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Resum
La traducció automàtica (MT, de l’anglès Machine Translation) és una dels àrees més

actives dins de la intel·ligència artificial, particularment en el camp de l’aprenentatge
automàtic. Recentment, aquesta àrea ha sigut el focus d’atenció per part d’importants
figures tecnològiques com Google, Facebook, Microsoft, etc. a causa de les millores de
rendiment obtingudes per aquesta tecnologia gràcies a la incorporació de xarxes neuro-
nals artificials. Un dels principals motius que explica està atenció és l’enorme creixement
de plataformes de difusió de continguts audiovisuals en streaming (per exemple You-
Tube i Twitch) i vídeo-conferencia (per exemple Zoom i Webex). En aquest context, un
aspecte molt important és l’adaptació de tècniques i models convencionals per al seu ús
en streaming, això és, per a un flux d’entrada a traduir constant i eixida ajustada per
davall d’un temps de resposta (latència) donat. En aquest treball es proposa estudiar i
implementar models avançats de MT neuronal en streaming, de l’anglès a llengües euro-
pees. Per a això, es farà ús de dades, tecnologia i experiència del grup MLLP del VRAIN,
adquirits en el marc de projectes d’investigació i transferència tecnològica desenvolupats
en els últims anys.

Paraules clau: Traducció automàtica; traducció automàtica neuronal; traducció automà-
tica en streaming

Resumen
La traducción automática (MT, del inglés Machine Translation) es una de les áreas

más activas dentro de la inteligencia artificial, particularmente en el campo del aprendi-
zaje automático. Recientemente, esta área ha sido el foco de atención por parte de impor-
tantes figuras tecnológicas como Google, Facebook, Microsoft, etc. debido a las mejoras
de rendimiento obtenidas por esta tecnología gracias a la incorporación de redes neuro-
nales artificiales. Uno de los principales motivos que explica está atención es el enorme
crecimiento de plataformas de difusión de contenidos audiovisuales en streaming (por
ejemplo YouTube y Twitch) y video-conferencia (por ejemplo Zoom y Webex). En este
contexto, un aspecto muy importante es la adaptación de técnicas y modelos convencio-
nales para su uso en streaming, esto es, para un flujo de entrada a traducir constante y
salida ajustada por debajo de un tiempo de respuesta (latencia) dado. En este trabajo se
propone estudiar e implementar modelos avanzados de MT neuronal en streaming, de
inglés a lenguas europeas. Para ello, se hará uso de datos, tecnología y experiencia del
grupo MLLP del VRAIN, adquiridos en el marco de proyectos de investigación y trans-
ferencia tecnológica desarrollados en los últimos años.

Palabras clave: Traducción automática; traducción automática neuronal; traducción au-
tomática en streaming

Abstract
Machine translation is one of the most active areas within Artificial Intelligence, par-

ticularly in the field of Machine Learning. Recently, this area has been the focus of at-
tention by major technology figures such as Google, Facebook, Microsoft, etc. due to the
performance improvements obtained by this technology thanks to the incorporation of
artificial neural networks. One of the main reasons for this attention is the enormous
growth of streaming audiovisual content platforms (for example, YouTube and Twitch)
and video-conferencing (for example, Zoom and Webex). In this context, a very impor-
tant aspect is the adaptation of conventional techniques and models to be used in the
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streaming scenario, that is, the translation of a constant input flow under response time
(latency) constraints. In this work it is proposed to study and implement advanced mod-
els of neural MT in streaming, from English into European languages. For this, data,
technology and experience of the VRAIN MLLP group, acquired in the framework of
research and technology transfer projects developed in recent years, will be used.

Key words: Machine Translation; Neural Machine Translation; Streaming Machine Trans-
lation
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CHAPTER 1

Introduction

In this chapter we present the motivations, goals and theoretical backgrounds of our
work. We present the foundations of machine learning (ML), machine translation (MT) as
well as neural models and state of the art architectures for language processing tasks. In
addition, we describe the framework in which our labour is developed and the structure
of this document.

1.1 Motivation

Nowadays’ high computational capacity and worlwide continuous research over the
years has brought artificial intelligence to succeed in a wide range of formerly unex-
pected tasks, in addition to its presence in almost all areas of application: corporative,
commercial, administrative, research, industrial, health, entertainment, media, etc. This
can be observed from simple applications to complex problems such as protein folding
prediction [29], communication restorage for patients with lost speech [63], rocket driv-
ing [62], cancer prognosis [15], image generation from written text [46], etc. Regarding
our area of research, automatic translation of languages is already a reality in our daily
lives, while there are still limits to push, milestones to achieve and research paths to ex-
plore. We can now for free translate within instants any phrase that we want to express
in another language, and even translate it from raw speech. Massive amounts of text
are also translated everyday internally within companies’ workflow as well as externally
for products and services. Technology corporations such as Amazon1, Meta2 or Google3

develop their own machine translation systems which are also available for public use.

Improving the quality of state of the art translation systems as well as pushing to-
wards achieving competitive live real time machine translation saves big amounts of
resources and matches a growing demand, as online conferences and streaming media
become more and more common in today’s society. In the case of institutions like the
European Organization for Nuclear Research (CERN), there is need of tailored transla-
tion systems that fit their vocabulary in specific domains such as physics. These systems
cannot be provided by large corporations, since they are focused on general-purpose
systems, in addition to data protection and privacy concerns. There is a market niche
for domain-adapted systems to be developed by mid-size institutions such as university
research groups, which are able to fit more specific requirements. This is the case of the
collaboration between the CERN and the Machine Learning and Language Processing
(MLLP) group at UPV, where this work is contextualized as we explain in Section 1.7.

1https://aws.amazon.com/translate/
2https://ai.facebook.com/blog/nllb-200-high-quality-machine-translation/
3https://translate.google.com/
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2 Introduction

1.2 Goals

We can summarize the main objectives of the present work as follows:

• To understand the theoretical developments and technological advances have led
nerual machine translation (NMT) to be the current state of the art.

• To learn and showcase the different components and processes involved in the de-
velopment of NMT systems, as well as the importance of data and how it is com-
piled for these systems.

• To improve the offline NMT models for the English to French translation task that
already exist in the MLLP research group.

• To explore, compare and apply different methods to adapt NMT systems to a spe-
cific domain in order to significantly improve the translation quality in in-domain
evaluation tasks.

• To understand the challenges that exist in building streaming and real time NMT
models, how they are evaluated, and construct a system for such task based on
offline system results.

• To develop MT systems ready to be deployed and used in real scenarios for the
English to French translation task.

1.3 Machine Learning

Artificial Inteligence is built upon the grounds of computers running instructions, as any
other kind of instructions that they would run, but these in appearance resembling ac-
tions that are attributed to intelligence and in many occasions mimicking tasks done by
humans.

The present work belongs to the branch of Artificial Intelligence called Machine Learn-
ing. In contrast to other branches, the intelligent behaviour of a system is achieved based
mainly on the data that we make available to the system.

We could see the objective of a Machine Learning system as the task of offering correct
answers to a certain set of questions. Let these questions be of any kind, whether a patient
suffers from cancer or not, should the car turn left, right or stop, which is the next film
that we should recommend a user to watch, etc. In the task that ensues us our systems
will be trying to give proper answers to the question of what is a good translation of a
sentence into another language.

A system initially gives answers that are very distant to what we consider correct,
and as it processes the data that we have provided to it, its performance increases. Thus
we say that the system has learnt from the data.

In its basis a ML system is a computer program that materializes (in a big physical
arena of transistors) a mathematical model, often a function, to which we give as argu-
ment our question and computes the answer depending on a set of weights, operations
and structure. These weights vary their values through an optimization process that de-
pends on data, to which we refer as training. Learning is thus the result of the system
having found a set of values for the weights that make the model offer better answers to
the problem presented.

In other words, referring to the definition of Machine Learning by Tom Mitchell [39]:
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"A computer program is said to learn from experience E with respect to some class of
tasks T, and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E"

A function is optimized from data E to answer questions T these being more or less
correct according to P. A lot of engineering work, scientific research and experimenta-
tion is performed in order to discover better weight-keeping structures, model configu-
rations and optimization processes that allow coming up with better weights (learning)
that achieve better performance (more useful answers) to a specific task (question) from
experience (data).

1.3.1. Supervised learning and classification

Many problems or question-answering instances can be viewed as a classification task,
that falls into the branch of Machine Learning known as supervised learning. In this sce-
nario, data or experience to learn from comes as a pair (x, c), x being the object to be
classified and c being the correct answer or class to which x should be classified to.

We keep in mind that the usefulness of a system and the ultimate goal always comes
in answering questions for which there is uncertainty, inputs x for which the right class
c is not known. Output a correct classification to new samples of the task, that have not
been involved during the training of the model. We are referring here to performing
inference.

But the model will learn to improve the performance on this task from the knowledge
that is present in well-answered question pairs, that is, correct solutions to instances of
the same kind of problems.

The final objective is to construct a system where false answers are minimized. In
other words, provide solutions to tasks T so that performance P is maximized, i.e. min-
imize the number of mistaken classifications. We can see a formalization of the problem
in the following section describing one of the first theoretical classification models.

Bayes classifier

According to the statistical decision theory, we can define pc(error|x) as the probability of
sample x to be classified into an incorrect class c and p(c|x), the probability of x to belong
to class c

pc(error|x) = 1− p(c = c|x) (1.1)

and pick the label that minimizes the error:

min
c∈C

pc(error|x) = 1−max
c∈C

p(c|x) (1.2)

ĉ = arg max
c∈C

p(c|x) (1.3)

where C is the set of possible class labels and ĉ the class decided by the system. We refer
to this as the minimum risk decision rule or Bayes classifier.

If the true distribution pc(c|x) was known for every x, we would have an optimal
performance, an oracle, since x would always be classified into the most probable class,
thus assignments of x to other classes would incur in more errors.

We could understand ML as a way where we are building a model that tries to ap-
proximate better the probabilities of x to be classified into class c, using for such task the
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Figure 1.1: Illustration of 4 data-samples representing the XOR problem. Adapted from Figure
13.1 of [40].

information that is available in the data supplied to our system. The use of the Bayes rule
can be seen to derive an expression that is easier to approximate

arg max
c∈C

p(c|x) = arg max
c∈C

p(x|c)p(c)
p(x)

= arg max
c∈C

p(x|c)p(c) (1.4)

where p(x) is dropped since it is a constant term that does not modify the argument result
of the optimization.

Perceptron algorithm

The estimating of a probability distribution can result in ripping the space into regions
when it comes down to classifying inputs to class labels (tasks to their solutions).

The Perceptron algorithm [48] was a fundamental precursor of neural networks, and
it focuses directly in computing a linear decision boundary for a binary classification task.
This translates in finding a good set of weights in the search space of their values, that
will define the hyperplane of the boundary.

We got the following prediction model:

ĉ = f (x) = I(wTx + b) =

{
1 if wTx + b > 0,
0 otherwise

(1.5)

the basic idea of the algorithm is to start with random weights, iteratively predict an
output for each one of our labeled data (x, c), and update the weights when the model
makes a mistake

wt+1 = wt − λ(ĉt − ct)xt (1.6)

where λ is the learning rate or step size.

