

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/188195

Ren, Z.; Mukherjee, M.; Bennis, M.; Lloret, J. (2021). Multikernel Clustering via Non-
Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks. IEEE
Journal on Selected Areas in Communications. 39(7):1946-1956.
https://doi.org/10.1109/JSAC.2020.3041396

https://doi.org/10.1109/JSAC.2020.3041396

Institute of Electrical and Electronics Engineers

© 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Multi-kernel Clustering via Non-negative Matrix
Factorization Tailored Graph Tensor over

Distributed Networks
Zhenwen Ren, Member, IEEE, Mithun Mukherjee, Senior Member, IEEE, Mehdi Bennis, Senior Member, IEEE,

and Jaime Lloret, Senior Member, IEEE

Abstract—Next-generation wireless networks are witnessing an
increasing number of clustering applications, and produce a large
amount of non-linear and unlabeled data. In some degree, single
kernel methods face the challenging problem of kernel choice. To
overcome this problem for non-linear data clustering, multiple
kernel graph-based clustering (MKGC) has attracted intense
attention in recent years. However, existing MKGC methods
suffer from two common problems: (1) they mainly aim to learn a
consensus kernel from multiple candidate kernels, slight affinity
graph learning, such that cannot fully exploit the underlying
graph structure of non-linear data; (2) they disregard the high-
order correlations between all base kernels, which cannot fully
capture the consistent and complementary information of all ker-
nels. In this paper, we propose a novel non-negative matrix fac-
torization (NMF) tailored graph tensor MKGC method for non-
linear data clustering, namely TMKGC. Specifically, TMKGC
integrates NMF and graph learning together in kernel space so as
to learn multiple candidate affinity graphs. Afterwards, the high-
order structure information of all candidate graphs is captured
in a 3-order tensor kernel space by introducing tensor singular
value decomposition based tensor nuclear norm, such that an
optimal affinity graph can be obtained subsequently. Based on
the alternating direction method of multipliers, the effective local
and distributed solvers are elaborated to solve the proposed
objective function. Extensive experiments have demonstrated the
superiority of TMKGC compared to the state-of-the-art MKGC
methods.

Index Terms—Multiple kernel clustering, intelligent network,
distributed computation, non-negative matrix factorization, ten-
sor learning.

I. INTRODUCTION

DUE to the proliferation of the Internet of Things (IoT)
devices, a massive amount of data is being generated

at the network edge [1], [2]. At the same time, machine
learning over wireless networks [3]–[5] exploits data analytics
to improve network optimization. Several distributed machine
learning frameworks and algorithms [6], [7] are taking a step

Z. Ren is with the Department of National Defence Science and Technology,
Southwest University of Science and Technology, Mianyang, China, 621010,
and the Department of Computer Science, Nanjing University of Science and
Technology, Nanjing, China, 210094 (e-mail: rzw@njust.edu.cn).

M. Mukherjee is with the Department of Electronic and Computer Engi-
neering, Nanjing University of Information Science and Technology, Nanjing
210044, China (e-mail: m.mukherjee@ieee.org).

M. Bennis is with the Centre of Wireless Communication, University of
Oulu, Finland (e-mail: mehdi.bennis@oulu.fi).

J. Lloret is with the Instituto de Investigación para la Gestión Integrada de
Zonas Costeras (IGIC), Universitat Politecnica de Valencia, 46022 Valencia,
Spain and School of Computing and Digital Technologies, Staffordshire
University, Stoke, UK (e-mail: jlloret@dcom.upv.es).

forward toward intelligent communication systems. Usually,
obtaining the labeled data is not always feasible whereas
abundant unlabeled data are available and easier to collect.
Clustering is essential to handle unlabeled data and plays
a central role in data mining, whose goal is to partition
unlabeled data points into clusters [8], [9]. Along with the
remarkable growth in data traffic over the past years, how to
effectively handle non-linear data is a daunting task [10], [11].
Traditional single kernel methods can solve this problem to
some extent, nevertheless, they have a weak ability to exploit
the underlying relationships of non-linear data, such as those
generated by Internet of Things (IoT) sensor and surveillance
video data. The main reasons are that (1) each kernel function
has a different representation capability; (2) most suitable
kernels and the associated parameters for a specific dataset
are difficult to select. In this paper, to tackle the challenging
problem of non-linear data clustering, we seamlessly integrate
graph-based clustering (GBC) [12] and multiple kernel learn-
ing (MKL) [8], [13] into a unified objective function. This
learning paradigm is dubbed as multiple kernel graph-based
clustering (MKGC).

In recent years, GBC methods have been widely investigated
due to their effectiveness in capturing the complex graph
structure hidden in data. Usually, GBC consists of two contin-
uous steps [12], [14]: (1) constructing an affinity graph based
on graphical representations of the relationships among data
points, and (2) applying spectral clustering algorithms (e.g.,
normalized cut and ratio cut) to obtain clustering assignments.
Constructing a high-quality affinity graph plays a crucial role
in GBC [15]. Overall, the existing GBC methods can be
roughly divided into three main categories. The first one
uses binary similarity, cosine similarity, or gaussian kernel
similarity to construct a predefined similarity graph as affinity
graph [16]. The second one is based on the self-expressiveness
subspace learning (SESL) [15], which reconstructs every data
point by a linear combination of all other data points and
produces a coefficient matrix as an affinity graph. The third
one is adaptive neighbors graph learning (ANGL) [17], which
assigns a probability for each sample as the neighborhood of
another sample to construct an affinity graph. Accordingly,
homogeneous data points have high affinity values, while het-
erogeneous data points have low affinity values. On the other
hand, MKL aims to learn a consensus kernel from multiple
base kernels, which cannot only effectively handle non-linear
data but also alleviate the curse of kernel choice [13]. Overall,

2

Base kernels

Results

Data

Clustering
algorithm

Network elements

Base kernels are distributed
over the network

High order
correlations

Server

After
convergence

t-TNNGNMF

Optimize TMKGC by using the local or the distributed schemes

H

H

H

Rotate

Construct

(1)

(2)

(m)

S

S

S

(1)

(2)

(m)

 Kernel

affinity graphs
Update
graphs

Comprehensive
graph

Fig. 1. Framework of the proposed method.

there are three strategies for the comprehensive utilization of
the given multiple base kernels, i.e., (1) using linearly kernel
combination to generate a consensus kernel [18], [19]; (2)
using non-linearly kernel combination to generate a consensus
kernel [13], [20]–[22]; (3) changing the goal of consensus
kernel learning to consensus graph learning [12], [23]. In
practice, MKL has been widely used to handle non-linear data
in various applications [8], [22].

Recently, based on GBC and MKC, several state-of-the-art
MKGC methods are gradually emerging [13], [19]–[28]. These
methods typically work as follows: (1) constructing multiple
base kernel Gram matrices by relying on the given multiple
base kernels, (2) learning a consensus kernel and an affinity
graph, while the focus is on consensus kernel learning, and
(3) producing the clustering results on the learned affinity
graph. Despite of their success in practice, these existing
MKGC methods still suffer from the following drawbacks:
(1) they usually pay more attention to consensus kernel rather
than affinity graph, this violates the intention of graph-based
clustering aiming to learn an optimal affinity graph, and (2)
they essentially ignore the high-order correlations (e.g., tensor)
underlying the multiple base kernels, so they may not fully
explore the consistent and complementary information of the
given multiple kernels.

