

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Development of a software

application to tokenize and manage

real estate

End of Degree Project

Bachelor's Degree in Informatics Engineering

Author: Marti Haynes, Eric David

Tutor: Letelier Torres, Patricio Orlando

External cotutor: Cramer Alkjaersig, Jens

Academic Year 2021-2022

Development of a software application to tokenize and… - VIA University College

Table of content

1. List of figures and tables 6

2. Abstract 7

1 Introduction 1

1.1 Project delimitations 2

2 Software study 2

2.1 Analysis 2

2.1.1 Functional requirements 4

2.1.2 Non-functional requirements 6

2.2 Design 7

2.2.1 Server 7

2.2.1.1 Middleware used 9

2.2.2 Database 9

2.2.2.1 Users 11

2.2.2.2 Tokens 12

2.2.2.3 Buildings 12

2.2.3 Interactions 12

2.2.3.1 Authentication 15

2.2.4 Contracts 17

2.2.4.1 NewToken 18

2.2.4.2 BuySell 20

2.2.4.3 Rent 22

2.2.5 UI 23

2

Development of a software application to tokenize and… - VIA University College

2.3 Implementation 25

2.3.1 Backend 25

2.3.1.1 App initialization 25

2.3.1.2 Sample request 26

2.3.1.3 Authentication 27

2.3.1.4 Sample transaction 30

2.3.2 Contracts 34

2.3.2.1 NewToken 34

2.3.2.2 BuySell 38

2.3.2.3 Rent 44

2.3.3 UI 52

2.3.3.1 Connection to Wallet 52

2.3.3.2 API Calls 53

2.3.3.3 Dynamic & Conditional Rendering 54

2.3.3.4 Visual Elements 57

2.4 Tests 59

3 Business study 59

3.1 Methods 59

3.1.1 Business Plan 59

3.1.2 Financial plan (budget realization): 62

3.1.2.1 Establishment budget 62

3.1.2.2 Operating Budget 62

3.1.2.3 Cash Flow budget 63

3.1.3 PESTEL Model 63

3.1.4 Porter's 5 forces 64

3

Development of a software application to tokenize and… - VIA University College

3.1.5 STP model 64

3.1.6 7P’s Model 65

3.2 Results/ Business Plan 66

3.2.1 Executive summary 66

3.2.2 Idea & background 67

3.2.2.1 Description of the problem 67

3.2.2.2 How Dstate solve the problem 67

3.2.3 Description of the customers 68

3.2.3.1 How do Dstate generate revenue 69

3.2.3.2 The team 69

3.2.3.3 Motivation 70

3.2.4 Vision, mission, values & goals 70

3.2.4.1 Vision 70

3.2.4.2 Mission statement 70

3.2.4.3 Company values 70

3.2.4.4 Your goals 71

3.2.5 Product & concept 72

3.2.5.1 Core product 72

3.2.5.2 Add on products 72

3.2.5.3 Pricing 73

3.2.5.4 Production 73

3.2.6 The MACRO environment 73

3.2.6.1 Political & legal factors 73

3.2.6.2 Economic factors 74

3.2.6.3 Ecological/physical environment 74

4

Development of a software application to tokenize and… - VIA University College

3.2.6.4 Social/cultural factors 74

3.2.6.5 Technological factors 75

3.2.7 The MICRO-environment 75

3.2.7.1 The market potential 75

3.2.7.2 Porter 5 forces 79

3.2.8 SWOT 80

3.2.8.1 Strengths 81

3.2.8.2 Weaknesses 82

3.2.8.3 Opportunities 82

3.2.8.4 Threats 83

3.2.9 Sales & marketing 84

3.2.9.1 Segmentation, Targeting and Positioning 84

3.2.9.2 Marketing mix activities 88

3.2.10 Budgets 93

3.2.10.1 Establishing budget 94

3.2.10.2 Operating budget 94

3.2.10.3 Cash Flow budget 95

3.2.10.4 Funding 95

4 Future of the Project 96

5 Conclusions 96

6 Sources of information 97

7 Appendices 1

5

Development of a software application to tokenize and… - VIA University College

1. List of figures and tables

Figure 1: domain model 3

Figure 2: Use Case Diagram 4

Table 1: Functional Requirements 4

Table 2: Non-Functional Requirements 6

Figure 3: ER Schema 11

Figure 4: Authentication Interaction Diagram 16

Figure 5: Authentication Flux Diagram 17

Figure 6: Transaction interaction Diagram 34

Figure 7: Confirm Operation Widget 57

Figure 8: Portfolio Page 57

Figure 9: Building Card 58

Figure 10: Proposals Page 58

Table 3: Business Plan guideline 59

Figure 11: PESTEL Model 63

Figure 12: Porter's 5 Forces Model 64

Figure 13: STP Model 65

Figure 14: 7P's Model 66

Table 4: Goals and Objectives 71

Figure 15: Persona n°1 76

Figure 16: Persona n°2 76

Figure 17: Persona n°3 77

Table 5: SWOT Analysis 81

Table 6: Segmentation Table 85

Table 7: Targeting Table 87

Figure 18: Physical Evidence n°1 92

Figure 19: Physical Evidence n°2 93

6

Development of a software application to tokenize and… - VIA University College

2. Abstract

Real estate has been a very important investment sector for a long time, but

suffers from a high barrier to entry. This project aims to offer a solution, democratising

access to the real estate market through the use of tokenization and blockchain

technology. First of all, an in depth analysis of the domain of the problem will be

presented. Then the design of the software solution will be considered, including a

discussion on the different projectual choices and their impacts. Subsequently, the

implementation of the solution will be explored, which is composed of the frontend,

backend, and blockchain systems. Regarding the business analysis part, it consists of

a business plan including a description of the company, a marketing analysis including

environment and market study but also a marketing mix study. Finally, the business

plan also includes a budget estimation. Succeeding this, the future of the project will be

examined, determining what the next steps should be. Finally, a conclusion will provide

some insight into the overall relevance and success of the project.

7

Development of a software application to tokenize and… - VIA University College

1 Introduction

Real estate has always been a preferred investment sector for many reasons.

First of all, it is a sector of activity that goes back to the Middle Ages with the financing

of castles and cathedrals, which is where the word "finance" comes from (finer = to find

the means to finish) (Investopedia, 2022). The origin of the word informs about the

main problem of the sector: the capital.

Indeed, if the real estate investment sector is one of the most stable and

secure, it is not easy to access. Compared to other solutions such as investing in the

stock market, banking solutions, and investing in goods such as wine and art, real

estate is not easily accessible to the average consumer. This is because real estate is

expensive, and even the cheapest properties are too expensive for a lot of people to

afford, thus creating a barrier to entry.

The problem to address is the lack of accessibility to the real estate market in terms of

capital to acquire a property.

As a team, we are interested in improving the accessibility of this market, while

applying cutting-edge technology to lower the financial barrier that bargains small

investors to enter and reduce the bureaucratic process to finalise an investment.

The challenges presented in this report can be divided into four areas:

business, backend, frontend, and blockchain.

For the backend part we will focus on how to safely store and retrieve the data: we will

present which solution we chose as well as the data structure. We will also present how

the backend interacts with the frontend and the smart contracts. Regarding the

frontend we will illustrate how the information is presented to the user and how we

implemented the interaction with 3rd party applications. The blockchain section will

focus on the functionalities implemented by each smart contract, how they have been

tested and deployed.

For the business part we will focus on producing a business plan covering

marketing and financial areas. The challenge is to give a clear overview of the

1

Development of a software application to tokenize and… - VIA University College

company, the product and the different strategy in terms of marketing. Also, the second

business challenge is to realise a realist and safe budget estimation.

1.1 Project delimitations

This report will not cover the following delimitations:

● Legal & Contracts: It will be assumed that the contract verifying system will be

implemented in the future and will use a placeholder. This is because we need

a fully dedicated legal team, and our capabilities and expertise in this field are

very limited. We also think it will not add much to the prototype and this time will

be better invested elsewhere.

● Helpdesk & faq: We assume that as far as the project is in a prototype phase

we don’t need any Helpdesk or FAQ section on the app.

● Deployment: We will make the prototype run on our local environment but will

not deploy the app on the cloud. The smart contracts will not be deployed on

the mainnet since it takes a small but considerable amount of money and time.

They will be deployed to a testnet.

2 Software study

2.1 Analysis

The goal of this project is to lower the barrier to entry for the participants of the

real estate market. In order to achieve this, the proposed solution allows for users to

tokenize buildings into many parts, allowing other users to own and trade them.

The domain regarding the solution is better understood with a domain model

diagram, as shown below:

2

Development of a software application to tokenize and… - VIA University College

Figure 1: domain model

The main elements of the domain are users, buildings, and tokens. As for their

interactions, a building has many tokens that serve to represent it. These tokens are

created by a user, which at the same time can own many of them. There are also some

special kinds of users, which are the caretaker and tenant, and they either maintain or

live in the building respectively. Finally there are the proposals that a building has, and

that can be created and voted on by users.

3

Development of a software application to tokenize and… - VIA University College

Figure 2: Use Case Diagram

The use case diagram is also very useful when thinking about how the different

actors can interact with the proposed system. It allows an analyst to determine which

functionality is shared, while also determining which functionality might have a higher

priority to be implemented.

The aim of the project is to build a working prototype that includes a functional

and elegant interface, full backend and database, and tested smart contracts. This will

all be deployed in a local environment in the case of the app logic, and in one of the

ethereum testnets (Rinkeby) in the case of the smart contracts, but will be functional.

2.1.1 Functional requirements

The following user stories will be implemented in this project:

4

Development of a software application to tokenize and… - VIA University College

Table 1: Functional Requirements

As a I want so that

User to be able to login into the

application without using a

password

I can have an easy way to

access the platform

User to be able to visualise my

data, tokens that I own, the

buildings that I listed on the

platform

I can be aware of my status

on the platform and on the

blockchain

User visualise all the buildings

listed and the information

about them

I can make an informed

purchase of tokens

User list a building on the platform I can create tokens to sell in

the future to make profit

User set a price for the tokens I

own

I can sell my tokens on the

blockchain

User buy tokens related to a

building

I get voting rights, part of the

profits and privileges for that

building.

Tenant be able to pay the monthly

rent

keep my tenancy status

Tenant be able to see the deposit

proposal after a rent period

be able to decide if accept it

or not

Tenant be able to accept or decline a

deposit proposal after the

rent period is over

to get my deposit back or get

the proposal mediated by an

external actor if I feel it is

unfair

5

Development of a software application to tokenize and… - VIA University College

User submit a proposal for a

building

I can change the status of a

building in terms of rent,

tenant, caretaker or generic

variables

User vote for a proposal I can decide if to change or

not the status of a building

User get all the existing proposals I can see what changes have

been done on a building

since it has been listed and

what are the proposed

changes

Tenant know who is the caretaker of

the building that I rented

I can be supported when I

need help during my tenancy

Caretaker request the rent from the

users every month and

submit a deposit proposal

after the rent period is over

I can be compensated for my

duties

Also all the buildings listed in the application should follow the local rental laws

and be verified by a dedicated legal team before the user can create tokens out of

them. The application needs to be decentralised so that the users can access and

interact with the core logic even if the backend and the app client are not working.

2.1.2 Non-functional requirements

The application also has the following non-functional requirements expressed in

the SMART format

6

Development of a software application to tokenize and… - VIA University College

Table 2: Non-Functional Requirements

Specific Measurable Achievable Relevant Time-bound

The app will

have a solid

backend and

frontend

architecture

at least 95%

uptime

Implement a

backend

architecture that

is fault-tolerant

and handles the

errors without

crashing.

Deploy the

application on a

cloud

infrastructure to

balance the

number of

requests that

the backend

gets.

The platform

can easily scale

and manage

more users over

time.

3 months

2.2 Design

The system can be divided in three parts that interact with each other: the

server, the frontend client, and the contracts.

The use of a hosted backend, database, and frontend makes it a semi-decentralized

application.

The key difference from a centralised application is the resilience given by the

smart contracts: by using scripts that are deployed and running on the blockchain it can

be ensured that the core functionalities of the app will work even if the backend or the

frontend are not running.

7

Development of a software application to tokenize and… - VIA University College

On the other end it differs from a centralised application because of the following

factors:

● The frontend and the backend do not run on the blockchain but they interact

with it

● The backend is used to interact with third-party services, such as mongo DB in

this case. This is because modern applications cannot live in an isolated

environment

● The backend holds all the business logic apart from the smart contracts.

2.2.1 Server

The server is based on a middleware architecture. A middleware is a layer of

software that allows transmission of information between application and services. In

this case, web middlewares are being used: the requests from the client go through a

chain of middleware functions that handle the request and send a response to the

client. The response could either contain the data that the client requested or an error.

To achieve this, multiple frameworks and languages were analysed, and it was chosen

to implement the server using Express.

Express is a middleware-based framework for Node js that allows writing

powerful APIs in javascript, it has many pre-built middlewares but it also allows

developers to write custom middleware or to import third party middlewares.

An alternative approach would have been to use Django, a web development

framework for python. Django also has a broad support for blockchain interactions and

allows faster development since it has many pre-built functionalities. It is more scalable

and secure.

On the other hand it has a slower evolution than express and it is not suitable for

handling a large amount of requests.

8

Development of a software application to tokenize and… - VIA University College

Another tech backend framework that was considered was Hapi js. It is a

plugin-based javascript framework for node js. The main advantage of this framework

is that it has many standardised templates for testing, development and deployment

that are ready to use: it gives the developers a boilerplate to build their own

application. The main disadvantage is the plugin based logic that would have made the

interaction with the frontend and the blockchain in this specific use case.

Express offers a greater customization, more efficient error handling and can

manage a large amount of requests. It is easy to use and to install. It offers a good

boilerplate to start building a web application. The middleware logic is used to easily

interact with the frontend and the blockchain.

2.2.1.1 Middleware used
● Authentication: this middleware is implemented by the passport library. It is

used to protect the routes that require user authorization.

● Admin check: Additional layer of security for the routes that require admin

authorization

● Building approval check: An additional layer of security that requires a

building to be verified and approved by an admin before performing actions on it

● Caretaker check: checks if a user is the caretaker of a building. This security

layer ensures that only the designated caretaker of a building can perform

certain actions.

● Tenancy check: checks if a user is the tenant of a building. This security layer

ensures that only the designated tenant of a building can perform certain

actions.

● Balance check: checks the balance that the user possesses for each token.

● Controller handlers: final software layer of the request handling process,

performs operations and interacts with the database then formats the response

and sends it back to the client.

9

Development of a software application to tokenize and… - VIA University College

2.2.2 Database

The server uses a NoSQL database for data storage. A NoSQL database is

non-relational and often used in real-time web applications. It provides flexibility,

scalability, high-performance, and highly functional APIs.

Adopting a non-relational database allows handling and storing large amount of

data with minimum structure, it guarantees great performance and scalability at a

reduced cost.

It was a goal to be able to easily share the data among the developer team, to achieve

this goal a NoSQL database with a hosted web provider was needed.

Our choice was to adopt MongoDB as a database provider. Since it is often

used together with Node js and Express it has an easy integration with the server. It is

open source and document based which means that the information is stored in flexible

documents instead of tables.

A document typically stores information about one object and any of its related

metadata.

Documents store data in field-value pairs. The values can be a variety of types and

structures, including strings, numbers, dates, arrays, or objects.

10

Development of a software application to tokenize and… - VIA University College

The ER schema is the one that follows.
Figure 3: ER Schema

2.2.2.1 Users
Users models the actors that interact with the platform.

● Each user is uniquely identified by the field _id.

● A user also has a unique email and username, these are used to send user

notification by email.

● The public address is the field that identifies the user on the blockchain and

makes the interaction with the contract possible.

● The field nonce is a random number mostly used for the authentication to prove

that the user is the owner of the address

● The roleName is used to distinguish admins from normal users

● A User has an array of tokens they possess. This field implements the

many-to-many relationship with the tokens table since it is an array of the

unique primary keys of the tokens. A token id appears in the array only if the

balance of the token returned from the blockchain call is greater than 0.

11

Development of a software application to tokenize and… - VIA University College

2.2.2.2 Tokens
A token models an instance of an ERC20 token deployed on the blockchain by a user

from the platform.

● Each token is identified by a unique field called _id

● The field user_id implements the one-to-many relationship between users and

tokens. A user can in fact create more than one token, one for each building.

● The name, initial amount and symbol represent the name of the token, the initial

supply on the blockchain and the symbol of the token o the blockchain

● A token as a unique address that identifies it on the blockchain and makes the

interaction with the smart contract possible.

The token table and the users table are related in two ways:

● many-to-many: many users can possess many tokens. A token is possessed

from a user if the user balance of that token is greater than 0. Since users can

trade among them a quantity of tokens that is less or equal than the total supply,

a user can end up having a positive balance of more tokens, and many users

can have a positive balance of the same token.

● one-to-many: a user can create many tokens, one for each building they wish to

list on the platform.

2.2.2.3 Buildings
A building models a construction in the real world possessed by a user.

● Each building is uniquely identified by the field _id.

● The building is associated with the token by the field token_id. Buildings and

Tokens are in a one-to-one relationship

● Name and address identify the building in the real world.

● The rentContractAddress stores the address of the rent contract associated

with the building in the blockchain.

2.2.3 Interactions

There are three main interactions that occur in the application: frontend with

backend, backend with contract, frontend with metamask.

12

Development of a software application to tokenize and… - VIA University College

The frontend interacts with the backend through a REST API protocol. An API,

also known as application programming interface, is a set of definitions and protocols

to integrate software communication. It can be imagined as a contract between the

information provider (the server) and the information user (the client).

