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Abstract

One of the greatest challenges of Artificial Intelligence has been and still is the
ability to infer solutions from small problems or even subproblems that can generalize
over larger instances. The goal of Generalized Planning in the field of Automated
Planning is precisely to come up with general principles that are valid beyond the
data used to infer such principles.

In this work we offer a perspective based on Deep Reinforcement Learning
(DRL), in which we try to learn a policy capable of solving complex planning problem
instances by learning the underlying structure through small problems of the same
domain. This is achieved by using an ideal representation of the planning tasks in
the form of a graph that encodes their structure.

Particularly, we use Graph Neural Networks (GNN), which are a type of Neural
Network capable of working directly on graphs and taking advantage of their struc-
ture to get the most out of the information. With all this, it will be shown that the
policy learned by means of DRL and GNN generalizes well over instances of several
orders of magnitude higher than those for which it has been trained.

Keywords: Artificial Intelligence, Automated Planning, Generalized Planning,
Deep Reinforcement Learning, Graph Neural Networks
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Resumen

Uno de los grandes retos de la Inteligencia Artificial ha sido y sigue siendo la ca-
pacidad de inferir soluciones dadas instancias pequeñas de un problema, o incluso
subproblemas, que puedan generalizar hacia otras de tamaño mayor. El objetivo
de la Planificación Generalista en el campo de la Planificación Automática es, pre-
cisamente, encontrar principios generales válidos más allá de los datos que se han
utilizado para encontrarlos.

En este trabajo, ofrecemos un acercamiento basado en Deep Reinforcement
Learning (DRL), en el cual se ha intentado aprender una poĺıtica capaz de resolver
instancias de problemas complejos a partir del aprendizaje de la estructura subya-
cente del dominio con problemas más pequeños del mismo. Esto se ha conseguido
utilizando una representación concreta de las tareas de planificación a través de un
grafo, el cual codifica su estructura.

En particular, se han utilizado Graph Neural Networks (GNN), que son un tipo
concreto de Red Neuronal capaz de trabajar directamente con grafos y que usa esta
misma estructura para sacar la máxima información del problema. Con todo esto, se
verá que la poĺıtica aprendida gracias mediante las técnicas DRL y GNN generaliza
bien hacia instancias de varios órdenes de magnitud superiores que con los que se
hab́ıa entrenado.

Palabras clave: Inteligencia Artificial, Planificación Automática, Planificación
Generalista, Aprendizaje por Refuerzo Profundo, Redes Neuronales de Grafos
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Resum

Un dels grans reptes de la Intel·ligència Artificial ha sigut i continua sent la capacitat
d’inferir solucions donades petites instàncies d’un problema, o inclús subproblemes,
que puguen generalitzar cap a altres de grandària major. L’objectiu de la Planifi-
cació Generalista en el camp de la Planificació Automàtica és, precisament, trobar
principis generals vàlids més enllà de les dades que s’han utilitzat per a trobar-los.

En este treball, oferim una proposta basada en Deep Reinforcement Learning
(DRL), en el qual s’ha intentat aprendre una poĺıtica capaç de resoldre instàncies de
problemes complexos a partir de l’aprenentatge de l’estructura subjacent del domini
amb problemes més xicotets del mateix. Açò s’ha aconseguit utilitzant una repre-
sentació concreta de les tasques de planificació a través d’un graf, el qual codifica la
seua estructura.

En particular, s’han utilitzat Graph Neural Networks (GNN), que són un tipus
concret de Xarxa Neuronal capaç de treballar directament amb grafs i que usa esta
mateixa estructura per a traure la màxima informació del problema. Amb tot açò,
es veurà que la poĺıtica apresa per mitjà de les tècniques de DRL i GNN generalitza
bé cap a instàncies de diversos ordes de magnitud superiors que amb els que s’havia
entrenat.

Paraules clau: Intel·ligència Artificial, Planificació Automàtica, Planificació
Generalista, Aprenentatge Profund per Reforç, Xarxes Neuronals de Grafs
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Chapter 1

Introduction

In the field of Artificial Intelligence, Automated Planning is a discipline that at-
tempts to find strategies of actions that solve a given problem, generally within a
description domain. These are usually search problems in very large state spaces
that require defining heuristics or other strategies to facilitate their resolution. As
stated in [GHA16]:

“We are interested here in the study of computational deliberation capabilities
that allow an artificial agent to reason about its actions, choose them, organize them
purposefully, and act deliberately to achieve an objective.”

With the rise of Machine Learning and, especially, with the development of
Neural Networks, many are the works that try to combine or introduce knowledge
of this area within the field of Automated Planning. We, in particular, place our-
selves within Generalized Planning, which tries to infer knowledge that is capable of
creating strategies that exceed the orders of magnitude in the problems and creates
generalist sequences of actions valid for all types of instances.

Specifically, we make use of Graph Neural Networks, which are a novel type
of Neural Networks that work on graph structures to infer knowledge, and we also
use them in conjunction with a Reinforcement Learning module, with which we will
create a policy that will allow us to infer such strategies.

In chapter two we will talk about different lines of work related to what is
going to be developed in this Master’s Final Project, while in chapter three we will
describe the concepts and models that we are going to use for this development.
Chapter four will focus on explaining the architecture of the system on which all the
work has been based, and then in chapter five we will develop a series of experiments
to test the usefulness of the system. Chapter six will focus on an analysis of the
results of these experiments to see where there is room for improvement, and will
also present modifications to help improve the system. Finally, chapter seven will
focus on the conclusions drawn from all the work and future lines of research that
open up with this work.
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CHAPTER 1. INTRODUCTION 2

1.1 Motivation

This project is motivated by the reading of the paper [RIV20]. We found the ap-
proach very interesting, especially the part of the PDDL problem representation as a
graph structure and the use of Graph Neural Networks to create the Reinforcement
Learning policy. That is why we were interested in understanding and analyzing the
work, trying to draw more complete conclusions from what was stated there.

Since the article is a preprint of a workshop, we thought it was interesting to
make an introspection inside it, understanding how the representation works, how
it performs within the domains proposed in the paper and in others that we added
later on, and why it works well in some but not in others.

To do this, we created a taxonomy with which we classified the proposed do-
mains and tried to establish a hypothesis about the performance of the proposal
within them. This hypothesis tries to be justified with the definition of another ar-
chitecture a little more elaborate, which is tested with the domains that have given
the worst results and it is observed that it improves the performance.

1.2 Objectives

With the above, we state the following specific objectives that we want to achieve
in the development of this work:

• Understand the technology developed in the article and explain it in detail.

• Assemble the architecture successfully within the latest existing libraries in
the field.

• Choose the domains that we want to use to experiment with this architecture.

• Develop a classification taxonomy for these domains.

• Experiment within these domains and draw conclusions regarding the taxon-
omy presented.

• Analyze points of potential improvement and develop new architectures to
improve results.

• Conclude whether such experiments actually improve results and understand
why.



Chapter 2

Related work

In the area of Artificial Intelligence (AI), a controller is a system that receives situa-
tions or states occurring in a dynamic and not completely predictable environment,
and selects the most appropriate actions for achieving some goals. There are two
main approaches to the task of designing a controller: the planning approach that
builds the controller based on the specification of a model of the environment or
domain, and the learning approach where the control is inferred from a set of expe-
riences gathered from the environment.

These approaches, also known as model-based solvers and model-free learners
[GEF18] respectively, highlight the advantages and limitations of both perspectives.
The planning approach generates systems that are transparent, flexible and generic,
but require a model designed by an expert and are computationally expensive. The
learning approach, however, generates systems categorized as black-boxes that work
for a fixed size input, but their techniques are much faster and capable of inferring
hidden relationships within the data.

In the last few years, some techniques that integrate planning and learning have
been developed in order to identify the dimensions of a problem in which it is more
convenient to apply one algorithm or another.

2.1 Planning controllers

One of the big limitations of the planning approach is the need to have a model
that describes the state variables of the problem and the executable actions in the
environment [GHA04]. In this line there exist works whose objective is to learn
the model of actions from observations of the environment. ARMS [YAN07] and
SLAF [AMI08] are two of the first algorithms capable of learning the actions of
a domain from plan traces with partial or null observation of intermediate states.
ARMS offers no guarantee that the learned model can correctly explain the test set
traces, and SLAF does not exhibit high accuracy in learning the preconditions of
actions.

3



CHAPTER 2. RELATED WORK 4

These two systems were followed by others such as LAMP [ZHU10] or AMAN
[ZHU13], which introduce the concept of noise or probability of observing actions
incorrectly and LOUGA [KUC18] or LOCM [CRE13], whose distinguishing feature
is its ability to learn state variables. Finally, FAMA is one of the most recent ap-
proaches for learning action models with minimal observability [AIN19]. An example
of this type of controller can be seen in Figure 2.1.

Figure 2.1: An example of a controller within the planning perspective. With a
single hand-crafted model of the domain, the solver (planner) is able to compute a
plan for each problem. This perspective uses a generalized model to create particular
solutions.

2.2 Learning controllers

We now move to the learning approach where one of the most successful techniques
for learning controllers is Deep Reinforcement Learning (DRL). Research using plan-
ning in a DRL environment, which is known as Model-based Deep Reinforcement
Learning (MDRL), aims to build a predictive model of the environment. MDRL
uses the learned model not only to obtain a reward but to predict the state result-
ing from applying an action. This allows understanding the world, predicting and
controlling the agent’s experience when acting in the environment [SUT18].

Models in MDRL are mathematical models of sequential decision making in
non-deterministic environments such as Markov Decision Processes (MDPs) [PUT94].
The integration of these models in MDRL has led to very successful applications
in robotics [NGU11] [EBE18], gaming [SIL18] [KAI20] and autonomous driving
[YUR20] [PER22].

More recent work in this area focuses on exploring the benefits of incorporating
planning into a MDRL agent such as studying the degree of generalization that a
planner can provide (it is worth recalling that DRL is efficient for solving tasks of a
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given type and size, but finds it difficult to generalize the learned model to another
set of tasks) [HAM21], as well as proposals to design a common framework that
integrates planning and learning [MOE22]. An example of this type of controller
can be seen in Figure 2.2.

Figure 2.2: An example of a controller within the Reinforcement Learning perspec-
tive. From a collection of data a predictive model is learnt which can then be used to
calculate a policy. Under this perspective a particular model is learned (particularly
adapted to the data) from which a general solution (policy) is inferred.

2.3 Learning to plan controllers

So far we have presented two different lines of integration of planning and learning
for the design of controllers in AI. The first line exploits techniques of a Machine
Learning module in order to learn a deterministic action model that will later be
used by a classical planner. The second line integrates a non-deterministic action
planning module into a learning agent.

While classical planning models do not allow expressing the nondeterminism
of an environment, high-level representation languages such as PDDL [MCD98]
[FOX03] can be used to specify the model of a domain, thus avoiding the need of
an explicit representation of the entire space of states and actions, as it is typically
the case in most nondeterministic models.

Moreover, the advances in classical planning in recent years allow to solve
satisfactorily any task of a domain represented with PDDL, which confers a high
degree of generalization as it does not depend on the size of the input problem.
However, the generalization in the input data does not carry over to the output
since a classical planner returns a plan solution for a particular planning task and
this solution is not generalizable to other tasks. Interestingly, this contrasts with
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stochastic model solvers, which return a policy, i.e. the best action to execute in
each state, and this policy is applicable to any task. All this highlights the benefits
of using each approach to solve one type of problem.

Taking advantage of these synergies, we can find a recent line of research using
MDRL techniques applied to a domain model specified in PDDL and several task in-
stances with the goal of learning a policy and/or value function that is subsequently
used to design a heuristic function for a classical planner [RIV20] [GEH22]. This line
of work leads to what is called “Generalized Planning”, techniques capable of return-
ing a solution that solves several planning tasks instead of a single one. This type of
methods require the specification of a model of the environment, as in all methods
that fall under the umbrella of the planning approach, and apply Relational Neural
Network techniques to exploit the structure of the planning domain such as GNNs
(Graph Neural Networks) [SEJ18] or NLMs (Neural Logic Machines) [DON19].



Chapter 3

Background

In this chapter we will describe the techniques used in our work, going through each
one and defining them in a general way, with the purpose of making this work as
self-contained as possible. We will talk about Planning, Graph Neural Networks,
Reinforcement Learning and ways to train a reinforcement learning modules.

3.1 Planning

Classical planning is the problem of finding a sequence of actions that applied to
an initial state lead to the achievement of a goal or a set of goals. The two main
components of a planning task are the domain and the problem.

A planning domain represents the hand-crafted model of the planning per-
spective presented in the previous chapter (see Figure 2.1). Formally speaking, a
planning domain is defined as a set D = (F,A), where F is a set of fluents that
describe properties of the domain objects and their relations, and A is a set of ac-
tions in which every a ∈ A is defined by a triplet (Pre(a), Add(a), Del(a)); Pre(a)
are the preconditions that must be true in a state for the action to be applicable;
Add(a) are the effects of the action that assert a positive literal in the state that
results after the application of a; and Del(a) is the set of negative effects, i.e., the
set of literals which become false after the action is applied.

A planning problem instance is defined as a tuple (I,G) linked to a domain
D = (F,A), in which I,G ⊆ F are, respectively, the initial state and goals of the
problem. We can think of every problem in Figure 2.1 as a different tuple (Ii, Gi).
The purpose of planning is to find a solution to a problem (Ii, Gi). A solution is a
sequence of actions or plan πi = ⟨a1, a2, . . . , ak⟩, ai ∈ A ∀i such that the result of
the application of the action sequence ⟨a1, a2, . . . , ak⟩ to the initial state Ii leads to
a state S ⊆ F that satisfies Gi ⊆ S, that is to say, that the state S contains every
goal in Gi.

Classical planning uses a formal language called Planning Domain Definition

7



CHAPTER 3. BACKGROUND 8

Language (PDDL, [MCD98]) to define domains and problems. More specifically,
while the above definition of planning domain uses a grounded interpretation, a
domain in PDDL is written as a lifted or first-order specification. This means that
the properties of the domain objects and their relations are expressed as first-order
predicates, and the set of actions A is actually specified as operators composed of
an action name and a series of variable arguments. As an example, consider the
following excerpt of a simple transportation domain in which we have objects of
type location, truck and box:

(:predicates

(at ?t - truck ?l - location)

(at ?b - box ?l - location)

(in ?b - box ?t - truck)

(free ?t - truck)

)

The predicate at is used to specify a locatable object (truck or box) in a
location. The predicate in denotes whether a box is inside a truck and the predicate
free indicates whether a truck is free.

Let’s suppose now a planning problem instance with two trucks identified as t1
and t2, two boxes referred as b1 and b2 and two locations locA and locB. Assuming
a state of the problem in which the truck t1 is at locA, the box b1 is inside the truck,
the truck t2 is at locB, and the box b2 is at locB, the literals (at t1 locA), (in
b1 t1), (at t2 locB), (free t2) and (at b2 locB) would make up the state.