If the model predicts the correct label at time t, no change is made in the weights from
this sample, otherwise weights are moved in a direction so as to make correct predictions
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more likely. If ĉt = 1 was predicted incorrectly, we have wt+1 = wt − λxt. If ĉt = 0 was
predicted incorrectly, we have wt+1 = wt + λxt.

The Perceptron was proven to converge when data is linearly separable.

1.3.2. Deep learning

Multilayer perceptron

The XOR Problem from Perceptrons [38] was a classic example of a problem that percep-
trons, presented in the previous section, cannot solve. A basic case where data is not
linearly separable. We want to represent a function that computes the exclusive OR. So
given x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, c must equal to 1 only if one of the elements of the
input is 1 and 0, otherwise. As seen in Figure 1.1, no linear boundary could be defined,
so that samples get correctly classified.

However, with a perceptron, we can model an OR function, and with another one, an
AND function since these are linearly separable cases. We could then send our sample x
to the OR and the AND:

ϕ0(x) = I(wT
ANDx + bAND) (1.7)

ϕ1(x) = I(wT
ORx + bOR) (1.8)

as a result, we would have transformed our input, to another possible intermediate state
ϕ(x) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, where the first coordinate now represents whether the
AND was true, and the second coordinate whether the OR was true

ϕ(x) = I(Wx + b) (1.9)

now, only the (0, 1) pertains to class 1 (or but not and, thus xor), with which we see that
the problem is now linearly separable

fXOR(x) = I(wT
XORϕ(x) + bXOR) (1.10)

we have transformed a non-linear separable problem, not solvable by a perceptron, to
a linear separable problem, just by joining units of them with specific weight settings
(different weights resembling different functions and then different information extracted
from the raw inputs in each perceptron unit). See Figure 1.2 for the structure of this
process.

This power of merging multiple simple units to overcome far complex problems is a
core idea laying behind neural networks. We have seen in the previous example what
is known as a multilayer perceptron. Here, a perceptron resembles what it is known in
deep learning as a neuron. The difference is, that perceptron computes a non differen-
tiable function with respect to the inputs received (Eq. 1.5) whereas in neural networks,
differentiable activation functions are used.

This is key, because in difference to the example that has been illustrated, the goal
and wish of a neural net structure, is to learn the weights of each unit automatically.
Let the model and the optimization process decide which are the weights, for building
better functions that transform the input into a problem that is closer to become linearly
separable in each layer.

The model optimization will always depend on the experience that is provided to the
system. So it is the data that has been humanly supervised what will allow the new unseen
data for which we want to predict an outcome to receive a proper answer and the model
being a means intermediary facilitating this process.
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(a) (b)

Figure 1.2: (a) Multilayer perceptron solving the XOR problem. (b) Representation of possible
output values after the first layer (ϕ). Adapted from Figure 13.1 of [40].

Neural network

In a neural network we can have many transformations in chain, f (x) being an arbitrary
complex function that can be understood as simpler functions that are nested

f (x) = fL( fL−1(· · ·( f1(x)) · · ·)) (1.11)

where each layer fl has its own parameters Wl , bl and a non-linear differentiable activa-
tion function a instead of the heaviside function I

hl = fl(hl−1) = a(Wlhl−1 + bl). (1.12)

The first layer of the net receives the raw input x, while the rest receive the output of
the previous hidden layer hl−1. The last layer is responsible for computing the probabil-
ities for each class, and then usually implements a softmax function with which we can
estimate p(c|x) and output c (Eq. 1.3)

fL(hL−1) = S(Wlhl−1 + bl). (1.13)

A neural network can be any model that arranges differentiable activation functions into
a directed acyclic graph (DAG), mapping input to output. In (Eq. 1.11) we have show-
cased one of the simplest models, where the DAG is a chain, which we refer to as a Feed
Forward Neural Network or FFNN.

The weight parameters of this DAG can be optimized for a loss function L that can be
computed for each sample (x, c) comparing the output of the model cp to the true label
c. We refer to this optimization as the training of the model, which is commonly done
using gradient descent and backpropagation [49].

Despite the Perceptron dates from 1958, the XOR Problem from 1969 and backpropa-
gation algorithm from 1986, it was not until recently that neural networks have become
a common choice for ML systems.

We can see two first successful usages that improved the state of the art in ML tasks.
In 2011 a system was proposed in the automatic speech recognition (ASR) field, which
replaced the common choice of Gaussian Mixture Models by a deep approach [16] and
in 2012 a Convolutional Neural Network (CNN) was showed, which offered a gap in the
error rate (from 26% to 15% in the top-5 task) for the Imagenet classification task with
respect to previous models, that were only improving at a rate of approximately 2% each
year [35].
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Two reasons that could be attributed to their recent success are that the internet
growth has provided large labelled datasets, which allow the training of bigger mod-
els without overfit and the increase in computational capacity given by GPUs, specially
to perform matrix and tensor operations.

1.4 Machine Translation

The translation of languages is a problem whose automatization has been in research for
decades. Many have been the challenges found and the breakthroughs made, as well as
the changes of paradigm seen.

The growth in necessity for systems that automatically translated texts (administra-
tive, commercial, entertainment, etc) in all areas of a more multi-lingual and connected
world has driven the investments in research that allowed pushing forwards the limits
in the field through continued efforts.

As in any AI task, we want here to see computers showing the appearance of intel-
ligence, the intelligence required to find how a concept encapsulated in words of one
language, can be expressed in words of another language. For a person this task often
requires profound knowledge of both languages, unravelling meaning and arranging a
good representation of it in words from a complete different set, a different language that
is influenced by historical, cultural and social factors.

Thus we can see how this mapping can not be most times completely pure, because
there is noise in the encapsulating of concepts and in distilling meaning from their repre-
sentations, even when the process is done by native speakers.

We can distinguish how historical attempts to build translation systems have been
based on gathering knowledge of the languages that are to be translated, with the estab-
lishment of syntactic and semantic rules built into the system. This involved the work of
experts in the languages to build these systems.

However, the predominant and recent trend has been the use of methods that rather
rely on data that is available. The model that learns how to perform the task is built up
from data. This means that we need big sets of well translated sentences on the two lan-
guages that we are considering, and from which the model will (learn to) take decisions
for future sentences.

Formal setting

Machine Translation can be seen as a classification task where the set of possible classes
is every sentence that can be produced with the vocabulary of our target language. This
is an infinite set of possible classes if we consider sentences of any length, or a very big
set if we delimit the max and minimum length of a possible sentence to be produced.

We represent a sentence that is to be translated as a vector of n words x = (x1, x2, x3, ..., xn)
and its translation as a vector of m words y = (y1, y2, y3, ..., ym). These are the source and
target sentences respectively. If we refer to the prediction made by the system we will use
yp while if we refer to a given correct translation of sentence x we will use yc. Note that
in difference to the previous Section 1.3.1 we use y instead of c to refer to classes.

As a supervised classification task, our goal is to result in the y that maximizes the
probability p(y|x). This would be the purest translation of x, the one that matches max-
imally the concepts that x encloses. We could define though, that a correct translation yc
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of x of language s into language t is one that cannot be distinguished from a translation
given by a professional human translator

yp = arg max
y∈Y

p(y|x). (1.14)

As in Section 1.4 we can apply Bayes rule to derive

yp = arg max
y∈Y

p(x|y)p(y) (1.15)

where Y is the set of possible sentences that can be produced in the language of transla-
tion.

1.4.1. Word and Phrase Based Models

We can recall two families of statistical machine translation models that were historically
in research and used this decomposition to approximate the probabilities. These were
word-based models and phrase-based models. In both, we can distinguish two parts, the
language model and the translation model, which represent the probabilities p(y) and
p(x|y) respectively from (Eq. 1.15).

Word based models [9], as the intuition their name might give, were models where
the translation of a sentence was achieved by computing a best guess for the translation
of each word of the sentence.

Phrase-based models [34], in contrast, treat a sentence as a sequence of different non-
overlapping blocks of words, and then is each one of these blocks which receives its
translation to the target language as a unit.

The IBM-1 Machine was an example of a word based model. For computing an esti-
mation to p(x|y), the translation model, it relied mainly on two aspects. First, a way to
learn from well translated sentence pairs what is a best translation for each word indi-
vidually. This was base based on how each word was most times translated in this data,
the real world experience supplied to the system.

Second, a way in which the individually translated words needed to be reordered in
the target language of consideration. For this end, it introduced an alignment variable,
which defined what was the position in the target sentence, for each word of the source
sentence. To learn an estimation for this alignment given a sentence to be translated, it
used the EM algorithm [17], again, based too on the information of the language pair
present in the human translated parallel corpora which the system had access to.

For an estimation to p(y), the language model, n-gram models [8] were used. A lan-
guage model rather than considering the problem of the language pair, captures infor-
mation about which words of one language are more likely to appear together in natural
expressions of it. In other words, it is a reference of which sentences are more probable
than others.

This could help the system to reach decisions when it considers between different
translations for the next word, also achieving greater familiarity in the result. It is a way
to incorporate into the system the structure of the language of which we want to produce
sentences, translation sentences in this case.

The inclusion of a language model allows to make direct use of monolingual corpora
of the desired language, which is in most cases more widely available, in greater amounts
and more easily gathered.
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A way one could approximate p(y) would be to think of which is the probability of
the next word yn in a sentence given the previous words, and then give the probability
for the whole sentence using the chain rule.

p(y) = p(y0)
N

∏
n=1

p(yn|yn−1
1 ) (1.16)

Given that the number of different possible preceding words grows exponentially, a n-
gram model makes the assumption that the word at position i will depend on the context
of only n preceding words, thus taking into account a limited history and achieving com-
putational feasibility.

As for phrase based models, it was log linear models which were a notorious example.
Their language model was also estimated using n-grams, whereas the translation model
was formed by two parts, a lexicon translation model and a reordering model. Although
we will not dive into an explanation of these constituents, they were the state of the art
for the machine translation task before deep neural networks took main presence.

1.5 Neural Machine Translation

As we have seen in Section 1.3.2, the use of neural networks for classification tasks
started to show results that created performance gaps in comparison to non-deep sys-
tems. FFNNs worked for structured data and CNNs worked best for images. As these
outcomes appeared each time more present, deep models were also brought to the trans-
lation framework.

In this scenario where data was unstructured, in form of sequences of variable length,
RNN architectures were the main actors to take part. First, deep learning approaches
were used to replace only certain parts of the systems, while the first model using a net
for the whole translation pipeline was a RNN with an attention mechanism [5].

1.5.1. RNN and Translation

Different tasks can be tackled in the scenario of working with sequences, and then differ-
ent structures for RNNs can be seen. We could want the output to be a vector of labels
into which classify an input sentence (for example whether a statement is negative, pos-
itive or neutral) or the inverse problem, given an input in form of a vector, we could
expect a sequential output (e.g. image captioning generation). However, we will focus
in the problem called sentence translation (language translation in this case) which maps
sequence to sequence. See Figure 1.3 for a representation of a sequence-to-sequence RNN.

A Recurrent Neural Network is a neural network which incorporates an internal hid-
den state h = (h1, h2, ..., hT) where T is the length of the output. The output produced in
the model will then depend on this hidden state in addition to the input introduced in
the system. The key to working with sequences is that the internal state of the model will
be updated word per word along the processing of x.