The contract states what information the server needs from the client and what data is

given back to the client.

REST is a set of architectural constraints that can be implemented in a variety

of ways. When a client makes a request to the server through a REST API, the server

transfers the state of the resource it is managing to the client in a standard format

through the HTTP protocol.

REST can be implemented by having a client-server architecture of a mobile

app client and a Node js server that exchanges data in Json format. The

communication between client and server is stateless, meaning that no client

information is stored between two different get requests, there is no stored knowledge

between two past transactions.

The routes are grouped by resource and there are three resources that the

client can manage: users, tokens, buildings.

The backend interacts with the contracts through the Web3 js API. There are

two kinds of interactions: the ones that modify the state of a contract and the ones that

don’t. For the ones that change the state of the contract the Web3js creates a

transaction object and gives back to the server the encoded ABI of the transaction. The

ABI is an interface between the client that is going to interact with the contract and the

bytecode stored in the blockchain.

When a contract is deployed its bytecode is stored in the blockchain but for high

level programming languages to execute its functions the server needs to translate

arguments and names into bytes representation. The response returned from the

contract needs to be translated from bytecode into the tuple of return values defined in

higher-level languages.

13

Development of a software application to tokenize and… - VIA University College

Languages that compile for the Ethereum Virtual Machine maintain strict

conventions about these conversions, but in order to perform them, one must know the

precise names and types associated with the operations. The ABI documents these

names and types precisely: it defines the methods and structures used to interact with

the binary contract, it tells the caller to encode the needed information in a format the

EVM can understand, just like API does with the client server interaction but on a

lower-level. It can be thought of as an adapter between the bytecode and the high level

programming language. The backend returns the ABI to the client together with the

nonce. The nonce (number only used once) is the number of transactions sent from a

given address so that it can be determined in what order the pending transactions are

executed.

For the interactions that don’t change the state of the blockchain no transaction

is generated thus the backend can directly call the function of the contract and get the

result without having to go through the signing process.

The frontend interacts with metamask each time a transaction needs to be

signed. After the transaction information is received in the frontend, it is used to create

a new transaction. A transaction is composed of the following elements:

● from

● to

● value

● data

● gasLimit

● maxFeePerGas

● maxPriorityFeePerGas

● nonce

The from field is the address of the user sending the transaction. The to field is

the address receiving the transaction. In the case of deploying a contract, the value is

set to the null address (0x00). The

value field is the amount of ether to send with the transaction, specified in wei (wei is

the smallest unit of ether, one ether equals wei). The data field is used for1018

14

Development of a software application to tokenize and… - VIA University College

encoding information. Usually it is used to encode function calls to a contract, or to

encode a contract in order to deploy it. It is encoded in hexadecimal format. The

gasLimit, maxFeePerGas, and maxPriorityFeePerGas are fields related to the gas of

the transaction. Gas is related to the fees paid to the miners/validators of the

blockchain in order to confirm a transaction. The nonce field as described previously

describes the number of the transaction

All this data is encoded into a single transaction, which is then sent to

Metamask. The user is then able to sign this transaction, which is then submitted to the

blockchain by Metamask, making use of a node provider (in this case Metamask uses

the node provider Infura). The transaction is then confirmed by miners/validators. After

the transaction is submitted, Metamask returns the transaction hash to the frontend,

which is then sent to the backend. This transaction hash can then be used to get

information on the transaction.

2.2.3.1 Authentication
The login process involves the backend, the database, the frontend, and the

wallet provider in order to generate a JWT token for the users to authenticate

themselves in all the requests. JWT (Json Web Token) is an open standard that

defines a compact and self-contained way to securely transmit information between

parties as a JSON object. Each JWT token has a header that holds the encryption

algorithm and the token type. The payload is a JSON object holding the desired

information. The last part is the encrypted signature. The signature is used to verify that

the sender of the JWT is who it says it is and to ensure that the message wasn't

changed along the way. To create the signature, the Base64-encoded header and

payload are taken, along with a secret, and signed with the algorithm specified in the

header.

The whole authentication process is explained visually by the following

interaction diagram.

15

Development of a software application to tokenize and… - VIA University College

Figure 4: Authentication Interaction Diagram

The client application connects to the wallet provider which in this case is

Metamask. Metamask gives back to the client a list of accounts. The client takes the

first account and passes it to the backend. The backend queries the database and

returns a list of users that have that public address. If the list is empty the client

prompts the user to insert a nickname and an email and passes those fields to the

backend. The backend then creates a new user in the database and returns the user to

the client application. The client makes the user sign a unique message through the

wallet provider that proves that They are the owner of that public address. The

message and signature then are passed to the backend together with the public

address of the user that signed the message. The backend retrieves the public address

passing the signature and the message to the web3 API. If the given public address

16

Development of a software application to tokenize and… - VIA University College

and the one retrieved from web3 are the same then the backend issues a new JWT

containing the user id as a payload.

If the user does exist then the client skips the call to the create user route and

directly prompts the user to sign the message on the wallet provider.

All the process is better explained by the following flux diagram.
Figure 5: Authentication Flux Diagram

17

Development of a software application to tokenize and… - VIA University College

2.2.4 Contracts

Smart contracts are computer programs that live on the blockchain, and can

execute certain logic on command. This simple concept opens up lots of possibilities,

due the openness and decentralisation of public blockchains, like ethereum. In this

case this is perfect for the main logic of this system, so that any user can interact and

make use of the platform in an open, secure, and trustless environment. In this case

there are 3 main contracts that will serve different functions:

● NewToken.sol

● BuySell.sol

● Rent.sol

It is important to note that for these purposes, only one BuySell contract will

exist, that will manage all buying and selling of all the different tokens that will exist on

the platform. Meanwhile, a new version of NewToken and Rent will be deployed every

time a new building is tokenized, creating a specific token for that building, the system

for managing rent for that building, and the system for governance for that building.

2.2.4.1 NewToken
This contract serves a dual purpose. It serves as a token creator, but at the

same time, it also serves as a platform for the governance of the buildings. Normally

having a contract that has more than one responsibility can be a bad practice, but in

this case it makes sense, as will be explained further on. For the token creation, the

contract gets most of its logic from the ERC20.sol contract, a widely used library and

standard for tokens developed by Openzeppelin. By extending this contract not only

does NewToken inherit lots of useful token functionalities, such as transferring, minting,

and more, but it also makes the tokens compatible with many blockchain protocols.

This opens up lots of possibilities, as it allows for users to create derivative products

using their tokens, or for them to use them in already existing applications. For

instance, a user who wants to keep their tokens for a long time but wants additional

profit could participate in an external lending pool, only needing to transfer their tokens.

This kind of composability is one of the promising aspects of Decentralized Finance,

and often why it is sometimes referred to as “Money Legos”. Another reason to use the

18

Development of a software application to tokenize and… - VIA University College

ERC20 standard is that it has been audited and has been “battle tested” for many

years.

In addition, NewToken contract also extends ERC20Votes.sol, another contract

by Openzeppelin. This contract is an extension in itself of ERC20, and it basically

allows for the tracking of votes using tokens. This is the main reason why the contract

serves this dual function, as having one vote equals one token simplifies the

architecture and reduces complexity. That being said, one might wonder why this

extension is needed at all, being that one could simply query the balance of tokens a

user has and then use that number as the number of votes. This might seem like a

simple and efficient solution, but it has great security flaws, mainly regarding what is

commonly called the “double spend/vote problem”. Let's imagine a situation in which

the balance of a user is used in such a way to vote on a proposal. Even if the system

checks that a user can’t vote twice, nothing stops them from transferring the tokens to

a new account and voting again from the new account. To solve this issue, the

ERC20Votes extension provides a way of tracking votes historically. That way, a

snapshot of balances is taken for the block number the proposal was created, and then

each user gets the corresponding number of votes. It doesn't matter if the tokens are

transferred after the proposal was created, as the balance in that instant is what

counts. This way there is a secure and reliable governance system for voting on the

proposals submitted by users. There is also a way of checking historical balances,

something that is also useful for the Rent contract that will be explained later.

In addition to extending these two libraries, the NewToken contract also has

some custom logic. The first part is the minting of tokens, as it is only allowed during

the creation of the contract, and never again. The second is the voting for proposals,

allowing users to submit a proposal, and also to vote on existing proposals. How the

system works is that proposals start with 0 votes, and if they get more than 50% of the

votes, then they are accepted. A proposal being accepted has different meanings, but

they can be separated into two types. The first type would be a generic proposal,

where its outcome has an impact on the token holders but not directly on the

blockchain. An example of this would be a proposal would be “Proposal to paint the

walls green”. This proposal being approved means that some organisation will be

19

Development of a software application to tokenize and… - VIA University College

required outside of the platform to carry it out (of course it is not possible to paint a

room through the blockchain), but the proposal itself and its outcome will be registered

on the blockchain. The second type of proposal can address particular issues

specifically, which can be chosen when creating it, like for example renewing the

tenant’s contract for additional months, or changing the price of rent. This type of

proposal is different because once it is accepted, it will automatically interact with the

Rent contract in order to achieve the desired effect, without any additional input from

users. The third custom element of this contract is the deployment of the Rent contract.

As both these contracts need to communicate, there is the issue of how they will know

the address of the other contract once they are deployed. Of course this could be done

manually, but it would introduce complexity, time, and is prone to human error. Another

more complex but sometimes used solution is to use special techniques in order to

precompute the address that a certain contract will be deployed at. This would have

worked, but a simpler solution was decided, which was to have the NewToken contract

itself deploy the Rent contract once it was deployed. This way the NewToken contract

can store the address of the Rent contract, and can interact with it without issue. This is

also an advantage to the users, as they are able to tokenize a building in one single

transaction, making it easier and less confusing, while preventing a situation where one

contract was deployed but the other one was not.

2.2.4.2 BuySell

This contract hosts all the logic of buying and selling tokens. This is a very

important functionality, as users need to have a way to trade their tokens. This way the

users who tokenize buildings can sell part or all of them, while small investors can buy

small quantities. For the implementation of these trades, there are two main

possibilities. The first one is an order book system, one commonly used in traditional

finance. The second one is the liquidity pool system, one that has been gaining

popularity recently, especially with DeFi protocols such as Uniswap. They both have

their advantages and disadvantages.

Order book systems require a system for storing buy or sell orders, or in some

cases both. How the system works is that a user can submit a price at which they want

20

Development of a software application to tokenize and… - VIA University College

to sell their tokens, and create an order. Then, when someone is willing to buy the

tokens at that price, they can fill the order, paying the price and receiving the tokens in

exchange. This approach has been used for centuries, and is simple to implement. The

main disadvantage is that an order book system cannot be instantaneous for both

buyers and sellers, only for one of the two parties at best. If someone puts tokens on

sale, they need to wait until a willing buyer appears. This problem is often mitigated by

having lots of users and lots of trades.

On the other hand liquidity pool systems do not require an order book, but

instead rely on a totally different mechanism. A “pool” is created, where the tokens

being traded are deposited. Then users can trade these tokens simply by depositing

one of them, and withdrawing the other one. The price of the tokens relative to each

other is calculated using the ratio of the amount of tokens in the liquidity pool, so each

time a user swaps one token for another, the price can be affected. The amount of

tokens deposited in the pool also affects the price, as a pool with high liquidity will react

a lot less to an individual trade than a small pool. This system has the advantage over

order books in that both buyers and sellers can trade instantly at market price. That

being said, the main disadvantage is that the pool must have liquidity in order to

function. This is normally achieved by allowing users to deposit their own assets into

the pool, and earn proportional fees from all the trades in the pool. Still, there is the

drawback that someone has to provide liquidity, and that can be complicated for

markets with a small volume of tokens being traded.

Having measured both pros and cons, the BuySell contract implements an

order book system. Building a liquidity pool system from scratch would have been too

complex and out of the scope of this project, and even if an already existing one was

implemented, there is the huge downside that someone would have to provide liquidity

for every building that is tokenized in two currencies, the building tokens and ether. For

this reason a simple order book system makes the user experience simpler, and fits the

needs of the problem better. It is also a good compromise, as advanced users can

create their own liquidity pools for their tokens using existing solutions like Uniswap.

The BuySell contract order book system is implemented only for the selling of

tokens. This makes sense for reducing complexity and simplifying the process of users

21

Development of a software application to tokenize and… - VIA University College

buying the token, making it an instant process. A user can put their tokens on sale, and

select a price at which they want to sell them. Then users have the option to buy the

tokens with the cheapest price directly, filling that order and replacing it with the next

cheapest set of tokens on sale. There is also the option for sellers to withdraw their

tokens, in case they do not want to sell them anymore or wish to set a different price.

2.2.4.3 Rent
Like mentioned previously, the Rent contract is the contract that manages the

rent. The Rent contract gets deployed by the NewToken contract, which sends

changes whenever a non-generic proposal is accepted. The Rent contract then applies

these changes automatically. The contract has additional functionality for managing the

rent, like storing information regarding it. The price of rent, the price of the deposit, the

contract duration are stored and updated accordingly. The tenant and caretaker

information is also stored. The tenant is the person who is living in the building, while

the caretaker is the person responsible for the upkeep of the building, and plays the

role a traditional landlord would play.

One of the main functionality of the Rent contract is the ability to pay rent. The

tenant is able to pay the rent and deposit, which get locked up in the contract. The

caretaker automatically gets sent a percentage of this rent, as compensation for their

responsibilities. The token holders then have the ability to withdraw their share of rent,

proportional to the amount of tokens they own. This is where the previously mentioned

ERC20Votes extension comes in handy again, helps to avoid the problem of users

transferring their tokens and claiming rent multiple times. At the time the rent is paid, a

snapshot is taken in the same manner as with the proposal creation, and the share of

rent that corresponds to each user is calculated. When a user claims their share of

rent, it is unlocked from the contract and sent to their wallet.

The ethereum blockchain and other EVM compatible blockchains have some

limitations that impede scheduling events to occur automatically at a certain point in

time. Every smart contract action must be triggered by a call to a function from a user

directly, or from another smart contract which in turn has the same limitations. This

makes it hard to design where for example, the option to pay rent is activated once a

month, like is needed in the Rent contract. There are two main options in this scenario.

22

Development of a software application to tokenize and… - VIA University College

The first one is to rely on some external source, like a bot that periodically makes a call

once a month to the contract to activate the rent. The downside is that this sacrifices

decentralisation as if the bot does not perform for whatever reason, the whole system

stops working. An alternative is to have a function available for any user to call, and

have them call it at the right time. Obviously this can be risky as there can be an issue

if no one calls it, but in most situations it would be resolved quickly by anyone

interested in using the application. This can be further improved by applying game

theory concepts, in this case adding some incentive to calling the function in order to

ensure it will be called. This approach was chosen, giving this responsibility to the

caretaker as part of their duties, and in case they do not do as required, they can be

voted out by the token holders through a proposal, and another one can be selected.

Once the rental contract of the tenant has ended regardless of the

circumstances, there is the need to manage what to do with the deposit. This can be

complicated, especially to do on the blockchain. A two step approach was chosen for

the Rent contract. First, after the rental contract ends, the caretaker is responsible for

proposing the percentage of the deposit to keep and to return. Ideally, if there have

been no damages or fines, then the complete deposit will be returned to the tenant.

The caretaker is incentivised to submit a proposal as soon as possible in order to claim

their part of the deposit if they have one, but also because they can be voted out if they

do not complete their duties. Once this proposal is submitted, the second step begins,

where the tenant can either accept or reject the proposal the caretaker submitted. If the

proposal is accepted, then the deposit is split between the caretaker and the tenant in

the proposed ratio, and sent to both. On the flip side, if the proposal is rejected, then

the entire deposit gets sent to Dstate. Dstate will then act as a mediator, review the

case and decide what percentage of the deposit belongs to the caretaker and to the

tenant, although this falls outside the delimitations of this project.

23

Development of a software application to tokenize and… - VIA University College

2.2.5 UI

The user interface of the application is developed using flutter. This framework

allows for the creation of responsive multi platform apps, while following the material

design guidelines. Flutter was chosen for its many advantages.

The most important is the platform, as having a mobile app allows for many

users to interact with the system from their smartphones in an intuitive and simple

manner. Being multi platform is also a big advantage, as even though the focus was on

the android version, the flutter app can easily be ported to ios and web versions,

opening up the system to even more potential users. Another big advantage is

responsiveness. Users can not only use the app on different platforms, but also on

devices with different screen sizes, without it being a detriment to the user experience.

Finally, using material design further improves the user experience, as users are

accustomed to the “look and feel” of material design, and it makes things like icons,

widgets, and tools, easy to use and understand without having any previous

experience with the app. It also provides a pleasant interface, which can arguably lead

to higher user satisfaction while using the app, creating a more positive experience

overall. Flutter achieves all these things with similar to native app performance, while

still providing additional functionality through its own rendering engine.

The design for the app starts with a login screen which the user can use to then

access the main functionality of the app. To log in, they connect through their

metamask wallet and then they cryptographically sign a message to prove who they

are. They can also register if it is their first time using the app. After that, the user can

access their portfolio page, where they can see information on their ether balance, and

also on the different tokens they own and their respective balances. From this page

they can also access different pages, such as the building tokenization page or the

buildings page. From the building tokenization page, a user can first register a new

building in the system. Once that is done and the building has been approved, they can

move on to the next step, creating the tokens that represent it, in the token creation

page. Once all the parameters are decided, the contracts are deployed and the building

has been successfully tokenized. Going back to the main portfolio page, the user can

also access the buildings page. In the buildings page, all the currently tokenized

24

Development of a software application to tokenize and… - VIA University College

buildings are listed with their basic information, so the user can browse through them.

