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Abstract: Cu3(BTC)2 (BTC: 1,3,5-benzenetricarboxylate) as a heterogeneous catalyst in the pres-
ence of cesium carbonate as a base is reported for the borylation of α,β-conjugated enones by
bis(pinacolato)diboron (B2pin2). According to the hot-filtration test, Cu3(BTC)2 is acting as a hetero-
geneous catalyst. Further, Cu3(BTC)2 exhibits a wide substrate scope and can be reused in consecutive
runs, maintaining a crystal structure as evidenced by powder X-ray diffraction (XRD). A suitable
mechanism is also proposed for this transformation using Cu3(BTC)2 as catalyst.

Keywords: borylation; 2-cyclohexenone; heterogeneous catalysis; metal organic frameworks

1. Introduction

Organoboron compounds are important synthetic intermediates for a large variety of
transition metal-catalyzed C–C and C–X (X: O, N, S) bond-forming reactions [1,2]. These
types of reactions generally exhibit high yields and are compatible with a large variety of
functional groups, allowing the selective formation of new C–C bonds in highly functional-
ized substrates. More specifically, cross coupling reactions are compatible with carbonyl
groups that are generally unreactive under the conditions required for the coupling of
boronate moieties. One of the easiest ways to obtain organoboronates is the use of diborane
as a reagent in the presence of suitable catalysts [3,4]. Depending on the reaction conditions
and catalysts, diboranes can provide electrophilic and nucleophilic boron species that are
able to form C–B bonds [5].

The conjugate addition of B2pin2 reagent to α,β-unsaturated carbonyl compounds
is a convenient strategy to prepare functionalized organoboron compounds through the
incorporation of a Bpin unit at the β-position of the carbonyl group [6]. This organic
transformation was reported with a series of homogeneous catalysts consisting of transition
metals such as Pt [7,8], Rh [9], Cu [10–13], Ni [14], N-heterocyclic carbenes [15,16], and
Brönsted bases [17]. In this regard, it has been recently reported that 2-cyclohexenone can
react with B2pin2 in the presence of metallic Cu, Cu(I) or Cu(II) salts or complexes to obtain
β-ketopinacolboronates [18–23]. Although homogeneous copper salts or complexes have
been reported for this reaction [23], examples on the use of heterogeneous copper-based
catalysts are still limited.

Cu3(BTC)2 (BTC: 1,3,5-benzenetricarboxylate) is a type of metal organic framework
(MOF) whose metal nodes are constituted by dimeric Cu2+-ions with octahedral coordina-
tion positions around each Cu2+ ion that are satisfied by four carboxylate groups of different
BTC linkers, a Cu-Cu bond and a solvent molecule, typically N,N’-dimethylformamide
(DMF), employed during the synthesis. This solvent molecule can be easily removed
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by thermal treatment under vacuum without damaging the crystal structure, generat-
ing coordinatively unsaturated positions around Cu2+ that are able to activate substrates
and reagents [24]. The structure of Cu3(BTC)2 is shown in Scheme 1 [25]. These metal
nodes and linkers define large cavities in a highly open structure with a high surface
area (~1300 m2/g) and porosity (1.6 nm). Among the various MOFs that have been tested
in heterogeneous catalysis to promote organic transformations [26,27], Cu3(BTC)2 is one
of the MOFs frequently used for a broad range of reactions due to the presence of coor-
dinatively unsaturated metal sites around Cu2+ ions. These Cu2+ ions with a coordina-
tion free position behave as Lewis acid sites in a heterogeneous fashion, thus providing
opportunities to replace homogeneous Lewis acid catalysts for organic reactions. There-
fore, Cu3(BTC)2 has been widely used as a catalyst to promote a variety of Lewis acid-
catalyzed organic reactions including condensation [28], the ring opening of epoxide [29],
and cyclizations [30–32], among others [33–35]. Furthermore, Cu2+ ions in Cu3(BTC)2 MOF
with unsaturated positions have also been reported in many organic transformations like
the oxidation of styrene [36], aerobic epoxidation of olefin [37], CO oxidation [38], oxida-
tive synthesis of quinazolinones [39], synthesis of tetrazoles [40], arene borylation [41],
Friedel–Crafts alkylation of indoles with nitroalkenes [42], dehydrogenative coupling of
dimethylphenylsilane with phenol [43], acetalization of benzaldehyde [44], aldol synthesis
of pyrimidine-chalcone hybrids [45], and hydrogenation of acetophenone by silanes [46].
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Considering the broad scope of Cu3(BTC)2 in heterogeneous catalysis [47–49], one
general tendency in catalysis is to develop solid and recoverable catalysts for those pro-
cesses that are carried out using soluble homogeneous catalysts. Herein, it is reported that
Cu3(BTC)2, a commercially available MOF, is a suitable and stable solid catalyst to promote
the formation of β-keto organoboranes. We wish to make use of the active Cu2+ ions in
Cu3(BTC)2 as catalytically active sites for this transformation. The observed results in this
work are highly promising due to the fact that the catalyst is readily available as well as
the fact that it can be easily reused in consecutive cycles.
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2. Materials and Methods
2.1. Materials