To tackle the aforementioned problems, in this paper, we
propose a novel MKGC method, namely tensor multiple kernel
graph-based clustering (TMKGC), for handling non-linear
data clustering. Specifically, by leveraging non-negative matrix
factorization (NMF) with multiple kernel Gram matrices, we
first learn multiple candidate affinity graphs in kernel space.
Moreover, we integrate these candidate graphs into a 3-order
graph tensor, and then rotate this tensor for investigating the
correlations of these graphs and reducing the computation
complexity simultaneously. Finally, the tensor Singular Value

Decomposition (t-SVD) based tensor nuclear norm (t-TNN)
is employed to exploit the consistency and complementary
of candidate kernel graphs in the kernelized tensor space,
such that the essential tensor with high-order correlations
can be obtained. Figure 1 shows the proposed framework. In
summary, this paper has the following contributions:

• Unlike the existing SESL and ANGL-based graph learn-
ing paradigm, we propose a novel kernel graph learning
paradigm based on NMF (GNMF for short). To the best
of our knowledge, it is the first method to learn an affinity
graph directly based on NMF in kernel space.

• By folding the candidate affinity graphs produced by
GNMF as a graph tensor, the introduced t-TNN can
explore the consistency and complementary information
of the NMF tailored graph tensor. With the ability to
capture the high-order correlations of data in the level
of tensor, the multiple base kernels can be sufficiently
utilized.

• We integrate the proposed graph learning paradigm and
the t-TNN into a unified objective function. Since it
is concise and easy to follow, we design local and
distributed solvers to solve it efficiently, where the can-
didate affinity graphs and the graph tensor are mutually
reinforced until the optimal tensor is obtained.

• Compared with state-of-the-art MKGC methods, the su-
periority of TMKGC is demonstrated by conducting
extensive experiments.

The remainder of the paper is structured as follows. Section II
briefly reviews the NMF and the state-of-the-art MKGC meth-
ods. Section III presents the TMKGC method, solver, compu-
tational complexity, and convergence. Then, the experimental
results are shown in Section IV. Finally, Section V concludes
our work.

3

II. RELATED WORK

In this section, we review NMF and some related MKGC
methods for comprehensive understanding of our method.

A. Nonnegative Matrix Factorization (NMF)

Given a nonnegative data matrix X = [x1,x2, · · · ,xn] ∈
Rd×n, where xi, n, and d indicate i-th sample, sample size,
and sample dimensionality, respectively. The goal of NMF is to
find two nonnegative matrices, F+ ∈ Rd×r and P+ ∈ Rr×n,
r � n, by solving the following problem

min
F+,P+

‖X− F+P+‖2F , (1)

where F+ > 0 and P+ > 0 usually demonstrate the basis
matrix and representation matrix, respectively. Note that (1)
cannot handle nonlinear data directly. To tackle this tricky
problem, Concept Factorization (CF) is widely used in many
references [29]. However, NMF and CF can usually be applied
to linear kernel, but not for MKL; moreover, they cannot learn
an affinity graph directly, which hampers their applications on
graph-based learning tasks. In this paper, we propose a novel
NMF based graph learning paradigm to learn an affinity graph
directly.

B. Multiple Kernel Graph-based Clustering (MKGC)

MKGC has been extensively studied during the recent
years [13], [19]–[28]. According to the integration strategy
of multiple kernels (see Section I), we briefly review some
related work.

(1) Linearly kernel combination: The linearly kernel com-
bination scheme aims to learn a consensus kernel by linearly
combining the base kernels [27]. For example, multiple kernel
fuzzy k-means (MKKM) [24] extends the fuzzy k-means
algorithm into multiple kernel scenarios. Then, robust mul-
tiple kernel k-means (RMKKM) [19] extended from MKKM
uncovers the cluster membership, the optimal combination of
multiple base kernels, and the best clustering label simulta-
neously. Inspired by MKKM, multi-view clustering via late
fusion alignment maximization (MVCLFA) [25] performs the
weighted strategy to learn the consensus partition so that
the computational complexity is significantly reduced. Affin-
ity aggregation for spectral clustering (AASC) [26] can be
considered as a multiple kernel clustering version of spectral
clustering, and then extends spectral clustering to the scenarios
with multiple affinities available. Spectral clustering with
multiple kernels (SCMK) [27] uses the convex combination
of multiple base kernels to learn a better consensus kernel by
using the fact that the optimal consensus kernel is a linear
combination of base kernels. Overall, this scheme is easily to
accomplish; however, the solution set of the learned consensus
kernel is limited.

(2) Non-linearly kernel combination: The non-linearly
kernel combination scheme aims to learn a consensus kernel
by assuming that the consensus kernel is the neighbor of
each base kernel (i.e., neighborhood kernel learning [13]).
For instance, self-weighted multiple kernel learning (SMKL)
[13] assumes that the consensus kernel is a neighborhood of

multiple base kernels, then proposes a new MKL model to fuse
the given multiple kernels. By considering the neighborhood
structure among base kernels, neighbor-kernel-based MKL
[28] has been proposed. By considering the low-rank property
of the samples, low-rank kernel learning graph-based clus-
tering (LKGr) [20] has been proposed to impose a low-rank
constraint on kernel matrix. Robust multiple kernel subspace
clustering (JMKSC) [22] uses the block diagonal regularizer
and the self-expressiveness to learn an affinity matrix with
optimal block diagonal property. Local structural graph and
low-rank consensus multiple kernel learning (LLMKL) [21]
integrates the MKL, the global and local structure, as well
as self-expressiveness property in a unified model. Overall,
although this scheme has a wide solution set, the consensus
kernel cannot capture the structure information of base kernels.

(3) Kernel graph fusion: Kernel graph fusion scheme aims
to learn a consensus affinity graph by using graph learning
paradigms, and then employs spectral clustering to segment
clusters [12]. For example, structure preserving multiple ker-
nel clustering (SPMKC) [23] integrates the global and local
structure preserving by simultaneously leveraging both SESL
and ANGL with a kernel affine weight strategy into a unified
MKL optimization model. Consensus affinity graph learning
(CAGL) [12] learns a consensus graph directly for MKGC,
and has produced promising results. Overall, this scheme can
capture the structure information of base kernels, which is very
important to unsupervised clustering tasks.

III. PROPOSED METHOD

In this section, we elaborate our proposed TMKGC method.

A. Notations

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER

Notation Definition Notation Definition

M A matrix m A vector
m A scalar M(k) The k-th matrix of a cell

M A tensor
Mijk The (i, j, k)-th entry M(:, j, k) The mode-1 fiber
M(i, :, k) The mode-2 fiber M(i, j, :) The mode-3 fiber
M(i; :, :) The i-th horizontal slice M(:, j, :) The j-th lateral slice
M(:, :, k) The k-th frontal slice M(k) The k-th frontal slice

In this paper, we denote bold upper case letters for matrices,
e.g., M, bold lower case letters for vectors, e.g., m, lower
case letters for entries of vectors or matrices, e.g., mij , bold
calligraphy letters for tensors, e.g., M. Table II summarizes
the notations used in this paper.