The user can also select a particular building, which will bring them to the trade page

for the token of that building. In this page it is possible to trade the tokens, while also

being able to navigate to the rent and governance pages. In the rent page all the rental

management options are available. Similarly, in the governance page, the user can see

the current proposals and create new ones. They can also select a particular proposal

to see more information, vote on it if desired.

2.3 Implementation

In this section, how the core processes were implemented will be explained, starting

from the backend, moving to the contracts and then the frontend.

2.3.1 Backend

2.3.1.1 App initialization
The first noticeable process happening in the backend is the server initialization.

The following code refers to the www file in the appendixes.

var app = require('../app');

var debug = require('debug')('dstate-be:server');

var http = require('http');

The app is initialised when the backend is launched from the terminal through the npm

start command in the command line. This command is registered in a file called

package.json and executes the command nodemon .bin/www. Nodemon is a library

that demonises a process, meaning it is going to watch for any change in the

codebase and restart the app whenever a change occurs. The www file first imports the

app instance created in the app.js file from the express library. It also imports the HTTP

library that will create the actual Node server.

25

Development of a software application to tokenize and… - VIA University College

var port = normalizePort(process.env.PORT || '3001');

app.set('port', port);

var server = http.createServer(app);

server.listen(port);

server.on('error', onError);

server.on('listening', onListening);

The database connection is realised by the following snippet in the app.js file. It takes a

standardised URI like this

const uri =

`mongodb+srv://${process.env.MONGO_DB_USER}:${process.env.MONGO_DB_PS}@clus

ter0.cbsn2.mongodb.net/dstate?retryWrites=true&w=majority`;

The MONGO_DB_USER and MONGO_DB_PS variables are stored in a .env file that is loaded

into

the app through a library called dotenv

mongoose.connect(uri, {

serverSelectionTimeoutMS: 5000

}).catch(err => console.log(err.reason));

mongoose.Promise = global.Promise;

mongoose.connection.on('error', (err) => {

console.log('We have an error with the database: ' + err);

})

26

Development of a software application to tokenize and… - VIA University College

The connection is realised by the mongoose library. It is important to notice that

the connection can only be done from an IP that is whitelisted on the database cluster

so, when the app gets deployed on its own static IP, the address should be whitelisted.

2.3.1.2 Sample request
The routes are grouped in files that export a router object. Whenever a new

request is received, the request event is called, providing two objects: a request (an

HTTP.IncomingMessage object) and a response (an HTTP.ServerResponse object).

Those 2 objects are essential to handle the HTTP call. The first provides the request

details. In this simple example, this is not used, but you could access the request

headers and request data. The second is used to return data to the caller.

A sample request looks like this:

router.post("/createProposal",passport.authenticate("jwt",{session:

false}),tokenController.createProposal);

The first parameter is the request uri, the other parameters are the middlewares a

request goes through.

A sample middleware looks like this:

exports.checkCaretaker = async (req, res, next)=>{

…

}

A middleware is an asynchronous function, meaning that it can be executed in

parallel and the server doesn’t have to wait for one middleware to finish its execution to

execute another. In the context of a single request, however, middlewares need to be

executed in order. For this reason, a middleware also takes the function next as a

parameter. When the function is called the next middleware on the chain is called.

The data sent from the client can be accessed from the request (req) object.

27

Development of a software application to tokenize and… - VIA University College

There are two ways a client can send data to the server:

● Through the body of the request: this is the case of POST requests and data

can be accessed using req.body.parameter_name

● Through the query string: this is the case of GET request but can also be used

for POST requests, in this case data can be accessed using

req.query.parameter_name

Data can be sent back to the client through the response (res) object. To do so

the res.send() function is called, which takes up to two parameters. The first one is

the status code, the second is the data in a JSON format.

2.3.1.3 Authentication

Decoding the JWT

The authentication process is handled by a library called passport js. Passport

is authentication middleware for Node.js. Extremely flexible and modular, Passport can

be unobtrusively dropped into any Express-based web application. In order to use this

library a strategy had to be configured. A strategy is a standard process to authenticate

the user implemented through a middleware. The JWT strategy was chosen since

there is a need to decode JWT tokens.

const options={

jwtFromRequest:ExtractJWT.fromAuthHeaderAsBearerToken(),

secretOrKey:process.env.PASSPORT_SECRET,

}

const strategy=new JWTStrategy(options, async (payload,done)=>{

await User.findOne({_id:payload.id}).then((user)=>{

if(user){

return done (null,user)

}

else{

28

https://nodejs.org/
https://expressjs.com/

Development of a software application to tokenize and… - VIA University College

return done(null,false)

}

}).catch(err=>done(err,null))

})

passport.use(User.createStrategy());

passport.use(strategy)

passport.serializeUser(User.serializeUser());

passport.deserializeUser(User.deserializeUser());

First the options which are the secret key used in the encryption and decoding

algorithm and the field of the header from which to extract the JWT that will be decoded

are declared.

Then a strategy object is initialised, which is an instance of the JWTStrategy of

passport js. The constructor takes the options and a callback function. The callback is

used to tell passport what to do after the JWT is decoded. In this case, it takes the id

from the payload of the decoded JWT and queries the database. If a user with that id

exists it returns it to the next middleware in the chain. If not it fails with a 401 error.

Issuing the token

The function that issues the token is the login function in authController. This

function is called from the auth route after the user has signed the message in the

wallet provider.

The first thing that the function does is to retrieve the signature and the public address

from the body and check if the fields are not null. If they are, it returns an error.

const {signature, publicAddress} = req.body;

if (!signature || !publicAddress)

return res

.status(400)

.send({error: 'Request should have signature and publicAddress'});

29

Development of a software application to tokenize and… - VIA University College

Then creates a javascript promise that queries the database and retrieves the user with

the given public address. If the user doesn’t exist it returns an error. If not, it returns the

user to the next callback.

User.findOne({publicAddress: publicAddress}).exec()

.then((doc) => {

if (!doc) {

res.status(401).send({

error: `User with publicAddress ${publicAddress} is not

found in database`,

});

return null;

}

return doc;

})

The next step is to verify that the user that is being authenticated is the one that

signed the message in the wallet provider. To do so the same message that the user

signed together with the signature is sent to the

 ethSigUtil.recoverPersonalSignature() of the ethSigUtil library. The function

returns the public address that signed the message. Then the address returned is

compared with the one the client sent. If they are the same the next callback is

executed, if not an error is returned.

.then((user) => {

const msg = `I am signing my one-time nonce: ${user.nonce}`;

30

Development of a software application to tokenize and… - VIA University College

const msgBufferHex = ethJsUtil.bufferToHex(Buffer.from(msg, 'utf8'));

const address = ethSigUtil.recoverPersonalSignature({

data: msgBufferHex,

sig: signature,

});

if (address.toLowerCase() === publicAddress.toLowerCase()) {

return user;

} else {

res.status(401).send({

error: 'Signature verification failed',

});

return null;

}

})

Since the user nonce was used to sign the message, another one needs to be

produced.

.then((user) => {

user.nonce = Math.floor(Math.random() * 10000);

return user.save();

})

The last step is to issue and return the JWT together with the user id.

.then((user) => {

31

Development of a software application to tokenize and… - VIA University College

let accessToken=jwt.sign(

{

id: user.id, publicAddress,

},

process.env.PASSPORT_SECRET,

)

return {accessToken, user_id:user.id};

})

.then(({accessToken,user_id}) => res.json({accessToken,user_id}))

The jwt library is used to issue the token. The sign function takes the payload object as

a parameter and the secret key and returns a JWT string.

2.3.1.4 Sample transaction
Some of the routes in the backend involve calling functions from the contracts

that modify the status of the blockchain, which means that they will create a transaction

that the user has to sign with the wallet provider.

As an example to explain the whole process the following request is useful:

router.post("/deploy",passport.authenticate("jwt",{session:

false}),middlewares.checkForBuildingApproval,

buildingController.deployToken);

This request creates the transaction to deploy the NewToken.sol contract.

When the request is handled it first goes through the passport middleware that

decodes the JWT token in the header. The next middleware it has to go through is the

deployToken function in the building Controller.

exports.deployToken = async (req, res, next) => {

const pathToFile = path.join(__dirname, '../solidity/build/contracts',

'NewToken.json')

32

Development of a software application to tokenize and… - VIA University College

var data = JSON.parse(fs.readFileSync(pathToFile));

var myContract = new web3.eth.Contract(data.abi);

let encodedABI = await myContract.deploy({

data: data.bytecode,

arguments: [req.body.initial_amount, req.body.name, req.body.symbol,

BigInt(req.body.rentPrice), BigInt(req.body.depositPrice),

req.body.remainingMonths, req.body.caretakerShare, req.body.caretaker,

req.body.tenant]

}).encodeABI()

const nonce = await

web3.eth.getTransactionCount(req.user.publicAddress);

res.send({abi: encodedABI, nonce: nonce})

}

The first thing that the function does is to get the path to the JSON interface of

the contract. This is located in the build folder after a contract is compiled. All the

contracts are compiled before the application startup. Since it is a JSON file the

function reads from it using the JSON library.

The next step is to create a contract object passing the ABI to the constructor.

The function gets the ABI from the previously parsed JSON interface. By calling

myContract.deploy, giving it the arguments for the contract constructor and the

bytecode from the JSON interface a new transaction is created. With the encodeABI()

function, the encoded ABI of the just-created transaction is received. The function is

asynchronous thus waiting for it to finish using await in front of the function call is

necessary.

The function then calculates the nonce using the web3 js library passing the

public address of the user. The user in the req object is the one that was decoded from

the passport middleware.

The final step is to send the ABI and the nonce back to the client using res.send()

33

Development of a software application to tokenize and… - VIA University College

The process of calculating the ABI and the nonce for a transaction is standard

for all the requests that involve creating a transaction. The only difference is the

method called from the contract.

Retrieving the transaction receipt

This specific route also involves retrieving the transaction receipt from the

blockchain and performing actions after the transaction has been confirmed.

The route that starts this process is

router.post("/createToken",passport.authenticate("jwt",{session:

false}),middlewares.checkForBuildingApproval,

buildingController.createToken);

The middleware that handles the request is the following

The first thing that the createToken function does is to retrieve the transaction

from the blockchain using web3 js library. The getTransaction function takes a

parameter which is the transaction hash sent from the frontend.

let tx = await web3.eth.getTransaction(req.body.transactionHash)

Since the transaction could still be pending the next step is to poll the

blockchain until the block number is not null anymore. If the block number has a

definite value it means that the transaction is completed and the receipt is obtained.

while (tx.blockNumber == null) {

tx = await web3.eth.getTransaction(req.body.transactionHash)

}

let receipt = await

web3.eth.getTransactionReceipt(req.body.transactionHash)

34

Development of a software application to tokenize and… - VIA University College

If the transaction fails for any reason, an error is returned to the frontend.

if(receipt.status==false){

res.send(500, "Transaction failed")

}else{

…

}

If the transaction is successful on the other end, a token is created on the

database. The building related to the token is updated, setting the token_id to the id of

the just created token.

try {

let token = await Token.create({

name: req.body.name,

symbol: req.body.symbol,

initial_amount: req.body.initial_amount,

address: receipt.contractAddress,

user_id: req.user._id

});

let building = await Building.findOneAndUpdate(

{"_id": req.body.building_id},

{"token_id": token._id, "rentContractAddress": rentAddress},

)

let user = await User.findOneAndUpdate(

{"_id": req.user._id},

{$push: {"token_ids": token._id}}

)

return res.send({building: building, token: token})

} catch (error) {

35

Development of a software application to tokenize and… - VIA University College

console.log(error)

res.send(500, error)

}

The rentContractAddress querying the newly deployed contract is retrieved.

Since the function that returns it is a view function, creating a transaction is not

necessary. Finally, the token id is added to the arrays of tokens that the user owns.

The entire process can be graphically described by this interaction diagram.
Figure 6: Transaction interaction Diagram

36

Development of a software application to tokenize and… - VIA University College

2.3.2 Contracts

The smart contracts are all implemented using solidity, the default programming

language used for Ethereum and other EVM compatible blockchains. Solidity is an

object-oriented high-level programming language, with influences from C++, Javascript,

and python. Solidity is a compiled language, and when a .sol file is compiled, generates

a set of opcodes. These opcodes are similar to an assembly language, and then get

encoded into bytecode, which the EVM can process in order to modify the state of the

blockchain.

2.3.2.1 NewToken

Probably the most important smart contract in this system is NewToken.sol,

because it is used for the tokenization of the buildings.

pragma solidity ^0.8.0;

import "./Rent.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import

"@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";

What is seen above is the beginning of the contract. In solidity it is necessary to

specify the solidity compiler version to use. This is important because even if the

language gets updated, a smart contract will always be run with the version it was

compiled in. In this contract the version 0.8.0 or above is being used.

As for the imports, this contract has to communicate with Rent.sol, so it is being

imported. Both the ERC20.sol and ERC20Votes.sol from Openzeppelin are also being

imported, as described previously.

37

Development of a software application to tokenize and… - VIA University College

contract NewToken is ERC20, ERC20Votes {

Rent public rent;

struct proposal {

string title;

string description;

uint proposalType;

uint id;

uint blockNumber;

uint uint0;

uint uint1;

uint uint2;

address address0;

}

Here the contract NewToken is declared, while also specifying that this contract

inherits from ERC20 and ERC20Votes. The public variable rent is declared, which will

be used to store a reference to the rent contract. Then a struct called proposal is

defined, which contains all the attributes a proposal will have.

uint public proposalNumber = 0;

mapping(uint => proposal) public proposals;

mapping(uint => uint) public votes;

mapping(uint => bool) public votingResult;

mapping(uint => mapping(address => bool)) voters;

In the code above, proposalNumber is declared. This variable will be used to

keep track of the current proposal, and will also be used as the id of the new proposals.

After that, a few mappings are defined. Mappings are very useful in solidity in order to

store values and access them efficiently without having to iterate through an array. The

first mapping maps the number of a proposal to the proposal itself, to be able to

38

Development of a software application to tokenize and… - VIA University College

retrieve them easily. The second mapping maps the number of a proposal to the

number of votes it has. The third mapping maps the number of a proposal to the

votingResult, so if the proposal was accepted or not. Finally the fourth and most

important mapping maps the proposal number to another mapping, which in turns

maps a user address to a bool. This allows the contract to store if an address has

voted or not, for every different proposal.

constructor(uint tokenNumber, string memory name, string memory

symbol, uint _rentPrice, uint _depositPrice, uint _remainingMonths, uint

_caretakerShare, address payable _caretaker, address payable _tenant)

ERC20(string(abi.encodePacked("dstate-", name)), symbol)

ERC20Permit("Governance") {

_mint(msg.sender,tokenNumber*10**18);

delegate(msg.sender);

rent = new Rent(_rentPrice, _depositPrice,

_remainingMonths, _caretakerShare, _caretaker, _tenant, address(this),

address(this));

}

In this code the constructor for the contract is defined. In a solidity smart

contract the code inside a constructor is only executed once, when the contract is

deployed. This constructor takes many arguments, some are used for the creation of

the tokens but the majority are passed on to the rent contract constructor. Here the

name and symbol of the ERC20 token are also defined. After that, the tokens are

minted using the _mint() function and sent to the address that deployed the contract,

msg.sender. It is worth mentioning that the number of tokens created is multiplied by

. This is because solidity has no floating point numbers, only whole numbers. In1018

order to represent a number with decimals, a big integer is chosen and a specific value

is chosen as the reference for the decimal point. In this case represents 1.0 token,1018

39

Development of a software application to tokenize and… - VIA University College

which is the standard for ERC20 tokens, and gives 18 decimal points of precision. This

is useful in order for users to trade very small amounts.

After the minting, the delegate() function is called. This must be done because

of the way the ERC20Votes library works if it is desired that all tokens are always

tracked as votes. The same delegate function is also applied to the

_afterTokenTransfer() function as can be seen in the appendix. Finally, the rent variable

is initialised with the instance of the Rent contract, which is deployed at the end of the

constructor.

function createProposal(string memory _title, string memory

_description, uint _proposalType, uint _uint0, uint _uint1, uint _uint2,

address _address0) public returns(uint _theId){

ERC20Votes token = ERC20Votes(address(this));

require(token.getVotes(msg.sender) > 0, "You must own some

tokens to create a Proposal");

proposal memory prop = proposal(_title, _description,

_proposalType, proposalNumber, block.number, _uint0, _uint1, _uint2,

_address0);

proposals[proposalNumber] = prop;

votes[proposalNumber] = 0;

proposalNumber++;

return proposalNumber - 1;

}

The createProposal() function allows users to submit a new proposal for the

building. The parameters it takes include information about the proposal itself, as well

as some generic fields that are used to store the different variables needed in the

different kinds of proposals once they are accepted. The function also requires that the

user owns more than 0 tokens in order to submit a proposal, and any call to this

function reverts if this condition isn’t met.

When a new proposal is created, the function arguments are used, as well as

the current block number, in order to keep track of the instant the proposal was

40

Development of a software application to tokenize and… - VIA University College

created. After that the new proposal is stored in the proposals mapping, using

proposalNumber as a key, which has the same value as the proposal id. Then the

votes of this proposal are set to zero, and finally the proposalNumber is increased by

one.

function vote(uint _proposalId) public returns(bool _result) {

require(!votingResult[_proposalId], "Voting Ended");

require(!voters[_proposalId][msg.sender], "Already Voted");

proposal memory prop = proposals[_proposalId];

ERC20Votes token = ERC20Votes(address(this));

votes[_proposalId] += token.getPastVotes(msg.sender,

prop.blockNumber);

voters[_proposalId][msg.sender] = true;

if(votes[_proposalId] >= (this.totalSupply() / 2)){

votingResult[_proposalId] = true;

The voting function allows users to vote on a proposal, and only takes the id of

a proposal as a parameter. First the function checks that the proposal has not been

accepted already, and then checks that the user calling the function has not voted

already. If any of these two conditions are not met, any call to the function reverts.