Cu3(BTC)2 was purchased from Sigma Aldrich with the commercial trade name Baso-
lite C300. Similarly, other related MOFs like Al(OH)(BDC) (BDC: 1,4-benzenedicarboxylate)
and ZIF-8 with the trade names Basolite A100 and Basolite Z1200, respectively were
also purchased from Sigma Aldrich, Barcelona, Spain. MIL-101(Cr) was synthesized by
adopting earlier procedure, and its structural integrity was confirmed by powder X-ray
diffraction (XRD), which was in good agreement with an earlier report [41]. Furthermore,
CuCl, Cu(NO3)2.3H2O, Cs2CO3, K2CO3, Na2CO3, B2pin2, 2-cyclohexenone and acetonitrile
were procured from Sigma Aldrich, Barcelona, Spain.

2.2. Experimental Procedure

In a typical catalytic reaction, a dry two-neck flask was charged with 0.5 mmol of
2-cyclohexenone and 0.5 mmol of B2pin2 followed by the addition of a base (0.12 mmol).
To this mixture, 40 mg of Cu3(BTC)2 (0.0066 mol%) was added, followed by dilution with
2 mL of acetonitrile. Later, this reaction mixture was immersed in a preheated hot plate
maintained at the required temperature. The progress of the reaction was monitored by
sampling the aliquots at different time intervals. These samples were analyzed by gas
chromatography (GC) using the internal standard method. Furthermore, the reaction
mixture was also analyzed by gas chromatography coupled with mass spectrometry (GC-
MS) to confirm the formation of the products. Reusability experiments were performed by
recovering the solid from the reaction mixture, washed with acetonitrile and dried at 100 ◦C
for 3 h. This catalyst was used with the fresh reactants, following an identical procedure
to the one described above. On the other hand, control experiments with homogeneous
soluble catalysts and radical quenchers like 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO),
2,6-di-t-butyl-4-methylphenol were also performed under identical conditions to the ones
described above with appropriate loading, as mentioned in Table 1.

2.3. Product Analysis

The progress of the reaction was monitored by sampling aliquots (100 µL) at various
reaction times. These aliquots were diluted by adding 2 mL of acetonitrile before filtering
through a Nylon membrane (0.2 µm), and the resulting samples were injected in GC
using a flame ionization detector with the following conditions: methyl-phenyl silicone
column, TRB-5MS; 30 m 0.32 mm 0.25 µm; initial column temperature of 30 ◦C; initial
holding time of 3 min, temperature ramp rate of 10 ◦C/min and final temperature of 280 ◦C.
Quantification was done by calibration plots to obtain the relative response factors (RF) of
the products as well as starting materials compared to the internal standard (nitrobenzene).
The final reaction mixture was analyzed by Agilent 5973 GC-MS (Madrid, Spain) to confirm
the product mass and fragmentation.

Metal leaching from Cu3(BTC)2 under the present experimental conditions was also
checked by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis.
Briefly, the solid catalyst was removed by filtration using a 0.2 µm Nylon filter after the
final reaction time. Then, this organic phase was mixed with 30 mL of 3 M aqueous nitric
acid and stirred for 20 h at 80 ◦C. Later, the aqueous phase was separated and analyzed by
ICP-OES to determine Cu in the final reaction mixture.