This means, it will capture information about the preceding words (or future words
of the sequence too in a Bidirectional RNN [50]) when working at word at position n

p(y|x) = ∑
h

p(y, h|x). (1.17)

These models and the later transformer architecture, model p(y|x) directly (Eq. 1.14),
in contrast to the non-neural approaches described in Section 1.4. Even if we denote n as
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Figure 1.3: Sequence to sequence recurrent neural network with n hidden states and L hidden
layers. Adapted from Figure 15.5 of [40].

the length of the input sequence, a RNN expects inputs of variable n, while in a FFNN
for example, once the model is defined, the input length remains constant.

Each state ht could be built as a LSTM unit [25] or a GRU unit [14], that determines
which information should be kept from the previous state ht−1 and from the upcoming
word xt, to be passed to the next state. If we combine two RNN one building h from the
start of the sentence to the end and the other in inverse order, we would be describing a
Bidirectional RNN

h→t = φ(Wx
→x→t + Wh

→h→t−1 + b→) (1.18)

h←t = φ(Wx
←x←t + Wh

←h←t+1 + b←) (1.19)

ht = [h→t , h←t ] (1.20)

where φ would be a differentiable nonlinear function. The state ht represents then
information the past (words prior to xn) as well as information of the future.

When we reach the final word of the sentence (t = T), h has been built upon preced-
ing states hh1

t−1 and all words have been read. Thus we can see h as a representation of
the information the sentence contained.

This addresses one basic problem in the translation pipeline. How to represent sen-
tences that are verbal human compositions, in a numerical computer-readable arrange-
ment.

Since we are in a deep learning framework, which information is extracted from the
words will depend on the values of weight matrices as we see in (Eq. 1.18), (Eq. 1.19),
and the task of discovering which is a proper set of weights is then let to the network to
be optimized through backpropagation.

Once this representation of the input data is produced by the model (being the out-
put of this network the last hidden state itself), we could use another RNN, that learns
the inverse problem. Receiving h as input, produce word per word a sentence, but in
the desired language of translation. The internal state s of this decoding RNN would be
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updated with the preceding state together with the word the system just previously pro-
duced until the end of sentence is brought out.

st = φ(yt−1, st−1) (1.21)

This scheme where input information is encoded in a subspace and then decoded
into the solution of the problem, can be seen in general under the name encoder-decoder,
where each module is not necessarily implemented by a RNN nor a NN.

As mentioned in the beginning of this section, it was the model used in [5], with a
BiRNN as encoder and a RNN as the decoder.

This was the first standalone neural model for machine translation, i.e. the first trans-
lation system where the whole model was a single neural network (3 RNN working to-
gether) and the whole trained together at a time.

It included though an element of main relevance, an attention mechanism that modified
the update step of the internal state in the decoder (Eq. 1.21) RNN to depended on an
extra context vector ct.

st = φ(yt−1, st−1, ct) (1.22)

Attention mechanism

Attention is a technique that (in a RNN) allows a state ht to receive information directly
from any other state hy in the network. If we see ht as the representative of meaning
when looking a sentence at position t, with attention we build a structure in the network
that allows it to learn which states are more dependent on each other, and thus should be
most taken into account when building each other state.

We could imagine a scenario where the meaning of a word in a sentence is understood
in relation to other distant words. Attention would allow a connection between these,
that otherwise might have been lost along all updates of h. Having this extra information
allows better representations, leading to better results. And are the better results during
training of the net which guide the building (or discovery) of these dependencies.

Following [40], attention can be described as a dictionary lookup where for a query q
and a set of keys ki ∈ K, we compute a combination of the values vi ∈ V.

Attn(q, (K, V)) = ∑
i

αi(q, K)vi (1.23)

the strength of the connection between the query q and the key ki is modelled by the
attention weight 0 ≤ αi(q, K) ≤ 1

αi(q, K) = Si(a(q, k1), ..., a(q, kn)) =
exp(a(q, ki)

∑n
j exp(a(q, kj))

(1.24)

where S is the softmax function and defining a in the following way gives name to what
is called scaled dot product attention:

a(q, k) =
qTk√

d
(1.25)

where d is the length of both the query and key.

In the context of a RNN with hidden states representing the meaning of words, atten-
tion could compute the dependency of hidden state ht to each other state hi

Attn(ht, (h, h)) =
T

∑
i=1

αi(ht, h)hi. (1.26)
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Thus attention when focusing on a sentence position will be a combination of the
hidden states, where the states will have a bigger or smaller weight depending on how
their dependency to the word at that position is relevant for producing better results. We
allow the network setting low weights for some states (ignoring parts of the sentence for
this word) or emphasizing the meaning other parts (high attention weight values).

It has been observed that systems that did not use attention provided worse results,
specially when working with long sentences where these distant dependencies are hard
to handle by a native RNN in its hidden state.

In the neural network system for translation that we have previously referenced [5],
each state si of the decoder attended not its own hidden states but the hidden states of
the encoder. This allowed to dynamically focus on parts of the source sentence upon each
production of a word for the target sentence.

If we recall (Eq. 1.22) we can now define the context vector ct

ct =
T

∑
i=1

αi(st−1, h)hi. (1.27)

The attention weights, can be seen acting as an alignment of target words to source words.

1.5.2. The Transformer Model

If the first neural standalone model was released in 2016, it was not long before the Trans-
former model was published in 2017. If models using attention were showing state of the
art results in the area, the transformer based its architecture fully on it.

Also following an encoder decoder scheme, attention is used in both parts, learning
the representation of data during encoding as well as producing each resulting word in
the decoder. Given the wide employment of the model, there are many good references
that explain it [61], [40], [64], [32], in addition to its many variations.

Since it is the model at the core of the systems developed in this work, we will describe
the architecture and its fundamental features, so the reader can have a realistic grasp on
the tasks carried out along the project.

Self Attention Architecture

From a zoomed out view, the Transformer is built of a stack of encoding units on top of
each other, which pass their information to another stack of decoding units at the top of
which output words are produced. We can see a representation of the structure in Figure
1.4. The model can be understood understanding these two kinds of units (see Figures
1.5 (a) and 1.5 (b) for the encoding and decoding units respectively).

When a sentence is supplied to the system, we do not have now a hidden state, so
instead of processing it word per word as in a RNN, attention is performed to each word
with respect to each other word of the sentence hence called self attention. This becomes
the new representation of the word, that has gathered valuable context from the other
words.

The new representations are passed to the next encoding unit (after extra process as
seen in Figure 1.5 (b) ), that will perform the same operations. This change in architecture
allows high parallelization that results in training and inference speed improvements.

If input word is xi and output word oi after one attention layer,

oi = Attn(xi, (x1, ..., xn), (x1, ..., xn)) (1.28)



1.5 Neural Machine Translation 13

Figure 1.4: A structural representation of the Transformer model with a certain number of encod-
ing and decoding units.

(a) (b)

Figure 1.5: (a) Representation of a encoding unit from Transformer. (b) Representation of a de-
coding unit from Transformer where K and V values are obtained from the top-most encoding

unit.
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in practice attention is carried out through matrix operations, all queries arranged in
matrix Q. We keep using scaled dot product attention (Eq. 1.25)

Attn(Q, K, V) = S(
QKT
√

d
)V. (1.29)

Multi Head Self Attention

In addition to this new base idea for learning the representations for the words, we don’t
only have one set of attention weights per word but as many heads as we define. This
means that multiple dependencies or similarities can be captured for a word with respect
to all other words in the sentence for each head, with a different set of weights specialized
for each one of these dependencies.

For example, if we consider the word ’it’ in a sentence, one set of weights could fo-
cus on which subject this pronoun refers to, while other attention head could focus on
adjectives that are describing it

headi = Attn(QWq
i , KWk

i , VWv
i ) (1.30)

where queries, keys and values have been linearly projected to other subspaces by the
trainable matrices Wq

i , Wk
i , Wv

i .

Heads are concatenated, and to restore the original dimension, multiplied by Wo

MultiHead(Q, K, V) = Concat(head1, ...headh)Wo (1.31)

Multihead attention is applied in the encoder stack as we have described, while in a
decoding unit, it is applied in two different ways.

For an output word being produced, the aim is to receive information from the source
sentence words as well as the already translated output words. This is why, words of the
target sentence go through a first layer of self masked multi head attention.

This restricts the mechanism of attending words that have not been yet translated.
Even if during training time all correct translations are known, it is not the case once the
system is in production. That’s why the model has to learn to translate without relying
on this information.

Successively after this layer, there is a layer of multi head attention that attends source
sentence information. Queries are the current representation for output words yi and
keys and values are each of the positions of the output of the encoding stack (see Figure
1.4).

So in a decoder unit, better representations are learnt from previous translated words,
and then the information of the encoding part is gathered too. These operations are
repeated in chain for each unit until the top of the decoding stack is reached.

Layer Normalization and Residual Connections

As we see in Figures 1.5 (a), 1.5 (b) in addition to attention layers, FFNNs (Eq. 1.11) are
used to build the units in this case with ReLU activation functions [1]. After both, FFNN
or attention, layer normalization [4] and residual connections [24] are performed.

These are common techniques in NN that help the optimization process of the net.
Layer normalization aims to prevent the problem of vanishing and exploding gradients
(see [40] Section 13.4.2), while residual connections allow the backward flow of gradients
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during backpropagation even when gradient vanishing occured in parts of the net. They
allow training deeper models with much bigger number of layers.

Residual connections allow the input of a layer to skip all the transformations F that
the layer perform to x, thus add x at the output of the layer.

F′(x) = F(x) + x (1.32)

F′(x) being the output of the residual block.

Layer normalization computes the mean and variance across outputs of hidden units
of a layer before the activation function

al
i = wlT

i hl ; hl+1
i = f (al

i + bl
i) (1.33)

µl =
1
H

H

∑
i=1

al
i ; σl =

√√√√ 1
H

H

∑
i=1

(al
i − µl)2 (1.34)

where wl
i are the weights of hidden unit i and hl the inputs received from the previous

hidden layer l. Then the variance is divided element-wise and the average is subtracted

LayerNorm(al) = γ
al − µl

σl + β. (1.35)

The next layer becomes then

hl+1 = f (LayerNorm(al) + bl) (1.36)

γ and β being trainable weights that allow the net to undo these changes partially or
completely favouring the optimization.

Input representation and positional encoding

If we recall RNNs, words were processed sequentially, and hidden states updated accord-
ingly in a sequential fashion, thus capturing information about the position occupied by
each word in the sentence.

This is not the case in the Transformer since attention is invariant to the ordering of the
words. To provide the model with this information, a positional encoding is combined
with the word embedding.

When a sentence goes into the model, prior to transforming it through all attention
layers, we need to change from a natural language representation to a numerical one, and
so each word is first transformed to a one-hot vector, that represents its corresponding
index in the vocabulary. So a sentence would be represented in a matrix of size (n ×
vocabulary_size), where n is the number of words.