After these checks, the number of votes for the proposal is increased, and the

amount of votes being added is determined by the function getPastVotes() from the

ERC20Votes library. It takes the address of the user calling the function and the block

number at which the proposal was created, and returns the number of votes the user

had at that moment. Then the voters mapping is updated to reflect that the user has

already voted.

Finally a check is made to determine if the current number of votes is enough to

accept the proposal. The number of votes is compared to the total supply of the token

divided by two, and if it is larger or equal to it, the proposal is passed. This then results

in the votingResult mapping being updated. In the case of non-generic proposals, this

also triggers a function that will perform the required change in the Rent contract. The

41

Development of a software application to tokenize and… - VIA University College

function in question is different for every kind of proposal.

2.3.2.2 BuySell

The BuySell contract manages all the trades users make through the

application.

pragma solidity ^0.8.4;

import "./NewToken.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

The NewToken contract is imported, which allows the BuySell contract to

access its functionality. The Ownable.sol contract is also imported, it is another library

provided by Openzeppelin. The functionality of this library will be explained in a later

section, as it is much more relevant in the Rent contract.

struct sellingInstance {

address payable seller;

address tokenAddress;

uint256 amountOfETH;

uint256 id;

uint amountToSell;

}

struct variables{

int firstCheapestIndex;

int nextCheapestIndex;

bool sent;

42

Development of a software application to tokenize and… - VIA University College

uint price;

int remainingToBuy;

}

The first thing that the contract does is to declare two structs that will be needed

in the future functions. A struct is a way used in solidity to group variables. The selling

instance struct models a selling order in an order book system.

sellingInstance [] sellingInstances;

uint256 idCount=0;

event BuyTokens(address buyer, uint256 amountOfETH, uint256

amountOfTokens);

Then the contract declares an array of selling instances. This array models a

group of orders of the order book system.

The idCount variable keeps track of the last id given to a selling instance in the array.

The contract also initialises an event that will be emitted by the buy function.

function setPrice(uint256 amountOfETH, uint256 tokenAmount, address

tokenAddress) public returns (sellingInstance memory instance){

ERC20 newToken = ERC20(tokenAddress);

newToken.transferFrom(msg.sender,address (this),tokenAmount);

sellingInstance memory s = sellingInstance(payable(msg.sender),

tokenAddress, amountOfETH, idCount,tokenAmount);

sellingInstances.push(s);

idCount= idCount+1;

return s;

}

43

Development of a software application to tokenize and… - VIA University College

The setPrice function creates a new order (sellingInstance) in the order book

system and stores it in the array of sellingInstances. The order is initialised with an id

which is the value of the idCount global variable, the address of the sender, the

address of the token to sell, the amount the user wants to sell and the price in wei (the

smallest unit of ETH) for one token. The contract transfers the amount of tokens the

user wants to sell from the user address to the contract address. In order for the

contract to do the transfer the user needs to call the approve function in the token

contract to authorise the BuySell contract to spend their tokens. Normally it would be

dangerous to authorise another address to spend user tokens because the authorised

address can spend the tokens however they want. But since the contract is a script

running on the blockchain the only ways it can spend the tokens is by the functions it

has inside. The user can see the functions the contract has therefore can know in

advance if to trust the contract or not.

function getNextCheapest(address tokenAddress, sellingInstance memory

previousCheapest, sellingInstance[] memory sortedArray) private pure

returns (int instanceIndex){

for (uint j = 0; j < sortedArray.length; j++) {

if (sortedArray[j].tokenAddress == tokenAddress &&

sortedArray[j].amountOfETH>= previousCheapest.amountOfETH && int(j) >

indexOf(sortedArray, previousCheapest.id

) {

return int(j);

}

}

return -1;

}

The getNextCheapest function gets the next cheapest sellingInstance given a

token address and the previous price. It takes as a parameter a sortedArray of selling

instances, the previous cheapest selling instance of the same token address and the

44

Development of a software application to tokenize and… - VIA University College

token address. It scans the sorted array until it finds a selling instance whose token

address is the same as the one given as an argument and the price is greater or equal

than the one of the firstCheapest instance. If an instance is found then the index

associated with it is returned, if not it returns -1.

function getPriceForTokens(address tokenAddress, uint amount) public

view returns(uint pri){

sellingInstance[] memory sortedArray =

injectionSort(sellingInstances);

int firstCheapestIndex = getFirstCheapest(tokenAddress,

sortedArray);

int nextCheapestIndex;

sellingInstance memory nextCheapest;

uint remainingToBuy =amount;

uint price;

if(firstCheapestIndex == -1){

return 0;

}

sellingInstance memory firstCheapest=

sortedArray[uint256(firstCheapestIndex)];

if(firstCheapest.amountToSell>=amount){

price= (amount * firstCheapest.amountOfETH) / (10 ** 18);

return price;

}else{

price= (firstCheapest.amountToSell *

firstCheapest.amountOfETH) / (10 ** 18);

remainingToBuy= remainingToBuy - firstCheapest.amountToSell;

nextCheapestIndex =

getNextCheapest(tokenAddress,firstCheapest, sortedArray);

}

while(remainingToBuy >0 && nextCheapestIndex!=-1){

nextCheapest=sortedArray[uint256(nextCheapestIndex)];

45

Development of a software application to tokenize and… - VIA University College

if(nextCheapest.amountToSell>=remainingToBuy){

price= price + ((remainingToBuy *

nextCheapest.amountOfETH) / (10 ** 18));

return price;

}else{

price= price + ((nextCheapest.amountToSell *

nextCheapest.amountOfETH) / (10 ** 18));

remainingToBuy= remainingToBuy -

firstCheapest.amountToSell;

nextCheapestIndex =

getNextCheapest(tokenAddress,nextCheapest, sortedArray);

}

}

return price;

}

The function returns to the user the promised price for the amount of tokens

they wish to buy of a given token address. It first sorts the sellingInstances array in

memory. Then it calls the getFirstCheapest function to get the selling instance that has

the lowest price in ETH per token of the given token address. From this point there can

be two cases: the amount requested from the user could be greater than the amount of

tokens on sale by that sellingInstance, or the amount requested is less or equal than

the amount on sale.

If the amount requested is less or equal than the amount on sale then the

amount to buy multiplied by the ETH per token is returned to the user.

If the amount requested is greater than the amount to buy multiplied by the ETH

per token is added to the price variable, previously initialised to zero. The amount on

sale for that sellingInstance is then subtracted from the remainingToBuy variable,

previously initialised as the amount the user wants to buy in total.

After this first step the next cheapest instance is found using the getNextCheapest

function. From then on the function enters into a loop that ends if one or more of the

following are verified:

46

Development of a software application to tokenize and… - VIA University College

● There is no more nextCheapest in the array

● the remaining to buy gets to zero

At each cycle one of the two cases analysed above with the fistCHeapest can occur. At

the end of each cycle a new NextCheapest is found.

When the function exits the loop it returns the price to the user.

function buyTokens(address tokenAddress, uint promisedPrice, uint amount)

public payable {

uint actualPrice = getPriceForTokens(tokenAddress,amount);

require(msg.value >= actualPrice, "Send ETH to buy some tokens");

ERC20 newToken = ERC20(tokenAddress);

uint256 vendorBalance = newToken.balanceOf(address(this));

require(vendorBalance >= amount, "Vendor contract has not enough

tokens in its balance");

require(actualPrice == promisedPrice, "Price mismatch");

sellingInstance [] memory sortedArray =

injectionSort(sellingInstances);

sellingInstance memory nextCheapest;

variables memory vars =

variables(int(getFirstCheapest(tokenAddress, sortedArray)), -1, false, 0,

int(amount));

(vars.sent) = newToken.transfer(msg.sender, amount);

require(vars.firstCheapestIndex != -1, "No tokens available");

sellingInstance memory firstCheapest=

sortedArray[uint(vars.firstCheapestIndex)];

int firstCheapestRealIndex = int(firstCheapest.id);

if(firstCheapest.amountToSell>=amount){

sellingInstances[uint(firstCheapestRealIndex)].amountToSell =

sellingInstances[uint(firstCheapestRealIndex)].amountToSell -amount;

sellingInstances[uint(firstCheapestRealIndex)].seller.transfer((amount *

firstCheapest.amountOfETH) / (10 ** 18));

vars.remainingToBuy = 0;

47

Development of a software application to tokenize and… - VIA University College

}else{

vars.price= (firstCheapest.amountToSell *

firstCheapest.amountOfETH) / (10 ** 18);

sellingInstances[uint(firstCheapestRealIndex)].seller.transfer(vars.price

);

vars.remainingToBuy = vars.remainingToBuy-

int(sellingInstances[uint(firstCheapestRealIndex)].amountToSell);

sellingInstances[uint(firstCheapestRealIndex)].amountToSell=0;

vars.nextCheapestIndex =

getNextCheapest(tokenAddress,firstCheapest, sortedArray);

}

while(vars.remainingToBuy >0 && vars.nextCheapestIndex!=-1){

nextCheapest=sellingInstances[uint(vars.nextCheapestIndex)];

int nextCheapestRealIndex = int(nextCheapest.id);

if(int(nextCheapest.amountToSell)>=vars.remainingToBuy){

sellingInstances[uint(nextCheapestRealIndex)].amountToSell =

sellingInstances[uint(nextCheapestRealIndex)].amountToSell

-uint(vars.remainingToBuy);

sellingInstances[uint(nextCheapestRealIndex)].seller.transfer((uint(vars.

remainingToBuy) * nextCheapest.amountOfETH) / (10 ** 18));

vars.remainingToBuy = 0;

}else{

vars.price= (nextCheapest.amountToSell *

nextCheapest.amountOfETH) / (10 ** 18);

sellingInstances[uint(nextCheapestRealIndex)].seller.transfer(vars.price)

;

vars.remainingToBuy = vars.remainingToBuy-

int(sellingInstances[uint(nextCheapestRealIndex)].amountToSell);

48

Development of a software application to tokenize and… - VIA University College

sellingInstances[uint(nextCheapestRealIndex)].amountToSell=0;

vars.nextCheapestIndex = getNextCheapest(tokenAddress,

nextCheapest, sortedArray);

}

}

require(vars.sent, "Failed to transfer token to user");

emit BuyTokens(msg.sender, msg.value, amount);

}

The buyTokens function works in a similar way to the getPrice function. Firstly it

calls the getPriceForTokens function again and checks if the user has sent enough

ETH to buy the requested amount of tokens. Another check that the function does is if

the promised price that the user passes as an argument is equal to the actual price.

The function then initialises an instance of the NewToken and checks that if the

balance of tokens of the given token address that the contract holds is greater or equal

than the one the user wants to buy.

It sorts the array of sellingInstances in memory, gets the first cheapest and

transfers the tokens to the buyer. From this point there can be two cases as explained

in the previous function. The key difference is that since the sellingInstances array in

the contract will be modified the firstCheapest index referring to the sorted array is

transformed into the index referring to the real array. This process also happens for

each of the nextCheapestInstance.

The main differences in the loop are that instead of adding up the remaining to

buy or the amount of tokens on sale multiplied by the price in ETH per token, the

function sends that value in ETH to the seller of each instance. Also it subtracts the

amount that has been bought from each instance from the amount on sale for each

instance.

function cancelSale(address tokenAddress, uint amount) public {

The cancelSale() function works in a very similar manner to the buyTokens()

function described previously. The key difference is that only the selling instances of

49

Development of a software application to tokenize and… - VIA University College

the user that calls the function will be considered. Also, no ether needs to be sent to

this function in order for the user to withdraw their tokens. It is relevant to mention that

the tokens are removed from sale starting with the cheapest ones first. This is

intentional, as sellers might not want to keep their cheaper tokens on sale if the price is

increasing.

2.3.2.3 Rent

The Rent contract houses all the functionality around the rent management, and

also implements the functions that change things once certain proposals have been

accepted.

pragma solidity ^0.8.4;

import "./NewToken.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";

contract Rent is Ownable{

The NewToken, ERC20, ERC20Votes, and Ownable contracts are imported.

Ownable is a very important extension for this contract, as it allows for certain functions

to only be accessed by a certain address, defined as the owner.

struct rent {

ERC20 token;

uint rentPrice;

uint depositPrice;

uint currentDeposit;

uint depositProposal;

uint caretakerShare;

50

Development of a software application to tokenize and… - VIA University College

uint rentNumber;

uint remainingMonths;

uint rentBlockTime;

uint8 status;

mapping(uint => uint) rentBlock;

mapping(uint => uint) rentAmountPerToken;

address payable caretaker;

address payable tenant;

address payable previousTenant;

}

The struct rent is created, to store all the variables that represent the state of

the rent for the current building. Most of these variables are self explanatory, but some

like status or rentBlock might need some explaining. The status variable stores the

current state of the rental building, such as if rent is due or if rent has already been paid

among others. The rentBlock mapping maps the rentNumber to the block number at

the time the rent was paid.

rent rentInfo;

address payable nullAddress =

payable(0x00);

address payable disputeAddress =

payable(0x7176bd09199068E21bE4137d1630fb8712633445);

address tokenAddress;

mapping(uint => mapping(address => bool)) tokenHolders;

event RentPaid(address tenant, uint amountOfETH, uint blockNumber);

Some more variables are created, with some notable ones being the dispute

address which will be used for mediation, and the tokenHolders mapping. This

mapping maps the rent number to a mapping, which in turn maps a user address to a

bool. This mapping is used to store the information of which users have already

51

Development of a software application to tokenize and… - VIA University College

claimed their share of rent every given month the rent has been paid. After that the

RentPaid event is defined, which will be emitted whenever rent is paid.

constructor(uint _rentPrice, uint _depositPrice, uint

_remainingMonths, uint _caretakerShare, address payable _caretaker,

address payable _tenant, address _votingContract, address _tokenAddress)

{

rentInfo.token = ERC20(_tokenAddress);

rentInfo.rentPrice = _rentPrice;

rentInfo.depositPrice = _depositPrice;

rentInfo.currentDeposit = 0;

rentInfo.caretakerShare = _caretakerShare;

rentInfo.caretaker = _caretaker;

rentInfo.rentBlock[0] = block.number;

rentInfo.rentNumber = 0;

rentInfo.rentAmountPerToken[0] = 0;

rentInfo.tenant = _tenant;

rentInfo.previousTenant = nullAddress;

rentInfo.remainingMonths = _remainingMonths;

rentInfo.depositProposal = 101;

rentInfo.rentBlockTime = block.timestamp;

tokenAddress = _tokenAddress;

if(rentInfo.tenant != nullAddress) { rentInfo.status = 2; }

else { rentInfo.status = 0; }

transferOwnership(_votingContract);

}

In the constructor of the contract, all of the rentInfo variables are initialised to

default values, to be used and modified later on. The value of the status variable

depends on the tenant argument; if there is a non-null tenant address then the status is

set to 2 (rent due), while it is set to 0 (unlisted) in the opposite case.

After initialising all the variables, the transferOwnership() function from the

52

Development of a software application to tokenize and… - VIA University College

Ownable.sol contract is called. This function sets a new owner, in this case the owner

is set to the NewToken contract which deployed this contract. The reasoning for this will

be explained later on, but this means that functions with the onlyOwner modifier can

only be called by the NewToken contract.

function getRentAndDepositPrice() public view returns(uint _price) {

if(rentInfo.currentDeposit != 0){

return rentInfo.rentPrice;

}

else {

return (rentInfo.rentPrice + rentInfo.depositPrice);

}

}

The next section is filled with a lot of getter functions that are simple and not

really worth talking about, but one in particular is relevant. The

getRentAndDepositPrice() function returns the amount the tenant has to pay in rent.

The function automatically adds the deposit price to the rent price if it is the tenant’s

first month, while only returning the rent price for all the next months.

function newTenant(address payable _tenant, uint _remainingMonths,

uint _rentPrice, uint _depositPrice) public onlyOwner returns(address

_newTenant, uint _newMonths) {

require(rentInfo.status < 2, "Current tenant must be removed

first");

rentInfo.tenant = _tenant;

rentInfo.remainingMonths = _remainingMonths;

rentInfo.rentPrice = _rentPrice;

rentInfo.depositPrice = _depositPrice;

rentInfo.status = 2;

return (rentInfo.tenant, rentInfo.remainingMonths);

}

53

Development of a software application to tokenize and… - VIA University College

The next section contains the functions that change the state of the Rent

contract after certain proposals have been accepted. They are all pretty similar, but

newTenant() is the most interesting from an implementation point of view. The function

implements the onlyOwner modifier, like mentioned previously, only allowing the

NewToken contract to call it. This is extremely important, as without this modifier this

function would be a huge security flaw, allowing any user to accept a new tenant. The

function also checks that there is no current tenant, as a new tenant can only be added

once the previous one has been removed or their contract has ended. After these

checks the function updates the values of the rentInfo variables to the information for

the new tenant.

function requestRent() public {

require(block.timestamp - rentInfo.rentBlockTime > 2629743, "One

month has not gone by yet");

rentInfo.rentBlockTime = block.timestamp;

rentInfo.rentNumber += 1;

rentInfo.status = 2;

}

The requestRent() function has to be called by the caretaker in order to initiate

the process of paying rent for the new month. The reasoning for doing this was

discussed previously in the design section. The function is not limited to only the

caretaker, as there is no downside in allowing any user to call it if they wish to. There is

a check that determines if at least one month has gone by since the previous rent was

requested, and that limits how often this function can be called. It can be noticed that

the value of 2629743 is used to determine how much time has passed. These are the

average number of seconds in a month, considering all months having the same

duration and the same for every year. While this is slightly inaccurate, in this case it

was decided it was the best decision. This is because checking the number of seconds

for every different month, and for leap years, leads to a lot of complexity that could

54

Development of a software application to tokenize and… - VIA University College

potentially introduce vulnerabilities, something that was deemed unnecessary when

considering the inaccuracy is small and generally has no major implications.