Furthermore, the conversion of 2-cyclohexenone was determined using the following
formula.

RF was obtained with the following equation:

RF = Area of nitrobenzene moles of 2-cyclohexenone/Area of 2-cyclohexenone moles of nitrobenzene

The moles of the remaining 2-cyclohexenone and the product were calculated using
the following equation:

Moles of 2-cyclohexenone = RF × moles of nitrobenzene × Area of 2-cyclohexenone/Area of nitrobenzene
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Conversion (%) = moles of 2-cyclohexenone reacted/initial moles of 2-cyclohexenone

3. Results and Discussion

As mentioned in the introduction, the main objectives of this work are to develop
a benign and convenient heterogeneous catalyst based on cost-effective Cu metal as an
active site to promote the addition of B2pin2 to enones. Hence, 2-cyclohexenone was
selected as a model substrate reacting with B2pin2 as the borylating reagent to optimize
the activity of Cu3(BTC)2 as a solid catalyst under different conditions. The observed
results are summarized in Table 1. The β-boronation of 2-cyclohexenone did not occur
either in the absence of Cu3(BTC)2 or in the absence of cesium carbonate as a base both
at room temperature or at 60 ◦C (Entries 1–2, Table 1). In contrast, the combination of
Cu3(BTC)2 and cesium carbonate afforded the desired product of 80% yield after 24 h at
room temperature (Entry 3, Table 1). The reaction was faster and afforded a higher product
yield at a 60 ◦C reaction temperature after 6 h (Entry 6, Table 1), while the relevant control
experiments at 60 ◦C showed almost no reaction (Entries 4–5, Table 1). The product yield
was almost unaffected when the reaction was carried out under inert atmosphere or using
potassium carbonate as a base (Entries 7–8, Table 1). This means that ambient oxygen is not
playing any role and that other carbonates can promote borylation equally. It was, however,
observed that the use of sodium carbonate led to a significant decrease in the product
yield (Entry 9, Table 1). A comparison of the catalytic activity under the present conditions
with either Cu(I) or Cu(II) salts or with other MOFs such as MIL-101(Cr), MIL-53(Al),
ZIF-8 showed either no products were formed or the yields were much lower than that
achieved with Cu3(BTC)2 (Entries 10–14, Table 1). These results clearly indicate that this
reaction is promoted efficiently with Cu2+ as active sites, while other MOFs with Cr3+ and
Zn2+ are ineffective for this transformation under these reaction conditions. These results
are also in agreement with a previous report where the C–H borylation reaction of arene
with B2pin2 was promoted by Cu3(BTC)2 while other MOFs failed to provide the desired
product [41]. Although enantioselective borylation of 2-cyclohexenone with B2pin2 was
reported by CuCl using NaOt-Bu in MeOH/THF at a 92% yield with 98% ee [18], CuCl
in the presence of cesium carbonate gives less than one half of the yield achieved with
Cu3(BTC)2 in the present work. Deactivation seems to be the main reason for the lower
yield of the homogeneous catalyst, since the reaction in the presence of the homogeneous
catalyst stops after 1 h, giving a 41% yield, and after this time the reaction does not progress
further for longer reaction times. In contrast, the temporal profile of product formation in
the case of Cu3(BTC)2 as a catalyst shows a gradual increase in the product yield over time
until a very high product yield is achieved (Figure 1).
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Table 1. Borylation of 2-cyclohexenone using B2pin2 under various reaction conditions a.
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Run Catalyst Base T (°C) Time (h) Yield (%) b 

1 - Cs2CO3 RT 24  - 
2 Cu3(BTC)2 - RT 24 - 
3 Cu3(BTC)2 Cs2CO3 RT 24 80 
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Run Catalyst Base T (◦C) Time (h) Yield (%) b