After this, it is multiplied by a learnt embedding matrice Ee, of size (vocabulary_size×
d), where d is a parameter of the model. Words are projected to this dimension, ending
with a representation of a sentence in dimension (n × d). This is the word embedding
WE

WE = xEe (1.37)

where x is the one-hot representation of the input sentence. Now, to account for position
information, we build a matrix also of dimension (n× d) where each row represents the
position of a word in a d-dimensional vector. This matrix could also be learnt, but the
Transformer uses a fix encoding instead, that is given by two sinusoidal functions

PE(pos,2i) = sin(pos/100002i/d) (1.38)
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PE(pos,2i+1) = cos(pos/100002i/d) (1.39)

where pos is the position of the word in the sentence, and the corresponding row of the
PE matrix, and i each index of this row

Embedding(x) = WE + PE. (1.40)

This choice for the positional encoding provided no performance decrement com-
pared to a learnt embedding, while allowed the model to extrapolate to sentence lengths
that were unseen during training.

Exactly the same process is applied to source words on the encoding as to words that
enter the decoder stack (yt−1

0 produced by the decoder in previous instants).

The Transformer model also uses a technique called Weight Tying [44] where a single
matrix E is used for the encoding as for the decoding, and also for the output embedding
matrix(Eo = ET), that transforms the output of the last hidden layer in the encoder
into probabilities for the next word when given to the softmax layer after a learnt linear
transformation.

Transformer architectures have shown success with state of the art results in MT as
well as in a wide range of NLP tasks. We can name language modelling, document sum-
marization, sentiment analysis, text generation, text paraphrasing, reading comprehen-
sion or question answering. The systems GPT-3 [10], BERT [18], or T5 [45] are developed
on Transformer architectures. Whenever we think of a task that involves working with
language or see a translator offering good results in production, there is probably a Trans-
former operating in behind.

Recent results of the 2022 IWSLT competition [2] show the wide and present use of
the Transformer model for machine translation tasks.

1.6 Evaluation

Evaluation of MT systems is an active research area. Quantifying the quality of the trans-
lations that our systems produce is essential towards developing better models that out-
perform precedent systems, since we need ways to know that the results are indeed bet-
ter. Manual evaluation of the translations would let us know with high reliability what is
the performance of our systems, since the judgment of target translations would be done
by humans who have knowledge of what are truly correct translations. However, the
need of evaluating the performance of MT systems is very frequent, hence there is need
to find automatic measures which correlate with human evaluation.

A dominant metric for MT tasks is BLEU [43] which stands for Bilingual Evaluation
Understudy. It is a measure of precision between target translations (the ones produced
by our systems) and reference translations which we have available as part of our parallel
datasets. Simple precision is computed as the number of words in the target translation
that are also present in the reference translation, divided by the total number of words
in the reference translation. Measuring only this precision does not take into account
the context information of other words in the sentence, does not penalize the production
of short target sentences, and can be unreliable, since producing outputs which contain
very frequent words of the target language, but that are not related to the meaning of the
source sentence, could lead to high precision scores.

Instead, BLEU computes a precision pn at different orders of n-grams. This precision
is clipped, so that in contrast to normal precision, n-grams of the produced translation are
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only counted once for each time they appear in this translation, even if in the reference
translation there are more instances of these n-grams

AveragePrecision(N) =
1
N

N

∑
n=1

logpn. (1.41)

In addition to this, BLEU computes a brevity penalty, which is applied when the target
translation yp is shorter than the reference translation yc

BrevityPenalty =

{
1 |yp| > |yc|
exp(1− |yc|

|yp| ) |yp| ≤ |yc|
(1.42)

.

BLEU is then computed using n-grams of up to 4 tokens

BLEU(4) = BrevityPenalty · AveragePrecision(4). (1.43)

This gives a final value between 0 and 1 which is multiplied by 100 for easier read-
ability. We will use this metric to evaluate the performance of our different models imple-
mented in this work. According to the interpretability research conducted at [55], we can
contextualize BLEU scores where results above 40 are regarded as a system which pro-
duces target translations of good quality, which need little human post-editing. Results
above a 30 require post-editing in order to be correct translations, but still the amount of
post-editing work would be less than the effort of translating manually the sources from
scratch.

1.7 Framework of this work

This work has been developed during and thanks to the author’s research internship at
the Valencian Research Institute for Artificial Intelligence’s Machine Learning and Lan-
guage Processing (VRAIN-MLLP) research group at Universitat Politècnica de València
(UPV). In this context, the systems developed aim to contribute to the work carried out
for a techonlogy-transfer contract between the CERN and the MLLP group. This includes
automatic captioning and translation systems for CERN’s multimedia sources, as well as
low-latency translation systems for webcasts and conference meetings of CERN’s internal
and external communication systems. We present the process and results of developing
domain-adapted offline and streaming MT systems for English to French translation. In
this case MT systems are adapted to the high energy physics domain, which is highly
present on the CERN contents.

1.8 Document structure

This document is organized in 7 chapters. This first chapter introduces the context of
this work in artificial inteligence up to the more specific fields of machine learning and
neural machine translation. It describes the theoretical concepts and models that we will
employ during the development of this work such as the state of the art Transformer
architecture, as well as precedent models. In addition to this, it explains how we will
evaluate our systems, which are our goals and motivations, as well as the framework in
which the tasks to be carried out are developed.
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In Chapter 2, we describe the data preprocessing techniques that we will use in our
systems, as well as the general domain corpus and datasets that will be employed for
different tasks in our systems, such as training and evaluation. In Chapter 3, we move on
to explain the process of compiling a domain specific dataset that we will use to perform
domain-adaptation and evaluation of our systems.

Chapter 4 describes the computer toolkit that we will use to implement and make
use of our models, as well as the detailed explanation of the different experiments and
results that we developed for offline machine translation systems, comparing them to an
already working model. In Chapter 5 we describe two different techniques of adapting
general-domain purpose systems to in-domain scenarios, and describe the experiments
and results carried out to adapt in this way our previous models.

In Chapter 6, we move to the scenario of streaming machine translation, detailing
formally this new framework, explaining the theoretical model that we will use and the
different evaluation metrics of latency for this kind of systems. Finally in this chapter, we
present the implementation of one model of this kind together with the results of such
model. The work concludes with Chapter 7 summarizing the tasks carried out along the
different chapters as well as covering the conclusions reached in these tasks.



CHAPTER 2

Data

In this chapter we will describe the data that we will be using in our systems, as well as
the different processing techniques that this data will undergo prior to any use of it by
our models.

2.1 Datasets

As we have described in Chapter 1, all learning and thus all performance that our systems
will achieve will be based on the real world experience that we make them available with.

In our MT scenario where data consists of sentences paired with their translations,
the model will assume that the translation that we give is correct. Thus if we offer the
system with incorrect translations, this will be reflected in the system performance, since
predictions will be based on these false truths. With this we can understand how the
quality of the data is important in building our systems.

The quantity of data is another main factor with what respect to system results. The
Transformer is a big architecture that allows us to train with datasets consisting of mil-
lions of sentence pairs. Systems offering state of the art performance are usually trained
using very big datasets, that allow us to train without overfit, these big models that have
billions of parameters. For example, GPT-3 [10] is trained with a dataset consisting of
approximately 499 billion of words.

This opens a trade-off, since there is a need for large amounts of data, but manual
production is highly resource consuming for many tasks. It is so specially in MT where
we need paired sentence translations, and we could potentially want to translate between
many different language pairs. In this labour, there are many collaborative works that
have achieved the compilation of big public parallel datasets. We can refer to OPUS [3]
as a work that tries to gather in a single open site, big part of the available datasets for
machine translation.

In a supervised machine learning framework and specially in a classication task, we
can distinguish between three different types of sets. These are training, development
and test sets. Comparably in size, a training set tends to be much bigger than the devel-
opment and test sets, and this is the case in the NMT scenario, as we will see, by orders
of magnitude. The latter two, are sets devoted to evaluating our model. The main differ-
ence between a development and a test set, is that the development set is used to perform
parameter exploration of our models, and choose different configurations depending on
the results on this set. Also, it can be used to measure the performance of the system
while the training is ongoing, to see for example if the system is performing too well on
the training data, while decreasing the quality in the development set which is not used
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Table 2.1: Statistics on parallel datasets. M = 1 · 106.

Sentence pairs English words French words
CommonCrawl 0.1M 4.1M 4.7M
CCAligned 15.6M 156.7M 171.1M
ParaCrawl 216.6M 3700M 4100M
WikiMatrix 2.7M 57.8M 63.1M
WikiMedia 1.0M 24.1M 25.8M
Giga Fr-En 22.5M 575.8M 63.1M
UNPC 30.3M 658.4M 816.4M
EUBookshop 10.8M 224.6M 244.5M
Europarl 1.2M 28.6M 29.9M
Europarl-ST 96500 2.3M 2.6M
DGT-TM 4.9M 86.3M 95.4M
News Commentary 3.2M 70.7M 76.6M
Total 309M 5600M 6300M

for the optimization process of the model. In contrast, a test set is designed to be a final
measure of the performance of our system, mimicking the performance that the system
will have on completely unseen data once it is in production.

The sets that we present in this chapter are those of general-domain data. Data that is
not specific of any context and rather gathers sentences of many different kinds, as source
for general-purpose translation systems.

We will see in Chapter 5 how having prior knowledge about the phrases that our
model will translate, can be used for building a model that performs better for this data,
with a process that encloses a set of different techniques known as domain adaptation. For
these techniques, we often use sources of in-domain data, which contain sentences with
similar context and similar vocabularies as those the model will have to translate, the
specific context to which we refer as the target domain.

2.1.1. General domain training dataset

Our training dataset has been compiled with the purpose of training a general domain
translation model i.e. a model built for translating sentences of the English language
without making assumptions of their contents. In this way, we have gathered open
sources that contain sentences of very different contexts, with no fixation on any in par-
ticular. We can see a summary of the dataset in Table 2.1.

We count up to 309 million sentence pairs in our dataset, which makes a total of
5.6 · 109 words for the English language and 6.3 · 109 words for the French language.

A portion of the datasets that we use are built crawling parallel text resources from
the web. In this task, automatic tools to process and cleaning the data are determining to
produce sets of good quality. Of this kind we have:

• CommonCrawl1, CCAligned [20] and ParaCrawl [6] from different sources of the
web.

• WikiMatrix [51] and WikiMedia [59] sourced from Wikipedia.

1https://commoncrawl.org/the-data/
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• Giga Fr-En [60] crawled from Canadian and European Union sources for the WMT2010
Competition 2.

The rest of the parallel sets that form our training data can be classified in a group of
sources that have not been gathered from the web:

• The United Nations Parallel Corpus (UNPC [65]) from manual translations of United
Nations documents ranging from 1999 to 2014.

• EUBookshop [54] from publications of European institutions.

• Europarl [31] and Europarl-ST [27] from the European Parliament.

• DGT-TM [57] published by the same DGT (Directorate-General for Translation), a
department in the European Commission and one of the biggest translation services
in the world.

• News Commentary [60] a collection of News Commentaries provided by WMT and
sourced from CASMACAT3.