B. Preliminaries

In this section, some operators and definitions related to
tensor are introduced to help understand tensor better [30].

First, we give some operators about 3-order tensor. For a
3-order tensor M ∈ Rn1×n2×n3 , Mf = fft(M, [], 3) and
M = ifft(Mf , [], 3) are the fast Fourier transformation
(FFT) and inverse FFT along the third direction of tensor

4

M, respectively. bvec(M) = [M(1);M(2); · · · ;M(n3)] ∈
Rn1n3×n2 and fold(bvec(M)) = M are defined as
the block vectorizing and the inverse operation of bvec,
respectively. bdiag(M) ∈ Rn1n3×n2n3 and bcirc(M) ∈
Rn1n3×n2n3 denotes the block diagonal matrix and the corre-
sponding block circulant matrix, respectively, i.e.,

bdiag(M) =

M(1) · · · 0

M(2)

...
. . .

...
0 · · · M(n3)

bcirc(M) =

M(1) M(n3) · · · M(2)

M(2) M(1) · · · M(3)

...
.

...
M(n3) M(n3−1) · · · M(1)

 .

Then, we present some some definitions about 3-order
tensor as following.

Definition 1 (T-Product). The t-product between two 3-
order tensors with matched dimensions, M ∈ Rn1×n2×n3

and N ∈ Rn2×n4×n3 , is defined as M ∗N ∈ Rn1×n4×n3 ,
i.e.,

M ∗N = fold(bcirc(M) bvec(N)) . (2)

Definition 2 (Identity Tensor). The identity tensor I ∈
Rn1×n1×n3 satisfies that its first frontal slice is the identity
matrix with size n1 × n1 while the others frontal slices are
zeros.

Definition 3 (Tensor Transpose). The transpose operator of
the tensor M ∈ Rn1×n2×n3 is denoted as Mᵀ ∈ Rn2×n1×n3 ,
which is calculated by transposing all frontal slices of M.

Definition 4 (Orthogonal Tensor). A tensor F ∈
Rn1×n1×n3 is orthogonal if

Fᵀ ∗F = F ∗Fᵀ = I . (3)

Definition 5 (f -Diagonal Tensor).A tensor is called f -
diagonal if each of its frontal slices is diagonal matrix.

Definition 6 (Tensor Singular Value Decomposition, t-
SVD). The t-SVD of tensor M ∈ Rn1×n2×n3 is defined as

M = U ∗ G ∗ Vᵀ . (4)

where G ∈ Rn1×n2×n3 is a f -diagonal tensor, and U ∈
Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors. To
facilitate understanding, t-SVD operator is shown in Fig. 2.

Definition 7 (t-SVD Based Tensor Nuclear Norm, t-
TNN). ‖M‖~ is the t-SVD based tensor nuclear norm of
tensor with respect to M ∈ Rn1×n2×n3 , which is given by
the sum of singular values of all the frontal slices of Mf ,
i.e.,

‖M‖~ =

n3∑
k=1

∥∥∥M(k)
f

∥∥∥
∗
=

min(n1,n2)∑
i=1

n3∑
k=1

∣∣∣G(k)
f (i, i)

∣∣∣ . (5)

According to the frontal slices of {M(k)
f }n3

k=1, we employ the
SVD, M(k)

f = U (k)
f G(k)

f V(k)ᵀ

f , to compute the corresponding
{G(k)

f }n3

k=1. It has been demonstrated that the t-TNN can
exploit the structural information of a tensor better than the
unfolding-based tensor nuclear norm [31].

n
n

n

n n
n

n

n

n n

n

n

Fig. 2. The t-SVD operator of the tensor M ∈ Rn1×n2×n3 .

C. Proposed TMKGC Method

In MKL scenarios, give a data matrix X = [x1, · · · ,xn]
consisting of n samples drawn from c crispy clusters, a kernel
pool consisting of m base kernels {H(k)}mk=1 is calculated on
X in advance.

1) Graph learning paradigm based on NMF: As afore-
mentioned in section II-A, NMF and its extended version CF
cannot learn a graph directly and cannot be used to MKL
scenarios. Without loss of generality, we consider a mapping
xi → φ(xi), or X→ φ(X) = (φ(x1), · · · , φ(xn)), where φ is
a kernel function. By this means, the samples of non-linearly
separable in the original space become linearly separable in
the reproducing kernel Hilbert space [32].

Supposing the clustering indicator matrix P ∈ Rn×c de-
notes the posterior cluster probabilities, and the corresponding
cluster centroids F requires each column to be convex combi-
nations of input data. F can be computed as fi = φ(X)pi/ni,
i.e., F = φ(X)PD−1

n , where ni is the number of sam-
ples of cluster, i, and Dn = diag (n1, · · · , nc). Therefore,
the pair of property: (1) F encodes centroids, and (2) P
encodes the posterior probabilities, induces a factorization
φ(X) ≈ φ(X)PD−1

n Pᵀ. Absorbing D−1
n into P and letting

P+ = max(P
√
D−1
n , 0), we then have

φ(X) ≈ φ(X)P+P
ᵀ
+ , (6)

where P+ is the expected clustering indicator matrix.
It is easy to see that we can obtain the indicator matrix P+

via the following optimization problem, i.e.,

min
P+

‖φ(X)− φ(X)P+P
ᵀ
+‖2F (7)

= Tr(φ(X)ᵀφ(X)− 2Pᵀ
+φ(X)ᵀφ(X)P+ (8)

+Pᵀ
+φ(X)ᵀφ(X)P+P

ᵀ
+P+) . (9)

Now, we aim to pursue a high-quality affinity graph for
clustering purpose. In an ideal case, the block diagonal
property of affinity graph plays a significant role for graph-
based learning task [15] and is explicitly pursued in recent
GMKC methods [12], [13], [21], [22]. Theoretically, since
P+ is the clustering indicator matrix, so P+P

ᵀ
+ is a strictly

block diagonal matrix. Accordingly, we can learn a symmetric
affinity graph S ∈ Rn×n that best approximates P+P

ᵀ
+,

i.e., S = P+P
ᵀ
+. Here, we give a toy example to show

the connections between clustering indicator matrix P+ and
affinity graph S mathematically. As shown in Fig. 3, there
are 1, 2, 3 samples in 3 different clusters, respectively, and