Planning problems have predominantly been approached from a state space
search perspective. After all, a planning problem is nothing more than finding paths,
usually as short as possible, within a structure. The search is usually guided by some
kind of heuristic function, which makes this operation computationally less hard.
We limit ourselves to classical planning that takes into account only instantaneous
actions without duration, perfect information without losses and sequential planning.

One of the purposes of this work is to learn strategies or policies that solve
multiple problems of a give domain D. That is, rather than finding a solution plan
πi to each problem (Ii, Gi) of a domain D, we aim to find a general plan Π that
explains the behaviour of each individual πi. The idea is to learn a general strategy
for problems of domain D, from small problems to larger problems using neural
networks.

3.2 Graph Neural Networks

Graphs are structures that model relations between a set of elements, using the
concept of node (an object) and edge (a relationship between nodes). The structural
property of graphs combined with Machine Learning (ML) has proven to be quite
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useful in several fields because of its great expressive power, for example in social
science [WU-L20], natural science [SAN18], natural language processing [WU21] and
many others.

Formally speaking, as stated in [SAN18], a graph G = (V , E) is a duple of nodes
V = {1, ..., n} and edges E ⊆ V × V , where (i, j) ∈ E denotes an edge from a node i
to a node j. A node can represent whatever we want; from the ML perspective, an
element (node, edge, etc.) is described with a vector called feature vector.

It is interesting to think about how we could represent a situation within a plan-
ning domain in the form of a graph. For example, considering the logistics example
presented in the previous section, we can create a simple graphical representation
of the scenario, as shown in Figure 3.1. We can see that the graph explains the
aforementioned situation: truck t1 is at locA and has the box b1 inside it, so it is
not free, while truck t2 is free, and it is at locB like the box b2.

Figure 3.1: Example of a representation of a problem in a generic transport domain.

There are several aspects that must be taken into account if we want to follow
this representation:

• The graph has to represent the taxonomy of the problem, i.e., has to be able
to express types and objects.

• Features are not only important in nodes, but also in edges.

• As predicates are not symmetrical, the graph must be undirected.

• Nodes must represent properties intrinsic to objects while edges must represent
properties between objects.

• There are also properties that are not intrinsic to an object, nor to a relation
between two objects, so we have to be able to represent general information
of the problem in some way.
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In order to work with this structure, Graph Neural Networks (GNNs), have
become a widely applied graph analysis method for the past few years, as stated
in [ZHO20]. They are optimizable and permutational invariant transformations of
all the elements in a graph, so their final purpose is to generate a suitable embedding
of an element: a node, an edge or the graph itself. We can use GNNs to infer different
types of information:

• At the node level, typically for tasks of node classification. For example, in the
CORA dataset, a node-level task is to decide whether a paper (represented as
a node) falls into one of seven categories based on the words inside it and the
citations between other papers1.

• At the edge level as in most recommender systems [WU-S20], where the ob-
jective is to predict the best relations between nodes in a graph of recommen-
dation; i.e., we want to classify “good” and “bad” edges.

• At the graph level as in Figure 3.2, in which we want to know whether or not
a graph contains two cycles.

Figure 3.2: Graph classification task: Does the graph contain two rings?. In this sit-
uation we want to discriminate a network by whether or not it has two cycles within
it. Source: https://distill.pub/2021/gnn-intro/. Accessed: 15-06-2022.

Graph Neural Networks use embeddings for each element of the graph, as we
have already mentioned. This means that every node, edge and global property
(these last two are optional) are represented by a vector. In the case of one-
dimensional vectors, the representation would be a number.

A GNN layer is the operation of applying a transformation to the embeddings of
the graph, generally by a process called message passing, which can be a convolution,
a MLP or whatever flow of information we want to define. Figure 3.3 shows this
transformation which intuitively follows the next steps for each node of the graph:

1https://paperswithcode.com/sota/node-classification-on-cora. Accessed: 15-06-
2022.

https://distill.pub/2021/gnn-intro/
https://paperswithcode.com/sota/node-classification-on-cora
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it gets the neighbor embeddings of that specific node, then it aggregates them with
a sort of aggregation operator, it transforms them by generally using a non-linear
function and then it updates the information. Additional information of the edge
and the graph embeddings can also be taken into account in this aggregation.

Figure 3.3: How do GNNs generate graph embeddings. Source: https://distill.
pub/2021/gnn-intro/. Accessed: 15-06-2022.

Assuming that each node has an initial vector representation h
(0)
i ∈ Rd0 , a

Graph Neural Network layer has a set of node embeddings {hi ∈ Rd | i ∈ V} and a
set of edges E as an input. The output of the layer is a new set of node representation
{h′i ∈ Rd′ | i ∈ V}, where Ni = {j ∈ V | (j, i) ∈ E} is the neighborhood of i:

h′i = fφ(hi,AGGREGATE({hi | j ∈ Ni}))

where fφ and AGGREGATE are what distinguish one GNN layer type from another.
AGGREGATE is a permutationally invariant operation that aggregates messages
from the local neighborhood of a node. Basic neighborhood aggregation operations
are the sum or average of the neighbor embeddings.

Depending of how much we successively apply these layers to a graph we obtain
different “states of information”. For example, if we apply only one layer we have
information combined from each node and its neighbors, or if we apply two layers
we have information combined of a node, its neighbors and the neighbors of its
neighbors.

3.3 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach to learning from envi-
ronmental interaction [SUT18]. The main objective of RL is to learn a policy that

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/
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defines the agent’s behaviour at a given time. In our case, we will learn a planner’s
behavior to solve problems in a particular domain.

In RL we pursue the agent to follow the optimal path (states/actions) in a
given environment so that the agent collects the maximal reward. Figure 3.4 shows
an example in which the agent’s objective is to take the diamond without falling
into the trap (maximization of the total reward).

Figure 3.4: Typical example of a problem modeled with Re-
inforcement Learning in which an agent wants to obtain the
maximum benefit. Source: https://towardsdatascience.com/

function-approximation-in-reinforcement-learning-85a4864d566. Ac-
cessed: 22-08-2022.

RL algorithms are often modelled as finite Markov Decision Processes (MDP)
[HEY90]. An MDP maps a current state to an action where the agent continu-
ously interacts with the environment in order to produce new solutions and receive
rewards. An MDP is defined as follows:

(S,A,R, P, T, ρ)

where S is a set of states, A is a set of actions, R is a reward function, P a
transition probability function such as P (s′, s, a) = p(s′|s, a) and ρ is the distribution
over initial states. In the example of Figure 3.4, a state could be, for example, a
robot’s position inside a cell of that grid. We can add more information to the state,
for example, specifying the tools the robot is carrying.

At each time step t, an agent takes an action following a policy, represented by
π, from its current state st:

π : S → p(A = at | S = st)

Applying the policy to the state st it transitions to a newer state π(st) = st+1,

https://towardsdatascience.com/function-approximation-in-reinforcement-learning-85a4864d566
https://towardsdatascience.com/function-approximation-in-reinforcement-learning-85a4864d566
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and receives a reward rt = R(st, at). In the example of Figure 3.4, the actions could
be, for instance, the movement of the robot (up, down, left and right) and, if we use
tools, the lighting of a flashlight.

When modeling a Reinforcement Learning problem, we need to define the re-
ward function. In the example of Figure 3.4, the agent receives a positive reward,
+1, if the robot reaches the diamond, a negative reward , -1, if it falls into the hole,
and a neutral reward, 0, in any other case. By maximizing this reward function we
would obtain that any path that starts where the robot is and reaches the diamond
without passing through the hole would be optimal.

A more sophisticated reward function would return, for example, a higher re-
ward as the robot gets closer and closer to the diamond using a distance metric.
This would make the optimal path not just any path, but the shortest path to the
diamond.

We can then define the value of a policy π, J(π), as the expected value of
the reward of all the possible paths τ induced by π within a task horizon T :

J(π) = Eτ∼π

[
T∑
t=0

rt

]

Thus, the learning problem is simply an optimization problem that seeks the
policy with the best possible reward:

π∗ = argmax
π

J(π)

In spaces where the set of actions and states is reasonably small, the policy can
be represented as a table where rows denote the discrete probability of actions that
can be taken in a fixed state. However, in the case of large state and action spaces
as it is the case we address in this work we are forced to represent the policy as some
function approximator πθ, with θ being the parameters for the approximation.

We can also define different value functions for policies, changing then the
optimization problem. One very common approximation is, given γ ∈ [0, 1]:

J(π) = Eτ∼π

[
T∑
t=0

γtrt

]
= Eτ∼π [R(t)]

Which is the one that is used in this work and induces a decay for the last actions
taken in a trajectory. The parameter γ is the discount factor and is used to determine
the weight that the RL agent gives to rewards in the distant future versus those in
the immediate future. If γ = 0 then the RL agent wil be completely myopic and will
only learn actions that produce an immediate reward. The R(t) function is called
the return to-go function and represents the sum of each reward plus the discount
factor.
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3.4 Training a RL function approximator

Since the state space becomes too large and enumerating all the possible states or
actions is unfeasible, a new approach based on the feature vector of each state is
conceived. The aim is to use the features to generalize the value estimate of states
that have similar features.

The above statement reflects we do not pursue the true value of a state but
an estimation or approximation as this will allow us to achieve faster computations
and a broader range of generalizations. This section is thus devoted to explaining
how to compute these approximations, that is, function approximators.

In this work we will focus on stochastic policies. As we mentioned earlier, we
assume that the problem can be modelled as an MDP, and therefore we do not have
a clear action to take. Instead, stochastic policies offer a probability distribution
over actions, and the act of sampling from that distribution is called rolling the
policy.

For training a RL function approximator πθ, policy gradient methods are used
with Monte-Carlo sampling, which are methods that rely on randomness in order
to solve generally deterministic problems, for the estimation of parameters θ. The
gradient of the RL objective function is, according to [WIL92]:

∇θJ(πθ) = Eτ∼π

[
T∑
t=0

∇π log πθ(at|st)
T∑

t′=t

r(st′ , at′)

]
= Eτ∼π

[
T∑
t=0

∇π log πθ(at|st)R(t)

]

Where R(t) is the return to-go function. Nonetheless, this gradient is often estimated
by choosing certain sampled trajectories Dk and computing the gradient of a pseudo-
loss function with them:

Lpseudo =
1

|Dk|
∑
r∈Dk

T∑
t=0

log πθ(at|st)R(t)

The Dk trajectories are sampled at iteration k of the algorithm and each step the
parameter θ is updated:

θk+1 = θk + α∇θLpseudo

This algorithm is highly inefficient because it needs to discard the data collected
at each iteration and collect new data for the next update. In other words, the data
used to update the policy must also be generated by the same policy parameters.

Other algorithms such as Proximal Policy Optimization (PPO) are used to
better exploit the data collected at previous iterations of the learning process. PPO,
in particular, performs several updates using the collected data before discarding it,
thus allowing a better usage of resources.
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This situation could lead to the algorithm being biased by the data at each
iteration, so different strategies are used to avoid divergence between the current
policy and the one that collected the data. More specifically, a special clipped
objective is used in order to minimize this divergence. The algorithm described
in [SCH17] describes the following optimization problem:

θk+1 = argmax
θ

1

|Dk|
∑
r∈Dk

T∑
t=0

M

M := max

{
πθ(at|st)
πθk(at|st)

A(at|st)πθk , clip

(
πθ(at|st)
πθk(at|st)

, 1− ε, 1 + ε

)
A(at|st)πθk

}

Where clip is a function that prevents the value of the first parameter from
exceeding the values of the interval compounded by the other two parameters, in
this case [1 − ϵ, 1 + ϵ], πθ is the current policy that is being optimized, πθk is the
previous policy before updating, and A(at|st)πθk is the advantage of an action at
given a state st inside a policy πθk :

A(at|st)πθk = R(t)πθk − Vϕk
(s)

Where R(t)πθk is the return to-go value, which depends on the actions taken by the
policy, and Vϕk

(s) is a state value function predicted by some approximator with
parameters ϕk, obtained by solving:

ϕk+1 = argmin
ϕ

1

|Dk|
∑
r∈Dk

T∑
t=0

|Vϕ(st)−R(st)|2

In our work, the value of ϕk+1 is extracted from the GNN.



Chapter 4

Generalized Planning model

In this chapter we will explain our approach to build a Generalized Planning model.
The base structure that has been chosen for the generalized planning system is the
one presented in the article [RIV20]. In the cited paper, Graph Neural Networks
(GNNs) are used to represent the state of the problem by means of embeddings
that come from the propagation of the problem information through the graph,
via the layers of the GNN. This information is later used to create an adequate
representation of the actions.

Once the data is processed, an MLP representing a Reinforcement Learning
policy is trained, which will return a probability distribution over the actions. The
final objective is, therefore, to develop a heuristic which, included in a greedy search
algorithm combined with the RL policy, will return adequate results. In the follow-
ing sections, we will present the components of the model architecture as well as
explaining the information flow of the generalized planning system.

4.1 Acknowledgement

We got in contact with the authors of the named article requesting their implemen-
tation to do this work. They provided us with the implementation used for the
experimentation shown in the paper, turning out that the code, which was written
back in 2016, was completely outdated and much of it remained incompatible. This
affected specially the GNN module as it used a proto-version of the Pytorch Geo-
metric library [FEY19] which though it is a relatively new library, it has undergone
many changes in the last few versions. The work within this chapter has therefore
been divided into several parts:

• To understand how the code works and, with that, to migrate the code to
the newer libraries and put together all the pieces of each block (GNN, DRL,
PPO, etc.) so that they all work together.

16
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• To understand and experiment with the provided architecture so as to analyze
what type of strategies are learned and why.

• To modify the architecture by including new blocks that give rise to new
alternatives and study the results.

4.2 Overview of the Generalized Planning model

The generalized planning model is based on a state space heuristic greedy search
algorithm that solves planning problem instances. Given a domainD, and by solving
various problems instances of D, we aim to learn a strategy or policy that solves
“any problem” of the domain. We stress that we aim to train a model by solving
instances of different size with the purpose of learning a model capable of solving
instance of any number of objects and relationships between the objects.

The central component of the model architecture is thus a state-based search
process combined with the computation of a RL module which is used to devise a
heuristic function to guide the search process. Roughly speaking:

• A node of the search tree, which represents a planning state, is encoded as a
graph and processed through a GNN.

• The info obtained from the GNN is fed to the RL module, which uses it to
compute an approximate value for the state as well as a policy over the actions
applicable in the state.

• With the policy and value functions returned by the RL, a heuristic function
is designed to compute a heuristic value for each node during search.

