
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Live Migration of Containers in Cloud Computing and
Multicloud

Master's Thesis

Master's Degree in Informatics Engineering

AUTHOR: Yerle , Carlos Martín

Tutor: Bernabeu Aubán, José Manuel

External cotutor: GERA, ZOLTAN

ACADEMIC YEAR: 2021/2022

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Eötvös Loránd University

Faculty of Informatics

Live Migration of Containers in Cloud
Computing and Multicloud

Master's Thesis

Master's Degree in Computer Engineering

Author: Carlos Martin Yerle

Tutor: Zoltán Gera

Cotutor: Jose Manuel Bernabéu Auban

2021-2022

Live Migration of Containers in Cloud Computing and Multicloud

2

Live Migration of Containers in Cloud Computing and Multicloud

 3

Acknowledgment
I would like to dedicate the following work to all the people who supported me or who

contributed to my being able to carry out this project, with special mention to my

mother and my sister, who are the fundamental pillars of my life and who have

supported me throughout my bachelor and master’s degree.

I would also like to thank my two tutors, Zoltan Gera, my tutor at the University of

ELTE, for his great willingness to help me always, and my tutor at the Polytechnic

University of Valencia, Jose Manuel Bernabéu Auban, who offered to be my tutor

even though we were far away and with little time to spare.

Finally, I do not want to forget Michael Ogbuachi, who was my supervisor at Ericsson,

a great help on the subject, a great support to be able to carry out this project and he

was very patient with me.

Live Migration of Containers in Cloud Computing and Multicloud

4

Live Migration of Containers in Cloud Computing and Multicloud

 5

Resumen
En la computación en la nube y los recientes paradigmas de computación

distribuida (por ejemplo, sin servidor), los contenedores son clave para proporcionar

la agilidad necesaria en el equilibrio de carga altamente flexible, la gestión de fallos

de la máquina, el escalado y la gestión de recursos de un servidor. Sin embargo,

cómo mover (escalar, redesplegar) estos contenedores, puede seguir siendo

problemático, y por ello investigaremos qué tecnologías existen para el proceso de

migración en vivo de contenedores en la computación en la nube y más

precisamente en multicloud.

Este proceso se analizará tanto para el caso trivial de los contenedores sin

estado, donde la única información adicional se almacena en el cliente (su

navegador), como las cookies o el almacenamiento local, como en el caso de la

migración de contenedores con estado, donde tenemos información adicional

almacenada en el servidor que deberá ser tratada de forma especial al migrar (por

ejemplo, volúmenes, almacenamiento persistente replicado y similares).

Una vez que descubramos cómo funciona este proceso en la nube tradicional,

investigaremos cómo se aplican estas técnicas a la multicloud. En concreto,

buscaremos que desafíos se nos plantean en dicho proceso y analizaremos cómo

funciona en concreto la plataforma OpenNebula. Plataforma de código abierto que

ofrece servicios de migración en vivo que funcionan en la multicloud, pero ninguna

solución es perfecta. Esta evaluación también tratará de abordar algunas de las

deficiencias de las tecnologías.

Palabras clave: Migración en vivo, Contenedores, Cloud Computing, Multicloud,

OpenNebula.

Live Migration of Containers in Cloud Computing and Multicloud

6

Abstract
In cloud computing and recent distributed computing paradigms (e.g., serverless),

containers are key to provide the necessary agility in highly flexible load balancing,

machine fault management, scaling and resource management of a server.

However, how to move (scale, redeploy) these containers, can still be problematic,

and therefore we will investigate what technologies exist for the live migration

process of containers in cloud computing and more precisely in multicloud.

This process will be analyzed both for the trivial case of stateless containers,

where the only additional information is stored on the client (your browser), such as

cookies or local storage, and in the case of stateful container migration, where we

have additional information stored on the server that will need to be treated in a

special way when migrating (e.g., volumes, replicated persistent storage and the

like).

Once we discover how this process works in the traditional cloud, we will

investigate how these techniques apply to the multicloud. We will look at what

challenges we face in this process and analyses how the OpenNebula platform works

in particular. Open-source platform that offers live migration services that work in the

multicloud, but no solution is perfect. This assessment will also seek to address some

of the shortcomings of the technologies.

Keywords: Live Migration, Containers, Cloud Computing, Multicloud,

OpenNebula

Live Migration of Containers in Cloud Computing and Multicloud

 7

Resum
En la computació en el núvol i els recents paradigmes de computació distribuïda

(per exemple, sense servidor), els contenidors són clau per a proporcionar l'agilitat

necessària en l'equilibri de càrrega altament flexible, la gestió de fallades de la

màquina, l'escalat i la gestió de recursos d'un servidor. No obstant això, com moure

(escalar, redesplegar) aquests contenidors, pot continuar sent problemàtic, i per això

investigarem quines tecnologies existeixen per al procés de migració en viu de

contenidors en la computació en el núvol i més precisament en *multicloud.

Aquest procés s'analitzarà tant per al cas trivial dels contenidors sense estat, on

l'única informació addicional s'emmagatzema en el client (el seu navegador), com

les cookies o l'emmagatzematge local, com en el cas de la migració de contenidors

amb estat, on tenim informació addicional emmagatzemada en el servidor que haurà

de ser tractada de manera especial en migrar (per exemple, volums,

emmagatzematge persistent replicat i similars).

Una vegada que descobrim com funciona aquest procés en el núvol tradicional,

investigarem com s'apliquen aquestes tècniques a la *multicloud. En concret,

buscarem que desafiaments se'ns plantegen en aquest procés i analitzarem com

funciona en concret la plataforma *OpenNebula. Plataforma de codi obert que ofereix

serveis de migració en viu que funcionen en la *multicloud, però cap solució és

perfecta. Aquesta avaluació també tractarà d'abordar algunes de les deficiències de

les tecnologies.

Paraules clau: Migració en viu, Contenidors, Cloud Computing, Multicloud,

OpenNebula.

Live Migration of Containers in Cloud Computing and Multicloud

8

Contents

1. Introduction .. 11

 1.1. Motivation ... 11

 1.2. Goals .. 12

 1.3. Memory Structure ... 12

 1.4. Background... 13

 1.4.1. Cloud Computing .. 13

 1.4.2. Fog Computing ... 16

 1.4.3. Edge Computing ... 18

 1.4.4. Difference between Cloud, Fog and Edge Computing 20

 1.4.5. Multicloud ... 20

 1.4.6. Differences between hybrid and multicloud clouds 22

 1.4.7. Live migration of containers ... 22

2. State of Art .. 25

 2.1. CRIU .. 25

 2.2. OpenNebula ... 28

 2.3. Cloudify .. 32

3. Analysis of the problem ... 37

 3.1. Data Protection .. 37

 3.2. Individual or group migration .. 38

 3.3. Energy costs .. 39

 3.4. Source Node Failure .. 39

 3.5. Architecture, Networking and Filesystem ... 39

4. Proposed Solutions ... 41

 4.1. Live Migration based on Privacy Certificates .. 41

 4.2. Preservation of the DNS domain .. 44

 4.3. Network traffic redirection .. 46

 4.4. Live migration of multiple containers .. 47

5. Practical Experiment .. 50

 5.1. Live Migration Test Proposal .. 50

 5.2. Technologies used ... 52

 5.3. Experimental Procedure ... 52

 5.4. Results and Problems .. 55

6. Conclusions ... 57

Live Migration of Containers in Cloud Computing and Multicloud

 9

 6.1. Relationship Project - Studies ... 58

 6.2. Future Work .. 58

7. Bibliography .. 59

Live Migration of Containers in Cloud Computing and Multicloud

10

Figures

Figure 1 Cloud Computing Example ... 14

Figure 2 Fog Computing Infrastructure.. 17

Figure 3 Edge Computing Example .. 19

Figure 4 Cloud, Fog and Edge Computing .. 20

Figure 5 Multicloud Infrastructure .. 21

Figure 6 Node Migration Process .. 23

Figure 7 Pre-copy Memory Process .. 24

Figure 8 Post-Copy Memory Process ... 24

Figure 9 Live Migration in CRIU .. 25

Figure 10 Technologies and Structures offered by OpenNebula 29

Figure 11 Container Management Structure ... 30

Figure 12 Cloudify Structure ... 32

Figure 13 Example of Service Modelling ... 33

Figure 14 Live Migration of two Pods on Kubernetes .. 33

Figure 15 Migration on Kubernetes ... 34

Figure 16 Overview of the Host ... 41

Figure 17 Implementation Proposal .. 42

Figure 18 Live Migration Data Flow ... 43

Figure 19 Structure with the inclusion of our Middleware .. 47

Figure 20 Example of live migration process with our middleware 49

Figure 21 Initial phase of our deployment ... 50

Figure 22 Application migrating and inactive ... 51

Figure 23 Final phase, application deployed on AWS ... 51

Figure 24 Structure of the service to be migrated .. 52

Figure 25 Providers available for use .. 53

Figure 26 Host created ... 54

Live Migration of Containers in Cloud Computing and Multicloud

 11

1. Introduction

For some time now, containers have become a fundamental part of cloud and multi-cloud

computing, fog computing and edge computing. This is partly thanks to the ability of

containers to isolate resources between different containers within the same kernel and

because of their potential, servers and cloud architecture is becoming application-

oriented rather than machine-oriented. The latter allows developers to focus solely on

application development without having to keep an eye on the hardware and operating

system for data on CPU, memory, and other resource management.

Considering the increasing popularity of containers, the demand for availability and

scalability that they have to offer is growing. This problem is addressed by container

migration, i.e., moving a container from one machine to another in real time without

affecting application operations. The simplest approach would be a cold migration,

where the container is stopped at the source, copied to the destination, and restarted at

the destination. Clearly this option is not the most sought after due to the downtime

provided by such a method. Therefore, live migration is used, where there is minimal

downtime on the service while the container is being migrated. But this live migration that

seems as trivial as copying/replicating a container presents several questions that we

intend to answer with this research. How to scale up, redeploy these containers again?