5

1 00
0 11
0 11
0 00
0 00
0 00

0 00
0 00
0 00
1 11
1 11
1 11

1 00
0 01
0 01
0 10
0 10
0 10

1 00 0 00

0 00 1 11
0 11 0 00

P+P|
+ = S

<latexit sha1_base64="hkKLSxqAlVzW9tjz2YHgmyfT8uk=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0UoCCWpgm6EghuXFe0Dmhgm00k7dDIJMxOhhPyGG3/FjQtFXOrKv3HSBtHWAwNnzrmXe+/xY0alsqwvo7S0vLK6Vl6vbGxube+Yu3sdGSUCkzaOWCR6PpKEUU7aiipGerEgKPQZ6frjy9zv3hMhacRv1SQmboiGnAYUI6Ulz7ScEKmRH6StzDuGvz93DuWKCIwYvPgxbjLPrFp1awq4SOyCVEGBlmd+OIMIJyHhCjMkZd+2YuWmSCiKGckqTiJJjPAYDUlfU45CIt10elkGj7QygEEk9OMKTtXfHSkKpZyEvq7MN5TzXi7+5/UTFZy7KeVxogjHs0FBwqCKYB4THFBBsGITTRAWVO8K8QgJhHUksqJDsOdPXiSdRt0+qTeuT6vNWhFHGRyAQ1ADNjgDTXAFWqANMHgAT+AFvBqPxrPxZrzPSktG0bMP/sD4/AZpZqB3</latexit>

=<latexit sha1_base64="XSXR+s9bwDR6kz/QE40tUn7vEX8=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iNgl6EgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+G7ut59QaR7LBzNJ0I/oUPKQM2qs1LjtF0tuxV2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vhTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ61qxbusVBtXpVo5iyMPZ3AOZfDgGmpwD3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH4ZJjKs=</latexit>

⇤
<latexit sha1_base64="0aPa8Z59VicXWsnndkOkYb2T/Ps=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBaheChJFfRY8OKxiq2FNpTNdtMu3WzC7kQoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG00v056Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/dErOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7fJQGjOUE4soUwLeythI6opQxtOyYbgLb+8Str1mndRq99dVhrVPI4inMApVMGDK2jALTShBQxCeIZXeHPGzovz7nwsWgtOPnMMf+B8/gC/C4zC</latexit>

Fig. 3. The relation between indicator P+ and graph S.

the affinity graph S produced by P+P
ᵀ
+ has obvious block

diagonal property for clustering purpose.
Furthermore, due to Pᵀ

+P+ = I, we have ‖S‖2F =
‖P+P

ᵀ
+‖2F = Tr(P+P

ᵀ
+P+P

ᵀ
+) = Tr(I) = c. Hereto, the

high-quality affinity graph S can be obtained according to the
kernel trick H = φ(X)ᵀφ(X), i.e., (9) can be rewritten as

min
S

Tr(H− 2SᵀH+ SᵀHS)

s.t. ‖S‖2F = c,Sᵀ = S,S ≥ 0 .
(10)

Based on the aforementioned analysis, we bridge the re-
lations between NMF and affinity graph learning dexterously.
We dub this graph learning paradigm as graph NMF (GNMF).
In MKL scenarios, since a kernel pool consisting of m
base kernels {H(k)}mk=1 in given in advance, we can obtain
m candidate affinity kernel graphs {S(k)}mk=1 by leveraging
GNMF accordingly.

2) NMF Tailored Graph Tensor: With m candidate kernel
affinity graphs {S(k)}mk=1 at hand, we strongly desire that an
intrinsic affinity graph can be learned to capture both the
consistent and complementary information among these m
graphs. To this end, we stack the m kernel graphs into a tensor
S∗ ∈ Rn×n×m (i.e., S∗ = bvfold([S(1); · · · ;S(m)])), and
then rotate S∗ to S ∈ Rn×m×n (i.e., rotate(S∗)), as
illustrated in Fig 4. By this means, this can better explore
the correlations between these candidate graphs in kernelized
tensor space. According to (5), t-SVD performs FFT along the
third dimension of S, so computing SVD in each frontal slice
with the information of these kernel graphs is more mean-
ingful. Meanwhile, instead of using S∗, the computational
complexity is largely reduced (see Section III-F).

Due to the fact that m candidate kernel graphs origin from
the same dataset, different S(k) possesses some consensus
structure information; on the other hand, considering the fact
that the number of sample is usually much bigger than the
number of clusters, thus the learned tensor S should enjoy
the low-rank property. In this paper, a t-TNN term, ‖S‖~, is
used to regularize S as a constraint of the intrinsic low-rank
tensor, and then we have

min
S(k)

m∑
k=1

Tr
(
H(k)−2(S(k))ᵀH(k)+(S(k))ᵀH(k)S(k)

)
+β ‖S‖~

s.t. ∀k, ‖S(k)‖2F = c, (S(k))ᵀ = S(k),S(k) ≥ 0,

S = rotate
(
bvfold([S(1); · · · ;S(m)])

)
.

(11)

Tensor Rotated tensor

Rotate operator

S(1)
S(2)

S(m)

...

Inverse
rotate operator

High order
correlations

rotate

irotate

Kernel affinity graphs

S 2 Rn⇥n⇥m
<latexit sha1_base64="WJHObMxtlmY0+sDVPUJYILoWQFE=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0XoqiRV0IWLghuX9dEHNLFMJtN26GQSZiZCCfkZN/6KGxcWEVz5K07SINp6YZhzz72Xe8/xIkalsqxPo7Syura+Ud6sbG3v7O6Z+wcdGcYCkzYOWSh6HpKEUU7aiipGepEgKPAY6XqTq6zefSRC0pDfq2lE3ACNOB1SjJSmBual44XMl9NAf4kTIDXGiCV3aepQDvPc85Lb9CHRmaIBkfAHBOnArFp1Kw+4DOwCVEERrYE5c/wQxwHhCjMkZd+2IuUmSCiKGUkrTixJhPAEjUhfQ470HjfJVabwRDM+HIZCP65gzv6eSFAgMyG6M7tbLtYy8r9aP1bDCzehPIoV4Xi+aBgzqEKYWQZ9KghWbKoBwoLqWyEeI4Gw0sZWtAn2ouRl0GnU7dN64+as2qwVdpTBETgGNWCDc9AE16AF2gCDJ/AC3sDMeDZejXfjY95aMoqZQ/AnjK9vs/imew==</latexit>

S⇤ 2 Rn⇥n⇥m
<latexit sha1_base64="4EfDrSEoiybfERTqDUWXW9/F7dY=">AAACJ3icbVDLSgMxFM3UV62vqks3wSIUF2WmCrqSghuX9dEHdNqSyWTa0CQzJBmhDPM3bvwVN4KK6NI/MdMW0dYLIeeeey/3nuNFjCpt259Wbml5ZXUtv17Y2Nza3inu7jVVGEtMGjhkoWx7SBFGBWloqhlpR5Ig7jHS8kaXWb11T6SiobjT44h0ORoIGlCMtKH6xQvXC5mvxtx8icuRHmLEkts07R27VMAJ43nJTdpLTKYpJwr+AJ72iyW7Yk8CLgJnBkpgFvV+8cX1QxxzIjRmSKmOY0e6myCpKWYkLbixIhHCIzQgHQMFMnu6yURnCo8M48MglOYJDSfs74kEcZVJMZ3Z3Wq+lpH/1TqxDs67CRVRrInA00VBzKAOYWYa9KkkWLOxAQhLam6FeIgkwtpYWzAmOPOSF0GzWnFOKtXr01KtPLMjDw7AISgDB5yBGrgCddAAGDyAJ/AK3qxH69l6tz6mrTlrNrMP/oT19Q30sacX</latexit>

Fig. 4. The rotated affinity graph tensor in our TMKGC. Note that rotate
and irotate are two shift functions.