4.3 State representation

As commented in section 4.2, our model builds a search tree for solving a planning
problem of a particular domain, and nodes of the search tree represent a planning
state. Particularly, a planning state is represented in the form of a graph, so that we
use the perspective explained in Section 3.2 with the intention of encoding properties
and relations between the objects in a proper way. The planning state comprised
in a node of the tree is specifically represented as state-goal graphs, a graph that
comprises both the state of the node as well as the goal of the problem.

A state-goal graph encodes the literals of the planning state of the node plus
the literals that form the goal of the problem. Initially, for a particular problem
(I,G), the initial state-goal graph will represent the literals of the initial state I and
the literals of the goal G. For successor nodes, the graph will contain the state of
the corresponding node and the goal G, which will be present in every state-goal
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graph of the search tree. It is important to highlight not to mistake the nodes of
the heuristic search tree with the nodes of the graph.

Figure 4.1: Example of a planning problem of the blocksworld domain. Source:
[RIV20].

Let’s take the planning problem of the Blocksworld domain in Figure 4.1. In
this domain, the objects are blocks and a robotarm to handle the blocks. Given an
initial configuration of the blocks on the table, the goal is to arrange the blocks as
specified in the goal state. The problem of Figure 4.1 features three blocks b1, b2
and b3. The initial state of the problem is shown on the left side (in blue), with
b2 being on b3 (on b2 b3) and b1 on b2 (on b1 b2). The goal of the problem
is to have b1 on b3 (on b1 b3). The two configurations on the right (in orange)
represent two possible final states that both achieve (on b1 b3).

We explain now how the graph is constructed. Let O be the set of objects of a
planning instance, a graph will always have exactly |O| nodes, one for each object
of the planning instance, and two edges for each pair of objects connecting them.
The structure of the graph, then, remains invariant through the search, what
changes is the embedding representation of the features.

Moreover, relations are restricted to arity 2 because in a graph we can only
relate two nodes. This is not a major issue as almost every relation with arity
higher than 2 can be represented in terms of several lower arity relations. In the
following, we will detail how to represent the state of a node in the planning search
tree as a graph using the example shown in Figure 4.2.

Figure 4.2: Embedding representation of the problem of Figure 4.1. Source: [RIV20].

A graph contains node (which we will call vertex from now on so it is not
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mistaken with the search tree) features, edge features, and global features, which
represent the 1, 2 and 0-arity predicates, respectively. The 0-arity predicates are
global features of the problem, while the 1-arity ones represent properties of the
objects and the 2-arity ones, the relations between them.

In the example of Figure 4.2 clear is a vertex feature, which is true (value 1)
if there is nothing on top of that block; on is an edge feature, which represents if one
block is on top of another; and arm-empty is a global feature representing whether
the robot-arm that moves the blocks is empty or not.

We have already stated that for each state generated during the search process
of solving a planning problem a graph is produced. The graph is complete, that
is, each pair of graph nodes is connected.

As the network is a state-goal graph, we will first explain the construction of
the “state” part of the graph, and then explain the “goal” one. We will base this
explanation with the example of Figure 4.2, the state being the blue part and the
goal being the orange part.

A state (graph) contains a vertex for each object defined in the problem. For
each vertex, edge and global feature we have a one-hot encoding vector, with a value
1 if the corresponding feature is present in the current state of the problem, and 0
if it is not. For example, in Figure 4.2 we can see that the clear property of the
vertex feature of clear b1 is 1 because we have clear b1 in the state, and as on
b1 b2 is on the state that we are modelling, the edge eb1→b2 has a 1 in that part.

As far as the goal part is concerned, it is included by concatenating another
one-hot encoding vector next to the current state one, but in this case the zero value
indicates that the feature does not contribute to the goal. For example, in Figure
4.2 we can see that the only goal that is present, i.e., on b1 b3, is the only 1 present
in the orange part of the encoding, in eb1→b3 .

A vertex in a state-goal network reflects the current state of the search node
and where we want to go, so that the flow of information within the GNN will reflect
these two realities: where I am and where I want to go. This information is
essential when building a planner, since without information on where we want to
go we would not be doing much more than a blind search. In Figure 4.3 we can
see the explicit graph representation of the previous defined problem in blocksworld
domain.

To sum up:

• Each tree state represents a step in the planning procedure using a graph,
whose structure is fixed.

• Each tree state has information of the current situation and the goal stored in
vertex, edge and global vectors.

• The graph produced is complete: every pair of graph nodes is connected, even
if we do not have an explicit predicate that relates two nodes.
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Figure 4.3: State-goal graph representation of the tree state that is seen in Figure
4.2.

4.4 GNN layers

Two different types of GNN layers are used in [RIV20] to propagate and produce
embeddings reflecting the neighbors’ information: the Graph Network block (GN
block) and the Graph Network Attention Block (GNAT block). We have also created
some other layers based on the attention one, called GNATv2 and GNATv3. All
this GNN layers do not alter the structure of the graph, i.e. they convert a graph
into another graph isomorphic to the input.

4.4.1 GN block

This block generates embeddings following the intuitive schema of Figure 4.4, in
which we can observe that information is indiscriminately propagated through all
the graph. The update of the graph features is performed in three phases: the edge
embedding update, the vertex embedding update and finally the global embedding
update.

Mathematically, the GN block layer applies the following operations to all the
embeddings of the graph, which are based on the work of [BAT18] but simplified to
a non multi-graph environment. Being eij, vi, u the current edge, vertex and global
embeddings, respectively, we start by updating the edge embedding with a Multilayer
Perceptron, using its last embedding and the source vertex, as in Equation 4.1

ẽij = ϕ(W e[eij, vi] + be) (4.1)
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Figure 4.4: Propagation of the information via the GN block. It is divided in three
phases: the edge embedding generation, the vertex embedding generation and the
global embedding generation.

where W e is the weight matrix, be is the bias and ϕ a RELU function.

Consecutively, focusing on vertex vi in the vertex updating phase, we generate
intermediate embeddings hij for each vj in the neighborhood of vi also with a MLP
as in Equation 4.2

hij = ϕ(W v
1 [vj, ẽji] + bv1), vj ∈ Vi (4.2)

whereW v
1 and bv1 are also weights and biases, respectively. With this, we calcu-

late the edge embedding by getting the maximum of the values in the neighborhood
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(which is internally achieved with a node-wise max-pooling operator ψ) and then
transforming it with the global features via another MLP, as in Equations 4.3 (W v

2

and bv2 are weights and biases).

hi = ψj(hij)

ṽi = ϕ(W v
2 [hi, u] + bv2)

(4.3)

Finally, the global embeddings are updated with information from the previ-
ous embeddings and an aggregation plus normalization of all the generated vertex
embeddings, via also a MLP as in Equation 4.4, being W u and bu the last weights
and biases.

ũ = ϕ

W u

u, 1

|V |

|V |∑
i=1

ṽi

+ bu

 (4.4)

This implementation differs from that of [BAT18] in some aspects that, in our
opinion, are relevant:

• The edge embedding generation is only calculated using the sender vertex, not
the receiver of the edge, and it does not use the global embedding for the
update, unlike in [BAT18]. In the context of an edge eij the sender vertex is
vi and the receiver is vj.

• The aggregation in the edge embedding generation section in [BAT18] is per-
formed using edges and not vertexes.

• The global embedding generation in [BAT18] aggregates edges and vertexes,
but we use only vertexes.

The GN block works well propagating general information amongst the graph,
but makes it difficult to transfer specific information when needed. The transmission
of information from all to all reminds us of an almost convolutional operation, in
which every neighbor contributes to some extent to the updating of each other. This,
as we have already said, could lead to certain problems for domains where specific
information must be transmitted.

4.4.2 GNAT block

The GNAT layer is created by using the Graph Attention Network from [VEL17]
but with an attention mechanism similar to the Transformer model of [VAS17],
which is a renowned model in ML based on self-attention, i.e., attention on its own
context. The only thing that differs from the GN block is the vertex embedding
generation, which uses attention mechanisms in order to allow specific information
to be transmitted, and it is what we are going to explain.
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Mathematically, we use a key-query attention operation from the Transformer
[VAS17] in order to get those embeddings. Firstly, we produce a transformation of
the vertex embeddings using a MLP, as in Equation 4.5

hi = ϕ(W v
1 vi + bv1) (4.5)

with W v
1 and bv1 being the learnable weights and biases from the MLP.

Secondly, we calculate the key and query of the attention, being respectively a
transformation of the vertexes and edge embeddings (the new ones) via MLPs and
its respective weights and biases. The operation can be followed in Equations 4.6.

ki = ϕ(W kvi + bk)

qij = ϕ(W qẽij + bq)
(4.6)

Then, we calculate an attention coefficient by performing a node-wise softmax
function in the neighborhood of a vertex vi and the respective keys and queries
regarding to it, as in Equation 4.7.

αij =
ek

T
i qij∑

p∈N(vi)
ek

T
i qip

(4.7)

Following this we multiply the attention coefficient αij cell-wisely by the em-
bedding that we want to attend to (the edge embedding), and then we aggregating
it vertex-wise within the neighborhood again, as in Equation 4.8.

mi = φj(αij · ẽij) (4.8)

Lastly, the vertex embedding is then generated by transforming mi, with the
initial transformation of the vertex, hi, and the global embedding, u, as shown in
Equation 4.9.

ṽi = ϕ(W u[hi,mi, u] + bv) (4.9)

The GNAT block allows important and concrete information to travel along the
graph, and also focuses more in specific kinds of messages. The main difference with
the [VEL17] paper is that here the attention does not use the LeakyReLU operation,
but instead it uses the Transformer one, as it has already been mentioned.

It is also noteworthy that the αij coefficient is generated, unlike in the origi-
nal paper, as the multiplication of the sender vertex and the edge, leaving out the
receiver vertex. From a global perspective, this makes sense, since the vertex in-
formation should be updated with what is relevant, and in a 2-ary predicate the
subject of the action is usually the first object or, in our case, the initial vertex.
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4.4.3 GNATv2 block

The change in the attention mechanism made in the preceding section to the one
described in the Transformer’s paper made us wonder why the one in the original
paper of [VEL17] had not been used to generate the coefficient αij. After some
research into the different types of graph layers and relying on the Pytorch Geo-
metric layer library [FEY19], we discovered thanks to the recent paper [BRO22]
that the attention described in [VEL17] is, as they call it, static, and features some
limitations.

Broadly speaking, understanding attention as a mechanism for computing a
distribution within a set of key vectors given another vector which is called query,
an attention mechanism is static if such mechanism always weighs one key greater
than others, independently of the query. This is very limited because every function
has a key that is always selected and thus we want to seek attention functions that
are dynamic. That is, a function where each key could potentially excel depending
on the query.

In [BRO22], it is proven that [VEL17] attention is static. A very slightly
modification of that attention mechanism is provided, which makes it dynamic. The
mechanism goes as follows: a learnable parameter a is introduced, which is then
multiplied by a transformation of the sender and receiver vertexes concatenated
with the edge, as in Equation 4.10.

ẽij = aTLeakyReLU(W [vi || vj || eij]) (4.10)

And then a softmax operation is introduced, followed by the aggregation plus mul-
tiplication which is typical in any attention operator. The result is seen in Equation
4.11

.

αij =
ẽij∑

j′∈N(vi)
ẽij′

hi = ReLU

 ∑
vj∈N(vi))

αij ·Wvj

 (4.11)

Note that the only thing that distinguishes this implementation from the one
exposed in [VEL17] is that now the a parameter is outside the LeakyReLU function,
which is a very small change for such a big change in behavior.

4.4.4 GNATv3 block

Directly following this line, another layer called GNATv3 was also created, which
uses the same attention mechanism but multi-headed. In multi-headed attention we
perform several attention operations and then we concatenate them. For this last
model we used the already existing layerGATv2Conv of Pytorch Geometric [FEY19],
on top of which we implemented the multi-headed operation. This simply consists of
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several attention operations running in parallel and then concatenated and linearly
transformed to the desired dimension. We also found this interesting since the
network could theoretically choose which attention to pick within each computation
in parallel inside each head.

4.5 Action and policy representation

In this section we will explain how, from the embeddings that have been updated
with the GNN layers, we can produce a representation of the actions in order to use
it within the context of Reinforcement Learning. The goal is therefore to create a
vector representation of the domain actions and then to use them.

There is a fundamental difference between common Reinforcement Learning
approaches and the RL-based planning. Unlike ordinary RL benchmarks where the
set of actions that can be taken from a state is fixed, in planning this set of actions
is state-dependant and varies in size from one to another. This is not a problem,
because we are following the approach of the policy as a function approximator.

Each action type receives a set of arguments, and for it to be applicable it must
fulfil a set of preconditions. This means that, being A the set of actions, it can occur
that |{a ∈ A | π(a|s) > 0}| ̸= |{a ∈ A | π(a|s′) > 0}|, i.e., given some states of the
problem s and s′, the number of applicable actions of one state can be different from
another. They also have a set of effects that change the state, which can be positive,
meaning that some information or evidence is added to the problem, or negative,
meaning that some evidence is removed from the state because it no longer exists
or fulfills anything.

In the [RIV20] approach they do not bother about preconditions, as they de-
fine a successor-state generator that automatically displays the current state’s ap-
plicable actions. In practice this ends being the renowned STRIPS planner Pyper-
plan [ALK20]. In order to represent actions in a meaningful and useful way, another
network is defined in order to generate which they call action embeddings.

In Figure 4.5 is illustrated how this process works. First of all, an action is
defined as previously mentioned with its effects, represented by each gray block. For
example, A1 has three effects, A2 has two and A3 has four. The effects are then
reordered and clustered by their type (and, consequently, their arity) and concate-
nated with a one-hot encoding vector of the corresponding dimension (for example,
in Figure 4.5 there is only one global predicate, while there are three unary pred-
icates and two 2-ary) with a 1 if the effect is positive and -1 if it is negative in
the correspondent predicate. Each effect block is transformed by a MLP and then
is scattered back to its original position, their aggregation being the final action
embedding.

The policy is then defined as anotherMLP that outputs a scalar for each action,
π(a|s), normalized by a softmax operation. Moreover, the global embeddings of the
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Figure 4.5: Action embedding generation. Source: [RIV20].

graph are taken in order to generate a “state importance” value with another MLP,
V (s), which is used in the RL algorithm as we already mentioned in the Background
section. All in all, the structure follows the schema of Figure 4.6.

Figure 4.6: General schema of the structure of the system. Dashed arrows represent
the training flow, while line arrows represent the update of each value.
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4.6 Training procedure

The problem is modeled as a sparse reward problem, in which there are few states
that return a feedback signal, with a binary reward: the RL algorithm will return
a reward of 1 if the planning agent satisfies the goals of the problem within an
horizon length, and if not it gets no reward at all. The appropriate horizon length
is calculated using the hff heuristic [HOF01], which solves a relaxed version of the
problem in linear time (removing all the negative effects). In order to get the horizon
length, we use this value multiplied by a factor of 5.