2.1.2. Development and Test Datasets from WMT

The WMT Conference on Machine Translation (originally Workshop on Machine Trans-
lation) is a main event in the field of Machine Translation Research. The conference is
held annually, where universities, research laboratories and technology companies par-
ticipate pushing performance boundaries of the systems for a set of proposed machine
translation tasks. We have decided to evaluate the performance of our system with the
tests sets of the WMT134 and WMT145 competitions. These are general domain data of
high quality.

Since development and test sets in machine translation are relatively much smaller
than training sets (of orders of thousands of sentences) they can be reviewed in detail for
adequate translations, assuring to be works useful to contrast the quality of our transla-
tions. We use WMT13 and WMT14 respectively as the principal development and test
sets for measuring the performance of our systems for general domain.

2.2 Preprocessing

Data preprocessing is a common step in NMT systems prior to feeding our models with
this data either for training or for inferring the translations. It works improving the qual-
ity of the results as well as the computational efficiency and feasibility of the models. We
will now describe the different techniques that we used when developing our systems.

2.2.1. Tokenize and Truecasing

To understand these steps we need to understand that our systems work with a vocabu-
lary of fixed and limited size i.e. a limited number of words that will be recognized from
the English language and a limited number of words that will be possibly produced in

2https://www.statmt.org/wmt10/translation-task.html
3http://www.casmacat.eu/corpus/news-commentary.html
4https://www.statmt.org/wmt13/translation-task.html
5https://www.statmt.org/wmt14/translation-task.html
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Table 2.2: Training sentence before and after applying Moses’ truecasing and tokenizer.

Original Mrs Plooij-van Gorsel, I can tell you that this matter is on
sentence the agenda for the Quaestors’ meeting on Wednesday.

Truecased and Mrs Plooij @-@ van Gorsel , I can tell you that this matter is on
tokenized sentence the agenda for the Quaestors ’ meeting on Wednesday .

French (we will see in Section 2.2.2 techniques to pragmatically overcome this limitations
even if keeping the vocabulary fixed and limited).

If we refer to Section 1.5.2 we see that the size of the one-hot vectors representing
each word of an input sentence depends directly on the vocabulary size of the source
language, while the size of the final softmax layer of the model(see Figure 1.4) that ac-
counts for probabilities for each next word, depends on the size of the output vocabulary.
In this way, reducing vocabulary sizes translates in reducing memory consumptions and
increasing computational efficiency.

If we considered each sequence of symbols that is separated by blank spaces to be a
word of our vocabulary, we would encounter that we could have many different word
instances that represent the same word. Consider the example Okey! Okey... Okey, Okey?.
These four would be considered individual words of our vocabulary, which would grow
extensively big. We leave then the task of deciding what constitutes a word to a tokenizer,
that in this case would separate the word Okey from punctuation, and treat each part as
an individual token of the vocabulary.

An additional step that reduces the size of our vocabularies consists in dealing with
upper and lowercase letters. Instead of keeping diverse versions for a word (consider
for example ATTENTION, Attention, attention), we train a truecasing model that predicts
which case should be kept based on the frequency of each case of each word in our data.
A simpler approach to this issue would be to lowercase all words, but more linguistical
information would be lost.

In our work we use the Moses tokenizer and truecasing [33]. We can see an example
of their usage in Table 2.2.

2.2.2. Subword Segmentation

The objective of these preprocessing techniques is to increase translation quality by al-
lowing to recognize and produce words that are not present in our vocabularies. We
want to mimic what would be having a system that works with an open vocabulary but
still keeping it of fixed size.

The idea of these techniques is to break the vocabulary into subword units, which
joined together can form the words that were present in the original vocabulary as well
as new words that weren’t present. The two techniques that we will describe are not to
be used complementarily but rather exchangeably.

Byte Pair Encoding

Byte Pair Encoding or BPE [53] [22] works by first splitting words to individual char-
acters. Then we count which pair of consecutive characters is most frequent along all
training data, and all instances of this pair are merged into a single unit. This merge op-
eration is saved (the information of which pair of characters constituted the merge) and
the process continues, computing the most frequent pair each time, joining the units ac-
cordingly and saving the merge pair that corresponded to the most frequent count. The
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Table 2.3: Training sentence before and after applying Moses’ truecasing, tokenizer and byte pair
encoding.

Original Mrs Plooij-van Gorsel, I can tell you that this matter is on
sentence the agenda for the Quaestors’ meeting on Wednesday.

Truecased, tokenized Mrs P@@ loo@@ i@@ j @-@ van Gor@@ sel , I can tell you
and BPE encoded that this matter is on the agenda for the Qu@@ a@@

sentence est@@ ors ’ meeting on Wednesday .

process ends when a number of maximum different pairs (merge operations) is reached,
and this information is stored. This number is the only parameter of the model and it is
to be defined.

This constitutes the training of the BPE model, and once the merge operations are
learnt, we can apply them to new data (during inference) in addition to the training data,
although to form our vocabularies we would apply it to the training set (after tokeniza-
tion and truecase). We would split again the text into single characters and apply the
stored merge operations in order. The resulting subword units would form the vocabu-
lary of the model. Units that represent the end of a word are followed by the string <\w>
and subwords that did not reach to be rejoined into a complete word are followed by the
symbols @@, so that original words can be restored after translation.

We can see an example of the result when applied BPE to one of the training sentences
in Table 2.3. Truecasing and Tokenization have been applied before BPE.

Sentence Piece

In contrast to BPE, Sentence Piece (SPM) [36] does not expect a tokenized input. The main
feature in difference is that it treats whitespaces as one character more, and by replacing
it by the symbol _, the tokenization is learnt at the same time, as a result of the process of
learning the merge operations that will define the subword units. This allows to have a
language-independent tokenization.

For example, most tokens in European languages might be separated by whitespaces,
while for example in Japanese, different tokens are joined together without whitespaces
between them. Thus there is usually need of using language-dependent tokenizers. In
addition to this, in common tokenizers, there are operations that need specific rules in
order to be reversed back during detokenizing. The information that there is no whites-
pace between the end of a word and a punctuation sign, is lost while tokenizing, but in
SPM it is not, since there would be no _ between these characters. With this, SPM offer
what they refer as a Lossless tokenization, i.e. detokenization beingthe inverse operation
of tokenization.

Sentence Piece comprises four main modules, a Normalizer, a Trainer an Encoder and
Decoder. The normalizer handles semantically-equivalent characters and unites them into
a single representation. The trainer learns from our training set the merge operations that
we need to transform text into subword units. In contrast to BPE, instead of having a
definite number of operations, we define the final desired size of the vocabulary, and the
number of merge operations is calculated accordingly to give this result. The encoder
applies the learnt operations to a given text, achieving subword segmentation as well as
tokenization and the decoder is simply the inverse operation.

We can see an example application of Sentence Piece in Table 2.4 where we have first
applied a Truecasing preprocess.
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Table 2.4: Training sentence before and after applying Moses’ truecasing and sentence piece en-
coding.

Original Mrs Plooij-van Gorsel, I can tell you that this matter is on
sentence the agenda for the Quaestors’ meeting on Wednesday.

Truecased and Mrs_ P loo ij - van_ Gor sel ,_ I_ can_ tell_ you_ that_ this_
SPM encoded matter_ is_ on_ the_ agenda_ for_ the_ Qu a est ors ’_

sentence meeting_ on_ Wednesday ._

2.2.3. Filtering

The aim of data filtering is to improve the quality of the data that we feed our models
for training. The different techniques try to reduce the number of sentences that contain
translations that are undesirable to have in our data and from which to learn. There are
many different sources of noise that can decrease the quality and performance. One could
encounter text that is in different languages than those of the source and target languages
of interest (even with different alphabets e.g Chinese, Russian,...), characters represented
in an incorrect format, html text, incorrect uses of language, misspelled words, gramatical
errors, too long or too short translations, etc. Specially when using resources crawled
from the web, the need of filtering is higher to reduce this noise and if we are not cautious,
adding more data to our systems could cause a negative effect in the performance of the
system.

For these reasons, the parallel corpora ParaCrawl which constitutes the majority of
our training sentences and which was crawled from the web, got filtered with two tools,
bitextor-bicleaner6 and bitextor-bifixer7. In addition, we applied in different versions of
our systems two different extra types of filtering techniques, these are language identifica-
tion and source-to-target ratio.

As the intuition given by its name, the language identification filter tries to recognize
when a language different than the source or target language being used (in the corre-
sponding source or target sentences), and then remove these sentences in both parts of
the corpora. Source-to-target ratio simply detects when the length (in number of words)
ratio between source and target surpasses a given threshold. We define a limit where the
translation is excessively short or long to be considered a good translation, and we desire
to remove it from the data.

6https://github.com/bitextor/bicleaner
7https://github.com/bitextor/bifixer



CHAPTER 3

CERN News

In this chapter we will describe the CERN News parallel dataset. This corpus has been
collected with the aim of evaluating our systems in the specific domain of translating
CERN sources (see Section 1.7). In addition to this, we have prepared this data with the
purpose of performing domain adaptation to the CERN context, as we will see in Chapter 5.

3.1 Data collection

CERN News has been created from news available in the official CERN website1. The
site gathers news dating from 1993 (there is also a piece of news from 1970) in a variety of
topics (Physics, Accelerators, Experiments, Engineering, Computing, Knowledge shar-
ing, At CERN). The news are available in French and English, providing a rich source of
parallel text containing typical terms in the context of the CERN such as technical words
in the branch of physics, acronyms, institutions, names, etc.

3.1.1. Crawling and basic preprocessing

First of all we used BeautifulSoup2 to build a crawler that retrieved the raw text contents
of each article from the HTML structure of the publications on the website. We stored
all news from the most recent (May 10th of 2022) at the time of collection, up to the
very first publication of 1970, forming a total of 3681 news. The news were organized
in paragraphs hence the next step was to split these into sentences for which we used
sentence-split.pl from Moses [33] and prior to this splitting, we also cleaned the text from
URLs and email accounts using simple regular expressions.

3.1.2. Alignment

The documents were now formed of sentences in each line, but in each article, the number
of lines in the source language differed from the number in the target language and many
were shifted, so in most cases, the content of line n in English didn’t match the content in
French. To solve this and achieve to have each article as parallel text matching line per
line, we need an extra alignment step. After attempts with different sentence aligners such

1https://home.cern/news
2https://beautiful-soup-4.readthedocs.io/en/latest/
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Table 3.1: Statistics on the CERN News training, development, test sets. K = 1 · 103.

Sentence pairs English words French words
CN21 2200 53.4K 60.8K
CN22 1799 44K 49.9K
CNTraining 55943 1230K 1395K
CNTraining90 50340 1090K 1228K
CNTraining70 39150 891K 1000K
CNTraining50 27971 615K 688K

as Gargantua [7] or Bleualign 3, we aligned all news with Hunalign4 [23] that is based on
sentence-length information.

3.2 CERN News Sets

Once all news were aligned, we used the most recent of these publications to build a
development and a test set, until a desired number of lines was reached for each of the
sets. The rest, older news, were used to form a training set.

3.2.1. Development and Test Sets

We used the news available in 2022 to build the test set. These contained news from
January to May, with a total of 128. Our development set was built of the latest news in
2021, from September to December, forming a total of 144 news. See Table 3.1 for statistics
on the number of sentences and words of the sets.