Since ‖S(k)‖2F = c is hard to solve, we relax this equality
constraint according to Lagrangian relaxation, which approx-
imates a difficult problem of constrained optimization by
a simpler problem. If α is large enough, we can append
α(‖S(k)‖2F − c) into (11). Therefore, the final objective func-
tion can be upgraded to

min
S(k)

m∑
k=1

Tr
(
H(k) − 2(S(k))ᵀH(k) + (S(k))ᵀH(k)S(k)

)
+ α

∥∥∥S(k)
∥∥∥2
F
+ β ‖S‖~

s.t. ∀k, (S(k))ᵀ = S(k),S(k) ≥ 0,

S = rotate
(
bvfold([S(1); · · · ;S(m)])

)
. (12)

3) Graph Tensor Guided Graph Clustering: After obtaining
the graph tensor S with size n ×m × n, we can irotate
it to size n × n × m, i.e., S∗ = irotate(S). Then, we
compute the final comprehensive affinity graph Z by averaging
all frontal slices of S∗, i.e.,

Z =
1

m

m∑
k=1

S∗(:, :, k) . (13)

Subsequently, take Z as input, the spectral clustering algo-
rithm is employed to pursue the clustering assignments.

D. Optimization

In this section, we devise a solver based on the alternating
direction method of multipliers (ADMM) [33], [34] to itera-
tively solve the proposed TMKGC method. According to the
principle of ADMM, we first introduce an auxiliary tensor
variable A to make problem (12) separable as follows:

min
S(k),A

m∑
k=1

Tr
(
−2(S(k))ᵀH(k) + (S(k))ᵀH(k)S(k)

)
+α‖S(k)‖2F + β‖A‖~ s.t. (S(k))ᵀ = S(k),S(k) ≥ 0,

A = S,S = rotate
(
bvfold([S(1); · · · ;S(m)])

)
.

(14)

6

We then form the following augmented Lagrangian function
of (14) as follows

min
S(k),A

m∑
k=1

Tr
(
−2(S(k))ᵀH(k) + (S(k))ᵀH(k)S(k)

)
+α‖S(k)‖2F + β‖A‖~ +

µ

2
‖A− S +

Y
µ
‖2F

s.t. (S(k))ᵀ = S(k),S(k) ≥ 0,

S = rotate
(
bvfold([S(1); · · · ;S(m)])

)
.

(15)

where Y is the Lagrangian multiplier, and µ is the penalty
parameter. Then, we calculate each variable by fixing the
remaining variables respectively.

I Step-1, S-subproblem: By fixing tensor A, we update
each candidate affinity graph {S(k)}mk=1 via

min
S(k)≥0,(S(k))ᵀ=S(k)

Tr
(
−2H(k)S(k) + (S(k))ᵀH(k)S(k)

)
+α‖S(k)‖2F +

µ

2
‖A(k) − S(k) +

Y(k)

µ
‖2F .

(16)
where A(k) and Y(k) are the k-th frontal slice of the ten-
sors rotate(A) and rotate(Y), respectively. Taking the
derivative of this equation with respect to S(k) and setting it
to zero, we can learn the closed form solution of S(k), i.e.,(
S(k)

)∗
=
(
2H(k) + 2αI+ µI

)−1 (
2H(k) + µA(k) +Y(k)

)
,

(17)
Then, considering the constraints, S(k) ≥ 0, (S(k))ᵀ = S(k),
we compute the symmetric non-negative affinity graph using
(S(k))∗ = 1/2((abs(S(k))∗) + abs((S(k))∗)).
I Step-2, A-subproblem: Ignoring the irrelevant items and

fixing the {S(k)}mk=1, the optimization problem with respect
to A can be rewritten as

min
A
β‖A‖~ +

µ

2
‖A− S +

Y
µ
‖2F , (18)

which is a t-TNN minimization problem. Let B = S − Y
µ ,

(18) can be solved by applying the tensor tubal-shrinkage of
B, according to the below theorem.
Theorem 1 For a scalar ρ > 0 and two 3-order tensors A ∈
Rn1×n2×n3 , B ∈ Rn1×n2×n3 , the global optimal solution of
the following problem.

min
A

ρ‖A‖~ +
1

2
‖A−B‖2F (19)

is given by the tensor tubal-shrinkage operator, i.e.,

A = Cn3ρ(B) = U ∗ Cn3ρ(G) ∗ Vᵀ , (20)

where B = U∗G∗Vᵀ and Cn3ρ(G) = G∗Q. Q ∈ Rn1×n2×n3

denotes a f-diagonal tensor and each diagonal element of Q
is defined as Qf (i, i, j) =

(
1− n3ρ

G(i, i, j)

)
+

[35].

I Step-3, ADMM variables: We update the variables
involved ADMM by

Y = Y + µ(A− S)

µ = min (ρµ, µmax) .
(21)

where ρ and µmax are the scalars involved ADMM.

Algorithm 1 The algorithm of TMKGC

Input: Multiple base kernels {H(k)}mk=1, α, and β.
1: Initialize ADMM variables: Y = 0, {A(:, :, k)}mk=1 = I,
{S(k)}mk=1 = I, µ = 10−4, ρ = 2, and µmax = 1010

2: repeat
3: Update each candidate graph {S(k)}mk=1 via (17);
4: Construct S via bvfold and rotate on {S(k)}mk=1;

5: Update the tensor A via (18);
6: Update the ADMM variables via (21);
7: until The stopping criterion is satisfied;
8: Construct a balanced affinity graph via (13);
9: Use spectral clustering to obtain the final cluster labels.
Output: Clustering results in terms of three metrics.

TABLE II
SUMMARIES OF THE EIGHT USED DATASETS.

Dataset Clusters (#c) Samples (#n) Features (#d)
Yale 15 165 1024
Jaffe 10 213 676
AR 120 840 768
ORL 40 400 1024
COIL20 20 1440 1024
binaryalphadigs 36 1404 320
Deep CIFAR-10 10 1000 1024
Synthetic dataset 2 2000 2
Synthetic dataset 2 2000 2

The stopping criterion of the iterative algorithm is met when
the residuals defined below are small enough, i.e.,

max
{∣∣objt+1 − objt

∣∣ ,∥∥St+1 − St
∥∥2
F

}
≤ ε , (22)

where objt is the objective value of (12) (i.e.,
obj =

∑m
k=1 Tr(H

(k) − 2(S(k))ᵀH(k) + (S(k))ᵀH(k)S(k)) +
α‖S(k)‖2F+β‖S‖~) at the t-th iteration, St is output tensor S
at the t-th iteration, and ε is a pre-defined threshold tolerance
to control the convergence sensibility. The optimization
procedure of the iterator algorithm is summarized in
Algorithm 1, and the demo code will be released on our
GitHub homepage (https://github.com/renzhenwen).