The policy is then trained using Proximal Policy Optimization (PPO), and for
it to be learned from scratch as a sparse binary reward problem it was only necessary
to include problems with such small size that can be solved by a randomly initiated
policy. This situation allows the policy to train itself and to eventually solve much
larger instances without the need of manual tuning. In the training procedure, the
policy is rolled out until termination before updating the model parameters, then
using empirical return values instead of simulated ones and helping with this the
stabilization of the algorithm. Rolling out a policy implies, without changing it,
finding a sequence of operations that lead to a state in which we cannot apply any
action or to a final state. In this work, they use 100 roll out episodes and the
collected data to update the model.

4.7 Planning with a learnable heuristic

It is usually useful to combine policies with a search algorithm to improve planning
systems, as in [SIL19], for example. Several elements of the structure of Figure 4.6
are useful in order to generate a heuristic for some search algorithm. In [RIV20] they
base their search on a slightly modified Greedy Best First Search algorithm [FRA19].

Instead of constructing a search tree from the root node (initial state) and ex-
panding a node with the best heuristic estimation and so on, they use the parameters
of the RL algorithm in order to compute a heuristic value for each node, performing
then a full roll-out for each expanded node as we already mentioned in last section.
If we represent each node as a pair of state and action, the heuristic estimation is
defined as follows:

g(s, a) =
πθ(a|s) · VΦ(s)
1 +H(πθ(·|s))

With πθ(a|s) being the probability of an action a from a state s given by our trainable
policy, VΦ(s) being the estimated state value coming from the GNN, which is also
trained with the RL algorithm as stated in Figure 4.6, and H(π(·|s)) being the
entropy of the policy’s distribution over actions at a given state s.



Chapter 5

Experimentation

The purpose of this chapter is to observe what we can explain or infer with the
proposed generalized planning architecture and what aspects are more complicated
or even impossible to generalize. To do this, we have created experiments with a
number of domains that are well known in the planning literature, built a taxonomy
within them, and identified the type of GNN that works best for each domain,
correlating GNN layers with the domain taxonomy.

5.1 Domains

We will work with some of the most common classical planning domains that feature
predicates of arity no greater than two. The domains have been extracted from the
IPC (International Planning Competition)1.

The objective is to test domains that feature different characteristics in order
to check if general strategies can or cannot be learned for such domains. We will
test how well the GNN models are able to generalize strategies and in which cases
they are best learned, depending on the complexity and nature of the domain.

5.1.1 Blocksworld

In this domain there is a potentially infinite smooth surface, something like a table,
and a set of blocks identified by letters. There is also a mechanical arm capable
of picking up a block and dropping it in another position, either on top of another
block or on the table, and only one block can be moved at a time. The objective is
to change the arrangement of blocks using the arm, as in Figure 5.1. The actions
that can be taken at each step are:

• Pickup. The arm picks up a block that is clear and on the table, i.e. that has

1https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node1.html
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nothing on top of it.

• Putdown. The arm leaves the block that is holding on top of the table.

• Stack. The arm leaves the block that is holding on top of another block.

• Unstack. The arm picks up a block that is clear and on top of another block.

Figure 5.1: Example of a problem in the blocksworld domain.

5.1.2 Satellite

This domain models several satellites that collect data from different targets. Each
satellite has different (probably overlapping) instruments that support several imag-
ing modes. Instruments need calibration to take a picture. A problem goal consists
of capturing images from certain positions, also called targets, in a specific mode
(spectrometer, infrared, etc.). The instruments need energy to be able to take a
picture in any mode. A satellite will only be able to power one type of instrument
at a time. The available actions are:

• Turn-to. A satellite changes its direction.

• Switch-on. An instrument inside a satellite is switched on with the power of
the satellite, but it is not initially calibrated.

• Switch-off. An instrument inside a satellite is switched off, freeing then the
power of the satellite.

• Calibrate. The instrument is calibrated for a certain target in order to be
able to take a photography. Not every instrument can be calibrated for every
target.

• Take-image. Once the instrument is calibrated, it can take a picture of the
target, but only with one of the modes that the instrument can work with.
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5.1.3 Gripper

This domain involves a robot with two grippers that must move balls between two
rooms. The Gripper domain is similar to the blocksworld domain, but in this case
the robot can move between rooms and no structure is needed for the goal, as the
balls are just dropped to the floor. A gripper can only grasp one ball at a time, so
the robot can transport up to two balls between rooms in one move, one ball in each
gripper. The robot has freedom of movement between rooms. The actions are:

• Move. The robot moves from one room to another.

• Pick. The robot picks up a ball with one of its grippers, only if it is available.

• Drop. The robot drops the ball in a room from one of its grippers, freeing it
immediately.

5.1.4 Ferry

Similar to the Gripper domain, but in this case we have a ferry that must transport
cars between potentially more than two different locations, instead of a robot. The
ferry can transport only one vehicle at a time. The actions of the domain are:

• Sail. The ferry moves from one location to another.

• Board. The ferry boards a car. In this scenario, a ferry can only have one car
per sail.

• Debark. The ferry unloads a car in a location and becomes empty.

5.1.5 Logistics

Logistics is a domain in which we have different objects placed in certain locations,
that must be transported to other locations by land or air. Ground transportation
uses trucks and can only happen between locations that are within the same city,
while air transportation is between airports, which are special locations inside cities.
The destination of a package is a location either within the same city or in a different
city. In general, ground transportation is required to take a package to the city’s
airport (if the package is not at the airport), then air transportation between cities,
and finally ground transportation again to take the package to the final destination,
if it is not the same airport. The actions of the Logistics domain are:

• Load-truck. This action loads an object inside a truck, both of them being
at the same location.
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• Load-airplane. The object, in this case, is loaded inside an airplane that is
located in an airport.

• Unload-truck. Unloads an object inside a truck in the location where the
truck is.

• Unload-airplane. Unloads an object inside an airplane in the airport where
the plane is.

• Drive-truck. A truck moves between two locations inside the same city.

• Fly-airplane. An airplane moves between two airports from different cities.

5.1.6 Depots

This domain consists of trucks for loading and unloading crates, and hoists to handle
the crates in pallets. Hoists are only available at certain locations and they are static.
Crates can be stacked/unstacked onto a fixed set of pallets. Trucks do not store the
boxes in any particular order2. This domain can be seen as an hybrid between
logistics and blocksworld. The actions are:

• Drive. A truck drives between two places.

• Lift. A hoist lifts a crate which is on a surface, simmilar to the blocksworld
domain.

• Drop. A hoist drops the crate onto a surface.

• Load. Some crate lifted by a hoist is loaded into a truck at a certain place.

• Unload. Some crate that is into a truck is unloaded by a hoist at a certain
place.

5.1.7 Elevators

In this domain we have a building with a specific number of floors, people who want
to move between these same floors and a series of elevators spread throughout the
building. In addition, the elevators are in blocks, which means that they only have
access to a certain number of floors. In general, the building is divided according to
the blocks, which are contiguous and coinciding only at the ends, with the exception
of a fast block where there is a fast elevator that can go throughout the building
with the restriction of only being able to stop at the even numbered floors. In this
approach elevators do not have limited capacity, so they can transport as many
people as needed. The actions of the domain are the following:

2https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node38.

html. Accessed: 25-06-2022.

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node38.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node38.html
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• Passenger-enters. Some passenger enters some elevator at a certain floor.

• Passenger-leaves. Some passenger leaves some elevator at a certain floor.

• Move-elevator. Some elevator moves from one floor to another.

5.1.8 Hanoi

This domain represents the well-known game of the Hanoi towers, in which we have
three sticks and a series of disks of different sizes, stacked starting with the largest
and ending with the smallest on the left stick. The objective, in this case, is fixed:
to transport the stack of discs to the right stick, with the particularity that the
moves that are allowed are those that do not involve putting a larger disc on top of
a smaller one. The actions are:

• Move. Some disc moves on top to another which is bigger or directly to a
empty stick.

5.2 Taxonomy

Our objective is to experiment with the different types of domains defined above
and observe how the different GNN architectures behave when learning valid poli-
cies. As it has been made clear in the previous section, domains present specific
characteristics that allow us to divide them into different groups. We can analyze
several aspects:

• Goal dependency: Whether goals are dependent from each other or not, i.e.,
if a goal can be reached without interacting with any other goal.

• Agency: It describes the number of agents involved in the domain. A single
agency means that there is only one agent that executes or produces the plan;
multi agency means that there is more than one executing agent.

• Typology: A concept from [TOR15], a domain is loosely-coupled if there is
little or no interaction between the agents in order to reach the set of goals,
and is tightly-coupled if there is a lot of interaction and/or dependence between
agents in order to fulfill a goal. It only applies, obviously, for multi-agent
domains.

Once we have described the aspects that we want to focus on, we can make
Table 5.1, which identifies each domain with each aspect.

The blocksworld domain is single-agent because there is only one arm that
moves blocks, and it is goal dependent because if a goal is block A on top of block
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Domain Goal dependency Agency Typology
Blocksworld Yes Single -
Satellite No Multi Loosely-coupled
Gripper No Single -
Ferry No Single -

Logistics No Multi Tightly-coupled
Depots Yes Multi Tightly-coupled
Elevators No Multi Tightly-coupled
Hanoi Yes Single -

Table 5.1: Taxonomy of each domain.

B there is more to take into account, as block B could need to be on top of another
block.

Logistics is not goal dependent, because one package delivery is independent
from another, but has a multi agency because it involves trucks and airplanes, which
are also tightly coupled as they need to collaborate in order to get the package to
the destination.

The goals in the satellite domain are independent because they only involve pic-
tures of certain entities, and is multi-agent because there is more than one satellite.
Moreover, it is also loosely-coupled as each satellite can get the job done indepen-
dently; in fact, one satellite could even take all the pictures if it had the required
equipment.

The gripper and the ferry domains are both goal independent and single agent,
because they are both transport domains with one entity (a gripper and a ferry) and
they just leave entities at each location without any specific order.

Depots is goal dependent because it involves some piling mechanisms as in
blocksworld domain, but is multi-agent and tightly-coupled as there exist several
trucks and grippers that need to coordinate.

The elevators domain is not goal dependent because each person wants to go to
a specific floor and that does not interact with any other person’s desire. Moreover,
it is also in a multi-agent environment, as there are various elevators, and tightly-
coupled, as they all have to collaborate in order to reach the goal state. If a passenger
wanted to potentially go from one floor to another, he/she would have to make as
many transfers as there are elevators, or take the express elevator if he/she can.

The hanoi domain is goal dependent since the position of each disk interferes
with that of the others, similar to what happens in the blocksworld domain. More-
over, it is single-agent since the movements are all made from the same virtual
structure that we could think of as a hand or a gripper.
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5.3 Training

For the experiments we have used the architecture presented in previous chapters.
It has been decided to use, based on [RIV20] experiments, a two-layer system in
which the second layer is always a GN block and the first layer is varied between
the different layers of attention that have been developed. In this way we have the
following approximations:

1. GN block + GN block

2. GNAT block + GN block

3. GNATv2 block + GN block

4. GNATv3 block + GN block

Since Reinforcement Learning based methods require large amounts of infor-
mation in order to be trained, we have made use of a series of PDDL generators
available at [SEI22] in order to fulfil this task, and some original Python programmed
generators such as the one for the elevators domain.

The policies are trained with 1000 iterations, with an evaluation frequency of
15 and each iteration with a number of 100 training episodes. We used a learning
rate of 10−4, a discount factor for the RL return to-go function of 0.99 and a clipping
ratio ε of 0.2. The models are validated with 100 PDDL problems that are fixed at
the start of the procedure and automatically generated.

The experiments have been performed on a machine with a Nvidia GeForce
RTX 3090 GPU, a 12th Gen Intel(R) Core(TM) i9-12900KF CPU and Ubuntu
22.04 LTS operating system. In Table 5.2 we display the sizes used for training and
validation of the RL algorithm.

The success rate has been used as a control measure, i.e., the ratio of whether
the policy is able to reach the goal from the initial state. Results from validation
are shown in Table 5.3.

Due to the large number of experiments carried out, with each experiment
taking several days to complete, it was impossible to generate a more exhaustive error
analysis, with confidence intervals, for the success rate due to the limited amount
of time and resources available. In future works within this field we would like to
carry out a more complex experimentation, including these confidence intervals.

We see no significant differences between the last two proposed architectures,
GNATv2-GN and GNATv3-GN, and the original attention one in the paper, GNAT-
GN, beyond slightly improving performance in certain models where other models
had already achieved a better result. There is a clear difference between domains
that perform better for architectures with non-attention layers and domains that
perform better for architectures with attention layers. This is what we want to
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Domain Train size Validation size
Blocksworld 4-5 blocks 10-11 blocks

Satellite

1-4 satellites
1-4 instruments

1-4 modes
1-4 targets

2-4 observations

7-8 satellites
6-7 instruments

4-5 modes
8-9 targets

15-16 observations
Gripper 3-4 balls 15-16 balls

Ferry
3-5 locations

2-4 cars
9-10 locations
20-21 cars

Logistics

2-4 airplanes
2-4 cities
2-4 trucks

2-4 locations per city
1-3 packages

3-4 airplanes
6-7 cities
6-7 trucks

3-4 locations per city
6-7 packages

Depots

1-2 depots
2-3 distributors

2-3 trucks
3-5 pallets
2-4 hoists
3-5 crates

5-6 depots
5-6 distributors

5-6 trucks
5-6 pallets
5-6 hoists
5-6 crates

Elevators
6-10 floors

2-3 passengers
1-2 blocks

8-12 floors
5-10 passengers

1-3 blocks
Hanoi 3-4 discs 5-7 discs

Table 5.2: Sizes used for each domain in training and validation.

Domain GN-GN GNAT-GN GNATv2-GN GNATv3-GN
blocksworld 100% 69% 72% 76%
satellite 57% 100% 51% 97%
gripper 100% 100% 100% 100%
ferry 92% 100% 90% 100%

logistics 4% 28% 3% 5%
depots 16% 54% 17% 30%
elevators 62% 53% 63% 61%
hanoi 0% 0% 0% 0%

Table 5.3: Success rate in validation. We highlight the best result for each domain
in bold.

discuss in the next section of this paper. In fact, we can come to the following
conclusions by focusing on the taxonomy we have created:

• Loosely-coupled or single-agency domains in which the goals are independent,
such as satellite, gripper or ferry, achieve better results with attention layers,
because they need a more focused flow of information.
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• A goal-dependent domain such as blocksworld achieves better results with the
GN-GN model. In this case the indiscriminate exchange of information that
characterizes this model benefits the results because of the nature of the do-
main.

