphogenesis for a limited growth interval when the OFT 

region does not develop is rotational, so that the RV is tilted towards a position further forward 

with respect to the LV in the ventral direction. 

The simulations are captured for a total of 50 increments, but in view of the results obtained this 

segmentation of the development time could be increased to 70-10-150 or other values in order 
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to assess how the rotation arises more thoroughly, bearing in mind that this change would entail 

a higher computational cost. 

 

Clinical issues 

Although there are multiple defects of laterality in the development of the heart, the heterotaxia 

syndrome is one of the most striking, as has been discussed. In fact, in 90% of cases it is associated 

with congenital cardiac defects and with considerable complexity. It is noteworthy that in 17.5% 

of cases of heterotaxy, the global situs of the heart is right-sided symmetrical, i.e. right isomerism, 

and this is associated to a greater extent with congenital heart defects such as complete 

atrioventricular canal defect or transposition of the great arteries and bilateral sinus nodes, among 

others (Lin et al., 2014; Mishra, 2015). On the other hand, if we look from a genetic perspective, 

heterotaxia is strongly associated with mutations in genes such as MMP21 or ZIC3, which are 

involved in node formation, being the embryonic left-right organizer where lateral symmetry is 

first broken. 

Therefore, heterotaxia is associated with a randomization of the left-right pattern with a high 

discordance between the different anatomical structures. Finally, we highlight that transposition 

of the great arteries (TGA), a defect associated with heterotaxy, is a severe congenital heart defect 

in which the two blood circulations run in parallel, resulting in hypoxia of the systemic blood 

(Fig. 21). This defect, according to studies, may be the result of defective outflow tract rotation 

(OFT), which is a rightward process like the one discussed above. This indicates one of the 

possible manifestations of heterotaxy when the heart undergoes abnormal development of this 

cardiac structure, among others. 

 

 

 

 

 

 

 

 

 

 

Figure 21. Left: Transposition of the Great Arteries (TGA), the positions of the pulmonary trunk and aorta are inverted (Desgrange  

et al., 2018); Right: Dextro-transposition of the great arteries, non-oxygenated blood returning to the right heart enters the AO, 

causing severe cyanosis. Oxygenated blood returning to the LA enters the pulmonary circulation again. There is hypertrophy of the 

right ventricle, and the foramen ovale allows mixing but mixing is inadequate. Atrial pressures are mean pressures. AO = aorta; 

IVC = inferior vein cava; LA = left atrium; LV = left ventricle; PA = pulmonary artery; PV = pulmonary veins; RA = right atrium; 

RV = right ventricle; SVC = superior vein cava (Lee B. Beerman, 2020). 
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BUDGET AND ECONOMIC ANALYSIS 

This section specifies the costs associated with the preparation of the study, as well as the costs 

related to the future implementation of the models developed for the analysis of other diseases or 

malformations in the heart. The costs are broken down into the following groups: 

- Human working hours 

- Materials 

- Software licenses 

The value of the costs associated with the purchase of the material necessary for the 

implementation of the elaborated models presented in this budget coincides with the retail price 

supplied by each of the manufacturers. Likewise, the value of the costs of the various software 

licences specified in this budget coincides with the value of the sales price to private users. 

Therefore, all the cost values specified are duly referenced. 

 

Human working hours 

The manpower is divided into engineering, supervisory and technical according to the nature of 

the tasks performed and/or proposed, these being conceptual development, development 

management and model implementation, respectively (Table 5). 

Staff Type Quantity (h) Unit Cost (€/h) Total Cost (€) Subtotal (€) 

Engineering 350 12,00 4200,00 

5760,00 Supervision 50 24,00 1200,00 

Technical 40 9,00 360,00 

 

Material 

Table 6 below shows the costs associated with the acquisition of the material necessary to carry 

out the study. 

Material Type Concept Quantity Unit Cost  
Total Cost 

(€) 

Subtotal 

(€) 

Laptop Computer 
HP ENVY 15-

ep1015ns 
2 799,00 (€/u) 1598,00(a) 

1717,12 Documentation 
Books, Papers, 

etc. 
1 50,00 50,00 

Cluster Computer 
LaCàN HPC 

Beowulf cluster 
1 0,12 (€/h) 69,12(b) 

 

 

Table 5. Human working hours costs. 