E. Distributed Network Optimizing

If the kernel pool contains multiple base kernels, the stand-
alone computer can not execute the proposed method effi-
ciently. Due to the detachable structure of Algorithm 1, it can
be solved by a distributed manner. Assume that there are l
(l ≤ m) slave nodes and one master node, and the non-linear
data is stored in the master node. We divide these slave nodes
into g groups, and each group has a communication node as
the virtual master node of this group. All the base kernels
are evenly distributed to the slaves nodes first, therefore these
nodes can download the data from the master node and
construct respective kernel matrices in advance.

When solving Algorithm 1, peers only synchronize with
their immediate topological neighbors of the same group in the
underlying communication network. To facilitate understand-
ing, refer to Fig. 5. Specifically, for update each candidate
kernel graph {S(k)}mk=1, it has an obvious parallel structure,

https://github.com/renzhenwen

7

Master

node

Comm. nodes

Slave nodes

Upload tensor

Download tensor

G11

M

G12

G13

G21

G22

G23

G31

G32

G33

Motivate disturbance

Perform Algorithm 1 via distributed

ADMM and exchange affinity

graphs S(k) in the same group

When receiving the

disturbance signal, use the

global graph S to update the

graph of communication node,

and then restart the group

Fig. 5. Illustration of the distributed network optimizing scheme. There are
eleven slave nodes and three groups with different colors.

so all the salve nodes in one group can exchange the learned
graph with its r neighbors via communication network, where
r is the peer neighbor nodes in the same group. For update
tensor S, each lateral slice {Si}mi=1 is a candidate kernel
graph, and some slices can be combined into a small-scale
tensor R ∈ Rn×r×n. Accordingly, each slave node can solve
(18) independently by replacing A, S, and Y as small-scale
tensors. If one group converges, the communication node
sends the consensus affinity graph to the master node. When
the master node receive g graphs, it will run Algorithm 1,
and then sends the learned graph to the communication node
as a disturbance. When all the slave nodes and master node
converge, the algorithm stops.

F. Computational Complexity and Convergence

Here we give a discussion about the computational cost
of Algorithm 1. For updating each candidate affinity graph
{S(k)}mk=1, although the matrix inverse operation (2H(k) +
2αI+ µI)−1 has high computational complexity, we can pre-
calculate it before iteration loops because the matrix inverse
operation is independent with {S(k)}mk=1. Therefore, the com-
putational complexity of the step 1 of Algorithm 1 is O(n2),
meanwhile, it can be easily parallelized [36]. For updating the
tensor A, we need to calculate the FFT and inverse FFT of the
tensor S ∈ Rn×m×n along the third dimension, which takes
O(mn2 log(n)); moreover, we need to compute the SVD of
each frontal slice of the tensor S in the Fourier domain with
complexity O(m2n2). Therefore, the step 2 of Algorithm 1
takes O(mn2 log(n) + m2n2). Note that without rotate
operator, the complexity is O(mn2 log(M) + mn3), hence
it is necessary to employ rotate operator on graph tensor

S∗. For these variables involved in ADMM, the computation
of step 3 at each iteration will take O(m). Theoretically, the
computational cost of Algorithm 1 is O(t(n2+mn2 log(n)+
m2n2 +m)), where t denotes the total number of iterations.
In reality, we have t � n and a small m. Thus the overall
cost for our TMKGC is O(tn2 log(n)). As a matter of fact,
the computational complexity of our method is considerably
less than that of the existing overwhelming majority MKGC
methods.

For the classical one-block or two-block ADMM, the con-
vergence property has been theoretically proved in [37]. In the
proposed algorithm, the updating of {S(k)}mk=1 can be treated
as a unified sub-problem during the optimization; moreover,
all these involved variables have closed form solutions. Hence,
Algorithm 1 will converge to the local optimum. Empirically,
we also conduct experiments to prove the convergence prop-
erty of Algorithm 1 in Section IV-H.

IV. EXPERIMENTS

In this section, we conduct experiments on seven real-world
small-to-medium datasets, one synthetic dataset, and a large-
scale dataset to compare the proposed TMKGC method with
some state-of-the-art MKGC methods.

A. Datasets and Kernel Setting

We extensively evaluate the clustering performance of the
proposed TMKGC on nine widely used datasets: (1) seven
small-to-medium datasets [8], [12], [13], [19]–[21], [23],
[27], [28], [38], including Yale1, Jaffe2, AR3, ORL4, bina-
ryalphadigs (BA)5, COIL206, and Deep CIFAR-107; (2) one
synthetic dataset; and (3) a large-scale dataset, Flower1028.
Note here that CIFAR-10 is a deep learning feature dataset,
which is built according to [12]. For the synthetic dataset, we
simulate two clusters and each cluster contains total 2,000 mo-
bile smart devices in a region. In our experiments, as [12], [13],
[19], [23], 12 base kernel functions are adopted for the seven
small-to-medium datasets and the synthetic dataset, which
consists of a cosine kernel kij = (xᵀ

i xj)/(‖xi‖22 ·‖xj‖22), four
polynomial kernels kij = (δ + xᵀ

i xj)
p where δ varies from

{0, 1} and p varies from {2, 4}, and seven radial basis function
(RBF) kernels kij = exp(−‖xi − xj‖22/(2πτ2), where π
varies from the set of {0.01, 0.05, 0.1, 1, 10, 50, 100} and τ
is the maximum distance between any two samples. For the
Flower102 dataset, we construct base kernels by following
[25]. In the end, all the kernels are normalized to [0, 1] by
kij = kij/

√
kiikjj . Concrete details are summarized in Table

II.

1http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.kasrl.org/jaffe.html
3http://www2.ece.ohio-state.edu/~aleix/ARdataset.html
4https://www.cl.cam.ac.uk/research/dtg/attarchive/facedataset.html
5https://cs.nyu.edu/~roweis/data/binaryalphadigs.mat
6http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
7https://www.cs.toronto.edu/~kriz/cifar.html
8https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

http://www.kasrl.org/jaffe.html
http://www2.ece.ohio-state.edu/~aleix/ARdataset.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedataset.html
https://cs.nyu.edu/~roweis/data/binaryalphadigs.mat
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

8

TABLE III
PERFORMANCE OF THE COMPARED MKGC METHODS ON EIGHT DATASETS.THE BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE.