• Tightly-coupled domains such as logistics, depots or elevators do not reach
100% in success rate, probably because the two GNN layers are insufficient to
be able to correctly transfer the information, since in addition to a need for
attention to the flow of information, the order of execution of the actions also
needs to be taken into account.

• Domains such as hanoi fail to achieve any degree of generalization.



Chapter 6

Learned policy analysis

The purpose of this chapter is to analyze the learned policy for each domain pre-
sented in the previous chapter, if any, and look into the difficulties to learn it. We
will discuss the characteristics that make some domains be easier than others at the
time of learning a generalized policy.

6.1 Overview

In the previous chapter we trained a variety of models (GN-GN, GNAT-GN, GNATv2-
GN and GNATv3-GN) for every domain, each resulting in different performance.
Subsequently, we validated the models to get a first indication on the behavior of
each trained model on slightly larger problem sizes. In this chapter, we will discuss,
domain by domain and using the model that output the highest rate in validation,
the reasons for such performance values. To do so, we tested the best model with
even larger size problems, and we analyzed the plans (policy) obtained for specific
problems.

After training the four models for each domain, what we will do in the testing
phase is to use the policy that emerged from the best model to find a plan for various
large-size problems. We are interested in analyzing whether the learned policy is
able to reach generalization, that is, we want to observe if the learned policy also
solves problems of a larger size.

Whether or not the policy succeeds in reaching this generalization, we will use
specific problems from each domain that will help us understand and justify the
reasons why or why not this generalization is reached.

Additionally, we will compare the results of the best model for each domain with
a state-of-the-art planner: Fast Downward [HEL11]. We carried out this comparison
in terms of computation time, to see how fast our approach is in comparison to FD,
and in terms of expanded states, to see how much “greedy” our algorithm behaves,
i.e., how big the search is in terms of memory, using 100 different problems generated

37
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from the distribution shown in Table 6.1.

In Table 6.1 we can see the size of the problems that have been chosen to work
with in the testing phase within each domain. It can be seen that some domains,
the simplest ones such as blocksworld or gripper, allow us to test with very large
sizes, while in other more complicated domains such as logistics, depots or elevators
we need to work with problems of smaller size since the spatial complexity of the
problem increases greatly as we increase the number of objects within the problem.
In Table 6.1 we can observe the differences in size between train and test.

Domain Train size Test size
Blocksworld 4-5 blocks 5-100 blocks

Satellite

1-4 satellites
1-4 instruments

1-4 modes
1-4 targets

2-4 observations

11-17 satellites
12-13 instruments

6-7 modes
12-17 targets

47-60 observations
Gripper 3-4 balls 5-200 balls

Ferry
3-5 locations

2-4 cars
15-20 locations

20-50 cars

Logistics

2-4 airplanes
2-4 cities
2-4 trucks

2-4 locations per city
1-3 packages

3-4 airplanes
5-6 cities
5-6 trucks

3-4 locations per city
5-6 packages

Depots

1-2 depots
2-3 distributors

2-3 trucks
3-5 pallets
2-4 hoists
3-5 crates

5-6 depots
5-6 distributors

5-6 trucks
7-9 pallets
7-9 hoists
7-9 crates

Elevators
6-10 floors

2-3 passengers
1-2 blocks

8-10 floors
5-8 passengers
1-2 blocks

Hanoi 3-4 discs -

Table 6.1: Sizes of problems used for each domain in testing.
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6.2 Blocksworld

In this section we will analyze the testing results for the blocksworld domain when
using the configuration that returned the best results in validation; i.e., the GN-GN
configuration.

First, we will take a look at the plans that the algorithm generates as a result of
learning the policy, and examine them in order to see if we are able to find out what
it is really learning. We will take as an example the blocksworld problem shown in
the excerpt Problem 1.

As we can see, the code in Problem 1 features a situation with 10 blocks, whose
initial configuration is given by the facts in the initial situation (:init). The goal is
to achieve two towers: b8 on top of b9 on top of b1 on top of b2 on top of b3 on
top of b4; and a second tower b6 on top of b10 on top of b7.

Analyzing the plan in Problem 1 we can see that the algorithm tends to first put
all the blocks on the table to then stack them as specified in the goal. Surprisingly,
the network has managed to learn a policy valid for any instance of this domain,
one that is well known in the planning world: put all the blocks on the table
and subsequently stack them in the correct order indicated in the goal.
Obviously this will not be the optimal strategy in most scenarios, but the semantic
knowledge that the network has learned is what makes this interpretation rich, since
by using this policy the algorithm would potentially be able to solve any scenario.

A more exhaustive experimentation has been carried out in the Figure 6.1, serv-
ing also as a comparison with the Fast Downward planner and using, as mentioned
above, 100 problems automatically generated from a previously defined probability
distribution. We observe that we have two graphs: one corresponding to time and
the other to expanded states. We can see in the figure the success rate of our model
in testing phase (GN block - GN block) against Fast Downward in blocksworld in
terms of time and memory consumed for problems of 5-100 blocks.

The left graph shows how many of these problems have been solved at each
time; i.e., a success rate of 0.8 at 60s means that 80% of the problems have been
solved (the goals have been reached) within 60 seconds. The right graph shows how
many states were needed in order to solve each problem, i.e., a success rate of 0.8
at 100 expanded states means that 80% of the problems have been solved without
visiting more than 100 states.

It can also be observed in the Figure 6.1 that our approach greatly improves in
terms of the number of expanded states. This means that the information it learns is
very focused, in the sense that the algorithm acts approximating as a greedy heuristic
in which we would reach the solution by simply going forward in the search. This is
quite interesting because it makes us think that the heuristic is quite informed and
sufficient.
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Problem 1 Plan of a problem for the blocksworld domain using the GN-GN model.
The learned policy performs: put every block on the table and then stack them in
the correct order accordingly to the goal.

(define (problem BW) (:domain blocksworld)

(:objects b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 )

(:init

(arm-empty)

(on b1 b2)

(on b2 b3)

(on b3 b4)

(on b4 b9)

(on-table b5)

(on-table b6)

(on b7 b6)

(on b8 b10)

(on b9 b7)

(on b10 b5)

(clear b1)

(clear b8))

(:goal

(and

(on b1 b2)

(on b2 b3)

(on b3 b4)

(on b5 b8)

(on b6 b10)

(on b8 b9)

(on b9 b1)

(on b10 b7))))

PLAN:

1. (unstack b8 b10)

2. (putdown b8)

3. (unstack b10 b5)

4. (stack b10 b1)

5. (unstack b10 b1)

6. (putdown b10)

7. (unstack b1 b2)

8. (putdown b1)

9. (unstack b2 b3)

10. (putdown b2)

11. (unstack b3 b4)

12. (putdown b3)

13. (unstack b4 b9)

14. (putdown b4)

15. (unstack b9 b7)

16. (putdown b9)

17. (unstack b7 b6)

18. (putdown b7)

19. (pickup b3)

20. (stack b3 b4)

21. (pickup b2)

22. (stack b2 b3)

23. (pickup b1)

24. (stack b1 b2)

25. (pickup b10)

26. (stack b10 b7)

27. (pickup b6)

28. (stack b6 b10)

29. (pickup b9)

30. (stack b9 b1)

31. (pickup b8)

32. (stack b8 b9)

33. (pickup b5)

34. (stack b5 b8)
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Figure 6.1: Success rate of our model in testing phase against Fast Downward in
blocksworld domain.

We can conclude the following remarks from the blocksworld domain:

• Our approach was able to learn a policy that solves any size problem, thus
guaranteeing the generality of the policy.

• As there is only one robot arm in this domain, problem solving completely
relies on a sequential decision-making. This favors the learning of a policy for
this domain.

• The most interesting aspect lies in that the strategy correctly deduces the
order of achieving the goals once they are all independently achievable. That
is, when all the goals (on X Y) are individually achievable, the algorithm
is able to infer the correct order for stacking the blocks. This fact raises a
question as whether this is a learnable strategy in all the domains.
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6.3 Satellite

In this section we will discuss the testing results for the satellite domain, using the
configuration that returned the best results in validation; that is, the GNAT-GN
architecture. We will also discuss the satellite problem example seen in Problem 2
and its generated plan, and we will try to infer the general policy from it.

The problem defined in Problem 2 refers to a situation in which we have two
satellites, sat0 and sat1, with two instruments, ins0 and ins1. The instrument
ins0 is inside sat0 and ins1 is inside sat1. There are two modes of taking pictures,
infrared infra0 and spectometer spc1, and the goal is to take six pictures of six
different objects in the sky: phn2, Star3, plt4, plt5, phn6 and Star7 with any of
the two modes. We note that sat0 would be able to do all the work.

Taking a look to the plan displayed in Problem 2, we can see that the algorithm
assigns all the work to one single satellite, since it is capable of taking all the pictures
(as it can work in both necessary modes). What our model tends to do here is, as
expected, to converge towards the most generalized strategy possible: a satellite is
chosen and does all the imaging work itself. Note that if one satellite is not
capable of taking all the pictures, the least amount of needed satellites will
be used.

This strategy generalizes very well, as seen in Figure 6.2, in which we see the
success rate of our model (GNAT-GN) in the testing phase against Fast Downward
in terms of time and memory consumed, for 11-17 satellites, 12-13 instruments per
satellite, 6-7 modes, 12-17 targets and 47-60 observations. Our approach outper-
forms again Fast Downward in terms of expanded states, reaching a 100% success
rate. The use of the attention layer allows specific information to travel along the
graph, which in this case is the use of only one or few satellites.

We decided to also run the GN-GN model to see the differences of the learned
policy. The plan shown in Extract 1 is generated with the GN-GN model. The
program starts an infinite cycle of turning the satellites: it does not have the ability
to focus the work to the few satellites that can perform all the tasks. We can see
that the turn to action repeats infinitely until manually termination of the inferring
process. Below we can see the same problem but with the plan inferred by using the
GNAT-GN model, which finally finds a solution.

We can conclude the following from the experiments in the satellite domain:

• Our approach (GNAT-GN) was able to learn a policy that solves problems of
any size, thus guaranteeing generalization.

• In this case the use of an attention layer helps the model focus on a single
satellite, as long as it is able to accomplish all the goals. If not, several satellites
are chosen, always as few as possible.

• When it is compulsory that two or more satellites take the pictures, the non-
interacting nature of the goals allows the model to “attend” to one satellite at
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a time, that is to say, a satellite taking a picture does not influence another
taking another picture by any means.

• In this domain, the goals are all individually achievable and so there is no a
specific order for the pictures to be taken, so the strategy does not need to
worry about the order.

Figure 6.2: Success rate of our model in testing phase against Fast Downward in
satellite domain.
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Problem 2 Example of a plan in the satellite domain using the GNAT-GN model.
We see that what the policy learns in this case is letting a single satellite, usually
the first one, do all the tasks. In case a single satellite cannot take every image, it
tries to use the least amount of satellites possible.

(define (problem sat)

(:domain satellite)

(:objects

sat0 - satellite

ins0 - instrument

sat1 - satellite

ins1 - instrument

infra0 - mode

spc1 - mode

Star1 - direction

grstt0 - direction

phn2 - direction

Star3 - direction

plt4 - direction

plt5 - direction

phn6 - direction

Star7 - direction)

(:init

(supports ins0 infra0)

(supports ins0 spc1)

(calibration_target ins0 Star1)

(on_board ins0 sat0)

(power_avail sat0)

(pointing sat0 grstt0)

(supports ins1 spc1)

(calibration_target ins1 grstt0)

(on_board ins1 sat1)

(power_avail sat1)

(pointing sat1 phn2))

(:goal (and

(have_image phn2 spc1)

(have_image Star3 infra0)

(have_image plt4 infra0)

(have_image plt5 spc1)

(have_image phn6 spc1)

(have_image Star7 spc1) )))

PLAN:

1. (switch_on ins0 sat0)

2. (turn_to sat0 star1 grstt0)

3. (calibrate sat0 ins0 star1)

4. (turn_to sat0 plt5 star1)

5. (take_img sat0 plt5 ins0 spc1)

6. (turn_to sat0 phn2 plt5)

7. (take_img sat0 phn2 ins0 spc1)

8. (turn_to sat0 plt4 phn2)

9. (turn_to sat0 star7 plt4)

10. (take_img sat0 star7 ins0 spc1)

11. (turn_to sat0 phn6 star7)

12. (take_img sat0 phn6 ins0 spc1)

13. (turn_to sat0 star3 phn6)

14. (take_img sat0 star3 ins0 infra0)

15. (turn_to sat0 plt4 star3)

16. (take_img sat0 plt4 ins0 infra0)



CHAPTER 6. LEARNED POLICY ANALYSIS 45

Extract 1 Extract of a plan for some satellite problem using the GN-GN model
versus the GNAT-GN one.

Extract from the GN-GN model:

(switch_on ins35 sat7)

(turn_to sat7 grnd6 star2)

(turn_to sat7 star0 grnd6)

(turn_to sat7 star7 star0)

(turn_to sat7 star4 star7)

(turn_to sat7 grnd5 star4)

(calibrate sat7 ins35 grnd5)

(turn_to sat7 pnt21 grnd5)

(take_img sat7 pnt21 ins35 spc)

(turn_to sat7 pnt16 pnt21)

(turn_to sat7 pnt12 pnt16)

(switch_on ins30 sat6)

(turn_to sat7 pnt18 pnt12)

(turn_to sat7 grnd5 pnt18)

(switch_on ins22 sat5)

(turn_to sat5 pnt21 pnt22)

(turn_to sat7 pnt15 grnd5)

(turn_to sat6 star8 pnt18)

(switch_on ins6 sat1)

(turn_to sat6 grnd3 star8)

(turn_to sat7 pnt17 pnt15)

(turn_to sat1 pnt17 pnt9)

(turn_to sat7 pnt11 pnt17)

(turn_to sat1 star4 pnt17)

(turn_to sat7 star0 pnt11)

(turn_to sat1 star2 star4)

(turn_to sat6 pnt22 grnd3)

(turn_to sat7 phn13 star0)

(turn_to sat6 pnt15 pnt22)

(turn_to sat1 star14 star2)

(turn_to sat6 star2 pnt15)

[...]