Are there tools on the market that handle this process? Do they cover all the needs of

live migration?

1.1. Motivation
During the academic exchange in Budapest, I had to find a project that would be

enthusiastic and motivating for my master's thesis. So, I started looking for possible

projects offered by professors at my university. I contacted many professors and they all

offered different projects and ideas, giving me several thesis projects to choose from.

Within this range of options, there were projects that were outside my field of knowledge

and that did not offer the motivation I was looking for, or that would arouse great interest.

After much evaluation and analysis of the options I had, the current project was the one

I decided on; the two main reasons for choosing it were: that it offered the opportunity to

do an internship in a prestigious company like Ericsson, with all the advantages and

opportunities that this represents, and it also offered the possibility of doing research in

a group with a project with an emerging topic such as Multicloud, which aroused in me

great curiosity.

Live Migration of Containers in Cloud Computing and Multicloud

12

Therefore, once I found the project that most fascinated me and I had the opportunity to

be part of a community as important as Ericsson's, I just had to get to work.

1.2. Goals
There are several objectives that in this work I have to fulfill, or I will try to answer the

different questions that arise in the current situation of live migration of containers. I will

focus this work mainly on Multicloud.

The specific objectives I seek with this research are:

 What is the current situation of live migration of containers for the traditional

cloud?

 How does this situation (live migration of containers) translate to the
multicloud?

 To investigate how this process is carried out for stateless and stateful

applications.

 What tools are offering this service and how do they do it?

 What needs do these applications not meet, or where can they be improved?

 Provide a practical example using an open-source platform with data, time,
and references on a migration example. and references on a container
lifecycle migration example.

1.3. Memory Structure
Before continuing with this research, the structure of this document is presented,

including a brief description of each chapter that follows.

 Background:

Always within the introduction, this sub-section provides the information that

has been deemed appropriate to familiarize the reader with the technology.

 Chapter 2: State of the art

In this chapter we will talk about the current situation of our subject, the

applications that carry out a similar task to the one we are investigating. We

will also look at what options they offer the user with respect to the live

migration process of containers. Both for the reader to master the terminology

and to know the object of our research.

 Chapter 3: Problem analysis:

Within this chapter, the challenges or problems that have been arising that

are related to the container live migration process will be stated. These

Live Migration of Containers in Cloud Computing and Multicloud

 13

problems will be the result of research on the subject and contact with

different platforms.

 Chapter 4: Proposed solution

Here will be presented the solutions that I believe can answer the challenges

encountered in chapter 3.

 Chapter 5: Practical Experiment

This chapter will highlight everything related to the practical experiment that

we will try to conduct. I will try to carry out: Initial idea, technologies used,

steps to follow, results and problems.

 Chapter 6: Conclusions

The last chapter of our document, we will present our opinion about the work

done and the work that we still must do regarding this topic. In the last chapter

of this document, I will give my opinion about the work done and the work

done and the work still to be done on this topic.

1.4. Background
this section we present several topics related to the subject to facilitate the understanding

of our research. understanding of my research. I will try to ensure that the user can get

to the main part of the research and is already familiar with the topic, both with the

concepts I will use, as well as with the terminology mentioned. The topics that will appear

next are Cloud Computing, Edge Computing, Fog Computing and Multicloud.

Also, I will introduce the topic of live migration of containers, which is the main part of

this paper.

1.4.1. Cloud Computing

Few terms have become as popular in recent years in the world of technology as cloud

computing. It seems that nowadays everything happens in the "cloud", because without

realizing it, we use this type of technology in our daily lives much more than we think we

do. Because cloud computing (1) consists, as can be seen in Figure 1, of offering

computer services over the network. This enables a business model in which companies

pay only for what they use and do not have to incur the expense of buying all the

necessary equipment and infrastructure to have it themselves. For ease of

understanding, some examples of cloud computing are email, Spotify, Netflix or even

Google Docs, etc., where there is no need for any downloading, installation, and access

of any software on your PC. You just need a computer and a good Internet connection

to enjoy them.

Live Migration of Containers in Cloud Computing and Multicloud

14

Figure 1 Cloud Computing Example

As mentioned above, cloud computing aims to help people or companies to avoid having

to put all the workload on the computer when running applications. Cloud computing

offers them:

 Infrastructure: it eliminates the cost of purchasing hardware, software,

installation, and maintenance. It also satisfies the need for scaling the

infrastructure for each organization. Reduces space savings as resources are

stored online.

 Recovery from failures: companies make use of cloud computing to

guarantee the continuity of services during possible failures.

 Information: it makes data more accessible, facilitates analysis and backups.

This means that information is no longer stored and accessible on a single

device but can be accessed by any device with internet access.

 Maintenance: cloud computing service providers are responsible for server

maintenance.

 Big Data analysis: Cloud computing has the almost infinite power to process

large amounts of data to streamline investigative processes and thus shorten

processing time.

 Remote working: it provides the option for a company's employees to access

information/data via any computer, tablet, or smartphone with an internet

connection.

 Ecology: cloud computing only uses the space/resources on the server.

Live Migration of Containers in Cloud Computing and Multicloud

 15

To simplify how it works, cloud computing systems are divided into two:

 Frontend: here we will find the application with which the user interacts to access

the cloud services, and we will also include the computer network.

 Backend: this part includes all the systems used by the cloud to offer the service,

whether servers, computers, etc.

Cloud computing offers three different types of computing each with different

characteristics such as cost, availability, performance, and expectations.

1. Public Cloud: The public cloud offers computational resources such as servers and

storage that are provided by third parties and are available to any person or company

that wants to hire them. In this type of cloud, the client oversees what will be sent to

the cloud, an application, files, backups, while the cloud provider will only have to

take care of maintenance, security, and resource management. In this format

everything is available on the cloud and shared among several users who use them

simultaneously. Examples: Google AppEngine, Sun Cloud, Amazon Elastic Compute

Cloud, Windows Azure Service Platform.

2. Private Cloud: In the private cloud model, the company purchasing the service keeps

the infrastructure in-house and gives restricted access to selected users, e.g.,

employees, partners, etc. This type of cloud allows customization of functions and

support according to your needs. As a more corporate cloud, it should offer a higher

degree of security and privacy than a public cloud, as it will have firewalls and

company credentials that will be part of the control process.

Examples: Cisco CloudCenter, Vmware Cloud Foundation, Azure Private Cloud,

Oracle Cloud Platform, Red Hat OpenShift..

3. Hybrid Cloud: When referring to the hybrid cloud, we refer to a combination of the

two previous clouds, which makes it better. It allows data and applications to be

shared between them. It offers customization of costs according to the needs of each

company.

Examples: Amazon Web Services, Microsoft Azure, Google Cloud.

Cloud computing offers users different types of services (2), which we will mention below.

1. SaaS (Software as a Service): The SaaS service provides access to a software

without having to purchase a license, it allows its use through the cloud, which is

managed by a provider through the browser. There is no installation of the software

on the machines, the user connects through an API. The major benefits of SaaS are

Live Migration of Containers in Cloud Computing and Multicloud

16

time savings and profit, but it can present certain problems with control, security and

performance, which makes it very important to choose the right provider.

Some examples of SaaS are Dropbox, Google Apps, Office 365, etc.

2. PaaS (Platform as a Service): it is the service that provides the hardware and a

software platform, mainly this gives developers the option to work, run and manage

their projects without having to oversee the infrastructure. PaaS gives you the

possibility to avoid the expense and complexity of buying and managing software

licenses, infrastructure, and middleware, etc., we only must manage the apps and

services we develop while the provider manages all the rest.

Examples of such services are Microsoft Azure, Heroku, the SAP cloud, etc.

3. IaaS (Infrastructure as a Service): In this case the service offered by IaaS is the

payment for infrastructure such as storage or virtualization. We as the user would

oversee the operating system, app data, middleware while the provider gives us

access and administration to the network, virtualization, servers, and storage. This

service allows us to have the flexibility to buy only what we need and to scale as our

project requires.

Examples we can find are Amazon Web Service, Google Cloud, IBM Cloud.

1.4.2. Fog Computing

Although it may seem that nowadays it is all about cloud computing and that this is the

solution for everything, we also find some challenges in terms of communication and

security that fog computing (3) aims to solve. If we think about applications related to

health monitoring, for example, we know that we need low latency, as the delay in

response can seriously affect performance. Therefore, the emergence of fog computing

places a decentralized infrastructure where computing resources are between the data

and the cloud.

This new infrastructure offered by cloud computing makes it possible to place the

services that are responsible for working with the data closer to that origin, as can be

seen more clearly in Figure 2. This translates into a reduction of the distance that data

must travel in the network and thus achieve greater efficiency. We could consider fog

computing as an extension of cloud computing, as it is still a paradigm with data, storage,

and applications on a distant server and not locally.

Live Migration of Containers in Cloud Computing and Multicloud

 17

Figure 2 Fog Computing Infrastructure

Within fog computing, different uses or different scenarios can be found in which we can

implement this solution:

1. When we have data that needs to be analyzed in very few seconds, i.e., minimal

latency.

2. Some devices that are tied to strict computation and processing will use fog

computing.

3. Having specific data to leave on the nine, as it will be stored for the long term and

will not be consulted very often by the host.

4. Often it will be necessary to offer several services over a large area where the

geographical location is not the same.

In addition to the above mentioned, for fog computing the following applications can be

found:

1. Monitoring and analysis of patients' condition. Alerts can be used in case of

emergency.