After this check the current block timestamp is registered in order to calculate

when the requestRent() function can be called next month. Then the rentNumber is

increased by one, and the status set to 2 (rent due).

function payRent() public payable {

require(rentInfo.status == 2, "Rent is not due yet");

require(rentInfo.remainingMonths > 0, "Rental contract is over");

if(rentInfo.currentDeposit != 0){

require(msg.value >= rentInfo.rentPrice, "Not enough eth to

cover rent");

rentInfo.rentBlock[rentInfo.rentNumber] = block.number;

rentInfo.caretaker.transfer((rentInfo.caretakerShare *

msg.value) / 100);

rentInfo.rentAmountPerToken[rentInfo.rentNumber] = (msg.value

- ((rentInfo.caretakerShare * msg.value) / 100)) /

(rentInfo.token.totalSupply() / (10**18));

rentInfo.remainingMonths -= 1;

rentInfo.status = 3;

if(rentInfo.remainingMonths == 0) {

rentInfo.previousTenant = rentInfo.tenant;

rentInfo.tenant = nullAddress;

rentInfo.status = 1;

}

The payRent() function allows the tenant to pay rent. It has the payable

modifier, which makes it so that a function can receive ether. This function is divided in

two parts, which behave slightly differently depending on if the user is paying rent or is

also paying the deposit. The logic is very similar so the implementation of the first one

will be explored. There are three main checks that prevent the function from being

called. The first one checks that the rent is due. The second one checks that there are

55

Development of a software application to tokenize and… - VIA University College

still months remaining in the rental contract. The third one checks that the tenant has

sent enough ether to cover the cost of rent for the current month.

After these checks, the current block number is stored. Then the caretaker gets

sent the ether that corresponds to them according to the caretakerShare variable.

Afterwards, the rentAmountPerToken is calculated. This value reflects how much ether

corresponds to a token, and will then be used in order to fairly distribute the rent to

token holders. Next the values of some variables are updated, such as the

remainingMonths which is decreased by one, and status which is changed to 3 (rent

paid). If it is the last month of the contract, more variables are updated to reflect it. Like

mentioned previously, a very similar process is followed for the user paying the deposit.

After all this, the RentPaid event is emitted.

function withdrawRent() public returns(uint _rent) {

require(!tokenHolders[rentInfo.rentNumber][msg.sender], "Rent

already claimed");

require(rentInfo.rentAmountPerToken[rentInfo.rentNumber] > 0,

"Rent not available yet");

ERC20Votes token = ERC20Votes(tokenAddress);

uint votes = token.getPastVotes(msg.sender,

rentInfo.rentBlock[rentInfo.rentNumber]);

require(votes != 0, "No delegated votes");

uint rentPayment =

(rentInfo.rentAmountPerToken[rentInfo.rentNumber] * votes) / (10 ** 18);

payable(msg.sender).transfer(rentPayment);

tokenHolders[rentInfo.rentNumber][msg.sender] = true;

return rentPayment;

}

The withdrawRent() function allows token holders to withdraw part of the rent,

proportional to the tokens they hold. There are a few checks in place, the first one

makes sure the user has not claimed rent already this month, while the second one

56

Development of a software application to tokenize and… - VIA University College

makes sure the rent has already been paid by the tenant. Following these checks, the

ERC20Votes function getPastVotes() is used in order to determine the user’s balance

at the instant the rent was paid. Then another check is performed, to make sure the

user had a balance greater than 0 at this time. Subsequently the amount that

corresponds to the user is calculated and sent to them. Finally it is stored in the

tokenHolders mapping that the user has already claimed rent for the current month.

It is also relevant to mention that there is a very similar function to this that

allows the user to withdraw rent from a previous month in the case they did not

withdraw it in time.

function returnDepositProposal(uint _depositProposal) public {

require(_depositProposal < 101, "Please enter a valid % of the

deposit");

require(msg.sender == rentInfo.caretaker, "Only the caretaker can

call this function");

require(rentInfo.status == 1, "Rental contract is not over");

require(rentInfo.currentDeposit > 0, "Deposit has already been

withdrawn");

rentInfo.depositProposal = _depositProposal;

}

The returnDepositProposal() function is used when a tenant ends their contract,

and has to have their deposit returned or taken, or some combination of both. The

checks for this function require that the caretaker is the one that calls it, while having a

valid number for the deposit proposal. There are additional checks that make sure the

rental contract has not ended yet, and that the deposit has not yet been withdrawn.

After all these checks, the deposit proposal is stored in the depositProposal variable of

rentInfo.

function returnDepositAcceptance(bool _depositAcceptance) public {

require(msg.sender == rentInfo.previousTenant, "Only the previous

57

Development of a software application to tokenize and… - VIA University College

tenant can call this function");

require(rentInfo.depositProposal != 101, "No deposit proposal has

been created yet");

uint deposit = rentInfo.currentDeposit;

rentInfo.currentDeposit = 0;

if(_depositAcceptance) {

rentInfo.caretaker.transfer((deposit *

rentInfo.depositProposal) / 100);

rentInfo.previousTenant.transfer(deposit - ((deposit *

rentInfo.depositProposal) / 100));

}

else{

disputeAddress.transfer(deposit);

}

rentInfo.previousTenant = nullAddress;

rentInfo.depositProposal = 101;

}

The returnDepositAcceptance() function is used by the leaving tenant to get

back their deposit. There are some checks that make sure the leaving tenant is the one

calling the function, and that a deposit proposal has already been submitted by the

caretaker. The function then has two possible results depending on if the leaving tenant

agrees with the proposal from the caretaker or disagrees. In the first case, the deposit

is split and sent to both of them. In the second scenario, the complete deposit gets sent

to a disputeAddress, managed by Dstate, for mediation.

2.3.3 UI

2.3.3.1 Connection to Wallet

58

Development of a software application to tokenize and… - VIA University College

The connection from the wallet to the frontend of the application is of big

importance, as it allows a user to log in and sign transactions. In order to achieve this

connection, the protocol WalletConnect is being used, which allows for apps to

integrate with different wallets. In this case the focus was on the Metamask wallet, as it

is the most widely used one, but other wallets can also be used.

final session = await connector.createSession(

chainId: 4,

onDisplayUri: (uri) async =>

{print(uri), await launchUrl(

Uri.parse(uri),

mode: LaunchMode.externalApplication,

)});

setState(() {

final account = session.accounts[0];

});

The dart code above calls the createSession() method of the connector, which

is an object of the WalletConnect class. The chain id is selected (in this case 4

represents the Rinkeby Testnet, while the ethereum mainnet is 1) and a special url that

connects the app with the wallet is created and launched. After the session is

established, the account variable is set with the user account.

String nonce = user["nonce"].toString();

String msg = "I am signing my one-time nonce: " + nonce;

isDialogShown = true;

_showDialog(context);

String signature = await provider.personalSign(message: msg,

address: accountAddress, password: "test password");

if(isDialogShown){Navigator.pop(context);}

59

Development of a software application to tokenize and… - VIA University College

This code is used in the next step of the login process. A msg is produced using

a randomly generated nonce received from the backend, and the personalSign()

function is called so that the user can sign this message using their wallet. After the

message is signed, it gets returned to the backend in order to verify that the user is

truly in possession of their private key.

String data2 = decodedRsp["abi"];

int nonce = int.parse(decodedRsp["nonce"].toString());

data2 = data2.substring(2);

const Utf8Encoder encoder = Utf8Encoder();

List<int> value = hex.decode(data2);

Uint8List encodedData = Uint8List.fromList(value);

var tx;

isDialogShown = true;

_showDialog(context);

tx = await widget.provider.sendTransaction(from:

widget.accountAddress,

to: tokenAddress,

data: encodedData,

nonce: nonce,

gas: 1500000);

if(isDialogShown){Navigator.pop(context);}

Finally the wallet is also used to sign transactions and send them to the

blockchain. This is an example for the vote() function call on the NewToken contract.

The transaction arguments are obtained from the backend, including the ABI and

nonce, and are encoded into a transaction. The transaction is then sent to the wallet to

be signed, and from there it is propagated.

2.3.3.2 API Calls

60

Development of a software application to tokenize and… - VIA University College

The frontend and the backend communicate using REST API calls.

Response rsp = await post(

Uri.parse('http://' + widget.localIp +

':3001/building/getPriceForTokens'),

headers: <String, String>{

'Content-Type': 'application/json; charset=UTF-8',

'Authorization': 'Bearer ' + widget.authToken,

},

body: jsonEncode(<String, dynamic>{

'building_id': buildingId2,

'tokenAmount': 1,

'tokenAddress': tokenAddress,

}),

);

Map<String, dynamic> decodedRsp =json.decode(rsp.body);

String price = (double.parse(decodedRsp["price"]) /

(pow(10,18))).toString();

There are many API calls, this example is for obtaining the price of a token. A

post request is created and submitted to a specific route in the backend server, passing

the authentication token in the header, and the information required in the body, in

JSON format. After a response is obtained, its body is decoded into a map, and then

the relevant variable (in this case price) is extracted from the map.

2.3.3.3 Dynamic & Conditional Rendering

Flutter is a very powerful tool, and one of its very useful features is being able to

render items conditionally and dynamically. This is very useful to show users the

information as it exists in the database, and to adapt the current user experience to the

actual state.

61

Development of a software application to tokenize and… - VIA University College

for(dynamic building in list) {

print(building);

final String name = building["name"];

final String address = building["address"];

final String buildingId = building["_id"];

String token =

"0x00";

String rent = "0x00";

try{ token = building["token_id"]["address"];} catch(e){}

try{ rent = building["rentContractAddress"];} catch(e){}

buildingCard = Padding(

padding: const EdgeInsets.all(8.0),

child: Card(

clipBehavior: Clip.antiAlias,

shape: RoundedRectangleBorder(

borderRadius: BorderRadius.circular(26),

),

child: Column(

children: [

Stack(

children: [

Ink.image(

image: NetworkImage(

'http://placeimg.com/640/480/arch',

),

child: InkWell(

onTap: () => beforeBuySell(token, rent,

buildingId),

),

height: 240,

fit: BoxFit.cover,

),

62

Development of a software application to tokenize and… - VIA University College

Positioned(

bottom: 16,

right: 16,

left: 16,

child: Text(

name,

style: TextStyle(

fontWeight: FontWeight.bold,

color: Colors.white,

backgroundColor:

Colors.grey.withOpacity(0.25),

fontSize: 24,

),

),

),

],

),

Padding(

padding: EdgeInsets.all(16).copyWith(bottom: 0),

child: Column(

children: [

Padding(

padding: const EdgeInsets.only(bottom:

8.0),

child: Text(

address,

style: TextStyle(fontSize: 16),

),

),

Text(

token,

style: TextStyle(fontSize: 12),

63

Development of a software application to tokenize and… - VIA University College

),

],

),

),

ButtonBar()

],

),

),

);

buildings.add(buildingCard);

dev.log(decodedRsp.toString());

}

Navigator.push(context, MaterialPageRoute(builder: (context) {

return BuildingsPage(title: "Dstate", provider:

widget.provider, authToken: widget.authToken, localIp:

widget.localIp, accountAddress:

widget.accountAddress,buildings: buildings);

}));

}

For showing the list of existing buildings to the user, the process is the one

above. The widgets are of the Card class, and are created in a loop with the values

obtained from the backend, which in turn have been fetched from the database. Each

widget is created with different values, and also with the function that will allow users to

tap on them to open the pages inside the building. These widgets are then stored in a

list, which gets passed on to the next page, which then loads every widget inside a

ListView widget and renders them on-screen.

Widgets can also be shown dynamically, making them appear and disappear

from view depending on the state of the app (this is what is referred to as stateful). This

is used in a few locations in the app, but the code is too spread out to show it as a code

snippet. It is used in the token creation page, in order to dynamically load the

TextFields relating to rent depending on if the building is for rent or not. It is also used

64

Development of a software application to tokenize and… - VIA University College

in the create proposal page, in order to dynamically load the TextFields that need to be

filled in for the selected kind of proposal.

2.3.3.4 Visual Elements
Visual elements are an important part of interacting with most software systems,

and the way they are implemented can greatly affect the experience the user has.

Figure 7: Confirm Operation Widget

In the figure above, the Confirm Operation in Wallet widget can be observed. It

consists of an alert that cannot be exited, a simple instruction to the user, and a

Metamask animated icon. While this might be simple, this might be one of the most

important choices of the visual design. Switching from one application to another can

be confusing to users, but is necessary in the context of the application. This negative

effect is limited by giving the user very clear instructions, and not allowing them to do

anything else until they are finished. The metamask logo serves as a visual reminder of

which application they need to open, while the looping animation reminds them that the

application is waiting for them.

65

Development of a software application to tokenize and… - VIA University College

Figure 8: Portfolio Page

The figure above shows the user portfolio page. This is the first page they are

greeted with when they open they log into the application, and provides useful

information at a quick glance. The user can see their username, ether balance, and

wallet address. They can also observe a list of the tokens they own, together with their

quantities and addresses. The gradient color scheme offers some refreshing visuals

while also being appealing and simple.

66

Development of a software application to tokenize and… - VIA University College

Figure 9: Building Card

Figure 9 shows how the user is provided with a view of the building list, having

access to an image, name, address, and token address. This information is useful to

provide information quickly while making it easy to distinguish between buildings. The

card design is also elegant and functional.

67

Development of a software application to tokenize and… - VIA University College

Figure 10: Proposals Page

The proposals page interface displays a list of the current proposals with their

name and description. This is done to allow more proposals to fit on-screen, and further

details can be seen when accessing a specific proposal. The bottom navigation bar is

also present in the Rent and Trade pages, and allows the user to quickly and

comfortably navigate the screens related to a specific building. Finally it is relevant to

note how many buttons and cards in the UI follow a rounded style. This is done

because of multiple reasons, the main ones being that it is becoming a popular choice

for material design, and also it is similar to a style Metamask uses. This makes the

transition from the app to the wallet and back more seamless and less jarring.

68

Development of a software application to tokenize and… - VIA University College

2.4 Tests

In order to make sure the main functionality of the application was working

correctly, a process of manual testing was followed. While a more standardised

approach would have been ideal, this was sacrificed in order to reach the scope

of the envisioned project. As this software product is a Minimum Viable Product,

this is acceptable.

Through the testing process of different components and their integration,

various undesirable behaviours were detected. Some of these were trivial, and

promptly resolved, while others required in depth analysis and evaluation. Some

notable examples include some bugs in the BuySell contract, which caused it to

misbehave when putting tokens on sale, in a price decreasing order. This blocked

any users from buying tokens.

The ethereum Ropsen testnet was also very useful in the testing process,

allowing for the deployment of contracts in simple manner, in order to analyse

their behaviour and interaction.

3 Business study

3.1 Methods

3.1.1 Business Plan

The business plan is one of the main tools to evaluate a business creation

project. It is composed of many sections covering the project's foundations, its

management, the marketing study, and the financial study. A business plan is not a

fixed model, it must be adapted to the project according to its characteristics as well as

to the expectations in terms of results of the analysis. The other models used for the

analysis of the business part are in fact sections of the business plan. It is therefore a

whole that allows one to have a global vision of the project and its analysis.

69

Development of a software application to tokenize and… - VIA University College

Table 3: Business Plan guideline

1. Executive summary a) A brief summary of the key information in the business plan.

2. Idea & background
Your WHY

a) Describe the problem

b) Describe how you solve the problem

c) Define briefly your customers

d) Revenue - Explain how you are going to earn money – what

are people paying for and how?

e) People - Describe briefly the team behind this idea

f) Passion – Highlight the passions in the team

g) Explain your WHY – your deep why

3. Vision, mission,
values & goals
G

a) Your vision

b) Your mission statement

c) Your company values

d) Your goals

4. Product & concept a) Core product

b) Add on products

c) Customer values (features, benefits, values)

d) Pricing

e) Intellectual property rights - IPR

f) Development plan - Outlining a future product portfolio g)

Production (own production or outsourcing)

5. The MACRO
environment –
regulations, etc.
G

a) Political & legal factors

b) Economic factors

c) Ecological/physical environment (global warming, etc.)

d) Social/cultural factors

e) Technological factors

70

Development of a software application to tokenize and… - VIA University College

6. The MICRO
environment

6.1 The market potential

a) Customers & buying behaviour

b) Market size & growth rates

c) Trends

6.2 The industry

d) Industry structure & environment

e) Entry barriers

f) Competitors & your competitive advantages g) Substitution

h) Distributors

i) Suppliers

7. SWOT a) Strengths

b) Weaknesses

c) Opportunities

d) Threats

8. Sales & marketing a) Your brand - your brand story, your brand values

b) Sales & distribution channels

c) Sales activities

d) Core messages & positioning

e) Marketing mix activities

9. Management &
Organisation

a) Legal structure and ownership

b) Management

c) Board & advisors

d) Partnerships

e) Key activities

f) Key resources

10. Action &
Development plan

a) Goals

b) Milestones

c) Actions

11. Control &
evaluation

a) Control & evaluation of your marketing activities, your

business idea, your products, etc.