Extract from the GNAT-GN model (note that this is the full plan):

(switch_on ins36 sat7)

(calibrate sat7 ins36 star2)

(turn_to sat7 phn13 star2)

(take_img sat7 phn13 ins36 infra0)

(turn_to sat7 pnt18 phn13)

(take_img sat7 pnt18 ins36 infra0)

(turn_to sat7 star14 pnt18)

(take_img sat7 star14 ins36 infra0)

(turn_to sat7 pnt9 star14)

(take_img sat7 pnt9 ins36 infra0)

(turn_to sat7 grnd5 pnt9)

(switch_on ins26 sat5)

(turn_to sat5 grnd3 pnt22)

(calibrate sat5 ins26 grnd3)

(turn_to sat5 phn20 grnd3)

(take_img sat5 phn20 ins26 infra1)

(turn_to sat5 pnt11 phn20)

(take_img sat5 pnt11 ins26 infra1)

(turn_to sat5 pnt23 pnt11)

(take_img sat5 pnt23 ins26 infra1)

(turn_to sat7 pnt23 grnd5)

(switch_on ins30 sat6)

(turn_to sat6 star4 pnt18)

(calibrate sat6 ins30 star4)

(turn_to sat6 pnt17 star4)

(take_img sat6 pnt17 ins30 img2)

(turn_to sat6 star19 pnt17)

(take_img sat6 star19 ins30 img2)

(turn_to sat6 pnt16 star19)

(take_img sat6 pnt16 ins30 img2)

(turn_to sat6 pnt22 pnt16)

(take_img sat6 pnt22 ins30 img3)

(turn_to sat6 pnt10 pnt22)

(take_img sat6 pnt10 ins30 img2)

(turn_to sat6 pnt15 pnt10)

(take_img sat6 pnt15 ins30 img2)

(turn_to sat6 pnt12 pnt15)

(turn_to sat6 pnt21 pnt12)

(take_img sat6 pnt21 ins30 spc4)
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6.4 Gripper

In this section we will analyze the behavior of the GN-GN model for the gripper
domain. In fact, all the tested models returned a 100% success rate for this domain.
The reason for the high success across all modes may be due to the very nature of
this domain, because the only thing that can be done is to transport balls from left
to right, which leads to a quite simple strategy.

We want to examine a plan for a relatively big problem in the gripper domain,
which is shown in the excerpt Problem 3. The problem is very simple: we have
five balls that we want to move from one room (rooma) to another (roomb), using a
robot with two grippers.

As we can see in the plan, the algorithm learns that the best strategy is that
the robot grabs two balls from the initial room, each with one gripper,
transport them to the other room, drop them and go back to the first
room. This situation is repeated until there are no more balls.

Note that in Problem 3 the plan is not optimal because actions 4 and 5 are
unnecessary. This may be happening because, in the end, what the algorithm does
is to sample actions inside a probability distribution induced by the policy that it
has learned, perhaps sampling an action that should not have been executed at that
time but that had a probability value greater than zero.

In that sense, when we are in roomb we might also want to go to rooma (if
we had no ball in our grippers), even though in that state we do have two balls in
our grippers. The probability of taking that action is, then, not zero, so it could
potentially be chosen – which is what happens in this scenario. That is inefficient
because we first want to drop the two balls before going back again to rooma.

The inference of the aforementioned strategy leads to a very satisfactory gen-
eralization, as seen in Figure 6.3. The architecture GN-GN is sufficient to learn a
generalized policy. We can analyze the success rate of our GN-GN model in the
testing phase against Fast Downward in terms of time and memory consumed, for
problems of 5-200 balls.

The success rate is almost identical to that of FD as it is a simple domain for
a planner, although we observe that our approach improves success rate in terms of
expanded states against the Fast Downward planner. It is then shown that it is an
easy planning domain that any planner can easily solve and which leads to a very
“repetitive” policy.
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Problem 3 Example of the policy learned in the gripper domain for the GN-GN
model

(define (problem gripper)

(:domain gripper)

(:objects rooma roomb left right ball1 ball2 ball3 ball4 ball5 )

(:init

(room rooma)

(room roomb)

(gripper left)

(gripper right)

(ball ball1)

(ball ball2)

(ball ball3)

(ball ball4)

(ball ball5)

(free left)

(free right)

(at ball1 rooma)

(at ball2 rooma)

(at ball3 rooma)

(at ball4 rooma)

(at ball5 rooma)

(at-robby rooma))

(:goal

(and

(at ball1 roomb)

(at ball2 roomb)

(at ball3 roomb)

(at ball4 roomb)

(at ball5 roomb))))

PLAN:

1. (pick ball4 rooma right)

2. (pick ball5 rooma left)

3. (move rooma roomb)

4. (move roomb rooma)

5. (move rooma roomb)

6. (drop ball4 roomb right)

7. (drop ball5 roomb left)

8. (move roomb rooma)

9. (pick ball3 rooma right)

10. (pick ball1 rooma left)

11. (move rooma roomb)

12. (drop ball1 roomb left)

13. (drop ball3 roomb right)

14. (move roomb rooma)

15. (pick ball2 rooma left)

16. (move rooma roomb)

17. (drop ball2 roomb left)
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Figure 6.3: Success rate of our model in testing phase against Fast Downward in
gripper domain.

We can conclude the following from the experiments in the gripper domain:

• Generalization is guaranteed by our approach, which was again able to learn
a policy that potentially solves any problem instance.

• This domain has only one robot, so we are again in a sequential decision-
making process, as in the blocksworld domain. This helps the learning of a
policy.

• It is interesting to note the appearance of small cycles that are potentially
useless, favored by the stochastic nature of our policy.

• The goals are all individually achievable from the initial state of the problem
and no order is needed, as in the satellite domain.

6.5 Ferry

We will now analyze the results obtained from the ferry domain using the GNATv3-
GN model. Although the architecture GNAT-GN also obtained a 100% success rate
in validation, we opted for testing GNATv3-GN as this is the only domain along
with the gripper domain that scored the maximal success rate in GNATv3-GN.

The ferry domain is similar though slightly more elaborated than the gripper
domain. In the ferry there is also only one transport vehicle, a ship, that is used to
transport objects (cars, in this case) that need to be moved to a city, and the ship
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can only transport one car at a time. Unlike the gripper domain, there are more
than two locations wherein the ferry can move to.

The PDDL code in Problem 4 shows a problem and a plan for this domain.
The problem is an scenario of four locations: l0, l1, l2 and l3, and six cars, c0, c1,
c2, c3, c4 and c5, that are initially in one location and have to be transported to
another one. The plan in Problem 4 shows the movements of the ferry to transport
the cars from one location to another.

The strategy of the ferry domain is that the ship goes to one location,
picks up a car and leaves it at its destination; then, if there is a car to
transport at the destination city, it picks it up and takes it to its goal, and
so on. If there is no car, the ferry will move to another location that has
a car to be transported. Here we can also see that the policy sometimes makes
unnecessary trips similar as the robot in gripper, but in this case as there are more
locations, instead of going back to the departure room it goes to an intermediate
place.

There is an inherent serialization in the problem since there is only one ship,
but in this case the location to which this ship can travel is not unique as in the
gripper domain. This is why we believe that the attention layers generally favors the
ship to focus the journey to a specific place, reducing cycles and therefore increasing
success rate, as we can see in Extract 2, in which we compare the plan extracted
from the GN-GN model versus the one from GNATv3-GN model. We can observe
that the sail actions define a more straightforward trip with less moving around
with the attention model. In both scenarios a solution is achieved, but with the
second model using much less steps.

Figure 6.4 compares the success rate of our model in testing phase (GNATv3
block - GN block) against Fast Downward in the ferry domain, in terms of time and
memory consumed, for problems of 15-20 cities and 20-50 vehicles. We note that our
approach equals the Fast Downward planner in terms of time, and greatly improves
it in terms of memory.

The conclusions of the analysis for this domain are as follows:

• A strategy is learned through the attention algorithm, achieving the desired
results for the test instances.

• In the plans we observe that the algorithm often fails to learn direct trips from
one location to another, which may be due to having learned transitions from
other problems that may not be useful in the specific case.

• The attention layer favors this search to be narrowed down, reaching solutions
in up to one third of the steps than with non-attention domains. For this
reason, in addition to achieving a slight increase in the success rate to 100%
from the GN-GN model to the GNATv3-GN one, the model has also learned
a better policy in terms of plan length.
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Problem 4 Plan for a ferry problem using the GNATv3-GN model. We can see that
the strategy that is followed here is that the ferry goes visiting each city, debarking
and boarding cars whenever is needed. Unnecessary trips are marked with a *.

(define (problem ferry)

(:domain ferry)

(:objects l0 l1 l2 l3 c0 c1 c2 c3 c4 c5 )

(:init

(location l0)

(location l1)

(location l2)

(location l3)

(car c0)

(car c1)

(car c2)

(car c3)

(car c4)

(car c5)

(empty-ferry)

(at c0 l2)

(at c1 l2)

(at c2 l0)

(at c3 l2)

(at c4 l2)

(at c5 l3)

(at-ferry l1))

(:goal

(and

(at c0 l1)

(at c1 l1)

(at c2 l0)

(at c3 l1)

(at c4 l3)

(at c5 l2))))

PLAN:

1. (sail l1 l2)

2. (board c0 l2)

3. (sail l2 l3) *

4. (sail l3 l1)

5. (debark c0 l1)

6. (sail l1 l2)

7. (board c3 l2)

8. (sail l2 l3) *

9. (sail l3 l1)

10. (debark c3 l1)

11. (sail l1 l3)

12. (board c5 l3)

13. (sail l3 l2)

14. (debark c5 l2)

15. (board c4 l2)

16. (sail l2 l3)

17. (debark c4 l3)

18. (sail l3 l2)

19. (board c1 l2)

20. (sail l2 l0) *

21. (sail l0 l1)

22. (debark c1 l1)
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Extract 2 Extract of a plan for some ferry problem using the GN-GN model versus
using the GNATv3-GN model.

Extract from the GN-GN model:

[...]

(debark c16 l5)

(sail l5 l8)

(sail l8 l1)

(board c3 l1)

(sail l1 l5)

(sail l5 l7)

(sail l7 l1)

(sail l1 l5)

(sail l5 l9)

(sail l9 l0)

(sail l0 l3)

(sail l3 l2)

(sail l2 l8)

(sail l8 l3)

(sail l3 l7)

(sail l7 l6)

(sail l6 l1)

(sail l1 l5)

(sail l5 l4)

(debark c3 l4)

(board c1 l4)

[...]

(debark c10 l3)

(sail l3 l7)

(sail l7 l2)

(sail l2 l1)

(board c5 l1)

(sail l1 l9)

(sail l9 l0)

(sail l0 l1)

(sail l1 l6)

(sail l6 l0)

(sail l0 l1)

(sail l1 l7)

(sail l7 l4)

(sail l4 l0)

(sail l0 l3)

(sail l3 l8)

(sail l8 l1)

(sail l1 l6)

(sail l6 l9)

(sail l9 l8)

(sail l8 l6)

(sail l6 l3)

(sail l3 l7)

(sail l7 l2)

(sail l2 l8)

(sail l8 l7)

(sail l7 l3)

(sail l3 l1)

(sail l1 l6)

(sail l6 l5)

(debark c5 l5)

(sail l5 l3)

(sail l3 l6)

(sail l6 l2)

(sail l2 l4)

[...]

Extract from the GNATv3-GN model (fewer sail actions):

(sail l5 l4)

(board c14 l4)

[...]

(debark c4 l3)

(board c13 l3)

(sail l3 l4)

(sail l4 l2)

(debark c13 l2)

(board c16 l2)

(sail l2 l4)

(sail l4 l8)

(sail l8 l9)

(sail l9 l4)

(sail l4 l7)

(sail l7 l8)

(sail l8 l1)

(sail l1 l4)

(sail l4 l5)

(debark c16 l5)

(sail l5 l4)

(board c19 l4)

(sail l4 l8)

(debark c19 l8)

(board c0 l8)

(sail l8 l0)

[...]

(debark c10 l3)

(sail l3 l1)

(board c12 l1)

(sail l1 l5)

(debark c12 l5)

(sail l5 l1)

(board c3 l1)

(sail l1 l4)

(debark c3 l4)

(board c9 l4)

(sail l4 l1)

(sail l1 l5)

(sail l5 l1)

(sail l1 l9)

(debark c9 l9)

(sail l9 l7)

(sail l7 l1)

(board c5 l1)

(sail l1 l7)

(sail l7 l5)

[...]

(debark c15 l1)
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Figure 6.4: Success rate of our model in testing phase against Fast Downward in
ferry domain.

6.6 Logistics

According to table 5.3, for the logistics domain, we found that all four approaches
failed to achieve an adequate success rates in validation. In this section, we aim to
deeply analyze why we got these results.

To begin with, tightly-coupled domains, and especially one such as logistics,
are known for having sequences of actions that can be parallelized, i.e., that could
theoretically be executed in parallel. This is the case, for instance, of several packages
being transported simultaneously. Given that the generalized planning model is for
sequential decision making, policies define a total ordering of the actions.

In the situation where these sequences are independent from one other the order
can be arbitrary. For example, when a truck moves a package from one location to
another within the same city, and another truck wants delivers a different package.
In this case, no matter the order of the two independent sub-sequences of actions.

The problem comes when these sequences have to reach a point where they
must be executed in a specific order. For example, a truck moves to a location
within a city at the same time as an airplane moves from one airport to another.
However, if the goal is to take one package from one city to another city, the truck
and the airplane must coordinate (interact) at some point. That is, the parallel
sequences have to be “sequentialized” at the moment when a package is transferred
from a truck to an airplane.

This is where we see the problem: the necessary overlapping that happens,
for example, when we need to take a package on an airplane, is what makes the
network unable to generalize satisfactorily. Since this is a perspective based on
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Figure 6.5: Problem of logistics domain. Grey packages are the goal, Ci represent
each city and Lij each location inside the city. A represents whether a location is
an airport.

Deep Reinforcement Learning and with the way the graph is defined with which we
represent the problem, it is impossible to obtain any valuable information about the
correct order of the plan, in the training with the current architecture.

An example of this can be seen with the problem described in Figure 6.5, in
which we have six cities: c0, c1, c2, c3, c4 and c5, that have an airport with
which they communicate and have several trucks, one for each city, that transport
packages between locations from within the city itself. In Problem 5 we have the plan
extracted from the GNAT-GN model (the one that returned the highest success rate
in validation), and the aforementioned problem comes to light in the drive-truck

action, which remains in an infinite loop until termination.

Since the architecture prevents us from establishing a partial order in the ac-
tions as mentioned above, a policy is learned that overly rewards the actions of
moving the trucks, which makes sense since it is the first thing to be done in any
logistics plan and what would make an airplane able to pick up the package to move
it out of town.

As a result of our experience with the GNAT-GN architecture, we decided to
experiment with a new model with the aim to correct this problem. An important
aspect to be taken into account is the number of layers used in the GNN models.
Given that we are working with complete networks, the information flows from all
to all, so we must be careful not to increase the number of layers too much since
this could produce an “overgeneralization” effect, uniforming all the embeddings and
thus losing specific information.

Because of this it seemed reasonable to think of an architecture with two layers
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Problem 5 Plan for the logistics problem seen in Figure 6.5 using the GNAT-
GN model. Here we can see that a lot of cycles in driving start to appear, hence
preventing the planner from converging.