2. Possibility to provide rapid response in the railway world with real-time

monitoring.

3. Processing of the large amount of data generated by oil and gas pipelines would

provide ideal optimization.

Live Migration of Containers in Cloud Computing and Multicloud

18

1.4.3. Edge Computing

One of the most common situations today within a modern manufacturing plant is the

need to process data locally and immediately. This is because you can't wait for data to

be transmitted to a data center to be processed as the latency generated could cause

major problems. This type of problem is a common situation in Industry 4.0, where IoT

sensors create a large stream of data that is often used to prevent breakdowns and

improve the process.

So as a solution to the above problem, which is accompanied by many more, edge

computing (4) arises, running processes or managing data on the same device or at the

same data source. The initial idea is simple, if you can't bring the data closer to the data

center, the data center will be the one to bring the compute closer to the data, this can

be clearly seen in the example shown in Figure 3. So basically, by bringing the

processing power as close as possible to where the data is generated, we speed up the

processing and access to the information, so that it can be made available more quickly,

reliably, and efficiently.

The reason why edge computing should be implemented is often overlooked, so here

are some advantages of edge computing, which have been found in several articles

where edge computing was used:

1. More stable, cheaper, and faster service. This is because it offers a faster user

experience. On the business side, we have a service with lower latency and high

availability that is constantly monitored. It also saves a lot of money in bandwidth

to move data back and forth.

2. Reduction of errors in the service thanks to the presence of Big Data in the

facilities and allows better control in the transfer of confidential data.

3. Businesses benefit from the flexibility and cost savings that cloud computing

provides. This is because we have the processing power close by and regional

locations have some independence from the central site in case the central site

fails.

Live Migration of Containers in Cloud Computing and Multicloud

 19

Figure 3 Edge Computing Example

As mentioned above, edge computing techniques are used to filter, process and

analyses data "in situ" at or very close to the edge. This is a great weapon for working

with large volumes of data that might be too difficult or expensive to move to a central

location. In the following, we will look at just a few of the many examples and uses of

how edge computing is used:

1. Agriculture: Companies use sensors to monitor water use and nutrient density to

calculate the optimal harvest. This data is compiled and analyzed at the edge to

further improve cultivation techniques for better yields.

2. Safe workplace: by making use of security cameras, security devices and other

sensors, cloud computing helps to set optimal security protocols and to monitor

those workers follow these protocols.

3. Manufacturing: perhaps the best-known example is Industry 4.0, where sensors

and data are used to control production, predict failures and estimate when

machines need to be serviced. All of this is made possible by collecting data and

analyzing it at the edge.

4. Healthcare: Healthcare is changing lately, as the amount of data being collected

from patients has increased dramatically in recent times thanks to the

improvement of devices, sensors and equipment used. All this data needs to be

analyzed immediately, and this is where edge computing comes in, offering

speed, aiding machine learning and automation.

Live Migration of Containers in Cloud Computing and Multicloud

20

1.4.4. Difference between Cloud, Fog and Edge Computing

At this point we can establish what the clear differences are between the three types of

computing (5). After the above definitions, we can get an idea of what the infrastructure

would look like, as shown in Figure 4. Basically, between cloud computing and edge

computing the fundamental difference is where the data processing takes place. While

in edge computing the processing is done on the devices themselves, fog computing

moves the processing activities to LAN hardware that is generally further away than the

sensors. Finally, the cloud, an infrastructure completely removed from the user, will be

where data that has already passed through one or both two previous parts (edge and

fog) will be sent. In the cloud the data will be stored and can be processed as well.

Figure 4 Cloud, Fog and Edge Computing

1.4.5. Multicloud

At this point, it is time to introduce the concept of multi-cloud (6), which refers to the use

of cloud services from more than one cloud provider to meet the needs of an organization

in terms of infrastructure and services. Within the multi-cloud we can find different

strategies to combine public and private clouds as we can see in Figure 5 below. For

example, a company can use Google Cloud for development, AWS to take care of data

recovery before possible failures and Microsoft Azure for business analytics data

processing.

Live Migration of Containers in Cloud Computing and Multicloud

 21

Figure 5 Multicloud Infrastructure

In the following we will see what are the advantages and disadvantages that one could

come to have when using multicloud in your projects. Most organizations use multi-cloud

architectures to take advantage of the combination of public clouds with private cloud

implementations. Some of the advantages found with a multi-cloud architecture include:

1. Reliability: by talking about a multi-cloud architecture, companies ensure that if

any cloud fails, some functionality will still be available to users when deployed

in other clouds. In addition, you can use other public clouds to back up another

cloud.

2. Reduced vendor lock-in: by using a multi-cloud strategy, systems and storage

are not all on the same provider, which makes it easier to switch between

providers. Also, during the changeover, the entire application infrastructure is not

affected.

3. Cost savings: companies have the option to choose the provider that suits them

best in terms of price, performance, and security.

But, having seen the above advantages, some possible disadvantages that might be

encountered in this type of strategy (multi-cloud) should be mentioned:

1. More difficult to manage: In a multi-cloud strategy, an implementation will have

to interact with several different providers, each with different processes and

technologies.

2. Increased latency: communication between multi-cloud services can increase

latency in the process.

Live Migration of Containers in Cloud Computing and Multicloud

22

3. Increased vulnerability: in a multi-cloud organized service, there is a larger

hardware and software surface to receive possible attacks.

4. Reliability: correct load balancing can often be difficult in a multi-cloud strategy,

especially in situations where data is located far apart.

1.4.6. Differences between hybrid and multicloud clouds

The first separation that must be made is that multi-cloud refers to the presence of at

least two cloud implementations of the same type (public or private) that come from

different providers. While when talking about hybrid cloud, it is referring to the presence

of several types of cloud (public or private) that have some level of integration between

them.

Within a multi-cloud strategy, it is possible to find the use of two public clouds or two

private clouds, but if related to a hybrid approach, one could have a public cloud and a

private cloud. Both approaches are mutually exclusive, as it is impossible to implement

both at the same time. If the clouds are interconnected, we would be talking about a

hybrid cloud, while if, on the contrary, the clouds are not interconnected, we would have

a multi-cloud.

1.4.7. Live migration of containers

In this section of the background, the concept of live container migration (7) will be

introduced along with its role in the cloud or multi-cloud. The goal is to try to give the

reader a clear understanding of the container migration process, what it is for and how

important it is today. Furthermore, my research is based on how this process works in

the traditional cloud and how it adapts to the multi-cloud.

The first thing that will be explained is that the use of containers to host applications is

growing because of the ability of containers to isolate resources between different

containers within the same kernel. Due to the popularity of containers and the use that

is being made of them, there is a demand for greater availability and scalability. To solve

this problem, live migration of containers from one machine to another without stopping

the service they provide, or at least with very little downtime, has emerged. The process

of moving a container from one server to another is known as migration, which serves to

counteract system failures, balance the load, scale, and redistribute resources. When

alluding to moving a container application between different physical machines or clouds,

we are talking about moving the memory, file system and network connectivity of the

container where it runs without the operating system.

Live Migration of Containers in Cloud Computing and Multicloud

 23

Next, with the help of this picture I will try to represent how live migration works from a

technical point of view:

Figure 6 Node Migration Process

As it can be seen in the figure above, the Figure 6, we have two nodes, the source node

that will hold the container that will perform the live migration and a destination node that

is where we will have the container after the live migration.

The migration process performed by most platforms is very similar, the container is

frozen on the source node, blocking memory, processes, file system and network

connections, and then recovers its state. The information is then copied from the source

node to the destination node. At this node, the platform recovers the state and unfreezes

the container. The source node then undergoes a brief clean-up step. You can imagine

that the process is simple, get the state, copy the state, and restore the state. However,

it is by no means trivial, and it must be taken into account that it will have* a pause or

freeze period and that we will have to plan the application architecture with this in mind.

Within live migration several solutions can be found, but the most used ones are pre-

copy memory and post-copy memory. We will now look at a simple approximation of how

each solution works to understand the process.

Pre-copy memory: For the Pre-copy we have Figure 7 which represents the copying

process, when the memory of the source node is tracked and copied to the target node

in parallel until a minimum difference between them is obtained. Once this is done, the

source container is frozen, the missing state is obtained, migrated to the target node,

restored and unfrozen.

Live Migration of Containers in Cloud Computing and Multicloud

24

Figure 7 Pre-copy Memory Process

Post-Copy Memory: In this solution, the system freezes the container on the source node

in order to obtain the state of the most used memory pages. It moves this state to the

destination node, restores it and unfreezes the container. We can see that there is still

some memory left to be copied in the source state, this state will be copied to the target

in background. All this can be seen in Figure 8 below.

Figure 8 Post-Copy Memory Process

For us to understand what the uses of live migration could be, we have the following

examples:

Hardware maintenance: when maintenance is required, containers are migrated from

one hardware node to another within the same data center, so there is no downtime.

Load balancing: with live migration we can obtain load rebalancing by live migrating

containers from one to another. This action is also offered by several platforms in the

form of an automated algorithm.

Cloud provider switching applications can migrate from one service provider to another

without reconfiguration or strange changes during the process.

Live Migration of Containers in Cloud Computing and Multicloud

 25

2. State of Art

This section will show some of the platforms that offer live container migration services.

Each of them will be presented separately, looking at how they work, what services they

offer and how they cover the migration need. But before the platforms, the project that

performs the low level migration, and that is used by the different platforms with some

variations, will be exposed, and finally, a comparison will be made between them, to

determine the common factors, the gaps that still exist within the migration process, etc.

2.1. CRIU
The first of the options to be presented is CRIU, as mentioned above, CRIU is a Linux

project that implements the "Checkpoint/Restore In Userspace" functionality which will

be used by various platforms as a basis for performing container migration. This Linux

software can freeze a running container, check its state on disk and save the necessary

data so that the application can be restored in another container. This process can be

seen more clearly in Figure 9. Linux thanks to CRIU can perform live migration of

containers, snapshots, etc.