To assure that these sets were of enough quality to evaluate NMT models, we con-
ducted a manual revision of the final alignment of the news that formed the sets. Even if
Hunalign carried out good results and for many news no modifications were made dur-
ing revision, we assured that for these sets, the semantic contents of every line, matched
the corresponding counterpart in the other language. We realigned sentences when nec-
essary, and removed some word patterns that were sistematically present in one language
but not in the other.

3.2.2. Training Set

The CERN News Training Set consists of a total of 3409 news, from January 1970 to Au-
gust 2021. In this case, the corpus is formed directly from the result offered by aligning
the news with Hunalign. All the news were gathered in a single document, writing the
most recent news first, preserving in this way the chronological information of the sen-
tences. The same ordering was applied when forming the development and test set.

Leveraging the fact that Hunalign offered us a score for the alignment quality of each
phrase, we also built 5 extra different training sets where each one contained respectively
the 50% to 90% best phrases by increments of 10. As we can see in Table 3.1 these training
sets are order of magnitudes smaller than most of the sets we have used for training our
model (see Figure 2.1). A priori they were not thought to be used for training a model
from scratch, but rather to perform finetuning on already trained models, technique that
we will explain in Chapter 5.

3https://github.com/rsennrich/Bleualign
4https://github.com/danielvarga/hunalign



CHAPTER 4

Offline NMT Systems

In this chapter we will focus on NMT systems where we work with complete inputs.
All the words of a source sentence are available since the very beginning of producing
the output sentence, when no word of the corresponding translation has been output
yet. This means that we rely on the complete information of the source sentence for
translating each word, and there is no penalization for the delay that would exist if we
needed to translate a sentence while this is being produced, or if it was made available to
the system progressively.

We will describe fairseq, the toolkit that we use to implement the systems in our work,
and we will show the results for our general-domain systems for this offline scenario.

4.1 Fairseq

Fairseq1 [41] is an open-source toolkit developed and maintained by Facebook AI Re-
search for sequence-to-sequence modelling. It can be used for multiple tasks apart from
machine translation. It will allow us to develop the systems in the offline scenario as well
as for the online scenario in Chapter 6. We will use a fork of this project maintained by
Javier Iranzo Sánchez at MLLP research group. Based on PyTorch, it implements most of
the processes that we need for the NMT pipeline as well as the Transformer model that
we will use for the task. It is highly configurable through parameterization and offers
a wide range of models, techniques, loss criterions, optimizers, learning rate schedulers
and utilities. It implements half precision training and inference as proposed by [42] in-
creasing computational speed and memory savings, training along multiple GPUs and
automatic differentiation of the DAG that forms the neural network model.

We will mainly use 3 modules that are available as command-line tools. These are
fairseq-preprocess, fairseq-train, and fairseq-interactive. Fairseq-preprocess is responsible for
building vocabularies from the already preprocessed data and transform the data in a
binary form for a more efficient use by the model. With fairseq-train we will configure
and run the training of our models. The tool fairseq-interactive will allow us to translate
sentences from already trained models.

4.2 Systems

In order to train the simultaneous models that we will showcase in Chapter 6, we first
develop and improve systems in the offline scenario. The changes that we will perform

1https://github.com/facebookresearch/fairseq
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through the development of our different models are mostly variations in the processing
of our data, and once data is processed for an offline model, can be used unchanged for
online models as well.

4.2.1. V0 System in Production

We will compare our results with an already set up and working system in the MLLP for
English to French sentence translation. This system was developed for the X5gon2 project
for the task of translating Open Educational Resources among diverse languages. It was
trained on a significantly smaller amount of data, approximately 40M sentence pairs,
where commoncrawl, europarl, giga fr-en, and news-commentary are sources in common
with our systems (see Section 2.1.1). Sentences were filtered using langid3 and a source-
target length ratio filter of 1.5. As explained in Section 2.2.3, every pair of sentences where
the ratio of source-to-target or target-to-source words is greater than 1.5 will be removed.
In addition to this, the punctuation characters of the parallel text were normalized. The
corpus was then tokenized, truecased and BPE subword segmentation was applied with
40000 merge operations. We will refer to this system as V0 X5gon, which also implements
a Transformer model.

4.2.2. V1 Baseline

For our first system, we apply standard techniques in the NMT pipeline, where the nov-
elty introduced with respect to V0 X5gon mainly consists in the bigger amount of data in
which the system is trained.

Preprocessing

We do not apply any of the filtering techniques applied in V0. From our dataset (see
Table 2.1) of English-French sentence pairs, we use Moses scripts for tokenization and
truecasing. Successively, we apply BPE in the same way as the V0 system, with 40000
merge operations. After this processing, we run fairseq-preprocess, which binarizes data
and builds the vocabularies of the model. In this step, words that appear less than 10
times in the training corpus are excluded from vocabularies. After these steps, data is in
the correct format to be fed to the fairseq model for training. The binarized data occupied
37GB and this fairseq process took approximately 10 hours to complete.

Training

With fairseq-train we configure our training model with similar parameters to the orig-
inal paper [61]. We choose the Transformer BIG architecture with 16 attention heads.
We use Adam optimizer with β1 = 0.9, β2 = 0.98 [30]. As learning rate, we start with
λ = 1 · 10−7 and use an inverse-square-root-lr-scheduler with 4000 warmup-updates.
This means that the learning rate will increase linearly for the first 4000 training steps,
and then will decrease, proportionally to the inverse square root of the number of steps
until a minimum of λ = 1 · 10−9. A training step occurs each time the weights of the
model are updated by the optimizer. In our case, following recommendations of pa-
per [61], this happens every time that 16000 training data samples are consumed by the
model. We refer to this number as the batch size of the model. As for regularization
techniques, we use drop-out Pdrop = 0.1 [56] and label-smoothing ϵls = 0.1 [58].

2https://www.x5gon.org/
3https://github.com/saffsd/langid.py
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We train the model with fairseq-train for a total of 1.2M training steps or updates.
Every 10000 updates, the state of the model is saved in a file, and we keep the last 20 of
these states, that we refer to as checkpoints. At the end of the training the checkpoint of
1010000 steps is saved, up to the checkpoint of 1200000 steps. This process was done on 2
GPUs with 10.5GB of memory, and took approximately two weeks to complete. Once the
training of the model is finished, we use fairseq_average_checkpoints.py to combine the last
8 checkpoints of the training process into a single one. This simulates a model ensemble
and in practice the performance is improved [11].

Inference and evaluation

We can now use this averaged checkpoint to perform inference with fairseq-interactive.
To evaluate our models, we translate in this way our development and test sets. In order
to be inferred, these go through the same preprocessing as the training data had, except
for filtering. Sentences will not be removed from source files to infer the targets, since the
contents are to be translated in complete. In this case, we tokenize, truecase and apply
BPE to the English files. After the output is generated by fairseq-interactive, we apply the
inverse to the preprocessing steps in order to have the translations in the natural expected
format. We undo the BPE subword segmentation, and detruecase and detokenize the
French text. With these, we can now compute BLEU scores, comparing the result with
the original French source.

4.2.3. V2 Language ID

For our second system, we applied the same filtering techniques as V0 X5gon. We used
langid to remove from our training set sentences containing text in incorrect languages.
This was likely taking into account the big amount of sentences and the procedence of
many from the web. In addition, in the same way, a source-target length ratio filter of 1.5.
In total, approximately 49M sentences were excluded from the training data. The rest
of the pipeline was kept without modifications, except for the number of training steps,
that was reduced to 1M. We preprocessed data, trained the model, averaged checkpoints,
inferred the translations and evaluated this system in the same way explained for V1.

4.2.4. V3 Sentence Piece

Analyzing the output produced when translating our development sets, we encountered
that some punctuation characters were not being properly detokenized, thus leading to
BLEU detriments. We then shifted from BPE to SPM as our subword segmentation al-
gorithm. As explained in Section 2.2.2, SPM performs character normalization as well
as implementing its own tokenizer and detokenizer, for which tasks we stopped using
Moses. In addition to this, we did an extra preprocessing step using Moses’ deescape-
special-chars.perl, since we found characters escaped in HTML format in the vocabularies
of our training set. In the same way as for V2, the remaining of the pipeline was kept
unchanged from v1 training for 1M of optimization updates, and the filtering techniques
that we applied to our data in V2 system were kept in this third model.

We can see a figure of the overall process and different versions of our systems in
Figure 4.1.
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Figure 4.1: Offline systems pipelines and versions.

Table 4.1: En->Fr Bleu scores for WMT and CERN News evaluation sets.

System WMT13 WMT14 CN21 CN22
V0 34.8 40.8 37.2 37.7
V1 32.1 39.1 - -
V2 32.6 39.4 - -
V3 34.0 41.0 38.3 38.7

4.3 Results

Table 4.1 shows BLEU scores on WMT and CN evaluation sets for V0 through V3 systems.
With this system we did not achieve as good results as the ones our V0 system already
had for the WMT tasks, while the performance for CERN News was not measured until
we developed our V3 system, when CERN News was already compiled. For V2, we can
see how the performance improved respect to V1, although we still did not reach the
performance of the system that was already in production. Lastly, with V3 we achieved
a similar performance as V0 for the WMT task, improving it in the case of wmt14 test set,
and a significant improve in CERN News with respect to V0.



CHAPTER 5

Domain Adaptation

Given that we have knowledge of one of the use cases where our systems will be em-
ployed, we would be interested in increasing the performance in this specific context. We
have prior knowledge for certain characteristics of the sentences that our systems will
be required to translate. We can leverage this fact to provide systems specialized on this
domain.

For this task, since our systems depend on the data we make them available, we
need resources of the specific domain to which we want to specialize. Often, data of one
specific domain is scarcer than general data, as it is in the specific context of translating
CERN documents that we address in our work. For this reason, instead of training a
model only with data of the desired scenario, we perform domain adaptation of general
purpose systems. From a model that was fit to a general domain, we leverage smaller
amounts of available in-domain data to modify its parameters so that it improves on the
specific domain.

In this chapter we present two techniques to perform domain adaptation, as well as
the results of our systems when applied these techniques for our target domain.

5.1 Training with backtranslations

As we saw in Section 1.4.1, the use of monolingual data served to train the language
model of the systems, the prior distribution p(y) representing which sentences are more
or less probable in a language. We saw too however that NMT approaches to the trans-
lation task model directly the distribution p(y|x) (see Section 1.5.1). The technique of
backtranslations allows NMT models to make use of the information from monolingual
resources.

The idea of this technique is to use the monolingual resource as the target part of
what would be a parallel corpus. Since the source part is missing, it will be generated
through an automated process. We refer to this automatically generated data as the syn-
thetic source, also known as backtranslations of the target sentences. In order to procure
these automated translations, we use a MT model of reverse direction. If the target lan-
guage of our system is French, we would use a system that has been trained to translate
from French to English, and then generate the synthetic English source from our French
monolingual resource. Once this parallel set is built, it would be added to the rest of
the corpora that constitutes our training set, and a model would be trained from scratch.
The method has shown to provide improved results in NMT systems by increasing the
amount of data available [52].
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Table 5.1: En->Fr Bleu scores for WMT, CERN and CERNnews evaluation sets (V4 backtransla-
tions).