71

Development of a software application to tokenize and… - VIA University College

12. Risk analysis a) Take the most serious and the most likely risks into

consideration and think about what you could do to avoid them

and how you could react if they become real.

13. Budgets a) Establishing budget

b) Operating budget

c) Cash Flow budget

d) Funding

(part 8)

14. Appendix

Source: VIA Entrepreneurship, Lene O. Sørensen, February 2022

The business plan template above is the one that is used for this project. It

comes from the VIA Entrepreneurships class. The template used is complete and

contains sections that are not useful for this project given the list of sub-problems and

delimitations defined in the project description. Therefore the sections related to

management, risk analysis and development plan are not used.

3.1.2 Financial plan (budget realisation):

The financial plan is an analysis that aims to evaluate the financial stability of a

company. In the context of this project, it takes the form of a budgetary estimate that

allows to account for the first years of the project's life. It should be noted that this

analysis is only an estimate and allows only with the help of data from research on

costs to report on how the finances of the company should be during the first years. It

is an analysis that allows us to understand the growth and the different spending

choices of the company.

The models used for this budgeting are the establishment budget, the operating

budget and the cash flow budget. The templates used for this analysis are from the VIA

entrepreneurship course.

72

Development of a software application to tokenize and… - VIA University College

3.1.2.1 Establishment budget
The purpose of the establishment budget is to organise the different costs

related to the creation of the company and its installation. These are costs that occur

before the start-up of the company and allow the smooth running of the company.

3.1.2.2 Operating Budget
The operating budget is a budget that accounts for the various revenues and

expenses anticipated by the company during the first five years. It also includes three

different scenarios that allow the project to be better prepared for possible

management difficulties. Indeed, although the estimate of the receipts and the costs

made upstream for the realisation of the budget is the most rigorous possible, it

remains an estimate and the reality can thus not concord with the budget. Therefore,

the use of three scenarios, including a realistic business development scenario, a

pessimistic scenario (revenues divided by three) and an optimistic scenario (revenues

multiplied by three) allows one to prepare for possible difficulties.

3.1.2.3 Cash Flow budget
The cash flow budget is similar to the operating budget but is focused on the

company's cash flow. It covers the first year of the company's life, which is one of the

most critical in terms of risk. This budget is used to estimate whether the company's

cash flow will be in difficulty or not. To do this, it is necessary to consider the different

flows, revenues and costs.

3.1.3 PESTEL Model

The PESTEL model is a marketing tool to analyse the macroeconomic

environment of a company or a project. In this model, the environment is broken down

into six different aspects: political, economic, social, technological, ecological and legal.

By analysing the environment in this way, it is possible to better understand the

strengths and weaknesses of the company related to this macroeconomic environment.

73

Development of a software application to tokenize and… - VIA University College

Figure 11: PESTEL Model

3.1.4 Porter's 5 forces

The five forces model of porter model is a marketing tool to analyse the

macro-economic environment of the company. It also allows us to analyse the state of

the competition on the market.

74

Development of a software application to tokenize and… - VIA University College

Figure 12: Porter's 5 Forces Model

3.1.5 STP model

The STP model is used to segment a market, target the best segment and

position the company according to this segment. It is a positioning tool that takes place

within the market analysis and before the definition of the marketing strategy. It is

useful to better understand the market and respond to the situation with the best

positioning, allowing the company to increase its results.

75

Development of a software application to tokenize and… - VIA University College

Figure 13: STP Model

3.1.6 7P’s Model

The 7p's model is a tool to define a marketing strategy in line with the

characteristics of the company and its market. It is the last step of the marketing

analysis. The study is based on the other marketing analysis seen previously. There

are two versions of this model, one with only four sections, and this one with 7

sections. This is a model that covers more factors than the original version. Within the

framework of the Dstate project, the study of the 7p's allows to define a marketing mix

relevant to the goals and objectives of the company.

76

Development of a software application to tokenize and… - VIA University College

Figure 14: 7P's Model

3.2 Results/ Business Plan

3.2.1 Executive summary

In an era where technological advances are becoming more and more

numerous, there are still markets, such as real estate, where the evolution of solutions

used seems to be slower, leaving inequalities and barriers for some market players.

That's where Dstate comes in, offering new solutions to make access to the real estate

market easier for everyone. The goal of the project is to change the way people access

and interact in the real estate market. In order to carry out this project, it is necessary to

conduct a complete analysis of the different components of the project, such as

marketing and finance. This is how the business plan becomes useful.

77

Development of a software application to tokenize and… - VIA University College

3.2.2 Idea & background

3.2.2.1 Description of the problem

The problem to address is the lack of accessibility to the real estate market in

terms of capital. This market has historically and to this day had a large barrier to entry,

preventing many people from participating in it. In other words: How can small retail

investors participate in the real estate market?

3.2.2.2 How Dstate solve the problem
The solution provided by Dstate is to reduce the cost of entering the real estate

market. For this, the use of the recent blockchain technology is an asset. Indeed,

thanks to this technology, it is possible to create, exchange and divide many services or

assets. The case of real estate is not excluded, and it is already possible to sell or buy

a property via this technology. However, it would be of little interest to use blockchain to

simply buy or sell a property. What is interesting on the other hand is the possibility of

being able to fragment these goods in the form of tokens. A token coming from the

division of a property represents then a fraction of the global property.

In this way, instead of having to buy a whole property to start investing in real estate, it

is now possible to buy a fraction of a property. In addition, blockchain technology brings

other possibilities such as a decentralised and secure management of real estate. This

can facilitate the management for the owner(s) as well as for the tenants. The tenants

also benefit from this system. It also means that a tenant who does not have enough

capital to become an owner can use his savings to buy a share of the property in which

they reside. This would have two consequences. The first one is that they would have

access to savings that could be more advantageous than a traditional bank investment.

And the second being that part of the rent they pay will be directly transferred to them

representing the part of the rent that is due to them, reducing their expenses.

78

Development of a software application to tokenize and… - VIA University College

3.2.3 Description of the customers

Our customers can be firstly divided into three categories:

-Property owners

-People interested in acquiring one or more properties

-Tenants whose landlords use Dstate services

Property owners

Property owners can be interested in Dstate services for different reasons. The

first is to generate liquidity without selling the entire property. For a homeowner,

acquiring liquidity can be useful when major purchases are to be made, such as an

unexpected daily expense, but also such as financing a new property. Why would it be

interesting to sell only a part of a property? The main reason is that some properties

are more valuable than others. For example, an owner having bought a property with

high profitability or whose location allows it to gain in value over time has no interest in

selling the property and losing control over it. Thus it will be preferable to sell a part of

the property which will be possible to repurchase more easily later on.

People interested in acquiring one or more properties

Our largest potential customer base is represented by people looking for a way

to invest in real estate. These investors are looking for a way to invest in relatively safe

savings and have a barrier to entry that does not represent an obstacle for them.

These investors may also have a larger capital that would be sufficient to purchase a

property in the traditional way. In this case, the advantage of Dstate is that they can

diversify their investment by buying tokens of multiple properties, thus reducing the risk

of their investment.

Tenants whose landlords use Dstate services

The last customers are the tenants of properties that are already tokenized. If

the owner of the property in which they reside decides to use Dstate, they will then

begin using the Dstate management service.

79

Development of a software application to tokenize and… - VIA University College

3.2.3.1 How do Dstate generate revenue
To generate revenue, Dstate applies fees to various operations on the platform.

The tokenization of a property:

When a property is tokenized by Dstate the tokens are then put on the market. It

represents a workload to verify the authenticity of the property, perform the operations

via the blockchain and therefore represents a cost that is passed on to the person

wishing to perform this process. There are therefore fees that the owner of the property

must pay.

The purchase of property tokens:

When a customer wants to buy a token on the marketplace, they are charged a fee for

the transaction. These fees are used in part to pay for the costs of using the

blockchain, but also for Dstate to generate revenue.

Subscription for renting management services:

If the owner(s) of a property on the platform wishes to use the management tool

provided by Dstate, it will incur a fee in the form of a service charge to be withdrawn

each month from the revenue generated by the property.

3.2.3.2 The team
The Dstate team is composed of three members who are the project leaders.

There is Eric Marti Haynes and Gloria Desideri who compose the software team, as

well as Gaspard HUGOT managing the commercial and financial part.

3.2.3.3 Motivation
The main reason why the Dstate project was conceived is to enable a real

profound change in the real estate market. It is about having a different vision and

approach to conceive what real estate investment is. Indeed, although the investment

aspect of the market is the most emphasised, real estate is above all living, working or

cultural places. This means that everyone is linked to it with more or less involvement.

There are two aspects on which Dstate wants to have an impact. The first is market

80

Development of a software application to tokenize and… - VIA University College

accessibility: allowing everyone to access and invest in real estate. And the second is

to make all market-related transactions more secure.

3.2.4 Vision, mission, values & goals

3.2.4.1 Vision
“We believe that the future of the real estate market is in the new technologies related

to blockchain”

Dstate's vision is positive and optimistic and is based on a simple observation:

the real estate market is a fossil, and it must evolve in line with the rest of the world.

With a keen eye for new technologies that promise to revolutionise the modern world,

Dstate believes that solutions are possible to improve and reshape the real estate

market.

3.2.4.2 Mission statement
Dstate is dedicated to offer new ways to be part of the real estate market,

including more accessibility, security, and independence.

3.2.4.3 Company values
Independence:
The value of independence carried by the Dstate company means that the company

seeks to give customers greater autonomy, a way for them to choose how they wish to

participate in the real estate market. Within the investor framework the players are

sometimes limited due to centralization, most often low capital individuals. This is why

Dstate seeks to change this by offering more opportunities to investors.

Transparency:
Transparency is an important value for Dstate and generally common to most

companies in the crypto currency world. Indeed, it is first and foremost a desire to be

honest with the customer and allow a certain amount of trust to be built up.

Transparency is also an aspect of the companies using blockchain which is partly

induced by this technology because all the operations carried out on a blockchain are

public and thus transparent.

81

Development of a software application to tokenize and… - VIA University College

Liberty:
The value of freedom refers to the freedom of clients but also the freedom of people in

general. For example, Dstate will not have offices at first, which allows employees to

work remotely, offering more freedom in managing their time. In another context, the

services offered by Dstate are accessible by all, whether through the company or

directly by accessing the features via the Blockchain.

Security:
Security is an important value when it comes to investment and large amounts of

money are involved. Dstate is committed to this value and seeks to make its services

as safe as possible.

3.2.4.4 Your goals

Table 4: Goals and Objectives

Goals and Objectives chart

Goals Objectives

Be sustainable Reach the break-even point

Improve accessibility to the market Make our service effective

Create a strong and loyal community Acquire a large user base and fidelyze it

Generate Profit Go beyond the break-even point

3.2.5 Product & concept

3.2.5.1 Core product
Dstate's core product is the real estate tokenization service. This service is

open to anyone who can prove ownership of a property.

82

Development of a software application to tokenize and… - VIA University College

Dstate's tokenization service is composed of different steps. First, the owner

who wants to use the service registers on the platform and passes a first step of

identity verification. In a second step, he proposes an asset to be divided into tokens.

For this, a second verification phase is required, including the analysis of the property

documents of the proposed asset. Finally, if all the preliminary verifications are positive,

the property is divided into tokens which are then put on sale on the platform.

When someone is purchasing a token, it has consequences. Firstly, the buyer

acquires a part of the property ownership in the proportion of the property tokens that

he owns. This gives him/her rights to the income from the property and to the

management of the property according to the contractual terms of the property. The

second is that the previous owner is paid the current value of the tokens he sold, thus

providing him with liquidity.

3.2.5.2 Add on products
Dstate add on Product is the property management service which is a

complement to the tokenization. Indeed, the fact that there are several owners can

make the management of the property more complicated. Whether it's the distribution

of the rent or the decision-making process such as renovations or rent increases.

There are two main cases. Firstly, it is possible that one person owns most of

the shares, in which case he or she has the power to make decisions. The second

case is that there is no majority and that the distribution of the power of proposal and

decision must be established in the contract of tokenization. The person who uses the

Dstate service for his property can then choose to keep the control of his property and

thus be the person who makes the decisions. But he can also choose to make the

management democratic. Thus, each owner will have a power of decision to the extent

of its possession of tokens of the property. It is in this case that the Dstate management

tool is used because it automates all the votes, proposals, and transactions.

3.2.5.3 Pricing
As seen earlier in the section on how Dstate generates revenue, there are three

sources of revenue for the company. The prices set are broken down as follows:

Tokenization price: 1000€ + 0.5% of the total value of the asset.

83

Development of a software application to tokenize and… - VIA University College

Comment: The fees for tokenization can be suppressed for the first six months of the

launch of the company considering that it could be a barrier to the growth.

Fees on token purchase: 0.5% of the total amount

Management service fees: 1% if the rent (Deduce before the distribution to the

investors)

These prices are based on two criteria: to be able to generate a sufficient income for

the company to be sustainable but also not to have a pricing too high that would scare

away potential customers.

3.2.5.4 Production
In terms of production, the company only produces a service. This service is

based on a computer tool that must first be developed.

It is envisaged that the development of Dstate's computer system will be

subcontracted, and that its maintenance and possible improvement will be managed by

a team of software developers. The subcontracting for the realisation of this system

represents a cost which is estimated at 50.000€. Indeed, in France for example, the

median salary of blockchain developers per year is €50,000. The development time for

two developers is 6 months which amounts to 50,000€ of development costs.

As for the costs of maintaining or improving the service, it is necessary to consider

hiring a blockchain developer in a sustainable way. The cost would therefore be

€50,000 per year. Cost to be included in the budgetary estimation.

3.2.6 The MACRO environment

3.2.6.1 Political & legal factors
The political and legal environment in which Dstate operates is quite complex.

Indeed, the company and its activities are subject to regulations related to the real

estate market, cryptocurrency and blockchain technologies. Moreover, these

regulations may differ depending on the country in which the service is sold. There are

currently no legal limitations on the principle of tokenizing real estate and then selling

these tokens. The same goes for cryptocurrency exchanges and markets that allow

84

Development of a software application to tokenize and… - VIA University College

their exchange. However, the European community, because it is mainly in Europe that

Dstate plans to be established, is beginning to look into the subject. Indeed, already

today with the project MICA (Market in Crypto Assets) regulations could be put in place

soon to create a framework for the use of different tokens. This indicates a desire on

the part of the European authorities to provide the best possible framework for the

sector. The consequence of such regulations would be greater consumer confidence,

but also, conversely, a risk of reducing the possibilities of the market.

3.2.6.2 Economic factors
The economic environment is relatively favourable to the project. First of all, the

real estate market is a stable market with relatively constant growth. Indeed, despite

the crisis of 2008 and the pandemic of 2020, the real estate market has seen its prices

increase. On the other hand, the crypto-currency and blockchain technology market is

booming. The only major risk is the youth of this technology which can worry potential

investors and also experience more frequent crisis episodes.

3.2.6.3 Ecological/physical environment
The ecological and physical aspect of the environment in which Dstate operates

does not have much impact. The only point to note is that challenges to the energy

consumption of this technology are beginning to emerge. However, this remains

insignificant and moreover, the market players are working to reduce this consumption

to make the technology more sustainable.

3.2.6.4 Social/cultural factors
First, demography is an important measure for understanding the social and

cultural aspect of the environment. In Europe the active population (between 15 and 64

years old) represents 243 million people. Secondly, the fact that in Europe the

population has a strong tendency to save and invest is an asset for the project. Finally,

the general attraction for new technologies, especially among 18-35 year olds, makes

the environment favourable to the development of the project.

85

Development of a software application to tokenize and… - VIA University College

3.2.6.5 Technological factors
The technological aspect of the environment is one of the most important given

the field in which Dstate operates. In general, since the arrival of the Internet, the

technological advances have not ceased to be more and more rapid. The world is now

totally connected and this represents an asset for a digital project. Moreover, the

technologies related to blockchain are democratising all over the world and the number

of people who are interested in it is constantly increasing.

3.2.7 The MICRO-environment

3.2.7.1 The market potential
Customers

Potential customers:
The potential users of Dstate are therefore grouped into three categories:

-Property owners

-People interested in acquiring one or more properties

-Tenants whose owners use Dstate services

In the context of the consumer study, although Dstate addresses anyone who owns

property or is a tenant. In other words, the majority of the working population. It is

important to distinguish the fact that homeowners are generally older people, between

35 and 65 years old. In addition, even fewer homeowners are familiar with the

blockchain world.

Personas and values proposition:

86

Development of a software application to tokenize and… - VIA University College

Figure 15: Persona n°1

Figure 16: Persona n°2

87

Development of a software application to tokenize and… - VIA University College

Figure 17: Persona n°3

Market size

To define the market size, it is necessary to calculate how many people

represent the three categories of potential consumers.

First, it must be admitted that the third category, the tenants whose landlords use

Dstate, are by and large not potential users that can be sought out, but rather users

induced by their landlord's membership.

That being said, and in order not to make an overly optimistic estimate, it is prudent to

consider only one tenant per landlord using Dstate. Therefore, the result will be a low

estimate.

Second, for the group of customers looking to invest in real estate. It is difficult to find

European-wide data on customer interest in real estate investment. However, given

that Dstate uses blockchain and the use of its services leads to the use of crypto

currencies or at least encourages it. It is realistic to say that it is mainly European

crypto-currency users or potential crypto-currency users who will be part of this target

group. In Europe, the global average adoption rate sits at approximately 23 percent.