Figure 9 Live Migration in CRIU

When it comes to live migration, CRIU offers the implementation of several algorithms,

pre-copy, post-copy, and hybrid-copy, which I have already described in the previous

chapter, so now we know how they work in general. In addition to these three, there is

Live Migration of Containers in Cloud Computing and Multicloud

26

also the so-called "image cache/proxy". CRIU has several peculiarities that led to its

success in performing this checkpoint/restore process, one of them is that it works at

user space level and does not perform its approach inside the kernel. Also, when it

comes to restoration, CRIU sets the same PID for the process, both before being frozen

and at the time of restoration.

1. Pre-copy migration with CRIU:

One of the most reliable live migration algorithms for virtual machines and

containers are iterative pre-copy live migration. Pre-copying occurs in rounds,

with the memory pages to be transferred in round n being those that have been

updated after round n - 1 (all pages are copied in the first round). The pre-copy

capability in CRIU is implemented as an incremental pre-dump in a Page Table

Entry (PTE) using the idea of "soft-dirty bit". The Linux kernel implements the

soft-dirty bit function to reduce memory change tracking. By writing the integer 4

to /proc/$PID/clear references, CRIU starts memory tracking. This action tells the

kernel to clear the soft-dirty and readable bits of all PTEs associated with the

specified process. After that, the soft-dirty flag will be set on the first write

operation to a memory page connected to this process. In a subsequent pre-copy

cycle, modified PTEs are identified by reading /proc/$PID/page-map, where $PID

is the process identifier of the checkpoint process. Modified PTEs are those that

have a soft-dirty bit (the 55') reported. The pre-dump action in CRIU allows pre-

copy iterations. This allows CRIU to extract only a portion of the information

associated with a container (i.e., the memory pages).

2. Post-copy migration with CRIU:

During live migration, post-copy reduces application downtime. Unlike pre-copy,

this approach does not transfer any memory pages until the CPU state has been

transferred and resumed on the target host. When the migrated application

accesses a missing memory page, CRIU handles the page fault by transferring

the necessary page from the source node and injecting it into the memory

address space of the running task. This method of on-demand paging ensures

that each memory page is only transferred once across the network. However,

network latency can degrade the performance of the transferred process and

introduce additional high-priority network traffic. By proactively pushing excess

memory pages to the destination, residual dependencies are removed from the

source host as quickly as possible.

Live Migration of Containers in Cloud Computing and Multicloud

 27

3. Combination of pre-copy and post-copy (Hybrid-copy):

Pre-copy and post-copy migration algorithms have advantages and

disadvantages. Application downtime can be significantly reduced. By copying

the appropriate memory pages from the address space of the migration process

hierarchy before the final freeze. However, for write memory intensive

applications, these pre-copy rounds have a detrimental impact, increasing the

overall migration time while reducing application downtime. Post-copy migration

offers a solution to this problem. During downtime, the post-copy technique

simply transfers the minimum application state necessary to resume execution

on the target host. This method reduces application downtime and ensures that

each memory page is only delivered once across the network. This strategy,

however, has two main shortcomings. First, network latency, which delays

memory access, has a substantial impact on application performance during

migration time. Secondly, the reliability of this migration procedure is impaired by

the inability to recover the running state of the application on both the source and

destination host in case of network failure.

Fortunately, the pre-copy and post-copy algorithms can be used together CRIU, and

as hybrid-copy is the name for this method. The following are some of the advantages

of this combination:

 By streaming memory pages that are periodically updated on demand,

application downtime is reduced.

 Once the application has been relocated to the target host, performance

degradation is minimized by supplying as many memory pages as possible

on the target side before the start of the post-copy phase. For example, before

the post-copy phase, read-only regions of the application's memory address

space are transferred.

 Compared to Post-copy, reliability is significantly increased by reducing the

number of pages transferred on demand.

4. Migration using image cache/proxy with CRIU:

CRIU was developed to store the operational state of a checkpoint process in

persistent storage as a collection of image files. This approach has two key

drawbacks in a live migration scenario. For starters, all image files are written to

Live Migration of Containers in Cloud Computing and Multicloud

28

the persistent storage twice: once when the container is dumped on the source

host and again when the images are received on the destination host. Secondly,

these image files are read from disk twice: once when the images are sent to the

destination host and once when the restore procedure is performed. The CRIU

manual describes a simple solution to this problem called disk migration, which

saves the image files in a temporary file system instead of persistent storage. In

the article “ALMA – GC-assisted JVM Live Migration for Java Server Applications”

(8) a better approach is proposed by adding two new components to CRIU:

image-cache and image-proxy. These components allow the storage and reading

of image files to be separated from the dump and restore of the process tree. The

execution state of the verification/restore process is transferred via Unix sockets

from the CRIU process, and the communication between these two components

is done via a TCP socket. By putting the image files in cache rather than in

persistent storage, this strategy reduces the overall migration time and downtime

for live container migration. Another significant benefit of this strategy is the

automated transmission of image files, which simplifies the implementation of live

migration with CRIU.) proposes an improved approach by adding two new

components to CRIU: image-cache and image-proxy. These components make

it possible to separate the storage and reading of image files from the dumping

and restoring of the process tree. The execution state of the verification/restore

process is transferred via Unix sockets from the CRIU process, and the

communication between these two components is done via a TCP socket. By

putting the image files in cache rather than in persistent storage, this strategy

reduces the overall migration time and downtime for live container migration.

Another significant benefit of this approach is the automated transmission of

image files, which simplifies the implementation of live migration with CRIU.

2.2. OpenNebula
OpenNebula is the second platform that is going to be introduced and analyzed.

OpenNebula is a very powerful open-source platform for building and managing

virtualized enterprise clouds and data centers. To deliver these services OpenNebula

relies heavily on the use of virtualization and container technology combined with multi-

tenancy and elasticity. All this allows us to enjoy in our cloud’s flexibility and a total

unification between infrastructure management and IT applications. The aim is to avoid

vendor lock-in, high resource consumption and operational costs, and to reduce

complexity as well.

Live Migration of Containers in Cloud Computing and Multicloud

 29

After a deep study of this platform, it was found that OpenNebula can manage:

 Applications: Enables containerized applications by combining Kubernetes and

Docker Hub with virtual machine workloads in a similar shared environment to

offer the best of both worlds: mature virtualization technology and application

container orchestration.

 Infrastructure: Combines the expansion of its private cloud with infrastructure

resources from third-party bare-metal and public cloud providers create a true

hybrid, edge (9) and multi-cloud (10) platform (Equinix Metal).

 Virtualization: Use VMware and KVM virtual machines for fully virtualized clouds,

LXC system containers for containerized clouds and Firecracker microVMs for

serverless deployments to meet your workload needs.

 Time: Automatically add and remove new resources to accommodate peak

demand, develop fault tolerance techniques or meet latency needs.

Figure 10 Technologies and Structures offered by OpenNebula

In this research I did not focus on the virtualization part but, to be more precise, on the

use of containers (11). Where OpenNebula, as shown in Figure 10, offers containerized

applications a natural approach to running containerized applications and workflows by

using official Docker images from the Docker Hub and running them as LXC system

containers or lightweight Firecracker microVMs

When compared to Kubernetes or OpenShift, this solution combines all the benefits of

containers with the security, orchestration, and multi-tenancy features of a robust cloud

Live Migration of Containers in Cloud Computing and Multicloud

30

management platform without introducing unnecessary layers of management, reducing

complexity and cost. In those circumstances where Kubernetes is necessary or the best

option, OpenNebula also provides support for deploying Kubernetes clusters via a

CNCF-certified virtual machine.

Figure 11 Container Management Structure

As mentioned above, OpenNebula makes use of the LXC system to manage containers,

so we will see how it performs live migration of LXC containers.

LXC is a user space interface that through a more than powerful API and some tools,

gives Linux users the possibility to create and manage system or application containers

in a simple way. One of the peculiarities of LXC is that containers are considered as

something in between a chroot and a full virtual machine. The goal of LXC is to create

an environment as close as possible to a standard Linux installation, but without the need

for a separate kernel. LXC offers a live migration process using lxc-checkpoint, this

process is based on the Checkpoint/Restore in Userspace offered by CRIU. The steps

involved in the migration process in LXC are:

 Synchronize the file system.

 Dump of all processes using CRIU

 Transfer CRIU dump

 Final file system synchronization

 Restart the container at the destination

In this process the idle time we will have will depend on the memory size of the processes

and the rate of change of the file system.

Live Migration of Containers in Cloud Computing and Multicloud

 31

LXC uses the same memory copy algorithms but performs some small optimizations on

each of them. The final algorithms that OpenNebula works with using LXC are the

following:

Pre-copy migration:

Use the soft-dirty bit of the page table entry.

Freezes the process

Dumps the memory

Process continues to run

Memory is transferred to the destination

Dumps only the memory changes that have changed

Process continues to run

Memory is transferred to the destination

Dump only the memory changes that have changed

Final dump

Post-copy migration (lazy migration):

Based on userfaultfd

Freeze the process

Transfer everything except memory pages

Restart process

Transfer memory pages in case of page fault

Combination of pre-copy and post-copy migration:

First (multiple) pre-copy iterations

Migration to destination

Restoration of lazily missing pages

Live Migration of Containers in Cloud Computing and Multicloud

32

2.3. Cloudify
Cloudify1 is the next application that I will analyze and showcase. Cloudify is a TOSCA-

based open-source perimeter, cloud and multi-cloud orchestration platform that allows

users to model application services and automate their entire lifecycle. Figure 12 gives

an understanding on how cloudify enables enterprises to automate their existing

infrastructure along with cloud-native and distributed edge resources, enabling a

seamless transition to public cloud and cloud-native architecture. It includes deployment

in any cloud or data center environment, monitoring all aspects of the deployed

application, detecting problems and failures, repairing assets manually or automatically,

and handling maintenance tasks. Users can also use Cloudify to manage multiple

orchestration and automation domains as part of a single CI/IP pipeline.