Dataset Metric MKKM RMKKM MVCLFA AASC LKGr SCMK SMKL JMKSC LLMKL SPMKC-E SPMKC CAGL TMKGC
Year/Ref. / 12/ [24] 15/ [19] 19/ [25] 12/ [26] 19/ [20] 18/ [27] 18/ [13] 19/ [22] 19/ [21] 20/ [23] 20/ [23] 20/ [12] /

Yale
ACC 0.457 0.521 0.618 0.406 0.540 0.582 0.585 0.630 0.655 0.658 0.673 0.703 0.830
NMI 0.501 0.556 0.566 0.468 0.609 0.576 0.614 0.631 0.646 0.650 0.660 0.668 0.866

Purity 0.475 0.536 0.624 0.423 0.554 0.610 0.667 0.673 0.683 0.700 0.709 0.709 0.830

Jaffe
ACC 0.746 0.871 0.981 0.304 0.861 0.869 0.967 0.967 1.000 1.000 1.000 1.000 1.000
NMI 0.798 0.893 0.970 0.272 0.869 0.868 0.951 0.952 1.000 1.000 1.000 1.000 1.000

Purity 0.768 0.889 0.981 0.331 0.859 0.882 0.967 0.967 1.000 1.000 1.000 1.000 1.000

AR
ACC 0.286 0.344 0.667 0.332 0.314 0.544 0.465 0.609 0.853 0.750 0.798 0.891 0.923
NMI 0.592 0.655 0.844 0.651 0.648 0.775 0.681 0.820 0.935 0.889 0.913 0.954 0.982

Purity 0.305 0.368 0.685 0.350 0.330 0.642 0.611 0.656 0.897 0.807 0.858 0.902 0.979
ACC 0.475 0.556 0.692 0.272 0.616 0.656 0.573 0.725 0.800 0.745 0.785 0.863 0.982

ORL NMI 0.689 0.748 0.836 0.438 0.794 0.808 0.733 0.852 0.890 0.855 0.873 0.932 0.989
Purity 0.514 0.602 0.732 0.316 0.658 0.699 0.648 0.753 0.839 0.780 0.803 0.878 0.982
ACC 0.548 0.667 0.664 0.349 0.618 0.591 0.487 0.696 0.636 0.842 0.884 0.860 0.998

COIL NMI 0.707 0.773 0.782 0.419 0.766 0.726 0.628 0.818 0.806 0.909 0.939 0.930 0.997
Purity 0.590 0.699 0.690 0.391 0.650 0.635 0.683 0.806 0.714 0.907 0.944 0.881 0.998
ACC 0.405 0.434 0.413 0.271 0.444 0.384 0.246 0.484 0.482 0.508 0.522 0.508 0.951

BA NMI 0.569 0.585 0.556 0.423 0.604 0.544 0.486 0.621 0.619 0.632 0.649 0.632 0.971
Purity 0.435 0.463 0.438 0.303 0.479 0.606 0.623 0.563 0.593 0.546 0.634 0.546 0.972

Deep ACC 0.499 0.638 0.698 0.521 0.659 0.727 0.712 0.743 0.760 0.771 0.774 0.788 0.948
CIFAR-10 NMI 0.467 0.615 0.583 0.498 0.626 0.633 0.611 0.685 0.646 0.673 0.678 0.699 0.890

Purity 0.691 0.654 0.677 0.687 0.734 0.714 0.746 0.760 0.698 0.782 0.796 0.788 0.948
ACC 0.220 0.271 0.422 0.321 0.415 0.436 0.425 0.440 0.455 0.433 0.441 0.412 0.795

Flower102 NMI 0.423 0.470 0.605 0.502 0.587 0.610 0.590 0.619 0.632 0.595 0.622 0.586 0.940
Purity 0.276 0.321 0.504 0.411 0.511 0.527 0.522 0.513 0.527 0.514 0.521 0.491 0.866

B. Clustering Evaluation Metrics

We report the experimental results employing three most
used evaluation metrics, i.e., clustering accuracy (ACC), nor-
malized mutual information (NMI), and Purity [13], [19]. Each
metric concentrates on diverse property in terms of clustering
results. Additionally, these indicators are positively correlated
with the clustering performance, i.e., the higher the value is,
the better the clustering performance is.

Let N be the total number of data points, C =
{C1, · · · ,Ct} be the set of clusters reported by a clustering
algorithm, C̃ = {C̃1, · · · , C̃s} be the set of “ground truth”
clusters, |Ci| (1 ≤ i ≤ t) be the number of data points in the
i-th cluster of the clustering solution, |C̃j | (1 ≤ j ≤ s) be the
number of data points in the j-th cluster of the ground truth,
and |Ci∩C̃j | be the number of objects in both the i-th cluster
of the clustering solution and j-th cluster of the ground truth.

ACC discovers the one-to-one relationship between clusters
and measures the extent to which each cluster contained data
points from the corresponding class. For each data point xi,
let ci and c̃i be the cluster label and ground truth label,
respectively. The accuracy is estimated by

ACC =

∑N
i=1 δ(c̃i,map(ci))

N
(23)

where map(ci) is the mapping function that maps each cluster
label ci to the equivalent label from the dataset, and δ(x, y)
is the delta function that equals one if x = y and equals zero
otherwise. The best mapping can be found by using the Kuhn-
Munkres (KM) algorithm.

NMI is used for determining the quality of clusters, which

is estimated by

NMI(C, C̃) =
MI(C, C̃)√
H(C)H(C̃)

,

MI(C, C̃) =
∑
i

∑
j

|Ci ∩ C̃j |
N

log
N · |Ci ∩ C̃j |
|Ci||C̃j |

H(C) =
∑
i

|Ci|
N

log
|Ci|
N

,

H(C̃) =
∑
j

|C̃j |
N

log
|C̃j |
N

,

(24)

where H(C) and H(C̃) are the entropies of C and C̃,
respectively, and MI(C, C̃) is the mutual information. Note
that MI(C, C̃) takes values between 0 and 1, NMI = 1 if
the two sets of clusters are identical, and NMI = 0 if the
two sets are independent.

Purity measures the extent to which each cluster contained
data points from primarily one class, which is computed by
the weighted sum of individual cluster purity values, i.e.,

Purity =
1

N

∑
i

max
j
|Ci ∩ C̃j | (25)

C. Comparison Methods

We thoroughly evaluate proposed TMKGC by compar-
ing with 12 state-of-the-art methods, including MKKM
[24], RMKKM [19], AASC [26], LKGr [20], SCMK [27],
SMKL [13], MVCLFA [25], JMKSC [22], LLMKL [21],
SPMKC-E [23], SPMKC [23], and CAGL [12]. The clustering
results are reported in Table III. For the sake of fairness, the

9

-4 -3 -2 -1 0 1 2 3 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Original data

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) True clusters

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) Predicted clusters

Fig. 6. Simulation of network device clustering. (a) original device distri-
bution, (b) true clusters, and (c) predicted clusters and the constructed graph
produced by the proposed TMKGC method.

experimental parameters of these methods are adopted accord-
ing to the recommended values from their respective papers.
To reduce the influence induced by the random initialization
in k-means involved in spectral clustering, all experiments on
different clustering methods are repeated for 20 times and the
average results are reported.

D. Network Device Clustering

In wireless mobile communication networks (WMCN), to
expand the communication coverage of heterogeneous or
homogeneous WMCN, to avoid frequency interference, and
prevent the degradation of network performance, network
device clustering is of utmost importance. Here, we consider a
toy example to give a visual illustration of the device clustering
capability of TMKGC. In this experiment, there are 2,000
devices belonging to two clusters of data distributed in the
moon shape. The clustering result is shown in Fig. 6, where
the colors of the two clusters are set to be blue and red
respectively, and the line width of connecting edges stands for
the affinity of two corresponding devices. As shown in Fig.
6, we can easily observe that the proposed TMKGC method
can effectively split almost all devices into their respective
clusters. Therefore, the experiment can effectively demonstrate
the capacity of clustering devices with non-linear distribution.
For real-word applications, the network environment, the basic
network structure and the QoS objectives (such as transmission
reliability, network latency, and energy efficiency) are need to
be considered. That is the next phase of our work.