Table 6. Material costs. 
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(a): The cost has been taken into account based on current Hp promotions at www.hp.com and 

assuming a laptop model with enough features for the computational load of the study. 

(b): For the total cost, the unit cost of the cluster with a usage of 2 cores and 8 GB of memory in 

one node has been taken into account. The number of hours is assumed to be an average of 72 

hours per simulation for a total of 8 simulations without taking into account the trial-and-error 

models. 

 

Software Licenses 

Table 7 below shows the costs of the various software licenses used during the development of 

the study. 

Sofware License Concept Quantity 
Unit Cost 

(€/u) 

Total Cost  

(€) 

Subtotal 

(€) 

Matlab R2020b Student License 1 69,00 69,00 

518,00 

Microsoft Office 2021 

Home & Student 
Student License 1 149,00 149,00 

GiD simulation 16th 

version 
Student License 1/month 60,00 300,00 

Gmsh 4.9.5 version Free License 1 0,00 0,00 

Autodesk Meshmixer Free License 1 0,00 0,00 

ParaView 5.10.0 

version 
Free License 1 0,00 0,00 

 

 

Budget Summary 

 

 

 

 

 

 

 

 

Cost Type Subtotal (€) TOTAL (€) 

Human working 

hours 
5760,00 

7995,12 Material 1717,12 

Sofware Licenses 518,00 

Table 7. Software Licenses Costs. 

Table 8. Total Costs. 
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ANNEXES 

A.1 Contact Functions 

❖ Link: gKContact Function 

❖ Link: SetDefaults Function 

❖ Link: SetContacts Function 

A.2 Dynamics Function 

❖ Link: gkDynamics Function 

A.3 Elasticity Functions 

❖ Link: Qe4QE Function 

❖ Link: MassMatrix Function 

❖ Link: ke4QE Function 

❖ Link: gStrNeoElem Function 

❖ Link: gStrLElement Function 

❖ Link: gStr Function 

❖ Link: gKViscoElasticLElement Function 

❖ Link: gKNeoElem Function 

❖ Link: gKElastic Function 

A.4 Friction Function 

❖ Link: gkSubstrate Function 

A.5 Geometry Functions 

❖ Link: CheckShape Function 

❖ Link: DefineGrowth Function 

❖ Link: InitProblem Function 

❖ Link: MeshGen Function 

A.6 Input Parameters Functions 

❖ Link: Contact InputParametersC Function 

❖ Link: Non-Contact InputParametersNC Function 

 

https://drive.matlab.com/sharing/2d433e7e-cc5a-44e5-9093-aadf2c3fd91c
https://drive.matlab.com/sharing/2d433e7e-cc5a-44e5-9093-aadf2c3fd91c
https://drive.matlab.com/sharing/2d433e7e-cc5a-44e5-9093-aadf2c3fd91c
https://drive.matlab.com/sharing/52d45aa6-4ebc-42e2-8ad4-e73a50e4685e
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8be339e3-d27f-4aa4-b604-93c364040c10
https://drive.matlab.com/sharing/8eaa651d-6d3e-43a4-83ed-8bb810009e87
https://drive.matlab.com/sharing/5efce49f-058a-4add-bcca-1059253eaa13
https://drive.matlab.com/sharing/5efce49f-058a-4add-bcca-1059253eaa13
https://drive.matlab.com/sharing/5efce49f-058a-4add-bcca-1059253eaa13
https://drive.matlab.com/sharing/5efce49f-058a-4add-bcca-1059253eaa13
https://drive.matlab.com/sharing/a3948b72-5b80-4c90-9465-ada674ae51c2
https://drive.matlab.com/sharing/a3948b72-5b80-4c90-9465-ada674ae51c2


Simulation of left-rigth asymmetry in heart morphogenesis 

  40 
 

A.7 Post-Processing Functions 

❖ Link: OutputMatlab Function 

❖ Link: OutputSubstrateVTK Function 

❖ Link  OutputVTK Function 

❖ Link: WriteVTKMesh Function 

❖ Link: WriteVTKResElemental Function 

❖ Link: WriteVTKResNodal Function 

A.8 Solve Functions 

❖ Link: gK Function 

❖ Link: Renumber Function 

❖ Link: Solve Function 

❖ Link: SolveViscoGrowth Function 

A.9 Viscogrowth (FEM) 

❖ Link: MainViscoGrowth Function 

A.10 Angle Twist Analysis 

❖ Link: TwistAngle Function 
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