Figure 12 Cloudify Structure

The main features that can be stated about Cloudify after my research are:

 Everything as a Code: the composition of the service is based on DSL (Domain

Specific Language), which allows modelling a service composed of several

components as shown in Figure 13. Whether they are shared resources such as

a database or an exclusive node that makes up a service such as a load balancer.

Cloudify specializes in modelling the relationships between services, as well as

cascading processes, shared resources, and distributed lifecycle management.

1 https://cloudify.co/

Live Migration of Containers in Cloud Computing and Multicloud

 33

Figure 13 Example of Service Modelling

 Integration with infrastructure orchestration domains is built in, e.g., AWS Cloud

formation, Azure ARM, Ansible, Terraform.

 Kubernetes Manager: incorporates the native Kubernetes orchestration manager

for cluster management, such as AKS and KubeSpray. Cloudify also offers a

built-in blueprint to automate cluster setup and configuration.

In addition to the features mentioned above, Cloudify presents a wide range of

possibilities or features that help the user manage their infrastructure. But as this

research focuses on live migration of containers, I have decided to limit it to my main

topic. Despite researching on the internet and the Cloudify website and requesting

concrete information via their website, I was only able to obtain how Cloudify performs

the migration of Pods on the same Kubernetes cluster (12).

Figure 14 Live Migration of two Pods on Kubernetes

The image above (Figure 14) shows what the objective of the migration is, to move the

pods containing the application and the database from one node to another. Cloudify

performs the following process using Kubernetes:

Live Migration of Containers in Cloud Computing and Multicloud

34

Figure 15 Migration on Kubernetes

In Kubernetes the migration process is based on CRIU's Checkpoint Restore in

Userspace which we have mentioned in the previous platforms as well and which also

uses Linux. In Kubernetes the pod management (create, delete or update) is handled by

kubelets. In Figure 15 you can see the process being carried out and we will briefly

explain its steps below.

 Capture container status

The process of getting the container state is the same as the original CRIU

process, the admin must create a helper function to call the Docker checkpoint

command, which dumps numerous image files representing the live state of a

container. It returns the file handles for further processing once it has located

these files.

But the admin will also have to have another function that does the reverse

procedure by calling the restore Docker command, which, given the images

representing the container state, relaunches the container in the same state it

was in at the time of the checkpoint.

 Transporting Pod State

A means to transport this data between nodes once we get the container

checkpoint images for a pod will be needed. Transferring minor configuration

data, such as pod templates, is currently the only example of internodal data

communication within Kubernetes. In addition, nodes in the orchestration layer

do not currently communicate with each other.

Live Migration of Containers in Cloud Computing and Multicloud

 35

A process at the Kubelet level is required for achieving the following to make the

movement of states possible:

1. Within the source pod/node, check all containers, considering any

dependency order between containers.

2. Creates a communication channel to a remote destination node, based

on the address provided in the input.

3. Send the data to the target node in stages.

4. Continue receiving data until you have obtained the full set of checkpoint

capture.

5. Restore each of the containers in the order in which they were created,

considering the dependency order.

6. Remove the pod and any containers from the source node once the

migration is complete.

7. If a communication problem occurs in the middle of the transfer, we will

try to retry several times. We only abandon the process in case of

irreversible failure, and the old pod continues to function normally. It is not

the task of the Kubelet to ensure the final success of the migration.

Shared pod volumes, in addition to the container state, must be transferred using

a similar data transfer technique. At a high level, this should be a less difficult

transfer than the operational state because we can simply copy the directory.

 Reassignment of Addressable Properties:

All accessible attributes, such as hostname, IP address, and active ports, must

be identical on the source and destination pods when a pod is relocated. Fields

that are not addressed, such as internal Kubernetes IDs and names, are not

transferred.

Currently, Kubernetes lacks a way to transfer IP addresses between pods.

Instead, each node is given a set of IP addresses that its pods can use. It is up

to the developers to implement a network driver that maintains the logic of that

process.

 Orchestration and Coordination of Migration:

The replication controller on the Kubernetes master node(s) is currently

responsible for maintaining the lifecycle of pods, creating, or destroying pods to

ensure that there are always a specified number of replicas. We need to extend

the controller to also coordinate migration between two nodes.

Live Migration of Containers in Cloud Computing and Multicloud

36

The tasks of the replication controller are as follows: Since the Kubelets on the

nodes already provide an interface to initiate checkpoint, restore and state

transfer, the responsibilities of the replication controller are as follows:

1. On the source and destination nodes, start the pod snapshot and transfer

procedure.

2. As with building a new pod, ensure that no requests are forwarded to the

pod on the destination node before the migration is completed.

3. Monitor the migration process and detect problems or the completion of

the state transfer.

4. Once the target pod is up and running, the replication controller calls the

network service mentioned above to migrate the IP from the old pod to

the new one, thus routing all traffic to the new pod. The old pod is then

discarded. During this final transition phase, there may be a small service

interruption.

Before continuing with the study of the following platforms, I would like to point out that I

know that Cloudify offers the service of live migration of containers between different

clusters, from one machine to another and from one provider to another. The only

problem is that I was not provided with information about the algorithms it uses or how it

performs this process. That is the reason why the study of pod migration in the same

cluster is presented. Now I can only wait for the practical part of the research, where the

service offered by Cloudify will be tested.

Live Migration of Containers in Cloud Computing and Multicloud

 37

3. Analysis of the problem

The upcoming part of this thesis, it will be focused on analyzing the challenges I have

encountered in live container migration or the questions that arose when analyzing

previous platforms. The first approach leads to make a separation between the possible

challenges that could be encountered in stateful and stateless. Although this research is

mostly based on stateful, when talking about stateless, a less problematic process or

fewer unknowns will not be found.

Clearly when talking about live migration in containers from a stateless point of view, the

first thing that comes to mind is that it would be a trivial, simple process. For example,

we copy the container to move, we move it, we start the new container, and the process

is finished, but this is far from reality. Because, even if you don't have to deal with the

problems about data storage in the container as in stateful, both situations (stateless and

stateful) share, there are some factors that have to be taken into account: Does the

architecture of the new "receiver" node match the architecture of the container that is

going to migrate, it will be necessary to make sure that the migration fits the requirements

and that there will be no consequences or at least that those consequences can be dealt

with. Another challenge to consider is how does the migration process handle the IP

tables? What happens to the DNS domain in the migration from the source node to the

destination node?

But as mentioned above, there is another part, when the container has state (stored

information), then the problem or the number of challenges increases. Moreover, the

problems to be tackled are not purely IT or technical, but will also involve predicaments

of various natures, such as ethical (different data protection policies in different countries)

or energetic (resource expenditure that may be involved in migrating to the new host)

problems.

To make it easier to read and organize, I have decided to list the challenges or problems

I have faced, whether they are stateless or stateful. Each challenge will be presented

with an explanation, as well as the questions that in the following chapters I will attempt

to answer.

3.1. Data Protection
In recent years, one of the most controversial and important issues is the data processing

used in each process. And of course, the live migration of containers does not escape

this problem. Sometimes the migration process will place the container in a region with

Live Migration of Containers in Cloud Computing and Multicloud

38

the same data protection policy. Such as a migration within the same country or within

the European Union, for example. But now the question arises, what would the situation

be like if the container were to migrate, for example, from the United States to Europe or

vice versa?

Because to get an idea, data protection in the United States is different from that in

Europe. The CLOUD Act allows Internet service providers and other electronic media

companies based in the US to store and transmit your sensitive data. In Europe, by

contrast, there are public bodies dedicated to the protection of your personal data.

European data protection legislation protects you whether you are European or not, and

only collects your essential data, or so they say.

So, should we continue to treat the data with the data policy where the container comes

from? Should the data owners be informed of the change and decide what to do with

their data? Should we create a global law to be used in case of a change of data location?

Could we create something to check if the migration respects the data policy?

3.2. Individual or group migration
When thinking about live migration of containers, the first thing that comes to mind is to

try to minimize service downtime, and that is the goal, and clearly when our service to

be migrated consists of a single container, we have no major challenges or options. We

migrate the container that hosts the service and that's it. But what happens when our

service consists of more than one container. Because it is well known that nowadays

many applications that offer a service are made up of microservices that, all together,

make up the entire app. All these microservices must be interconnected with each other

and clearly know how to access or communicate with the rest of the parts of the

application.

At this point, then, there are two different possible scenarios:

 When we have a service composed of microservices (e.g., user interface,

ordering, payment, shipping) with the need to do live migration, how do we

migrate the containers of the microservices, is the process done separately one

by one, would it be given a group treatment, for which microservice should we

start the migration, for which microservice should we start the migration?

 There is a service composed of different microservices, where for different

reasons, one of those microservices is replicated because it receives many

requests or because the processing of that information is slow and expensive

Live Migration of Containers in Cloud Computing and Multicloud

 39

(image recognition, neural network, etc.). Now, let's suppose that a live migration

of the service must be performed, how would the process be with these two equal

microservices? Would the migration end when the two containers have migrated,

or would the service be offered again when one of the containers is available?

3.3. Energy costs
Another of the big points to consider in any project or process is the cost of this activity.

As could not be otherwise, live migration of containers raises doubts about the cost that

it would have in different scenarios. We know that when we talk about small applications

or services, the cost will be affordable and not unreasonable. But when we talk about

large applications, large-scale services, how much does the cost of the process start to

weigh? Is it still a viable and profitable process?