Additionally, among non-users, 35% have doubts about the security it represents and

88

Development of a software application to tokenize and… - VIA University College

34% say they don't know how to buy or hold cryptos. These non-users are potential

customers because the brakes that prevent them from using crypto currencies may

disappear in the coming months, years.

Finally, the number of owners of rental properties in Europe is difficult to

estimate because the only known data are the share of the population owning their

homes (70%) and the share renting their homes (30%). Therefore, in the context of the

study of potential customers, another less precise method is to be used. Assuming that

France is a country like the main European countries where Dstate will be launched,

and that 7.3 million households in France are multi-owner, it is possible to conjecture

that this represents the share of homeowners who would be likely to use the Dstate

service. So, the ratio must be calculated between these 7.3 million compared to the

number of households in France, that is 29.2 million.

Calculation: 7.3/29.2*100 = 25

In France, 25% of the households are therefore multiple owners. It is this figure that will

be used with the European active population in the calculation of the market size.

Calculation (in millions):

(243*0.23) +243*(0.35+0.34) = 223.56

There are 243.56 million potential customers for the group of customers looking to

invest in crypto and real estate.

243*0.25 = 60.75

There are 60.75 million potential customers in the group of customers that are

landlords who rent properties.

This number of potential customers may seem unrealistic, but these are just the people

that Dstate might touch. In the case of a company offering investor and

blockchain-related services, it is certainly impossible to reach everyone. However, a

large market size is still an advantage because even if you reach a very small portion

of that market, it will still represent many customers.

Trends

As far as market trends are concerned, overall the market is constantly

increasing. First of all, the real estate market is constantly increasing, even though it is

89

Development of a software application to tokenize and… - VIA University College

only slight. And secondly, because the market for crypto-currency and blockchain

related services has been growing steadily for the last 5 years.

3.2.7.2 Porter 5 forces

Competition in the industry

This part refers to the number of competitors on the market. After doing

researches, it is established that Dstate have few competitors. There are only five

competitors that exist on the market : Stobox, RealT, digishare and Solidblock, Omni

PSI and. The first important point to note is the limited number of competitors. Indeed,

the market being young or even new, few are those who have already developed a

company similar to Dstate. This is an advantage because there is less competition and

it is easier to stand out.

The second important point is related to the service offered by these

competitors. These three competitors do not offer exactly the same service as Dstate.

While they do offer a marketplace of tokens from tokenized assets, the tokenization

service offered to the asset owner is different. Indeed, Dstate offers a service that

allows any owner to offer his property to tokenization in a simple and fast way. On the

other hand, Dstate's competitors offer a consulting service that takes more time and

therefore leads to a smaller number of properties on the market.

Potential of new entrants into the industry

About the potential of new entrants into the industry, because the market is new

and there are few competitors, the risk of potential new entrants is high. It is possible to

divide these potential new entrants into two groups because although there is a high

risk of new entrants, they do not all have the same advantages.

The first group, the least dangerous in terms of competition, is that of the new

players who, like Dstate, would be new projects without large existing capital and with

fewer means to differentiate themselves from Dstate.

The second group is made up of large companies already existing on the

crypto-currency market like Binance and FTX or already present on the real estate

market. The latter could seek to diversify and offer a real estate tokenization service

90

Development of a software application to tokenize and… - VIA University College

and would therefore become competitors for Dstate. This second group represents a

bigger risk because the competing company would already have a lot of capital,

customer base and brand image.

Power of suppliers

Dstate does not have any suppliers since the company offers an IT service. The only

vendor that can be considered is the development company that is outsourced during

the development tokenization process. However, this is a one-time operation that takes

place at the launch of the project. It is therefore not relevant to take it into account in

the analysis.

Power of customers

The bargaining power of customers in this case is very low, for several reasons. First of

all, this is a service that companies offer. Therefore, customers do not have much

choice. Secondly, during the sales process, the customer does not meet the different

members of the company, which prevents negotiation. Finally, the service is mainly for

individuals and not for other companies, so it is rare to try to negotiate in this kind of

case.

Threat of substitute products

The risk of substituting the product proposed by Dstate is mitigated. Indeed, potential

Dstate customers are looking for several criteria, namely low cost of access, security

and a certain rate of return. However, some substitutes, such as traditional real estate

investments, may represent a risk if the potential customer decides to abandon certain

criteria. More importantly, there are similar investment systems that do not use

blockchain. These substitutes have the same advantages in terms of market entry cost

and return. However, they do not allow easy access to liquidity. Also, it should be noted

that these are substitutes only for the investment principle. As for the liquidity

advantage that Dstate's service offers to owners and the management solution for

properties held by token owners, there are no substitutes.

91

Development of a software application to tokenize and… - VIA University College

3.2.8 SWOT

Table 5: SWOT Analysis

Strengths Weaknesses

Innovative service

Easy to use service

Secure process

Complexe technology

Hard to understand for customers

Need a strong customer mass

Opportunities Threats

Recent market

Diversification

huge potential customer mass

Few competitors

Potential new competitors

Cyber-attack risks

3.2.8.1 Strengths

Innovative service:

One of the major strength of Dstate is that the service that it propose is innovative.

Indeed, even if some competitors are already proposing similar services, Dstate is

bringing a solution to make it easier for the customers. This is a strength because the

customers can really find a new solution to their needs.

Easy to use service:

The process of the service is made in a way that users can have a good and easy

experience. The simpler it is the better. The easy-to-use aspect of Dstate is a strength

because it permits to keep a bigger part of the leads that are dragged to the website

and so increase the customer base, increasing the revenus and the stability of the

company.

92

Development of a software application to tokenize and… - VIA University College

Secure process:

The security offered by the utilisation of blockchain is a strength for the company

considering the fact that a lot of customers can be afraid of putting their money on new

or unknown web-site. With this technologie the user can be reassured. This way,

Dstate will lose less leads because of security. Also, it is a strong marketing advantage

that can be used against competitors.

3.2.8.2 Weaknesses

Hard to understand for customers:

The complexity of the technology used by Dstate to tokenize and manage the

multi-owning systeme can also be hard to understand for customers. This can be a

weakness, scaring potential customers to invest on the platform. To reduce the

potential negative effects of this weakness, it is necessary to focus on the transparency

of the process and make it easy for users to find information on the site that will help

them understand how the service works.

Need a strong customer mass:

The main weakness of Dstate is the need for a large user base to operate. The

principle of tokenization induces the need for investors to buy the tokens. In case the

number of users is too low, for example not enough owners to offer goods on the

platform or not enough investors to buy tokens, it would ruin the experience for all

users. The launch of the company and its first months or years are therefore a decisive

moment, the one that carries the most risk. If the company does not manage to exceed the

minimum number of users required for the service to function properly, the project will be

frozen.

3.2.8.3 Opportunities

Recent market:

A good opportunity for Dstate is the fact that the market in which it operates is new, if

not totally new. Although this market is actually the union of two existing markets, the

93

Development of a software application to tokenize and… - VIA University College

real estate and crypto markets, it is still an opportunity in terms of competition and

diversification.

Diversification:

Dstate offers three services on its platform that are all linked and can be considered as

a single service bundle. However, given the ever-evolving technology used, there are

great opportunities to diversify by adding new services to the Dstate catalogue. These

new services could complement the existing ones or stand out while remaining in line

with the company's values and objectives.

huge potential customer mass:

Another opportunity for the project is the large pool of potential customers. Indeed, as it

is detailed in the market study, the potential customers are numerous as the service is

able to interest a wide variety of people. This represents an opportunity to grow

Dstate's customer base quickly and not suffer from a loss of momentum as the

company expands.

Few competitors:

Finally, as mentioned earlier, Dstate has little competition because of the market in

which it operates and the service it offers. This represents an opportunity because it

means less effort for the company to distinguish itself or to fight on the marketing level

against its competitors. These efforts can be placed in other actions participating in the

development of the company.

3.2.8.4 Threats

Complex technology:

The technology used by Dstate and its tokenization service is a recent technology

which can represent a weakness. Indeed, although the process works, there may very

well be bugs over time, development difficulties and therefore increased costs. This

represents a weakness.

Potential new competitors:

94

Development of a software application to tokenize and… - VIA University College

The youth of the market and its expansion also brings its share of risks such as the risk

of new competitors on the market. This risk is common to all companies, but in this

case, large companies with more capital and experience could choose to diversify by

creating a branch dedicated to the tokenization of real estate. This represents a

significant risk because Dstate as a new company does not have the financial and

marketing means to fight against this kind of competitor.

Cyber-attack risks:

Finally, a low risk is always present in the digital world and even more so when large

amounts of capital are at stake, the risk of computer attacks is present. Indeed, despite

the security provided by technology, the risk of theft is present and fighting against it

has a cost. Security represents a financial cost but also a cost in terms of image.

Indeed, the image of the company could be tainted and the confidence of the

customers and the potential customers would be lost.

3.2.9 Sales & marketing

3.2.9.1 Segmentation, Targeting and Positioning

Segmentation

When using an STP model, the first step is to identify and create customer segments.

Various criteria are used for that.

Demographic:
From a demographic point of view, although potential clients are between the ages of

15 and 65, real estate investment is of more interest to 25–40-year-olds. In France, for

example, the average age of the first real estate purchase is 31. It should also be noted

that this advanced age is partly the result of a high barrier to entry into the market. With

Dstate's service, this age could be reduced.

In addition, Dstate has three categories of potential customers: Property

owners, investors, and tenants whose property is tokenized. Tenants are not a target

because they are customers induced by the owners on the platform. The two

95

Development of a software application to tokenize and… - VIA University College

categories to differentiate in terms of age are investors and owners. As far as investors

are concerned, there is no precise age range because the minimum investment on

Dstate is low and does not represent a break for a young segment of the population.

An age range for investors from 15 to 65 years old can be established.

On the other hand, for the owners who wish to submit a property on the

platform, it should be considered that few young people have real estate assets. In this

case, the segment would be composed of people between 30 and 65 years.

It should also be noted that Dstate's service uses new technologies, is accessible only

on the Internet. This reduces the project's ability to reach an older population that may

not be familiar with new technologies and even less with the notion of blockchain. This

reduces the target age range of owners to 30-50 years.

Geographic and online presence:
For the segmentation from a geographical point of view, the main information that could

be used is the difference in the proportion of people who own property according to the

countries of the European Union. Indeed, in the Eastern European countries the

percentage of the population which owns his property is more important. Moreover, the

real estate market in the richest and most developed countries of the European Union

is more important and more dynamic. It is therefore logical to privilege a segment of the

European territory composed of developed countries, those of the West and the North,

as well as the Capital of the other less developed countries.

In terms of online presence, the most appropriate segment is that of people

using social networks such as reddit and twitter. These are generally the networks most

used by those interested in crypto-currencies and blockchain.

Finally, in terms of employment, it should be considered that people whose job is

related to finance, investment or IT development are more likely to be interested in the

project.

Psychographic:
Dstate must target the part of the population whose values and interests are in line with

what the company offers. In terms of values, people who are close to values such as

ambition, a spirit of discovery and dynamism are more likely to be interested in the

96

Development of a software application to tokenize and… - VIA University College

project. In terms of interests, people interested in finance, real estate, investment and

new technologies.

Conclusion:

Table 6: Segmentation Table

Segments Age Geographic Area Interests

Owners 30-50years

old

Western and Northern Europe,

Eastern Europe important cities

Real estate, investment, new

technologies

Young

Investors

15-29

years old

All Europe Investment, blockchain, real

estate

Older

investors

30-50

years old

Western and Northern Europe,

Eastern Europe important cities

Investment, real estate, finance,

new technologies, blockchain.

97

Development of a software application to tokenize and… - VIA University College

8.1.2. Targeting

Table 7: Targeting Table

Segments

Main owners Young Investors Older investors

Measurability What is the size of the

segment?

60.75 million Around 75 million Around 100

million

Purchase behaviours Analytical Buyer The Driver Buyer Analytical Buyer

Needs of the segment Security, Trust Potential,

Communication

Potential,

Security

Accessibility Can we communicate

(advertising, for example)

with the segment?

Medium

With email

campaign and

social media

High

With socials media

and dedicated

websites

Medium

With email

campaign and

social media

How often we can

communicate

Daily Daily Daily

How costly is it? The

required marketing

channels

Medium cost,

So-Me marketing

strategie

Medium cost, So-Me

marketing strategie

Medium cost,

So-Me marketing

strategie

Sustainability Is the segment profitable

enough to sustain

marketing efforts?

The segment is

essential

No Yes

Does the segment align

with our business goals?

Yes yes yes

98

Development of a software application to tokenize and… - VIA University College

Can we realistically offer

value to the segment

sustainably?

yes yes yes

Actionability Can we maintain a

competitive edge for the

segment?

yes No Yes

Can we communicate the

way the segment wants?

No Yes Yes

8.1.3. Positioning

Dstate's positioning of its prospects is based on the use of the product and its

application. This is the most appropriate positioning strategy. Indeed, the service

offered by Dstate is new and innovative and it is on this point that it is most interesting

to develop a marketing strategy. It is not relevant to position the company in terms of

price since there are no competitors offering the same service.

Regarding the market segments chosen as being the most relevant, namely

homeowners and elderly investors, it makes sense to position yourself as a new

alternative to what they already know.

The important points to emphasise to attract members of these segments are security,

innovation, and simplicity.

3.2.9.2 Marketing mix activities

Product

As seen before, Dstate offers a property tokenization service. This allows

individuals to invest in real estate without having a large capital. On the other hand, it

allows owners to free up liquidity quickly.

The service offered by Dstate meets the different needs of customers:

-The need to generate liquidity

-The need for a real estate investment for small portfolios

99

Development of a software application to tokenize and… - VIA University College

-The need for an automated and secure platform

-The need for a tool to easily invest with others.

The company addresses these needs by creating a platform where users can submit

an asset to the tokenization process, buy or sell tokens on the site's marketplace and

manage the assets they own. In this way Dstate is a complete tool that meets the

needs of customers.

Competition in the market is low because the technology and the market in

general is new. Moreover, with its service, Dstate differentiates itself as the only

company offering ease of use and speed of process. Indeed, the few potential

competitors offer a service of advice and support, or only a marketplace to invest. As a

result, Dstate has a comparative advantage.

Price

The pricing study for the various Dstate services was done in such a way as to be

sustainable while not being a hindrance to the users.

Tokenization price: 1000€ + O.5% of the total value of the asset.

Fees on token purchase: 0.5% of the total amount

Management service fees: 1% if the rent (Deduce before the distribution to the

investors)

The price of the service cannot be the core of the marketing strategy since

there are no competitors whose prices could be used as a comparison. Therefore, the

price variable should not be an obstacle but not a marketing asset to stand out.

Dstate's pricing strategy is to be neither below nor above the current prices in the real

estate and crypto markets. Indeed, to place below is not relevant considering the weak

competition and to place above is not relevant either because the service is meant to

be easy to access.

Also, it is envisaged that an offer will be created at launch to help the platform

generate a large catalogue of properties. The strategy is to waive the tokenization fee

for the first six months to encourage owners to come to the Dstate site. This would

represent a cost to the company but would ultimately allow for a more aggressive

launch. This strategy is not included in the budget estimate, however, as it is still a

100

Development of a software application to tokenize and… - VIA University College

project and a marketing strategy such as this would require extensive study and does

not represent a permanent strategy for the company.

Place

The place where the service is visible, available and used is the company's dedicated

platform. It is therefore a digital service accessible anywhere in the world. However, it

should be noted that Dstate is only being deployed in Europe at the moment to address

legal issues. Indeed, it is risky to try to reach the whole world as soon as the company

is launched. It is therefore preferable to start in Europe where regulations differ little

between each country and seek to export once the company is stable.

Dstate is therefore an online service that is easily available. This is part of the

marketing strategy and is in line with the values and needs of users for ease of access

and use. This way Dstate can reach many potential customers. The presence on the

internet also allows a better use and efficiency of digital advertising tools.

Promotion

The entire promotion of Dstate will be digital because of the service offered and the

place where it is accessible. For this purpose, several tools are used:

● Social Media Marketing (SMM)

Social Media Marketing is the use of social media to promote a company, a product or

a service. In the case of Dstate it is a good way to reach customers, especially on

social media like twitter where there are strong communities of customers which are

easy to target via advertisement. This is mainly about using the advertising tools

provided by social media to effectively reach the customer target. In terms of content, it

is generally short presentation videos with links to the Dstate site to generate leads.

Then, it is also a matter of creating accounts representing the company on the different

social media to first gain visibility but also to have a link with the users, allowing them to

interact with them and thus strengthen the image of the company.

● Search Engine Optimisation (SEO)

SEO is the process of improving the visibility of a website in a search engine. For this

purpose, there exist various methods such as the use of keywords that allow the

greatest number of searches possible. For example, in the case of Dstate the keywords

101

Development of a software application to tokenize and… - VIA University College

real estate, blockchain, investment, tokenization and token must be present. It is also

necessary to create as many connections as possible between the Dstate site and

other linked sites to improve the leads leading to the sites.

● Search Engine Marketing (SEM)

Close to SEO the SEM is the method that consists of paying for being better placed in

the result on the search engine. This method can cost a lot but generally give good

results. To do that the differents ads that can be made and buyed are:

● Search Ads

● Shopping Ads

● Display Ads

● Gmail Ads

● YouTube Ads

● Partnerships with influencers

Finally, the last method of promotion used by Dstate is the creation of

partnerships with influencers. These latter may be important figures in the real estate

and crypto markets, who share content on youtube, has a very influential twitter or

facebook account using partnerships remuuner it is a whole part of their communities

that Dstate can reach. It should be noted that this strategy is mainly relevant to reach

the investor segment, especially young people, even if today social networks are not

only used by a young population.