1 - Cs2CO3 RT 24 -

2 Cu3(BTC)2 - RT 24 -

3 Cu3(BTC)2 Cs2CO3 RT 24 80

4 - Cs2CO3 60 6 3

5 Cu3(BTC)2 - 60 6 -

6 Cu3(BTC)2 Cs2CO3 60 6 94

7 Cu3(BTC)2 Cs2CO3 60 6 92 c

8 Cu3(BTC)2 K2CO3 60 6 92

9 Cu3(BTC)2 Na2CO3 60 6 55

10 CuCl Cs2CO3 60 1, 6 41, 41 d

11 Cu(NO3)2·3H2O Cs2CO3 60 6 - e

12 MIL-101(Cr) Cs2CO3 60 6 6

13 Al(OH)(BDC) Cs2CO3 60 6 -

14 ZIF-8 Cs2CO3 60 6 5

15 Cu3(BTC)2 Cs2CO3 60 6 82 f

16 Cu3(BTC)2 Cs2CO3 60 6 88 g

a Reaction conditions: 2-cyclohexenone (0.5 mmol), B2pin2 (0.5 mmol), base (0.12 mmol), catalyst (40 mg),
CH3CN (2 mL); b Determined by GC; c Reaction performed under inert atmosphere; d 20 mg of CuCl; e 48 mg of
Cu(NO3)2·3H2O; f 50 mg of 2,6-di-t-butyl-4-methylphenol; g 50 mg of TEMPO.
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One of the essential experiments to be performed in heterogeneous catalysis is the
analysis of the metal leached from the solid to the liquid phase (leaching analysis) or a
hot-filtration test to prove the stability of a heterogeneous catalyst under the optimized
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reaction conditions. Regarding this aspect, a hot-filtration test was conducted under
optimal reaction conditions, as shown in Table 1. The solid catalyst was removed after a
1-h reaction time while the mixture was hot when the product yield was about 25%. The
kinetic profile of this test indicates that the reaction completely stops upon removal of the
solid catalyst from the reaction mixture, thus providing sound evidence in support of the
operation of heterogeneous catalysis (Figure 1). On the other hand, the possibility of metal
leaching to the reaction mixture is also ruled out since the ICP-OES analysis indicated
<1 ppm of Cu in the final reaction mixture, thus supporting the operation of heterogeneous
catalysis.

Another established procedure to ascertain catalyst stability is to monitor the activity
of the recovered solid in consecutive cycles, often referred to as a reusability test. Hence,
Cu3(BTC)2 was recovered at the end of the reaction, washed and dried at 100 ◦C to
perform a consecutive borylation reaction. The experimental results showed that the
temporal profiles (Figure 2) as well as the final yields were not altered up to two recycles.
The product yields for the fresh, first and second reuses were 94, 92 and 91% under the
conditions shown in Table 1 (entry 6). The powder XRD of the twice reused solid showed a
decreased peak intensity around 21◦ with the appearance of a new peak at 15◦ compared
to the XRD patterns for the fresh solid (Figure 3). These changes in the peak intensity
are possibly due to the adsorption of organic products; however, the crystallinity of the
reused solid is retained. On the other hand, the Cu content of the fresh and twice reused
Cu3(BTC)2 was 28.27 and 28.25%, respectively, suggesting an almost similar Cu content in
the reused material. Furthermore, FT-IR spectroscopy was used to characterize Cu3(BTC)2
before and after catalysis. FT-IR spectra of the fresh Cu3(BTC)2 showed a characteristic
asymmetric stretching vibration at around 1680 cm−1 due to the carboxylate group in
the BTC linker. Additionally, symmetric stretching vibrations were observed at around
1424 and 1360 cm−1. These characteristic spectral features were also observed in the twice
reused Cu3(BTC)2 without observing any additional bands. These results clearly indicate
the retainment of structural integrity and that Cu3(BTC)2 is highly stable under the present
experimental conditions.
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In an earlier precedent, Kobayashi and co-workers proposed a reaction mechanism
involving the cleavage of the B-B bond by the base, forming pinacolyl borate and a nucle-
ophilic boronate species that becomes coordinated to the Cu site [19]. Subsequently, the
coordination of α,β-enone to the Cu atom and transfer of the Bpin moiety from the Cu2+ ion
to the β-carbon would render the final product and would restore the catalytically active
Cu species. It is likely that a similar reaction mechanism could be operating in the present
case. In support of this proposal, FT-IR spectroscopy of Cu3(BTC)2 after the incorporation
of B2pin2 shows spectroscopic changes compatible with the formation of Cu-Bpin and the
weakening of the Cu-Cu bond [41]. These spectroscopic signatures are reversed upon the
desorption of Bpin by thermal evacuation under vacuum [41]. Additionally, the fact that
the product yield is not affected by the presence of 2,6-di-t-butyl-4-methylphenol (Entry 15,
Table 1) and TEMPO (Entry 16, Table 1) that are typical C-centred radical quenchers, thus
ruling out the reaction mechanism involving carbon radicals.