3.4. Source Node Failure
During the live migration process many applications make use of the CRIU

(Checkpoint/Restore In Userspace) system where there are several memory copying

algorithms. These algorithms, which have already been detailed in previous chapters,

raise some questions about possible situations. For example, what would happen if in

the middle of the copy the start container stops working, and the end container cannot

access the memory addresses? For example, in the post-copy algorithm, the new

container is accessing the memory pages once the migration is done, what would

happen there, if it could not access those pages?

On the other hand, there is the pre-copy algorithm, where the memory pages are

obtained before performing the migration, it is imaginable that in this case the migration

would not take place, but is the process aborted? Are there measures that control,

prevent, or contemplate this error?

3.5. Architecture, Networking and Filesystem
Another question I was asked was about the things that should be checked before the

migration. For example, CPU compatibility between both nodes (source and destination),

checking and loading the necessary kernel modules such as filesystems. Non-shared

filesystems must be copied as well. In addition, we cannot forget about the network

aspect, such as iptables and the DNS domain. How does the destination node make the

DNS of the source node available? How does the live migration process handle the

redirection of network traffic? How could we solve this in such a way that it is sure that

Live Migration of Containers in Cloud Computing and Multicloud

40

at the end of the migration the destination node is completely the same and reachable

as the source node?

Live Migration of Containers in Cloud Computing and Multicloud

 41

4. Proposed Solutions

Within this chapter, I will present the possible solutions I have thought of for some of the

challenges mentioned in chapter 3. The proposals that follow are all theoretical; due to

time, resource and logistical problems, no implementations were carried out. As a matter

of organization and structure, I have decided to present each of the possible solutions at

different points within this chapter, offering for each solution a detailed explanation as

well as the necessary diagrams to clarify my ideas.

4.1. Live Migration based on Privacy Certificates
As mentioned in the problem analysis chapter, data protection is an issue to be

considered when accepting or not a live migration, or when choosing a target host. To

overcome this, I thought of performing a live migration based on trust verification of the

host machines. In other words, that the host that will receive our container complies with

the same data protection standards as the current host. This chain of trust between the

different machines of a multicloud infrastructure is obtained thanks to the attribute

certificates issued by trusted entities. These entities are the PCA (Privacy Certificate

Authority)4. Once the security of the data in the movement between the host machines

(Host source, Host destination) has been confirmed, the live migration process is carried

out.

As you could see in our idea, we are adding new elements to the formula. So, to get to

a better understanding of what my idea is, Figure 16 shows the new elements inside the

Host.

Figure 16 Overview of the Host

Live Migration of Containers in Cloud Computing and Multicloud

42

As it is shown, each container has a new attribute which is Regulation, this has a list of:

 Country Code: indicates which countries the container can be moved to.

 Organization Code: indicates which organizations make use of the container.

The container must acquire all this information to be executed and then migrated. Clearly

this new information will have to be beaconed and secured with an attribute certificate.

On the other hand, we see that the Host Hypervisor also has two new components:

 Country Code: indicates the country code of the country in which the Host is

located.

 Organization Code: list of organizations that will use the container.

Now that I have presented what the new Host and container structure would look like,

we can move on to see what our proposed multi-cloud infrastructure implementation idea

would look like. For that we must look at Figure 17 where we can see that the data

protection is done in two parts:

Figure 17 Implementation Proposal

Protection Module: it oversees receiving the migration request and deciding whether

the migration can be carried out or not. It can do this because it will oversee

requesting the necessary information from both the container and the hosts.

Multicloud infrastructure: here there will be almost no changes with respect to the

multicloud infrastructure we are used to. Only that, as we saw before, the hosts where

the containers and the containers will be hosted have some more attributes.

Live Migration of Containers in Cloud Computing and Multicloud

 43

In order to clarify a little more how we think our idea should work, in Figure 18, we set

out a data flow of what the live migration would look like using our data protection

process.

Figure 18 Live Migration Data Flow

Looking at the figure above one can see that what we have in the first step is the

migration request that arrives to the protection module. Then, this module sends a

request to the container to be migrated to obtain its Regulation attribute, another request

to the Host source and to the Host destination to obtain the Country and Organization

Codes. Once the protection module has received the response to its requests, it will be

able to decide whether the migration can be performed or not. If the migration is not

allowed, it responds to your request with an error notification. But if the result is positive

and the migration can be performed, then the module sends the command to the

multicloud infrastructure to perform the migration live. Once the migration is finished, the

infrastructure will send you the migration results and the protection module will send a

notification of successful migration.

Finally, it is important not to forget about security, based on the assumption that we have

all trusted machines in the infrastructure. In other words, malicious attacks on hosts

belonging to the infrastructure are not contemplated in this proposal. For

Live Migration of Containers in Cloud Computing and Multicloud

44

communications we could use TLS connections. It is also considered that the security

policy of the countries and organization is complied with. All the attributes I have included

are protected by the electronic signature of the attribute certificate.

4.2. Preservation of the DNS domain
When in chapter 3 the challenges of live container migration were explained, I mentioned

the DNS domain as a possible unknown. How would the process be able to maintain the

DNS domain of the migrated application, or how would it adapt it, in short, what would

be the DNS strategy to keep everything working correctly after the migration. For the

following solution, I have relied on the knowledge previously learned in some networking

courses at university, with some videos from the internet and with the information I found

on the internet (13) that I could use to implement my idea.

The DNS domain of the destination node is different from the domain of the source node.

The applications automatically receive the FQDNs of the destination node after

migration. What I thought, is that in order to keep the source DNS domain of the

container/applications performing the live migration I could use one of the two options

below. The two strategies proposed to maintain the DNS domain are:

1. The DNS domain of the destination is isolated from the clients:

Without exposing the destination node to clients, you can allow queries sent by clients

to the DNS domain of the source node to reach the DNS domain of the destination node.

The steps that should be followed would be as follows:

A. Locate between the clients and the target cluster a component such as a load

balancer or another component that can be placed in the external network.

B. In order to return the IP address of the load balancer, update the FQDN of the

application on the source node in the DNS server.

C. Configure the network component to route any request from the source domain

application to the load balancer of the destination node domain.

D. Make a new DNS record (we can call it a helper) for the domain pointing to the

load balancer of the source cluster IP address. *.apps.source.example.com

E. For each application, set a DNS entry pointing to the IP address of the external

network element in front of the destination node. When resolving the application's

FQDN, there is no conflict, as a particular DNS record has higher priority than a

wildcard record.

Live Migration of Containers in Cloud Computing and Multicloud

 45

All secure TLS connections must be closed by the external network component. The

FQDN of the target application is made available to the client and we will have certificate

failures if connections reach the load balancer of the target node. Clients must not

receive connections from applications pointing to the target node's domain. Otherwise,

the program may not load or function correctly in some areas.

2. Configure the acceptance of the source DNS domain in the destination node:

We need to configure the destination cluster to recognise requests coming from the

migrated applications in the DNS domain of the source cluster. Clearly there are several

ways to do this, but we believe it could be done in the following way for both HTTP and

HTTPS access:

A. Create a route on the destination node that accepts requests addressed to the

FQDN of the source node. What we are looking for is for the server to accept

any request from the FQDN and send it to the necessary nodes. Also, when the

migration is performed, a new route will be established in the domain of the

destination node.

B. To route the FQDN of the application on the source node to the IP address of the

default load balancer on the destination cluster, we create a DNS record with

your DNS provider. By doing this, traffic will be diverted from our source node to

our destination node. The load balancer of the destination node can be reached

using the FQDN of the application. Due to an exposed route for that hostname,

the default ingress controller router will accept requests for that FQDN.

We think this is enough for an HTTP connection, but for secure HTTPS connections, we

should take a few more steps:

 We should update the certificate of public and private keys, etc. (x.509) of the

entry controller that was configured at the beginning of the installation. To the

certificate we should add the DNS domains created for the migration process,

both the DNS of the destination node and those created to manage the

process.

Once the above certificate has been created, our application is ready to protect all

connections to any DNS.

Live Migration of Containers in Cloud Computing and Multicloud

46

4.3. Network traffic redirection
Another problem presented and analyzed is how to re-establish the network traffic with

the new node at the end of the migration process. Therefore, we will present different

strategies for network traffic redirection in the following.

Before presenting our options, we should mention that we start from some firsts, such as

that:

 We have the applications already running on both the target node and the source

node.

 The applications have the path to access the source node host.

 We will have already processed the CA certificate so that the route to the source

node host already has it. In addition, the CA certificate of the destination router

will already have the DNS record of the source node in its possession.

Having established the basics, we will now turn to the possible strategies that we believe

could be put in place to redirect network traffic:

1. Synchronized redirection of network traffic for all applications. Modify the virtual

IP address of the destination node's router in the DNS wildcard (VIP) record of

the source node. We believe that this strategy is best suited for simple

applications with small migrations.

2. Redirect network traffic for specific purposes. Make a DNS entry for each

application pointing to the VIP of the destination node's router from the source

node's hostname. The DNS helper record (record created specifically for this

purpose, as a wildcard) of the source cluster is replaced by this DNS entry.

3. Make use of a proxy to direct traffic to the source node's router and the destination

node's router. Create a DNS record for all applications pointing to the proxy with

the name of the source node. Configure so that traffic arriving at the proxy entry

is directed to the source node and not to the source. But clearly, we will do this

gradually, until we reach the totality of the traffic. This could be called a gradual

redirection of network traffic.

These have been the three strategies we have come up with to carry out the network re-

routing process, but we are aware that there are others, and that some of ours are

applicable only in specific situations.