1. (load-truck p2 t2 l22)

2. (load-truck p3 t0 l02)

3. (drive-truck t0 l02 l00 c0)

4. (load-truck p1 t0 l00)

5. (drive-truck t3 l31 l32 c3)

6. (load-truck p4 t3 l32)

7. (drive-truck t3 l32 l31 c3)

8. (drive-truck t1 l12 l11 c1)

9. (load-truck p0 t1 l11)

10. (drive-truck t3 l31 l32 c3)

11. (drive-truck t1 l11 l12 c1)

12. (drive-truck t3 l32 l31 c3)

13. (drive-truck t1 l12 l11 c1)

14. (drive-truck t3 l31 l32 c3)

15. (drive-truck t1 l11 l12 c1)

16. (drive-truck t3 l32 l31 c3)

17. (drive-truck t1 l12 l11 c1)

18. (drive-truck t3 l31 l32 c3)

19. (drive-truck t1 l11 l12 c1)

20. (drive-truck t3 l32 l31 c3)

21. (drive-truck t1 l12 l11 c1)

22. (drive-truck t3 l31 l32 c3)

23. (drive-truck t1 l11 l12 c1)

24. (drive-truck t3 l32 l31 c3)

25. (drive-truck t1 l12 l11 c1)

26. (drive-truck t3 l31 l32 c3)

27. (drive-truck t1 l11 l12 c1)

[...] (Repeated a lot of times)

(drive-truck t3 l31 l32 c3)

(drive-truck t1 l11 l12 c1)

(drive-truck t3 l32 l31 c3)

(drive-truck t1 l12 l11 c1)

(drive-truck t3 l31 l32 c3)

(drive-truck t1 l11 l12 c1)

(drive-truck t3 l32 l31 c3)

(drive-truck t1 l12 l11 c1)

(drive-truck t3 l31 l32 c3)

(drive-truck t1 l11 l12 c1)

(drive-truck t3 l32 l31 c3)

(drive-truck t1 l12 l11 c1)

(drive-truck t3 l31 l32 c3)

[...]
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of attention instead of one. We have already seen that loosely-coupled domains
such as satellite make very good use of this single layer of attention in order to
be able to focus the information where it is wanted, but we have seen that this is
not sufficient in tightly-coupled domains where there is a lot of overlapping between
agents. Therefore, we introduced another layer that intuitively focuses on attending
to this overlap, while the other one focuses more on the information flow such as in
satellite.

With this, we define a new GNN structure in which we have two GNAT layers
followed by a GN, and we performed the same validation experiments as in the
previous chapter. The previous best model was the GNAT-GN model with a 28%
success rate, reaching 31% with the new model structure of GNAT-GNAT-GN.

As can be seen, although the results have improved slightly, they are still far
from what we are theoretically looking for. We cannot thus speak of a generalized
policy in this case – or at least we have not been able to find such a policy with the
proposed models. This makes sense since the logistics domain is a rather complex
domain in which the search for such a policy (if it existed) is an arduous task. In
fact, [STA22] paper shows that it is not possible to learn a policy for the logistics
domain.

However, we can talk about why we believe the new proposal has improved
the outcome. As we have said, adding a new layer to the model helps to make the
information more targeted and learning somewhat more satisfying. For example, in
Extract 3 we can see how the inclusion of this new layer tends to ignore intermediate
paths for the benefit of more directed ones. As we have said, this is not enough but
it might explain the slight improvement since in the end this significantly shortens
the search within the state space.

In the left column from Extract 3 we see an extract of the plan from the GNAT-
GNAT-GN model , while in the second one we see an extract for the same problem
but using the GNAT-GN model. Note that on the left side the drive-truck and
fly-airplane actions go directly to the destination, while on the right side it usually
makes a stop in some other location. There are some examples with *.

It was then decided to perform some tests for this new model GNAT-GNAT-
GN, observing how it behaves with respect to the Fast Downward planner as has
been done on previous occasions. In Figure 6.6 we can see the experiments that
have been carried out, with the particularity that it has not been possible to further
increase the size of the problems due to the limitations in terms of memory that the
problem has, since the logistics domain is a domain with a considerable size already
for relatively small problems. We note that our model improves on Fast Downward
in the results obtained.

We analyzed the success rate of our model (GNAT block - GNAT block - GN
block) against Fast Downward in logistics domain, in terms of time and memory
consumed, for problems of 3-4 airplanes, 5-6 cities, 5-6 trucks, 3-4 locations per city
and 5-6 packages.
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Extract 3 Extract of a plan for some logistics problem using the GNAT-GNAT-GN
model versus using the GNAT-GN model.

GNAT-GNAT-GN extract:

(load-truck p1 t4 l41)

(drive-truck t4 l41 l42 c4)*

(unload-truck p1 t4 l42)

(load-truck p3 t4 l42)

(load-truck p1 t4 l42)

(load-truck p2 t4 l42)

(drive-truck t3 l31 l33 c3)*

(load-truck p5 t3 l33)

(drive-truck t1 l12 l10 c1)

(drive-truck t5 l52 l51 c5)

(load-truck p4 t5 l51)

(drive-truck t5 l51 l53 c5)

(unload-truck p4 t5 l53)

(load-truck p4 t5 l53)

(drive-truck t3 l33 l32 c3)

(unload-truck p5 t3 l32)

(drive-truck t5 l53 l50 c5)

(drive-truck t4 l42 l40 c4)

(unload-truck p3 t4 l40)

(load-airplane p3 a1 l40)

(unload-truck p1 t4 l40)

(load-airplane p1 a1 l40)

(load-airplane p0 a1 l40)

(fly-airplane a1 l40 l10)

[...]

GNAT-GN extract:

(load-truck p1 t4 l41)

(drive-truck t4 l41 l40 c4)*

(drive-truck t4 l40 l42 c4)*

(load-truck p3 t4 l42)

(load-truck p2 t4 l42)

(drive-truck t4 l42 l40 c4)*

(load-truck p0 t4 l40)

(drive-truck t4 l40 l43 c4)*

(drive-truck t1 l12 l10 c1)

(drive-truck t5 l52 l51 c5)

(load-truck p4 t5 l51)

(drive-truck t5 l51 l53 c5)

(drive-truck t3 l31 l33 c3)

(load-truck p5 t3 l33)

(drive-truck t3 l33 l32 c3)

(unload-truck p5 t3 l32)

(drive-truck t5 l53 l50 c5)

(drive-truck t4 l43 l40 c4)

(fly-airplane a2 l50 l20)

(unload-truck p2 t4 l40)

(load-airplane p2 a1 l40)

(fly-airplane a1 l40 l10)*

(fly-airplane a1 l10 l00)*

(unload-airplane p2 a1 l00)

[...]
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Figure 6.6: Success rate of our model against Fast Downward in logistics domain.

We can then conclude the following:

• The base models were not able to come to a generalizable strategy.

• We have presented a new model that improves the success rate of the afore-
mentioned models, but it was again impossible to infer such strategy.

• This could be happening due to the nature of the problem, because logistics is
quite a complex domain and being tightly-coupled there are a lot of subgoals
that need to be ordered.

• Our model outperforms Fast Downward in terms of expanded states.

6.7 Depots

Since depots is also a tightly-coupled domain such as logistics, it is expected to
exhibit a similar behavior. In this case, again, we have the same problem as in
logistics : sequences of actions can run in parallel but at a certain point they must
be sequentialized.

We analyze this situation by describing a problem and discussing its behavior
with the GNAT-GN model, which was the one that output the best results in vali-
dation. In Figure 6.7, we can observe a complete definition of the problem, in which
we have several distributors and several pallets, and the objective is to get crates
on top of some pallets. For that, we have five trucks: truck0, truck1, truck2,
truck3 and truck4, which transport crates from one place to another and with the
help of some hoists they move the crate from it to the pallet. Problem 6 shows the
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Figure 6.7: Definition of a problem from the depots domain. HOIST represents a
hoist, PALL represents a pallet, DEPOT a depot, CRT a crate, DIS a distributor
and TRUCK a truck. We can see in grey the goal objectives of the problem. The
execution of the plan is in Problem 6.

Problem 6 Plan for the problem in Figure 6.7 using the GNAT-GN model. As we
can see, it leads to infinite cycles in the hoist0, loading and unloading two crates.

PLAN:

1. (lift hst6 crt4 pall6 dis1)

2. (load hst6 crt4 truck4 dis1)

3. (drive truck4 dis1 dis3)

4. (unload hst8 crt4 truck4 dis3)

5. (load hst8 crt4 truck4 dis3)

6. (drive truck4 dis3 dis2)

7. (unload hst7 crt4 truck4 dis2)

8. (load hst7 crt4 truck4 dis2)

9. (drive truck4 dis2 dpt4)

10. (unload hst4 crt4 truck4 dpt4)

11. (load hst4 crt4 truck4 dpt4)

12. (drive truck4 dpt4 dpt0)

13. (unload hst0 crt4 truck4 dpt0)

[...]

(load hst0 crt1 truck0 dpt0)

(unload hst0 crt2 truck0 dpt0)

(drive truck3 dpt4 dis2)

(load hst0 crt2 truck0 dpt0)

(unload hst0 crt1 truck0 dpt0)

(load hst0 crt1 truck0 dpt0)

(unload hst0 crt2 truck0 dpt0)

(load hst0 crt2 truck0 dpt0)

(unload hst0 crt1 truck0 dpt0)

(load hst0 crt1 truck0 dpt0)

(unload hst0 crt2 truck0 dpt0)

(load hst0 crt2 truck0 dpt0)

(unload hst0 crt1 truck0 dpt0)

(load hst0 crt1 truck0 dpt0)

[...]
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problematic of these domains that we talked about before: the appearance of infinite
cycles because of the inability of properly learning the policy, which leads to a loopy
behaviour that prevents the algorithm from converging.

In this case we tested again the new model that we proposed in the previous
section, GNAT-GNAT-GN, obtaining an improvement in results such that from 54%
of success rate with the GNAT-GN model, we achieved 100% in validation with the
GNAT-GNAT-GN model. This huge improvement is very positive but must be
analyzed.

In Extract 4 we see why the GNAT-GNAT-GN model largely improves the
results. The new attention layer prevents the planner to get stuck in load and
unload cycles. This helps the search converge and explains the huge improvement
in validation. In Figure 6.8 we see how the testing went, outperforming again Fast
Downward with our model in terms of expanded states. We were again not able to
enlarge the testing sizes because of memory limitations in the nature of the domain.

In the left column from Extract 4 we see the full plan from the GNAT-GNAT-
GN model, while in the second one we see an extract for the same problem but
using the second model GNAT-GN. Note that on the left side the load and unload

actions are non blocking, meaning that they do not produce cycles, while on the
right side this is the main problem.

We analyzed the success rate of our model (GNAT block - GNAT block - GN
block) against Fast Downward in depots domain, in terms of time and memory
consumed, for problems of 5-6 depots, 5-6 distributors, 5-6 trucks, 7-9 pallets, 7-9
hoists and 7-9 crates.

Figure 6.8: Success rate of our model against Fast Downward in depots domain.
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Extract 4 Extract of a plan for some depots problem using the GNAT-GNAT-GN
model versus using the GNAT-GN model.

GNAT-GNAT-GN extract (full plan):

(lift hst2 crt0 pall2 dpt2)

(lift hst5 crt3 pall5 dis0)

(drive truck4 dis1 dis0)

(drive truck4 dis0 dpt2)

(load hst2 crt0 truck4 dpt2)

(drive truck4 dpt2 dis0)

(load hst5 crt3 truck4 dis0)

(drive truck4 dis0 dpt2)

(drive truck4 dpt2 dpt3)

(unload hst3 crt3 truck4 dpt3)

(load hst3 crt3 truck4 dpt3)

(drive truck4 dpt3 dis0)

(unload hst5 crt3 truck4 dis0)

(load hst5 crt3 truck4 dis0)

(drive truck4 dis0 dpt2)

(drive truck0 dis2 dis0)

(unload hst2 crt3 truck4 dpt2)

(drop hst2 crt3 pall2 dpt2)

(unload hst2 crt0 truck4 dpt2)

(load hst2 crt0 truck4 dpt2)

(drive truck4 dpt2 dis0)

(unload hst5 crt0 truck4 dis0)

(drop hst5 crt0 pall5 dis0)

(lift hst3 crt1 pall3 dpt3)

(drive truck4 dis0 dpt3)

(load hst3 crt1 truck4 dpt3)

(drive truck4 dpt3 dis3)

(unload hst8 crt1 truck4 dis3)

(drop hst8 crt1 pall8 dis3)

(lift hst1 crt2 pall1 dpt1)

(drive truck2 dpt0 dpt1)

(load hst1 crt2 truck2 dpt1)

(drive truck2 dpt1 dpt4)

(unload hst4 crt2 truck2 dpt4)

(drop hst4 crt2 pall4 dpt4)

(lift hst6 crt4 pall6 dis1)

(drive truck2 dpt4 dis1)

(load hst6 crt4 truck2 dis1)

(drive truck2 dis1 dis4)

(unload hst9 crt4 truck2 dis4)

(drop hst9 crt4 pall9 dis4)

GNAT-GN extract (leads to a loop):

(lift hst6 crt4 pall6 dist1)

(load hst6 crt4 truck4 dist1)

(drive truck4 dist1 dist3)

[...]

(load hst1 crt2 truck4 dpt1)

(unload hst1 crt1 truck4 dpt1)

(load hst1 crt1 truck4 dpt1)

(unload hst1 crt2 truck4 dpt1)

(load hst1 crt2 truck4 dpt1)

(unload hst1 crt1 truck4 dpt1)

(load hst1 crt1 truck4 dpt1)

(unload hst1 crt2 truck4 dpt1)

(load hst1 crt2 truck4 dpt1)

(unload hst1 crt1 truck4 dpt1)

(load hst1 crt1 truck4 dpt1)

(unload hst1 crt2 truck4 dpt1)

(load hst1 crt2 truck4 dpt1)

(unload hst1 crt1 truck4 dpt1)

(load hst1 crt1 truck4 dpt1)

(unload hst1 crt2 truck4 dpt1)

(load hst1 crt2 truck4 dpt1)

(unload hst1 crt1 truck4 dpt1)

(load hst1 crt1 truck4 dpt1)

[...]
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The conclusions of the analysis for this domain are as follows:

• Again, the base models were not able to come to a generalized strategy, but
with our new GNAT-GNAT-GN model, the success rate raises up to 100%.

• This strategy is not as easy as in other domains, because even though with
the new GNAT-GNAT-GN model we get the desired results we are not able to
infer a strategy that is easily explainable. That is, it is able to find solutions
to this problem where the search is guided by RL but there is not a clearly
defined strategy or clearly identifiable pattern.