Considering the available catalytic data and the results obtained by quenching experi-
ments, the following mechanism is proposed for this transformation. The crystal structure
of Cu3(BTC)2 contains water molecules that are loosely bound to the coordinatively unsatu-
rated sites around copper atoms [50]. Initially, these coordinatively unsaturated metal sites
in Cu3(BTC)2 react with B2pin2 in the presence of a base to afford reactive copper-boryl
intermediates, which behave as the catalytically active species. Later, these copper-boryl
complexes promote the conjugate addition to the α,β-unsaturated carbonyl compound
to provide an organocopper intermediate, which upon hydrolysis with water affords the
desired product by generating a copper hydroxide. This reacts further with B2pin2 to
regenerate the active copper-boryl complex species. This mechanistic proposal is depicted
in Scheme 2.

As mentioned earlier in the introduction, wide ranges of catalytic systems have been
developed for the borylation of organic compounds using mostly homogeneous and hetero-
geneous catalysts. Specifically, copper-based catalysts have been employed for borylation
reactions with a broad spectrum of substrates. For instance, enantioselective boron conju-
gate addition to dienone was reported in water with Cu(OH)2 in a heterogeneous fashion
or with Cu(OAc)2 as a homogeneous catalyst [51]. In another precedent, the dehydrogena-
tive borylation of styrene with B2pin2 was reported by copper hydroxide supported over
CeO2 or Al2O3. The product selectivity was determined by the appropriate choice of a
suitable ketone and support [52]. Recently, the borylation of alkyl bromides and chlorides
using B2pin2 was reported with Cu/Pd alloy nanoparticles supported over graphene
under photocatalytic conditions [53]. On the other hand, a microporous MOF was synthe-
sized with an imidazolium-containing ligand that can generate in situ NHC-CuCl units
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(NHC: N-heterocyclic carbenes), which can efficiently promote the addition of B2pin2 to
2-cyclohexenone [54]. A quantitative yield of the desired product was achieved at 25 ◦C
for 24 h in the presence of MeOH and Cs2CO3 in THF as solvent. This solid retained its
activity for five cycles with no decay in the yield. In contrast, the present work operates
under different experimental conditions in terms of solvent, reaction temperature, sub-
strate/catalyst loading, no use of methanol and Cu oxidation state. Hence, the present
results complement the existing reactions and represent a more amenable catalytic system
based on a commercial catalyst. Interestingly, these results clearly indicate that this organic
transformation can be effectively promoted by Cu(I)- or Cu(II)-based MOFs instead of Pt-,
Pd- and Ir-based catalysts.
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The scope of the reaction was screened for different substrates. The results are pre-
sented in Figure 4 where the yields of the products have also been indicated. Thus, the
formation of the boronates in high yields was observed for 2-cyclopentenone (86%) and
benzylideneacetone (82%). On the other hand, 3-methyl-2-cyclohexenone and chalcone also
gave the expected C-B coupling products in moderate yields of 64% and 66%, respectively.
Lower yields for the C-B coupling product were obtained in the case of coumarin (44%)
as a substrate due to the lower reactivity of this aromatic lactone. These products were
confirmed by GC-MS.
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4. Conclusions

The present manuscript has shown that Cu3(BTC)2 in the presence of cesium carbonate
as a base is a suitable solid catalyst for promoting the formation of β-keto organoboranes
in high to moderate yields. The solid acts as a heterogeneous catalyst and can be reused in
consecutive runs without decrease in activity. Considering the importance of functionalized
organoboranes, this work represents some significant merits by employing readily available
Cu3(BTC)2 without containing non-noble metal as a convenient catalyst for the synthesis
of β-keto organoboranes under mild reaction conditions. Further work is required to
understand the mechanistic aspects of this transformation.
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