Live Migration of Containers in Cloud Computing and Multicloud

 47

4.4. Live migration of multiple containers
As mentioned in the previous chapter, most services today are composed of

microservices. Usually, these microservices are each in a different container. Often these

containers are hosted on the same host or not. So, this proposal is to try to solve the

challenge of migrating those containers, whether to do it sequentially or in parallel.

Opting, in the end, for the parallel migration solution. This would be possible thanks to

an application migration middleware that would manage the parallel migration of the

containers between the source node and the possible destination node. It was also

mentioned that this would be done by making use of multiple TCP (parallel TCP)

connections, which would allow more than one container to be sent at the same time.

Next, in Figure 19 it is described an example of what the inclusion of our middleware in

an application would look like.

Figure 19 Structure with the inclusion of our Middleware

Live Migration of Containers in Cloud Computing and Multicloud

48

As we can see in the previous figure, there are two different source hosts (Host A and

Host B) that each one has two containers (CA1, CA2, CB1, CB2) that we will try to

migrate to Host C and Host D. We can also see that our middleware appears, where we

can see which are the elements that compose it. Now, before explaining the process of

this idea, there is an enumeration and explanation of what the (instead of ours)

middleware will be composed of:

 Middleware core:

The middleware has all the requirements of the application (resources, locations)

and the hosts it has. When the live migration action is executed, the middleware

core will communicate with another middleware core to get the information of the

target resources. If the requirements are met, the middleware core will launch the

migration requests.

 Load Balancer:

Our middleware will have a load balancer that will have two tasks:

 Calculate according to the bandwidth of the connections how

many containers can be sent in parallel. The start will always be 1

container. But seeing the size of the connection, the load balancer

will change that number.

 Select which containers will migrate in parallel. Because if we

have the same replicated container, there is no challenge, it can

be done in rotation or depending on the algorithm. But if we are

talking about something more complex, where each container is

different, then the balancer will have to use another kind of tactic

to choose which container to migrate.

 Executor:

This will be in charge of carrying out the migration, creating the snapshot of the

container and migrating the container. All this with the help of the software chosen

to manage the virtualization and migration.

Previously, it has been seen that the core of the middleware is in charge of launching the

migration request, for this purpose it would be necessary to have a registry with the

available containers and their states. These states can be 5:

A. Start, Start phase of the request

B. Screenshoot, when the snapshot of the container is being taken.

C. Ready, when the container is ready to be migrated.

D. In Process, when the live migration process is in progress.

Live Migration of Containers in Cloud Computing and Multicloud

 49

E. Migrated, when the container is already in the destination node.

In Figure 20 below, there is an example of what the live migration process would look

like using my solution.

Figure 20 Example of live migration process with our middleware

To finish with my idea, and to explain the previous figure, I will also explain how the live

migration process would be using the middleware:

1. We start by establishing communication between the different middleware cores.

The objective is to identify if the target resources meet the needs to perform the

migration.

2. Once the core knows that it can perform the migration, it creates a request for

each container to be migrated and places it in the queue of the balancer.

3. The balancer will start selecting requests according to the selection algorithm it

has and the number of containers it can send in parallel (bandwidth) and will send

them to the executor to perform the migration.

4. The executor carries out the migration process with the help of the chosen

software. It updates the status log of the containers.

5. Each time a migration is finished (either individual or group) the balancer checks

the bandwidth to re-estimate the number of containers that can be sent in the

next iteration.

6. This process is repeated as long as we have requests in the balancer queue.

So, this has been my idea to solve the multi-container migration challenge. It wouldn’t be

possible to know the feasibility of my idea until we implement it. But we are confident that

we are looking at a viable and implementable proposal.

Live Migration of Containers in Cloud Computing and Multicloud

50

5. Practical Experiment

After having seen the exposed solutions, the aim is to present in this chapter everything

related to the practical experiment that I will do to carry out to check first-hand how live

migration works in one of the platforms mentioned in chapter 2. It is going to present the

idea of the experiment, explaining what is sought, the technologies used to carry it out,

the steps that would have to be performed in the experiment, and will finish with the

presentation of the results and/or the possible problems encountered during the

execution of the experiment.

5.1. Live Migration Test Proposal
The first thing to be mentioned is that the chosen platform to carry out our experiment

was Opennebula2. Our experiment is based on developing a small service composed of

microservices, where there will be an attempt to perform the live migration process using

Opennebula in order to obtain data that will be studied at the end of this chapter. The

service will be deployed as shown in Figure 19, initially on Google Cloud Platform3.

Figure 21 Initial phase of our deployment

Then, using OpenNebula we will look to migrate our server to move it to Amazon Web

Services. The next two stages can be seen in figure 20 and figure 21, where we can see

that our server is idle due to the migration, ending up running on the final provider.

2 https://opennebula.io/
3 https://cloud.google.com/

Live Migration of Containers in Cloud Computing and Multicloud

 51

Figure 22 Application migrating and inactive

Figure 23 Final phase, application deployed on AWS

The objective of this experiment is to be able to determine, thanks to the data that will be

obtained and some metrics that will be explained later, if the live migration process is

correct, if it does indeed present some of the challenges that have been raised

previously, if it is profitable, how long it takes, etc. In addition, we will try to familiarize

ourselves with the platform, as it is one of the most popular platforms offering such a

service.

The service that is going to be used to perform this migration can be seen in Figure 22,

where we can see that it is made up of a server that obtains the time every second and

stores it in a database (GCP) in a text file. The purpose of this information could be to

verify the inactivity gap when the migration is performed. Check the time it takes to

perform the process.

Live Migration of Containers in Cloud Computing and Multicloud

52

Figure 24 Structure of the service to be migrated

5.2. Technologies used
In this part of the document, we will list the technologies we will use for our experiment.

Many of them we have already introduced in the previous subsection, here, we will

introduce some more and explain the use we have made of them.

 OpenNebula: for our experiment the free version of OpenNebula (Community Edition

via miniONE4), has been used, as the Enterprise Edition is subject to an annual

subscription fee. A simple deployment script called miniONE is used to set up an

OpenNebula Front-end. This tool can serve as a platform for more substantial short-

term deployments or project, but its primary purposes are assessment, development,

and testing.

 Google Cloud Platform: this is where our service will be hosted at the starting point.

Google Cloud Storage is used for the database and Google Compute Engine for the

service.

 Amazon Web Services5: this is where our service will be hosted at the end of our

experiment. Where we will place the final instance of our container.

 Docker: taking into account the advantages offered by Docker6 and the familiarity we

have with this technology; this is the one that has been chosen to create our

container.

5.3. Experimental Procedure

To start the experiment, the first thing that must be done is the implementation of our

service. To do this we will create a server with express that gets the time every second

and using Google Cloud Platform we save this information in a .txt file in Google Cloud

Storage.

4 https://github.com/OpenNebula/minione
5 https://aws.amazon.com/
6 https://www.docker.com/

Live Migration of Containers in Cloud Computing and Multicloud

 53

Clearly, before it is possible to include the use of GCP in our service, we must create our

account and make the necessary configurations in order to have our project ready to use

GCP.

In addition to GCP, we must configure our Amazon Web Services account. This involves

creating the project and everything we need to migrate. Once we have the server

created, we create the Docker container and upload it to our repository to be able to

access it from OpenNebula.

Now it's time to move on to OpenNebula, taking into account that it is an academic

project, we have used the Community Edition version because the Enterprise Edition is

subject to an annual subscription. For the installation of OpenNebula, we decided to try

the two ways offered by the platform. The first option is to use a script (miONE) prepared

by the OpenNebula team. This script is ideal for testing and small deployments. The

second option we have also used is to follow step by step the instructions offered by

OpenNebula. Where we made a complete installation of the Community Edition frontend.

The first thing we are going to do is to add the providers that we will use to the platform,

in Figure 23 we can see how the environment is configured.

Figure 25 Providers available for use

Live Migration of Containers in Cloud Computing and Multicloud

54

Next, I will take care of creating the two hosts that will be in charge of storing my

containers. In the following Figure (24) it is described how the two available hosts appear.

The name of each host is the IP they have access to in each provider.

Figure 26 Host created

Once the hosts are ready, it is the time to load our Docker image to OpenNebula. After

having the image loaded on one of the OpenNebula Datastorage we deploy our app on

the host we want.

After the application is running on the GCP host, it is time to move on to the live migration

to AWS. When we select the live migration option, OpenNebula starts the process where

it will take our container to AWS. During this process OpenNebula takes care of removing

the connection to GCP and switching it to AWS, places the container in the "PowerOFF"

state while it performs these tasks, and finally, reactivates the container and gets our

service back up and running.

To finish with our experiment, we just need to check that the information that is being

stored in our database (Google Cloud Storage) is being updated as it should. And that

the service is still active after the migration. Then we will check the stored data, which

will serve as metrics to evaluate the migration. Since we will be able to observe for

example the time that the service was not active during the migration. We will also

evaluate the process of the OpenNebula platform, passing the installation process, the

usability of the application and the final result of the migration process..

Live Migration of Containers in Cloud Computing and Multicloud

 55

5.4. Results and Problems
Once I have reached this part of the thesis, I will proceed to explain my experience with

the live migration of my service using the OpenNebula platform. The first thing I am going

to expose are the predicaments I have had during the experiment; I have suffered some

problems and of different types. Before starting to talk about the problems, I would like

to separate them into two groups, the problems that appeared using the installer script,

and the problems that arose using the step-by-step manual installation version.

Installer script: The biggest problem I had with the platform when I installed it with the

installer script was that it did not allow me to add my suppliers. The creation process

generated an error with Ansible, which I could not solve by my means. Also, in the

Community Editionversion of OpenNebula, technical support or questions are handled

through a forum. Which is quick to respond in many occasions. But in our case we did

not get answers that solved our problem.