System WMT13 WMT14 CN21 CN22
V0 34.8 40.8 37.2 37.7
V3 34.0 41.0 38.3 38.7
V4 34.0 40.9 38.6 38.8

5.1.1. Experimental setup

The use of backtranslations is not a technique thought as such for performing domain
adaptation. In general, it allows the use of bigger amounts of data for NMT tasks, since
we can leverage monolingual resources that are available, and it is widely used for this
end [19]. However, it is also the case in our in-domain scenario, that parallel data is
scarcer and more difficult to gather than monolingual data. For this reason we make use
of this technique with the aim of improving results on this target domain.

The in-domain data that we have available is sourced from the CERN Document
Server1. The site gathers different publications in the field of High Energy Physics, such
as articles, books, reports, lectures, preprints, etc. From these, Apache Tika2 was used to
extract the text from PDF files, constituting a corpora of 1.4 million sentences in French.
These were later filtered with different techniques to increase the quality of the data.

With the V4 system we continue the work developed in Chapter 4 for our offline
systems. First of all we need to procure the English backtranslations for the French CDS
corpus. In order to do so, we preprocess this data, truecasing the words and applying
sentence piece to obtain a subword segmentation. Then, we use a trained MT model
in the Fr->En direction to infer the translation of each sentence. At this point, we add
this in-domain source to the total of sets that form our general-domain training data of
Section 2.1.1, and build a new model following the same steps, techniques and parameter
configurations as in our V3 system of Section 4.2.4. We filter and preprocess the complete
corpus of 310M sentences, configure and train the model for 1M updates, average the last
8 saved checkpoints, and perform the evaluation with our development and test sets.

5.1.2. Results

Table 5.1 shows BLEU scores on WMT and CN evaluation sets for V0, V3 and V4 sys-
tems. We achieve small improvements in our CERN News evaluation sets, while the
performance for the general domain did not decrease notoriously. The small changes on
the results for this system could be a result of the reduced size of the CDS corpora in
comparison to the size of the whole training set. We could still consider this model as a
general purpose translation system, even if we have improved the results of our models
for our specific target domain with domain-specific data.

5.2 Finetuning

In contrast to when we trained with backtranslations where a model was developed from
scratch, finetuning works with small amounts of in-domain parallel data to adapt to the
target domain. As starting point, it uses a model that has already finished its training.
In our case, we adapt to the domain of physics at CERN a model previously trained for

1http://cdsweb.cern.ch/
2https://tika.apache.org/
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Figure 5.1: Results on CERN News development set for V4 finetuned on CDS backtranslations
parallel set and on CERN News training set.

general purpose. Different finetuning techniques exist. Some of them modify the model
for this adaptation process. For example, methods that add to the existing model extra
adaptation layers [47] or those that freeze certain parameters of the network while training
the model for extra steps [26].

5.2.1. Experimental setup

The finetuning method that we will use keeps the architecture of the model without
changes. Instead, we train the model for an small amount of extra steps, using exclu-
sively a set of parallel data of the specific domain.

Since finetuning requires smaller number of training steps by orders of magnitude,
the time for adapting our models is considerably shorter as when training a model from
the ground up. The process lasts hours instead of days or weeks. For this reason, we are
able to develop 5 extra models parting from V3 Sentence Piece (see Section 4.2.4). Four
of these are built from CERN News training data (see Table 3.2.2), using the different
sets that contain different percentages of the total CERN News training data according to
their alignment quality of the sentences. The 5th model is built from the parallel text of
CDS English backtranslations and the original sentences in French.

For finetuning our models we also use Fairseq. Even if the preprocessing steps for
the new training data remains the same, we vary some of the parameters of our trainer.
We apply filtering, truecasing and sentence piece to the 5 different datasets. Then, we
binarize each one of them separately with fairseq-preprocess in order to train 5 different
experiments. We configure fairseq-train in the same way as described in V1 (see Section
4.2.2), except for the lr-scheduler, which will be fixed. We use as value for the learning rate
the value that the initial model had when its training finished. In addition, we modify
to train for 5000 thousand steps, and keep checkpoints every 100 training updates. The
training for the finetuning starts from the averaged checkpoint that was saved from V3
system after 1M of updates, and after the 5000 extra finetuing steps, we do not average
checkpoints as we do when training a complete new model.



34 Domain Adaptation

Table 5.2: Best results of En->Fr finetuned systems in BLEU scores for CERN News evaluation
sets.

System CN21 CN22
V0 37.2 37.7
V3FTk100 42.0 43.1
V4FTk100 42.3 42.9

5.2.2. Results

In Figure 5.1, plotting BLEU scores (y-axis) for our in-domain development set upon
different number of updates (x-axis) corresponding to different checkpoints we can see
how the performance for training with CERN News improves until a certain point and
then starts to decrease. We observe the best result when training with 100% of CERN
News data and after 2000 training updates. This corresponds to a BLEU score of 42.0. In
this configuration, the BLEU score for the CERN News test set was 43.1. These results
constitute an improvement of 12.9% in the development set and 14.3% in the test set with
respect to V0 X5gon.

After these results, we performed a second finetuning process with V4 with CERN
News. Taking as starting point the final averaged checkpoint of our V4 system, we
trained an extra model, using CERN News Training data. The best results of this fine-
tuning were similar to the previous finetuning, with 42.3 and 42.9 BLEU scores for the
CERN News development and test set respectively, as we can see in Table 5.2. These
were also achieved using 100% of the CERN News training data.



CHAPTER 6

Streaming NMT

In this chapter we address a different kind of machine translation problems. In contrast
to as explained in Section 1.4 and assumed in Chapter 4, now we work with partial inputs
at time of producing target translations, i.e. our systems start creating a translation before
the complete source text is read.

We consider two similar problems in this scenario, which we refer as simultaneous and
streaming translation. In simultaneous translation, we consider the case where we work
on individual sentences. Systems produce target words sequentially with a certain delay
as the input sentence is read. In streaming translation, the source is rather unbounded.
We work with a stream of words, of unconstrained length, that is feed into the system
for translation. This source is then translated similarly to simultaneous translation, pro-
ducing target words with a time of delay with respect to the source words that have been
read. In this streaming setting, the past history of source and translated words can be
leveraged as context to improve the quality of the systems [28].

Since different components of a sentence are often differently structured among dif-
ferent languages (e.g. consider German or Japanese as subject-object-verb language ver-
sus subject-verb-object English) these online systems are often required to produce a word
before the corresponding source word has been read. In general the online task is harder
than the offline and with online systems a tradeoff is reached, between the quality of the
translation that could optimally be produced in an offline system and the earliness in
which the target text is available.

We present in this chapter the online problem formally and describe a neural machine
translation model for the task. We explain different measures of delay for these systems
and describe a system developed for the simultaneous task. Finally, we present results of
this system on our development and test sets.

6.1 Formal setting

As in Section 1.4, we define the source x as a vector of n words, and the target as a vector
y of m words. Since we are in an online scenario, we consider a function g(t) which
represents how many words of the source are available when the target word of position
t is produced. We refer to this function as the policy, and the way it is defined in a model
will vary the behaviour of such system.

Now we consider the probability pg(y|x) as the probability of y being a target trans-
lation of x, taking into account that for the t’th target word, only the first g(t) words of x
are available to any method of translation. We are then interested in predicting the most
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probable target translation yp of x,

yp = arg max
y∈Y

pg(y|x) (6.1)

where Y is the set of possible sentences that can be produced in the target language.
Applying the product rule on the probability of each target word, we can rewrite the
previous expression

yp = arg max
y∈Y

∏
t

pg(yt|x≤g(t), y<t) (6.2)

where we formalize our constraint on the available source and target words when pro-
ducing the t’th word, y<t being the previous words generated and x≤g(t) the first g(x)
source words.

6.2 Simultaneous Transformer model

We adapt the Transformer for the streaming setting. In the following section we present
the wait-k policy and the multi-path-wait-k model which is based on this policy.

6.2.1. Wait-k policy

Wait-k is a simple policy that is widely used in the simultaneous MT task. The idea be-
hind this policy is to produce target words always with a delay of k words with respect
to the source. In this way, the first target word is produced when the system has available
the first k source words. Upon this point, the system receives one more source word, and
produces one more target word, in this way 1 writing operation after 1 reading opera-
tion, until all source words are read, and then the remaining of target words (if any) are
produced. If we had

g(t) = t− 1, (6.3)

this would mean that our system does not wait to produce the first word i.e. produces
it without having seen any source word, and then the number of target words written
would always surpass the number of source words read by one. This would be a wait-0
policy. Instead we have

g(t) = k + t− 1. (6.4)

In addition to this, we take into account that the length of the target usually differs
from the source. We keep the idea that upon producing the target we are delaying the
equivalent to k source words, thus we define the wait-k policy

g(t) =
⌊

k +
t− 1

γ

⌋
(6.5)

where we usually define the catchup term γ = |y|/|x| accounting for the source-to-target
length ratio.

6.2.2. Multi-path-wait-k model

Following the wait-k policy, when producing word yt, g(t) source words would be avail-
able. Training a model with a single k would imply that the value for this k has to be
decided and fixed. This model could not fit well tasks where we require a different la-
tency for translating other than the one that was used during training.
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We follow the model described in [21] where different values for k are used for train-
ing. In practice, we define a set of values, that as default range from 1 to |x|. Then,
for every different training batch, a value for k is randomly chosen from this set. This
approximates the model

EK

[
pg(x|y, zk)

]
≈ ∏

k∼U (K)
pg(x|y, zk) (6.6)

where pg from (Eq. 6.1) is conditioned on zk, the decoding path of reading source words
and writing target words that the model would follow for a chosen a k.

In addition to this, this model is optimized with what we refer to as unidirectional
encoding. In the transformer architecture that we have thus far described, every time that
an extra source word was available to the system the attention layers would need to be
uptdated, so that representations of words take into account the new word. Instead of
this, we use masked attention so that attention heads depend only of precedent words.
In this way, attention is only computed once for the source, previous words not requiring
an update when a new source token is available.

6.3 Evaluation

Since in simultaneous or streaming machine translation we reach a tradeoff between the
quality and latency of our systems, we need metrics that measure this latency and that we
can interpret. We will present results in 3 different measures of delay. These are Average
Proportion [37], Average Lagging [13] and Differentiable Average Lagging [12].

The timing information of these metrics is based on how many source words the
system has read at each time t, when target word yt is produced. These metrics are thus
independent of the environment and physical properties of the system. We do not rely
on the information of the real time at which source words were produced.

6.3.1. Average Proportion

Average Proportion computes simply the mean of the values of policy g for each time t,
when a target word is produced

APg(x, y) =
1
|x||y|

|y|

∑
t=1

g(t). (6.7)

this mean is divided by |x| so that the result is a value between 0 and 1.