People

The people aspect of Dstate company isn’t relevant for the marketing mix study

considering that it is an online company so the consumer is not supposed to meet any

of the workers of the company. However, speaking about business to business

meetings and partnerships with external collaborators such as marketing agency or

developing company employed by Dstate the question of the workforce of Dstate

become relevant. Indeed, it is important to show maturity, professionalism and

seriousness to get collaborators to trust you. In this case Dstate workforce isn’t the

most experience considering that the project holders are young but it is balance by the

fact that they are motivated. Therefore, this lack does not represent a major pain point

for the marketing mix.

102

Development of a software application to tokenize and… - VIA University College

Process

From the customer perspective, the process of buying and using the Dstate platform

and services is easy to use. That is one of the main purposes of the service. The

website concentrates all the services offered by the company in one place. About the

payment it is the same standards as most of the web-sites such as credit card

payments and bank transfer but the customer can also use a crypto wallet. The

interface of the website is intended to be clear and user-friendly.

In terms of client support they will be of course a whole section dedicated to frequently

asking questions, company description and support team contacts.

Physical evidence

The physical evidence must be in adequacy with the company values, a clear and

smooth design for the website, the logo, and the social media content.
Figure 18: Physical Evidence n°1

103

Development of a software application to tokenize and… - VIA University College

Figure 19: Physical Evidence n°2

3.2.10 Budgets

The budgeting of a project is an important step to evaluate the financial needs

of the project but also more generally to evaluate the feasibility of the project. For this

purpose, there are different budgets to dissociate which represent different aspects of

the financial life of the company. It should also be noted that a budget is only an

estimate of the needs and does not correspond to the reality of the course of the

project which is impossible to foresee with exactitude. Within the framework of the

budget study for the Dstate project, the estimates are as realistic as possible within the

limits of the data collected during the research.

104

Development of a software application to tokenize and… - VIA University College

3.2.10.1 Establishing budget
The establishing budget is the amount of money the project holders need to

establish the company and how it is distributed among the different cost categories. In

the case of Dstate the establishing budget isn’t huge considering differents points. First

The company doesn't need any offices because it is an online application and staff can

remotely work. This represents savings on the budget and gives more liberty for the

employees regarding their work. The main cost of the budget is the cost of contracting

a company to develop the Dstate software. This cost was estimated from the average

salary of a developer specialised in blockchain in Europe. It was estimated that it would

take 3 months of work for four developers, which amounts to an annual salary of one

developer, or 50,000€. Then the costs are divided between the purchase of computers,

printers, photocopiers and office equipment. Finally, there is a certain budget for the

costs of creating the company and consulting legal professionals.

3.2.10.2 Operating budget
The operations budget is the most important budget, both in size and utility. It is

the budget that gives an idea of the different costs and revenues that the company

expects during its first 5 years of life. To be more accurate, there are three scenarios

proposed.

The first scenario is the most realistic, the company plans to tokenize 10

properties the first month whose average value is 250000€. The company also

assumes that each property subscribes to the management service and that there are

on average 100 investors who own each property.

For the following months, the overall increase in revenues is first estimated at

10% and then decreases to stabilise at 1%. It is difficult to estimate the growth of a

company, especially when the market is new. It was therefore preferable to choose a

relatively slight growth for more security.

The estimated costs concerning the salaries correspond to the employment of

two developers costing 5000€ gross per month as well as three times 4000€ gross per

month to pay the project leaders who will also work full time.

The main cost is the marketing budget, which plays a major role. Indeed, it is an

important expense for Dstate because it is one of the main factors to grow the number

105

Development of a software application to tokenize and… - VIA University College

of users. In the second scenario, the marketing expenses are greatly reduced because

it is not possible to reduce the human resources expenses. It should be noted that

these reductions could be the cause of a decrease in revenue growth, but this cannot

be estimated.

Concerning the second scenario, it represents the worst case scenario, where

all revenues are divided by three. By necessity, in order not to bankrupt the company,

the costs are readjusted, mainly the marketing expenses.

The third scenario is the exact opposite of the second, where all revenues are

multiplied by three. This scenario is less realistic than the first two and is therefore less

interesting to consider.

After five years of life, all three scenarios end in profit. For the first scenario the

estimated profit is 511 433€. For the second and third scenarios the results are

respectively 149 852€ and 14 475 072€. In all three cases, this is a positive estimate

for the project.

3.2.10.3 Cash Flow budget
The cash flow budget is a tool that complements the operating budget. In fact, it

allows you to see the company's cash flow each month. The budget has only been

made for the first year and following the estimates of scenario number 1 because it is

the most realistic scenario and the first year is the most critical for a company. In

general, Dstate's cash flow is relatively good. During the first few months, it sinks into

the red but consolidates very quickly to finally be in constant growth. According to

these estimates, Dstate should not suffer any major cash flow problems during the first

year.

3.2.10.4 Funding
The financing of Dstate is made up solely of the contributions of the three

project leaders, each up to 25 000€. This way, there is no need to take out a loan that

would later destabilise the cash flow. Also, this brings the total financing to 75 000€

which covers the expenses foreseen by the establishing budget as well as an initial

liquidity for the treasury.

106

Development of a software application to tokenize and… - VIA University College

4 Future of the Project

Through the process of software development, a Minimum Viable Product has

been reached. This product, even if not in its final form, shows how the proposed

solution will operate, while also serving as a basis for future versions using an

incremental approach. Future versions of the backend could include better and

more extensive error handling, automated unit testing, and CI/CD process. When

actual legal contracts are being managed, the database can host a new table for

the uploaded files, relating them to specific users and buildings. It could also

include an AWS S3 bucket to host images. Newer versions of the smart contracts

could benefit from expanded functionality, while also emitting more events that

can be used to store useful information. They could also implement some

optimizations to reduce gas cost, both for deployment, and for users interacting

with them. As for the frontend, a big and simple improvement could be porting

the interface to more platforms, such as ios and web. User experience could also

be improved, in order to achieve a greater usability, accessibility, and user

satisfaction. While the current iteration of the products satisfies the proposed

challenges, it has room to grow and improve, but still serves as a good example

and starting point for a more improved version.

5 Conclusions

Regarding the business study, it shows that the company is able to generate

revenue by applying fees on the different services that it offers. This revenue is

estimated as enough for the company to be sustainable and profitable. Also,

considering the marketing part of the study, it appears that the company is in a new

market and has only a few competitors. This brings an advantage to the company and

allows it to position itself as the only provider of the specifical service that it is offering.

Finally after a study about which marketing mix the company needs to use, the results

are showing that it is composed of digital marketing including SEO and SAM.

Considering the market, the price of the service is not impacted by the competitors.

107

Development of a software application to tokenize and… - VIA University College

This is because the company is providing a service that is well differentiated from the

competition.

In regards to the software development, a robust implementation of the design

was achieved, especially with the smart contracts, which lie at the core of the solution.

All the proposed user stories have been considered, covering the needs of the

stakeholders. A decentralised, secure, and functional set of smart contracts have been

developed and tested. Furthermore, a fast, flexible, and lightweight backend server

was created. Moreover, a consistent, reliable, and rapid database has been built.

Finally, a portable, responsive, and user-centric frontend interface was implemented. To

conclude, a Minimum Viable Product that covers all the subproblems is the result of the

software engineering process.

108

Development of a software application to tokenize and… - VIA University College

6 Sources of information

ec.europa.eu. (n.d.). Overview - Housing price statistics - Eurostat. [online] Available at:

https://ec.europa.eu/eurostat/web/housing-price-statistics [Accessed 10 May 2022].

stobox.consulting. (n.d.). Stobox | Security Token Offering and Tokenized

Assets Ecosystem. [online] Available at:

https://stobox.consulting/real_estate_asset_tokenization [Accessed 10

March 2022].

 solidblock.co. (n.d.). Best Real Estate Tokenization - SolidBlock. [online]

Available at: https://solidblock.co/real-estate-tokenization/ [Accessed 20

March 2022].

 ec.europa.eu. (n.d.). Overview - Housing price statistics - Eurostat. [online]

Available at: https://ec.europa.eu/eurostat/web/housing-price-statistics.

 Talent.com. (n.d.). Salaire, France - Salaire moyen. [online] Available at:

https://fr.talent.com/salary?job=d%C3%A9veloppeur+blockchain#:~:text=Le

%20salaire%20m%C3%A9dian%20pour%20les [Accessed 27 April 2022].

 Statista. (n.d.). Topic: European Union. [online] Available at:

https://www.statista.com/topics/921/european-union/#dossierKeyfigures.

109

https://ec.europa.eu/eurostat/web/housing-price-statistics
https://www.statista.com/topics/921/european-union/#dossierKeyfigures

Development of a software application to tokenize and… - VIA University College

Schmitz, R. (2022). Rise of Crypto Europe. [online] Storm2. Available at:

https://storm2.com/storm2-voice/blockchain/crypto-europe/#:~:text=Whilst

%2C%20in%20Europe%2C%2040%20percent

[Accessed 27 April 2022].

 BFM BUSINESS. (n.d.). 7,3 millions de ménages multipropriétaires possèdent

plus de la moitié des logements de particuliers. [online] Available at:

https://www.bfmtv.com/immobilier/7-3-millions-de-menages-multiproprietai

res-possedent-plus-de-la-moitie-des-logements-de-particuliers_AV-20211126

0173.html#:~:text=Immobilier- [Accessed 27 April 2022].

www.insee.fr. (n.d.). Ménage – Famille − Tableaux de l’économie française |

Insee. [online] Available at:

https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291#:~:text=E

n%202016%2C%20la%20France%20compte [Accessed 26 April 2022].

Scott, G. (2020). Porter’s 5 Forces. [online] Investopedia. Available at:

https://www.investopedia.com/terms/p/porter.asp.

 RealT, Inc. (n.d.). RealT, Inc. [online] Available at: https://realt.co/.

 solidblock.co. (n.d.). SolidBlock. [online] Available at:

https://solidblock.co/tokenization-form [Accessed 10 March 2022].

110

https://storm2.com/storm2-voice/blockchain/crypto-europe/#:~:text=Whilst%2C%20in%20Europe%2C%2040%20percent
https://storm2.com/storm2-voice/blockchain/crypto-europe/#:~:text=Whilst%2C%20in%20Europe%2C%2040%20percent
https://www.investopedia.com/terms/p/porter.asp
https://realt.co/

Development of a software application to tokenize and… - VIA University College

omni-psi.com. (n.d.). Omni $ORT - Decentralized NFT Real Estate

Marketplace: Buy Property With Crypto. [online] Available at:

https://omni-psi.com/.

digishares.io. (n.d.). Services. [online] Available at:

https://digishares.io/services [Accessed 5 March 2022].

Auth0 Docs. n.d. JSON Web Token Structure. [online] Available at:

<https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-token-st

ructure> [Accessed 1 June 2022].

Auth0 Docs. n.d. JSON Web Tokens. [online] Available at:

<https://auth0.com/docs/secure/tokens/json-web-tokens> [Accessed 1 June

2022].

Mongoosejs.com. n.d. Mongoose ODM v6.3.5. [online] Available at:

<https://mongoosejs.com/> [Accessed 1 June 2022].

Savchenko, N., 2019. Decentralized Applications Architecture: Back End,

Security and Design Patterns. [online] freeCodeCamp.org. Available at:

<https://www.freecodecamp.org/news/how-to-design-a-secure-backend-for-

your-decentralized-application-9541b5d8bddb/> [Accessed 1 June 2022].

111

https://omni-psi.com/

Development of a software application to tokenize and… - VIA University College

Mindtools.com. n.d. SMART Goals: How to Make Your Goals Achievable.

[online] Available at:

<https://www.mindtools.com/pages/article/smart-goals.htm> [Accessed 1

June 2022].

Atlassian. n.d. User Stories | Examples and Template | Atlassian. [online]

Available at:

<https://www.atlassian.com/agile/project-management/user-stories>

[Accessed 1 June 2022].

Web3js.readthedocs.io. n.d. web3.eth.Contract — web3.js 1.0.0

documentation. [online] Available at:

<https://web3js.readthedocs.io/en/v1.2.11/web3-eth-contract.html>

[Accessed 1 June 2022].

https://www.redhat.com/. 2020. What is a REST PI?. [online] Available at:

<https://www.redhat.com/en/topics/api/what-is-a-rest-api> [Accessed 1

June 2022].

Quicknode.com. n.d. What is an ABI? explained - step-by-step beginners

guides | QuickNode. [online] Available at:

<https://www.quicknode.com/guides/solidity/what-is-an-abi> [Accessed 1

June 2022].

112

Development of a software application to tokenize and… - VIA University College

Kakkad, R., 2021. Django vs. Express: Which Backend Framework to Choose?.

[online] Weboccult.com. Available at:

<https://www.weboccult.com/blog/django-vs-express-which-backend-frame

work-to-choose> [Accessed 1 June 2022].

hapi.dev. n.d. hapi.dev. [online] Available at: <https://hapi.dev/> [Accessed 1

June 2022].

Fastapi.tiangolo.com. n.d. FastAPI. [online] Available at:

<https://fastapi.tiangolo.com/> [Accessed 1 June 2022].

freeCodeCamp.org. 2020. What is Middleware? Definition and Example Use

Cases. [online] Available at:

<https://www.freecodecamp.org/news/what-is-middleware-with-example-us

e-cases/> [Accessed 1 June 2022].

Introduction to Node.js. n.d. Introduction to Node.js. [online] Available at:

<https://nodejs.dev/learn> [Accessed 1 June 2022].

Business.qld.gov.au. 2022. Running a business | Business Queensland.

[online] Available at: <https://www.business.qld.gov.au/running-business>

[Accessed 1 April 2022].

113

Development of a software application to tokenize and… - VIA University College

Investopedia. 2022. Investopedia. [online] Available at:

<https://www.investopedia.com> [Accessed 1 April 2022].

ethereum.org. 2022. Home | ethereum.org. [online] Available at:

<https://ethereum.org/en/> [Accessed 1 April 2022].

Uniswap Protocol. 2022. Home | Uniswap Protocol. [online] Available at:

<https://uniswap.org/> [Accessed 1 April 2022].

OpenZeppelin. 2022. OpenZeppelin. [online] Available at:

<https://openzeppelin.com/> [Accessed 1 April 2022].

Hapipal.com. 2022. hapi pal. [online] Available at: <https://hapipal.com/>

[Accessed 1 April 2022].

Docs.metamask.io. 2022. Introduction | MetaMask Docs. [online] Available

at: <https://docs.metamask.io/guide/> [Accessed 1 April 2022].

114

Development of a software application to tokenize and… - VIA University College

Trufflesuite.com. 2022. Truffle Suite - Truffle Suite. [online] Available at:

<https://trufflesuite.com/> [Accessed 1 April 2022].

Docs.flutter.dev. 2022. Flutter documentation. [online] Available at:

<https://docs.flutter.dev/> [Accessed 1 April 2022].

Dart packages. 2022. Dart packages. [online] Available at: <https://pub.dev/>

[Accessed 1 April 2022].

Scrum.org. 2022. Home. [online] Available at: <https://www.scrum.org/>

[Accessed 1 April 2022].

Dart packages. 2022. walletconnect_dart | Dart Package. [online] Available

at: <https://pub.dev/packages/walletconnect_dart> [Accessed 1 June 2022].

Docs.soliditylang.org. 2022. Solidity — Solidity 0.8.14 documentation. [online]

Available at: <https://docs.soliditylang.org/en/v0.8.14/> [Accessed 1 June

2022].

Docs.walletconnect.com. 2022. Mobile Linking | WalletConnect Docs. [online]

Available at: <https://docs.walletconnect.com/mobile-linking> [Accessed 1

June 2022].

ethereum.org. 2022. Transactions | ethereum.org. [online] Available at:

<https://ethereum.org/en/developers/docs/transactions/#:~:text=An%20Eth

ereum%20transaction%20refers%20to,takes%20place%20within%20a%20tra

nsaction.> [Accessed 1 June 2022].

115

Development of a software application to tokenize and… - VIA University College

GitHub. 2022. card_example/main.dart at master ·

JohannesMilke/card_example. [online] Available at:

<https://github.com/JohannesMilke/card_example/blob/master/lib/main.dar

t> [Accessed 1 June 2022].

GitHub. 2022. Connect Metamask with a native mobile app built with Flutter ·

Issue #3735 · MetaMask/metamask-mobile. [online] Available at:

<https://github.com/MetaMask/metamask-mobile/issues/3735> [Accessed 1

June 2022].

Relevant Software. 2022. Top 8 Flutter Advantages. [online] Available at:

<https://relevant.software/blog/top-8-flutter-advantages-and-why-you-shoul

d-try-flutter-on-your-next-project/> [Accessed 1 June 2022].

116

Development of a software application to tokenize and… - VIA University College

7 Appendices

Business part budget excel table:

Business part Appendix.xlsx

All the software files referenced in this document can be accessed in the

following public repositories. One contains the backend and the smart contracts, while

the other contains the frontend:

Backend & Smart Contracts: https://github.com/gloriadesideri/dstate-be

Frontend: https://github.com/ericmartihaynes/dstate-frontend

1

https://1drv.ms/x/s!AjRCSlpXWmEDi1otSjFtXJHkNhhN?e=jTy5Ny
https://github.com/gloriadesideri/dstate-be
https://github.com/ericmartihaynes/dstate-frontend