Therefore, since I could not perform the experiment with the platform installed through

the script, we decided to go to the manual, step by step version found in the

documentation.

Step-by-step manual installation: (14) Unlike the previous installation method, this one

allowed us to add our providers, add the hosts on both providers, load our Docker image

on the platform, but we could not run our application on the host after deploying.

OpenNebula was deployed to the GCP host, but when we ran our container, nothing

happened. It never got to run our service on the provider. Therefore, after the problem

with the automatic scripting option we found that we were also unable to perform the

migration process using the manual OpenNebula installation.

In addition to the above problems, my biggest drawback was again that when using the

Community Edition version, I had no technical support option. I contacted OpenNebula

via email, and they told me that errors or problems with this version are resolved through

the application's forum7. It should be noted that all the problems I had throughout the

installation and configuration were solved satisfactorily through the forum. But these last

two, both the installer script and the step by step installation could not be solved by any

of the forum users.

7 https://forum.opennebula.io/

Live Migration of Containers in Cloud Computing and Multicloud

56

So, at this point, I can say that I were not able to perform the migration process on the

chosen platform. Therefore, I have no experimental results to offer, nor will I be able to

use the metrics I had prepared for the assessment of the process.

Live Migration of Containers in Cloud Computing and Multicloud

 57

6. Conclusions

Having reached this chapter, it is time to look back and see how my project, my research,

developed. I can talk about both the overall objective and the journey I have made

throughout the research. The overall objective was partially achieved, but I was not able

to achieve all the objectives previously set at the beginning. As mentioned in earlier

chapters, the problems encountered when using OpneNebula did not allow me to test

the live migration process in a practical way. Many of the problems I encountered

regarding the installation or use of the platform were solved thanks to all the

documentation offered by OpenNebula and the speed with which the platform's forum

community responds. But at a certain point, I had run out of answers, resources, and

time perhaps.

Also, I don't know whether to call it a mistake or an unexpected surprise, but what

seemed at the beginning that OpenNebula works with containers with a natural approach

using Docker with the LXC system, I came to realize during the experiment that the

migration is managed with microVMs with Firecracker. Which I know is a valid way

because they are still containers, each platform can manage the live migration of

containers as they want. But the duality that options with containers that I saw at the

beginning of this document, in the end it was only the microVMs option, and that caused

a great deal of damage.

On the other hand, I have been able to offer several theoretical solutions to the different

challenges that arose at the beginning of the project. This could be done thanks to the

research on how the different platforms currently work, what are the market options in

other processes and combine them to be able to offer our contribution to continue

improving in that aspect. All of them are presented in a theoretical way, without doing

any implementation, but I tried to provide as much information and resources (diagrams,

data flow, installation steps, components, etc.) as possible in order to understand what

we are looking for and what we offer.

Finally, I was also capable of enjoying the journey I went on during the research, because

as far as I was concerned, this was a completely new subject, everything related to the

multicloud, the challenges it presents when working with it. I have become familiar with

the technology, discovered the virtues, the problems that arise, all this thanks to a

number of papers published by researchers. Also, the different informative videos offered

by many platforms that work with multicloud.

Live Migration of Containers in Cloud Computing and Multicloud

58

So, if we stop to think about how I have completed my project, I can say that I am

satisfied, because despite the little initial knowledge of the subject, the time available to

fulfill the goal and the problems encountered throughout the research, a large part of the

objectives has been met. I was able to understand the technology, the advantages it

offers and the possible challenges it poses, and to propose possible solutions to current

problems in the field.

6.1. Relationship Project - Studies
This section will be devoted to explaining how and where all the knowledge acquired

during the completion if this project can be put into practice. I will start by pointing out

once again that technology was almost new to me. But during my first year in Valencia,

I had two courses that helped me, one of them was the one that familiarized us with

clustering, node, Docker and kubernetes. The other was the one that introduced me to

the topic of microservices, how to store them in the cloud. Although it was about the

traditional cloud, I was qualified enough to apply it. Then, during my stay in Budapest, in

the first semester, two of the courses were software development, where my part was

just the realization of the server and deployment in the cloud and on a server.

6.2. Future Work
To conclude my thesis, I will, of course, present those things that I was not able to do in

the way I first wanted to do them and some new points of interest that were discovered

in the process.

 The first aspect I would like to work on further is clearly the experimental part. To

be able to finalize the live migration process in OpenNebula.

 Of the ideas put forward as solutions, I am personally seduced by the idea of

implementing live migration based on privacy certificates. Because I believe that

data protection is a fundamental aspect.

 Being able to perform the same migration process on more than one platform,

such as Cloudify or Crossplane.

 To carry out the live migration process with a larger project, so I can observe the

differences or truly quantify the process.

Live Migration of Containers in Cloud Computing and Multicloud

 59

7. Bibliography

1.Red Hat. Understanding cloud computing. [Online]
https://www.redhat.com/es/topics/cloud.

2.Red Hat. What are cloud services? [Online]
https://www.redhat.com/es/topics/cloud-computing/what-are-cloud-services.

3.Stackpath. What is fog computing? [Online] https://www.stackpath.com/edge-
academy/what-is-fog-computing.

4.Red Hat. Edge Computing. [Online] https://www.redhat.com/en/topics/edge-
computing.

5.Cepymenew. Diferencias cloud fog edge computing. [Online]
https://cepymenews.es/diferencias-cloud-fog-edge-computing.

6.Cloudflare. What is Multicloud? [Online] https://www.cloudflare.com/es-
es/learning/cloud/what-is-multicloud/.

7.Infoq. Container live migration. [Online] https://www.infoq.com/articles/container-
live-migration/.

8.Bruno, Rodrigo and Ferreira, Paulo. ALMA – GC-assisted JVM Live Migration.
[Online] https://rodrigo-bruno.github.io/papers/rbruno-middleware16.pdf.

9.OpenNebula. Edge Cloud. [Online] https://opennebula.io/edge-cloud/.

10.OpenNebula. Multicloud. [Online] https://opennebula.io/multi-cloud/.

11.Opennebula. Mastering Containers. [Online] https://opennebula.io/mastering-
containers/.

12.Cloudify. Migrating Pods Same Kubernetes Cluster. [Online]
https://cloudify.co/blog/migrating-pods-containerized-applications-nodes-
kubernetes-cluster-using-cloudify/.

13.Red Hat. Network considerations. [Online] https://docs.openshift.com/container-
platform/4.7/migrating_from_ocp_3_to_4/planning-considerations-3-4.html.

14.OpenNebula. Single Front-end Installation. [Online]
https://docs.opennebula.io/6.4/installation_and_configuration/frontend_installation/i
nstall.html.

15.Paul, Subharthi , et al. Application delivery in multi-cloud environments using.
[Online]
https://reader.elsevier.com/reader/sd/pii/S1389128614000826?token=2680C78F80
A2E827DD207AF973AC8936F5B756AE26210095C5C557AAE26794F863D4CC1
A6B967707F431374B764BFEFD&originRegion=eu-west-
1&originCreation=20220627000317.

Live Migration of Containers in Cloud Computing and Multicloud

60

8. Annex

8.1. Sustainable Development goals
Degree to which the work is related to the Sustainable Development Goals (SDGs)

Sustainable Development Goals High Medium Low Not
applicable

SDG 1. No poverty. X
SDG 2. Zero hunger. X
SDG 3. Good health and well-being. X
SDG 4. Quality education. X
SDG 5. Gender equality. X
SDG 6. Clean water and sanitation. X
SDG 7. Affordable and clean energy. X
SDG 8. Decent work and economic growth. X
SDG 9. Industry, innovation, and infrastructure. X
SDG 10. Reduced inequalities. X
SDG 11. Sustainable cities and communities. X
SDG 12. Responsible consumption and production. X
SDG 13. Climate action. X
SDG 14. Life below water. X
SDG 15. Life on land. X
SDG 16. Peace, justice, and strong institutions. X
SDG 17. Partnerships for the goals. X

ETS Enginyeria Informàtica
Camí de Vera, s/n. 46022.
València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es -
www.inf.upv.es

Live Migration of Containers in Cloud Computing and Multicloud

 61

Reflection on the relationship of the thesis with the SDGs and with the most related

SDGs.

I have related several of the SDGs to my thesis. I do anticipate that this project will be

relevant to 2 of the suggested overarching objectives. All the project goals will be

discussed, along with an explanation of how and why each goal is connected to the

others.

The first SDG that my thesis may be related to is SDG 12. Responsible Consumption

and Production, with a medium level relationship. This is because my project is based

on the study of the migration process of containers between different Clouds, where

either the reason for the migration process or just the outcome of the migration can be

related to that SDG. When talking about the relationship with the reasons for migration,

we refer to the fact that what we are looking for with the migration is to satisfy responsible

consumption needs. Moving our container to a provider that offers services more in line

with our needs (dedicated CPU, dedicated GPU, etc.). On the other hand, it is also

mentioned that migration can result in a closer relationship with this ODS. This may be

that, when migrating for whatever reason, scalability, maintenance, error prevention, we

find that the new container is hosted on a host that has a much more responsible

resource allocation than the previous one.

Lastly, and the one that I consider to be the one that is most closely related to my work

is SDG 9. Industry, Innovation, and Infrastructure. Considering the nature of the process

being studied in my work, it is clearly related to infrastructures, since it talks about the

migration of a container that is in a Cloud to another, which may be in a different region

or country than the one it was previously in. It is also worth highlighting the relationship

it has as it is an innovative process. Of course, it is a process that has been going on for

some time, but it is still expanding and improving due to the number of unknowns or

problems it presents as discovered throughout this work.

ETS Enginyeria Informàtica
Camí de Vera, s/n. 46022.
València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es -
www.inf.upv.es