We can find two flaws of average proportion that are discussed in the literature. First,
since it is a metric between 0 and 1, it does not provide an easy readability on the number
of words that the system is lagging. Second, it is sensitive on the length of the inputs.
Following the example in [13], if we consider a wait-1 policy and source and target of
same length |x| = |y| = 1, AP = 1. If rather |x| = |y| = 2, AP = 0.75. For smaller
lengths, the metric is closer to 1. As lengths grow, average proportion tends to 0.5. Thus
the metric penalizes long sentences, while the real delay of the system would not have
changed. Average lagging is then proposed as a metric where these problems are not
present.
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6.3.2. Average Lagging

Average Lagging intends to account for how much our translation system is being de-
layed after a possible speaker that was being live translated. In this way, it compares the
system policy g with what would be an ideal wait-0 policy. For the case where |x| = |y|
we have

ALg(x, y) =
1

τg(|x|)

τg(|x|)

∑
t=1

g(t)− (t− 1) (6.8)

where the cut-off step is defined as τg(|x|) = arg mint [g(t) = |x|]. This is the first time t
where all source words are available, and then the rest of target words could be produced
without further delay. For this ideal case where |x| = |y|, with a wait-k policy, the metric
has the property AL = k.

In a more general case where |x| ̸= |y|, in the same way that we adapted the wait-k
policy to account for the source-to-target length ratio, we have

ALg(x, y) =
1

τg(|x|)

τg(|x|)

∑
t=1

g(t)− (t− 1)
γ

(6.9)

where γ = |y|/|x|. In this case, for a system with a wait-k policy (Eq. 6.5), the AL shows
values that are aproximately k.

6.3.3. Differentiable Average Lagging

In [12] where differentiable average lagging (DAL) is proposed, they try to adress the
limitation that average lagging introduces when counting only up to the cut-off step τ
in the computation of the average, which makes the metric non-diferentiable due to the
argmin operation. They argue that this cut-off step is forced into the metric in order to
keep the desired property of lagging k with a wait-k policy. Averaging for |y| instead of
until τ would imply that the value g(t) for t > τ would be kept constat at g(t) = |x| thus
bringing the final average below k.

They propose that instead of bounding the average to τ, writing operations should
also contribute to the computation of the delay, not only reading operations. This follows
the intuition that in a live translation, the words translated after the source sentence is
completely available, do still take time to produce. First, g′ is defined

g′d(t) =

{
g(t) t = 1
max

[
g(t), g′d(t− 1) + d

]
t > 1

(6.10)

where d is the cost of a writing operation. The function g′ accounts for the time that has
passed before the writing operation at time t. If t = 1, no writing operations have been
performed so far, thus g′(t) = g(t). The second term of the max operation represents
the time before the previous word was written plus the cost of writing such word, so we
still account for a cost on time, even if no reading operations were performed since the
writing of the previous word. Then, DAL is defined as

DALd(x, y) =
1
|y|

|y|)

∑
t=1

g′d(t)− (t− 1)d (6.11)

where the authors recommend defining d = 1
γ = |x|

|y| , with which a very similar expres-
sion to AL (Eq. 6.9) is achieved:

DAL 1
γ
(x, y) =

1
|y|

|y|)

∑
t=1

g′1
γ
(t)− (t− 1)

γ
. (6.12)
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(a) (b)

Figure 6.1: (a) WMT13 Development set evaluation for different wait-k policies during inference
time. (b) Same evaluation on CERN News 21 Development set.

In this way, reasoning about what should be considered delay in an online system,
they achieve a metric that is differentiable and keep the idea in average lagging of mea-
suring the delay against an ideal system or a live speaker.

6.4 Experimental setup

In this section we explain the simultaneous model that we develop on this work. Imple-
mented with fairseq (see Section 4.1), we use the multi-path-wait-k model from Section
6.2.2 [21], trained with the same data and preprocessing that as for our offline V4 model
described in Section 5.1.1. Before all of this preprocessing, we preprocess the source part
of the parallel data so that it mimics the output of an automatic speech recognition sys-
tem. In this way, our system can be integrated in cascade to translate sources procedent
from a live conference. The ASR preprocessed text, has a raw format, where for example
all words are lowercased. The model learns then how to map from this type of text, to
the target language in truecase.

For training, resembling to the configuration in offline V4 (Section 5.1.1), we use adam
with 0.9 and 0.98 as beta values, inverse square root learning rate scheduler with 4000
warmup updates, dropout and label-smoothing of 0.1 and a batch size of 16000 pairs of
sentences. The set of k values that the multi-k uses ranges from 1 to the maximum length
of the sentences of our dataset. In the same way as for our offline systems, we perform
checkpoint averaging with the last 8 training checkpoints,and train for 1M of updates.

We infer translations for our WMT and CERN News development sets with values
for k ∈ {1, 3, 6, 9, 12, 15}, and a catchup value of 1.25.

6.5 Results

Results are presented for different online evaluation metrics combined with BLEU in Fig-
ures 6.1. We can see how upon augmenting the value of the delay k, the BLEU score
grows until it stabilizes. As expected, neither for WMT nor for CERN News, such high
BLEU scores as those of which our offline systems offered (see Table 4.1) are reached, but
they are traded by a short translating time. We compute BLEU and latency metrics on
development and test sets in Table 6.1, where we choose a wait-k = 6 policy at inference
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Table 6.1: BLEU and latency results of our multi-path-wait-k system for development and test
sets with a wait-6 policy at inference time.

Multi-k WMT13 WMT14 CN21 CN22
BLEU 30.7 36.2 35.7 35.9
AP 0.8 0.7 0.7 0.7
AL 5.4 5.5 5.6 5.5
DAL 6.3 6.4 6.5 6.5

time, which could be adapted depending on the required specifications of the system en-
vironment in which the model would be deployed. AL and DAL, highly correlated, show
how the systems would be around 6 words behind a speaker being translated. Consider-
ing that French sentences tend to be larger than English ones in number of words, DAL
could be paying the cost of numerous writing operations and thus consistently showing
values greater than 6.

This system and our V4 offline system are ready to be deployed into the CERN infras-
tructure with little extra work.



CHAPTER 7

Conclusions

In this chapter we present a summary of the different tasks developed along the course
of this work, as well as the different objectives achieved, difficulties found and lessons
learnt.

In Chapter 1 we presented the preliminary theoretical grounds in which the rest of our
work settles. We described ML in the AI field with statistical approaches to finally un-
derstand the more recent success of neural models. In parallel, we described the MT task
from a non-neural point of view, after which we described NMT models up to studying
in detail the current state of the art for NLP tasks Transformer model. We also learnt how
evaluation of MT systems is crucial in their development, how this is usually performed
and a way of interpreting these results. In addition to this theoretical introduction, in
this chapter we presented the objectives of our work, the structure and the framework in
which it is carried out.

In Chapter 2 we centred our attention in data, as a fundamental part of MT systems.
We presented the structure of MT parallel datasets, the challenges that entail gathering
this data, and the sources that compose the principal sets that we used during the devel-
opment of our models. Later, we moved to explain and compare different preprocessing
and filtering techniques for MT, and which we applied to our data for developing our
systems.

Chapter 3 was devoted to explain the compilation process and the content of the
CERN News in-domain dataset. We explained all the steps that we applied, from crawl-
ing the online resources up to the final manual revision of the development and test sets.

In Chapter 4 we introduced Fairseq as the toolkit for developing our systems. We
explained the preprocessing, training, inference and evaluation steps that compose the
pipeline of our systems. Later, we described our experimental setup for the offline task,
showing how we configured the models and which were the preprocessing steps for
each version of our systems. Finally, we concluded with the results obtained, which
were successfully compared against the production system of the MLLP research group
to translate from English to French. The new system that was developed in this work
was evaluated in terms of BLEU score and it achieved similar translation quality to the
production system, but better results on the CERN News task.

Chapter 5 was dedicated to adapt our systems to the CERN domain. We presented
training with backtranslations and finetuning as two different techniques for this pur-
pose. The experimental setup for these techniques was described, explaining the training
processes of our systems in each technique. Both techniques achieved improvements of
our previous results. With CERN News finetuning a relative BLEU increase of 14.3% with
respect to the MLLP production system was achieved for CERN News task.
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Lastly in Chapter 6 we moved to tackle the streaming NMT scenario. We described
the problem formally, presenting afterwards the wait-k policy and the multi-path-wait-
k model. Then, we showed three latency evaluation metrics, AP, AL and DAL. Finally,
we presented a training of a multi-path-wait-k model implemented with Fairseq, and
presented BLEU and latency results for WMT and CERN News task.

As future work, the systems developed in this work, offline and streaming, will be
deployed in a real production environment, and will be in this way integrated into the
CERN infrastructure posibilitating the translation of their media videoconferences and
internal resources. In addition, one inmediate next step following our work will be ap-
plying domain adaptation to online models. Furthermore, we can foresee the exploration
of different finetuning techniques as those mentioned in Section 5.2. We can also consider
the idea of building a new in-domain corpus, with higher density of technical contents in
physics, allowing us to adapt and evaluate our models to a greater extent in the domain
of the CERN.
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Appendix

SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work is related to the Sustainable Development Goals (SDGs)

Sustainable Development Goals High Medium Low Not

applicable

SDG 1. No poverty. X

SDG 2. Zero Hunger. X

SDG 3. Good Health and Well-being. X

SDG 4. Quality Education. X

SDG 5. Gender Equality. X

SDG 6. Clean Water and Sanitation. X

SDG 7. Affordable and Clean Energy. X

SDG 8. Decent Work and Economic Growth. X

SDG 9. Industry, Innovation and Infrastructure. X

SDG 10. Reduced Inequality. X

SDG 11. Sustainable Cities and Communities. X

SDG 12. Responsible Consumption and Production. X

SDG 13. Climate Action. X

SDG 14. Life Below Water. X

SDG 15. Life On Land. X

SDG 16. Peace, Justice, and Strong Institutions. X

SDG 17. Partnerships for the Goals. X
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.

Thoughts on the relationship of the TFG/TFM regarding the SDGs and the
more related SDG(s).

The SDGs of the United Nations’ 2030 Agenda that we think meet in greatest degree the outcome
of our work are SDG 4 on Quality Education and SDG 10 on Reduced Inequality.
Providing systems that are able to translate English resources to other languages of nearly
manual quality within very few costs opens the possibility for more institutions to translate their
knowledge and reach in this way a bigger number of learners of these materials. In addition,
it serves the goal of augmenting the comfortability and understanding for those who know
English to a degree but prefer to learn in their own language. Furthermore it reduces the breach
in opportunities for those who could not receive an education in english for diverse reasons
(afforability, disability, vulnerable situations, etc), allowing the access to more opportunities of
learning skills, which might set them to meet other job opportunities.

Regarding SDG 8 Decent Work and Economic Growth and SDG 9 Industry, Innovation
and Infrastructure, machine translation systems and the increase in their quality aid any com-
pany or institution that leverages being able to translate any kind of source to other languages,
opening possibilities for applications that could be previously not considered. MT systems
provide also reduced work for professional translators, who can start their work from first auto-
matically translated materials, improving their working conditions and efficiency.

Finally, with respect to SDG 16 Peace, Justice and Strong Institutions and SDG 17
Partnerships for the Goals, automatic translations improve the efficiency in the common scenario
of institutions which require of official documents to be translated to different languages, and
MT systems can be leveraged to improve the communication, understanding and productivity
between any kind of meetings or agreements where parts speak different languages.

For the rest of SDGs we could not find a connection with the results of this work. We believe
this is mainly due to the fact that the aims of these SDGs are not heavily influenced by concerns
on different languages.
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