• Our model outperforms Fast Downward in terms of expanded states and equals
it in terms of speed.

6.8 Elevators

For this domain, which is also tightly-coupled, we can expect the same situation
as in the previous two. In this case the problem is that the elevators, since they
do not pertain to all the blocks, must coordinate to take people from one floor to
another whenever their destination is in a block other than the one from which they
departed.

We analyze this situation using the problem of Figure 6.9, where we can see
that we have a ten-floor building in which there are two blocks and an elevator for
each block, as0 and as1. In addition, there is a fast elevator asr which only uses the
even floors but can move throughout the building and four people that want to get to
different floors. In Problem 7 we can see how the best model GNATv2-GN behaves
with this problem, resulting in an infinite cycle in the move elevator operation.

This domain has turned out to be tougher than we thought. As we obtained
poor results with the initial models, we decided to go a step further and try to analyze
the plans using the GNAT-GNAT-GN model that we have explained in previous
sections. However, the success rate results did not go any higher, maintaining the
63% that was initially offered with the new model as well.

We can analyze why this happens by looking at Extract 5, in which we have
a small extract of a plan made with the GNAT-GNAT-GN model for the problem
proposed above. As can be seen, this time the cycle has moved to another part of
the actions: passenger-enters and passenger-leaves. We hypothesize that this
happens because the model is still unable to explain the entire nature of the problem,
since in this case the elevators have several points where subplans can converge.
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Figure 6.9: Definition of a problem of elevators domain. We have a building of 10
floors, two blocks inside the building and two elevators AS0, AS1 that move inside
BL0 and BL1, respectively. Grey people are the goal, and black people represent
the initial state. Plan is in Problem 7.

Problem 7 Plan for the problem in Figure 6.9 using the GNATv2-GN model. We
can notice that it repeats the same strategy of moving elevators from one floor to
another over and over again.

PLAN:

1. (passenger-enters pe2 as1 pl5)

2. (move-elevat as0 pl0 pl2 bl0)

3. (move-elevat as0 pl2 pl3 bl0)

4. (move-elevat as1 pl5 pl7 bl1)

5. (move-elevat as0 pl3 pl4 bl0)

6. (move-elevat as1 pl7 pl9 bl1)

7. (move-elevat as0 pl4 pl2 bl0)

8. (move-elevat as1 pl9 pl8 bl1)

9. (move-elevat as0 pl2 pl1 bl0)

10. (move-elevat as0 pl1 pl3 bl0)

11. (move-elevat as1 pl5 pl9 bl1)

12. (move-elevat as1 pl9 pl6 bl1)

13. (move-elevat as0 pl0 pl3 bl0)

14. (move-elevat as0 pl3 pl2 bl0)

15. (move-elevat as0 pl2 pl1 bl0)

16. (move-elevat as0 pl1 pl5 bl0)

17. (move-elevat as0 pl5 pl2 bl0)

18. (move-elevat as0 pl2 pl1 bl0)

19. (move-elevat as0 pl1 pl4 bl0)

20. (move-elevat as0 pl4 pl3 bl0)

21. (move-elevat as0 pl3 pl2 bl0)

22. (move-elevat as1 pl5 pl9 bl1)

23. (move-elevat as0 pl2 pl3 bl0)

24. (move-elevat as1 pl9 pl5 bl1)

25. (move-elevat as1 pl5 pl7 bl1)

26. (move-elevat as0 pl3 pl5 bl0)

27. (move-elevat as1 pl7 pl9 bl1)

28. (move-elevat as0 pl5 pl1 bl0)

29. (move-elevat as0 pl1 pl2 bl0)

30. (move-elevat as0 pl2 pl4 bl0)

31. (move-elevat as0 pl4 pl5 bl0)

[...] (And so on)
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In the logistics case, for example, the only point where each subplan had to be
serialized was only in cities with airports, but in the elevators any floor can be sus-
ceptible to overlap: even floors overlap with the fast elevator and block intersections
between block elevators. This is why we believe that the newly proposed model fails
to achieve a good result, it would require searching for some other architecture or
thinking in what way this situation could be dealt with.

Extract 5 Extract of a plan for the problem in Figure 6.9 , in which we can see
that the actions get stuck in passenger-leaves and passenger-enters.

Extract from the GNAT-GNAT-GN model:

(passenger_enters pe2 as1 pl5)

(move_elevat as0 pl0 pl5 bl0)

(move_elevat as1 pl5 pl8 bl1)

(move_elevat as0 pl5 pl2 bl0)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(move_elevat as0 pl0 pl5 bl0)

(move_elevat as0 pl5 pl2 bl0)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

(passenger_leaves pe0 as0 pl2)

(passenger_enters pe0 as0 pl2)

[...]

However, and taking into account that the expected result has not been achieved,
the latter model still outperforms Fast Downward in terms of state expansion ac-
cording to the results obtained with the test set. This can be seen in Figure 6.10, in
which we analyzed the success rate of our model (GNAT block - GNAT block - GN
block) against Fast Downward in elevators domain, in terms of time and memory
consumed, for problems of 8-10 floors, 5-8 passengers, 1-2 blocks.

Therefore, we can conclude the following:

• We were not able to get a generalized strategy from this domain, not with the
base models nor the proposed one.

• Even though we did not come to a solution, our model outperforms Fast Down-
ward in all of our experiments.

• This problem has been difficult to approach with our models due to the high
overlap existing in the nature of the domain.
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Figure 6.10: Success rate of our model against Fast Downward in elevators domain.

6.9 Hanoi

Figure 6.11: Basic setup of a hanoi problem.

This semantic knowledge that we talked about in previous sections, with which
we can infer generalist strategies that solve much larger problems within a domain,
does not make sense in the field of certain games such as hanoi. We can see an
example of a problem in Figure 6.11.

Firstly, because we are in a domain in which there is a dominant strategy, but
it is dependent on the problem size [KUM15]. And secondly, the number of moves
that must be made to reach the solution grows exponentially with the number of
disks there are. In fact, the problem needs 2n − 1 moves, with n being the number
of disks.

For this same reason, despite reaching 100% success rate in training, it does not
go above 0% in validation: the probability distribution that it is learning in training
sizes is of no use at all for the validation size.
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We can conclude the following:

• In the hanoi domain we were not able to come to a generalizable strategy.

• The success rate does not go above 0% because it makes no sense, as there is
no strategy to be learned.

• The hard combinatorics of the domain makes it impossible to train a policy
that is useful for higher order instances.

• The gaming domain is not something worth investigating from this perspective,
since most games have these problems.



Chapter 7

Conclusion

In this chapter we will present the conclusions we have drawn from all the work
that has been done, both from the purely theoretical-explanatory part and from the
more experimental and analytical part of the models. In addition, we will discuss
future lines of work that may arise from the development of this work, which will
be developed in a future PhD project.

7.1 Achievements

First of all, we can say that the specific set of objectives of this work have been
achieved. Specifically, we have explained the technologies of the model in a sat-
isfactory way, we have presented them together with other models that we came
up with, such as GNATv2-GN, GNATv3-GN or GNAT-GNAT-GN, and we have
observed that they have equaled and even improved the results from what already
existed previously in the paper from which we have started to do the work.

Secondly, we have managed to extract information about the proposed domains
and their relationship with the taxonomy to which they belong. More specifically,
we have observed that more general domains or domains with simpler strategies
respond well to indiscriminate information propagation models, such as GN-GN,
which has been explained in this paper.

On the other hand, attention models such as GNAT-GN, GNATv2-GN or
GNATv3-GN respond well to the types of domains that we refer to as loosely-coupled,
in which there are tasks that can be performed in parallel and that do not interfere
with each other. We have seen that this attention helps to focus information on
these virtually parallel tasks and allows fewer cycles to appear in the plans, which
are the result of misinformation caused by inattention.

It has also been observed that tightly-coupled domains have problems with the
initial two-layer GNN architectures, so we presented a new model, GNAT-GNAT-
GN, which improves the results.

66
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Finally, we were able to obtain generalized policies in most domains, which
scaled well to problems of higher magnitude. However, it has been more difficult in
some of the domains to find a policy that is explainable, i.e., there were domains for
which it was not easy to find a regular pattern that explains the strategy or policy.

7.2 Future work

This work has been an approach to Generalized Planning using certain tools that we
have found interesting. In future work, however, we will try to explore other ways
in order to improve the performance we have obtained in this work. For instance:

• To explore different representations for the construction of the graph, so we
can boost performance by including other useful information such as partial
order for each planning state.

• To change the embedding generation, exploring other methods apart from the
GNNs such as Logical Neural Networks [RIE20].

• To experiment within different types of GNN layers that include other types
of information.

• To try and use several improvements to the model for it to boost its perfor-
mance, such as using artificial nodes or pretraining the network.1

• To change or to improve RL algorithms, in order to collect more useful infor-
mation at each training step.

1https://towardsdatascience.com/how-to-boost-your-gnn-356f70086991. Acessed: 11-
09-2022.

https://towardsdatascience.com/how-to-boost-your-gnn-356f70086991
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[AIN19] Aineto D., Jiménez-Celorrio S., Onaindia E., 2019. Learning action
models with minimal observability, Artificial Intelligence, 275, pp. 104-137.

[ALK20] Alkhazraji Y., Frorath M., Grützner M., Helmert M., Liebe-
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tegrating Deep Reinforcement Learning with Model-based Path Planners for Au-
tomated Driving., EEE Intelligent Vehicles Symposium, pp. 1311-1316.

[ZHO20] Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., Wang L., Li
C., Sun M., 2020. Graph neural networks: A review of methods and applica-
tions, AI Open, 1, pp. 57-81, https://doi.org/10.1016/j.aiopen.2021.01.
001.

[ZHU10] Zhuo H. H., Yang Q., Hu D. H., Li L., 2010. Learning complex action
models with quantifiers and logical implications, Artificial Intelligence, 174 (18),
pp. 1540–1569.

https://ojs.aaai.org/index.php/ICAPS/article/view/19851
https://ojs.aaai.org/index.php/ICAPS/article/view/19851
https://doi.org/10.48550/arXiv.1501.07250
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.2106.06090
https://doi.org/10.48550/arXiv.2011.02260
https://doi.org/10.48550/arXiv.2011.02260
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001


BIBLIOGRAPHY 72

[ZHU13] Zhuo H. H., Kambhampati S., 2013. Action-model acquisition from
noisy plan traces, International Joint Conference on Artificial Intelligence,
IJCAI-13, 2013, pp. 2444–2450.



List of Figures

2.1 An example of a controller within the planning perspective. With
a single hand-crafted model of the domain, the solver (planner) is
able to compute a plan for each problem. This perspective uses a
generalized model to create particular solutions. . . . . . . . . . . . . 4

2.2 An example of a controller within the Reinforcement Learning per-
spective. From a collection of data a predictive model is learnt which
can then be used to calculate a policy. Under this perspective a par-
ticular model is learned (particularly adapted to the data) from which
a general solution (policy) is inferred. . . . . . . . . . . . . . . . . . . 5

3.1 Example of a representation of a problem in a generic transport domain. 9

3.2 Graph classification task: Does the graph contain two rings?. In
this situation we want to discriminate a network by whether or not
it has two cycles within it. Source: https://distill.pub/2021/

gnn-intro/. Accessed: 15-06-2022. . . . . . . . . . . . . . . . . . . . 10

3.3 How do GNNs generate graph embeddings. Source: https://distill.
pub/2021/gnn-intro/. Accessed: 15-06-2022. . . . . . . . . . . . . . 11

3.4 Typical example of a problem modeled with Reinforcement Learn-
ing in which an agent wants to obtain the maximum benefit. Source:
https://towardsdatascience.com/function-approximation-in-reinforcement-learning-85a4864d566.
Accessed: 22-08-2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Example of a planning problem of the blocksworld domain. Source:
[RIV20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Embedding representation of the problem of Figure 4.1. Source:
[RIV20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 State-goal graph representation of the tree state that is seen in Figure
4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

73

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/
https://towardsdatascience.com/function-approximation-in-reinforcement-learning-85a4864d566


LIST OF FIGURES 74

4.4 Propagation of the information via the GN block. It is divided in
three phases: the edge embedding generation, the vertex embedding
generation and the global embedding generation. . . . . . . . . . . . . 21

4.5 Action embedding generation. Source: [RIV20]. . . . . . . . . . . . . 26

4.6 General schema of the structure of the system. Dashed arrows repre-
sent the training flow, while line arrows represent the update of each
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Example of a problem in the blocksworld domain. . . . . . . . . . . . 29

6.1 Success rate of our model in testing phase against Fast Downward in
blocksworld domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Success rate of our model in testing phase against Fast Downward in
satellite domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Success rate of our model in testing phase against Fast Downward in
gripper domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Success rate of our model in testing phase against Fast Downward in
ferry domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Problem of logistics domain. Grey packages are the goal, Ci represent
each city and Lij each location inside the city. A represents whether
a location is an airport. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Success rate of our model against Fast Downward in logistics domain. 57

6.7 Definition of a problem from the depots domain. HOIST represents
a hoist, PALL represents a pallet, DEPOT a depot, CRT a crate,
DIS a distributor and TRUCK a truck. We can see in grey the goal
objectives of the problem. The execution of the plan is in Problem 6. 58

6.8 Success rate of our model against Fast Downward in depots domain. . 59

6.9 Definition of a problem of elevators domain. We have a building of
10 floors, two blocks inside the building and two elevators AS0, AS1
that move inside BL0 and BL1, respectively. Grey people are the
goal, and black people represent the initial state. Plan is in Problem 7. 62

6.10 Success rate of our model against Fast Downward in elevators domain. 64

6.11 Basic setup of a hanoi problem. . . . . . . . . . . . . . . . . . . . . . 64



List of Tables

5.1 Taxonomy of each domain. . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Sizes used for each domain in training and validation. . . . . . . . . . 35

5.3 Success rate in validation. We highlight the best result for each do-
main in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Sizes of problems used for each domain in testing. . . . . . . . . . . . 38

75


	Introduction
	Motivation
	Objectives

	Related work
	Planning controllers
	Learning controllers
	Learning to plan controllers

	Background
	Planning
	Graph Neural Networks
	Reinforcement Learning
	Training a RL function approximator

	Generalized Planning model
	Acknowledgement
	Overview of the Generalized Planning model
	State representation
	GNN layers
	Action and policy representation
	Training procedure
	Planning with a learnable heuristic

	Experimentation
	Domains
	Taxonomy
	Training

	Learned policy analysis
	Overview
	Blocksworld
	Satellite
	Gripper
	Ferry
	Logistics
	Depots
	Elevators
	Hanoi

	Conclusion
	Achievements
	Future work

	Bibliography
	List of figures
	List of tables