E. Clustering Experimental Results and Discussion

The average clustering results of all comparison methods are
reported in Table III. Note here that the standard deviations
of almost all experiments are less that 1%, so we don’t show
the standard deviations in Table III. From these experimental
results, we achieve some observations as following:

On all datasets, the proposed TMKGC consistently achieves
significant improvements under all these different metrics
when comparing with some recent state-of-the-art MKGC
methods. Noticeably, on the BA dataset, TMKGC outperforms
the second best SPMKC [23] method over 42.9%, 32.2%, and
33.8% in terms of ACC, NMI and purity, respectively. On
the deep CIFAR-10 dataset, TMKGC outperforms CAGL [12]

TABLE IV
PERFORMANCE OF THE PROPOSED MKGC METHODS IN STAND-ALONE

SCENARIO AND DISTRIBUTED NETWORK SCENARIO.
Method ACC NMI Purity Running time (in seconds)

Stand-alone TMKGC 0.741 0.897 0.812 3763
Distributed network TMKGC 0.725 0.872 0.786 1542

method with approximately 16.0%, 19.1%, and 16.0% in terms
of ACC, NMI and purity, respectively. The main reason is
that our TMKGC can exploit the high-order correlations of
the NMF tailored graph tensor. Therefore, these results verify
the effectiveness of our TMKGC.

Moreover, note here that CAGL [12] and the proposed
TMKGC are pure graph-based9 MKGC method, while other
graph-based methods are hybrid. From the results, it is obvious
that the purebreds are superior to the hybrids. In other words,
for a graph-based method, we should pay more attention to
graph learning rather than kernel learning.

To sum up, the proposed TMKGC method achieves better
performance owing to the following advantages: (1) TMKGC
learns an affinity graph for spectral clustering by using a
pure graph learning paradigm, rather than the traditional non-
linearly or linearly kernel combination; and (2) TMKGC
captures the high-order structure information derived from
base kernels by using high-order graph tensor learning.

F. Distributed Network Experiment

In this section, we evaluate the proposed TMKGC method
in a stand-alone scenario and a distributed scenario. There
are four computers in a local area network, including one
master node and three slave nodes, where the communication
delay and the fail of synchrony is ignored. As shown in Fig.
5, the different color of circle stands for different computer.
The experimental results in terms of ACC, NMI, Purity, and
running time are shown in Table IV. Then it is easy to see that
the distributed network TMKGC has lower time consumption,
but has higher clustering performance, by comparing with the
stand-alone version. Overall, the proposed TMKGC can be
solved via stand-alone manner or distributed manner depend-
ing on the balance of time and performance.

G. Parameter Sensitivity

In the proposed method, there are two trade-off parameters
α and β required to be set properly, which are used to
balance the effects of {‖S(k)‖2F }mk=1 and ‖S‖~, respectively.
By leveraging a grid search technique, we tune both α and
β from 10−5 to 102 with step size 10, respectively. Take the
AR, ORL, COIL20 and BA datasets for example, as shown
in Figs. 7 to 10, the proposed TMKGC method can achieve
the best performance on all evaluated datasets when setting
α ∈ [10−1, 101] and β ∈ [10−5, 10−3]. These analyses confirm
that TMKGC works well for a wide range of α and β values,
and can be easily tuned.

9For MKGC, the pure graph-based method aims to learn an affinity graph
absorbedly, while the hybrid graph-based method aims to learn a graph and
a consensus kernel simultaneously.

10

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

(a) ACC

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

(b) NMI

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(c) Purity

Fig. 7. Performance with respect to α and β on the AR dataset

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) ACC

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b) NMI

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(c) Purity

Fig. 8. Performance with respect to α and β on the ORL dataset

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) ACC

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.75

0.8

0.85

0.9

0.95

(b) NMI

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

(c) Purity

Fig. 9. Performance with respect to α and β on the COIL20 dataset

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) ACC

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) NMI

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

1
10

2
10

-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

(c) Purity

Fig. 10. Performance with respect to α and β on the BA dataset

H. Convergence Analysis

To demonstrate the convergence of Algorithm 1 experimen-
tally, we record the value of the stopping criterion in each
iteration on the five datasets (i.e., AR, BA, COIL20, ORL, and
Yale), as illustrated in Fig. 11. As we can see, the algorithm
converges rapidly till to reach stability, even some of which
meet the stopping criterion in just 15 iterators. This proves
the fast convergence property of the proposed algorithm.
Compared with the existing methods, such as SCMK [27],
SMKL [13], MVCLFA [25], JMKSC [22], LLMKL [21],
SPMKC [23], and CAGL [12], they usually converge within
10-30 iterations. Although different methods have different
stopping criterions, these MKGC methods have comparable
iterations to meet their stopping criterions.

V. CONCLUSION

In this paper, a novel NMF tailored graph tensor method,
TMKGC, is proposed for non-linear data clustering widely
existing in wireless network applications. To effectively handle
non-linear data, TMKGC first proposes a NMF-based graph
learning paradigm (i.e., GNMF) to learn multiple candidate
kernel graphs from the pre-defined kernel pool. Meanwhile, to
capture the consistent and complementary information of these
graphs for clustering purpose, these graphs are folded and
rotated as a graph tensor. Upon that, the t-TNN is employed
to explore the high-order correlations of the graph tensor,
so as to learn a high-quality affinity graph. Moreover, the
local and distributed solvers are also given. Comprehensive
experiments on several real-world datasets have demonstrated
the remarkable improvements of TMKGC in terms of three
widely used clustering metrics.

ACKNOWLEDGMENT

This research was supported by the Sichuan Science
and Technology Program (Grant nos. 2019ZDZX0043 and
2020ZDZX0014), the Key Lab of Film and TV Media
Technology of Zhejiang Province (Grant no. 2020E10015),

the Natural Science Foundation of Chongqing (Grant no.
cstc2020jcyj-msxmX0473), the Scientific Research Fund
of Sichuan Provincial Education Department (Grant no.
17ZB0441), and the Scientific Research Fund of Southwest
University of Science and Technology (Grant no. 17zx7137).

REFERENCES

[1] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99, Feb.
2020.

[2] G. Lee, W. Saad, and M. Bennis, “An online framework for ephemeral
edge computing in the internet of things,” 2020, arXiv:2004.08640.

[3] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning in the Internet of things,” 2020,
arXiv:2006.02499.

[4] I. A. Najm, A. K. Hamoud, J. Lloret, and I. Bosch, “Machine learning
prediction approach to enhance congestion control in 5G IoT environ-
ment,” Electronics, vol. 8, no. 6, p. 607, May 2019.

[5] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. of the IEEE, vol. 107, no. 11, pp. 2204–
2239, Nov. 2019.

[6] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Com-
munication efficient framework for decentralized machine learning,” in
Proc. IEEE 54th Annual Conf. Informat. Sciences and Syst. (CISS), Mar.
2020.

[7] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Q-
GADMM: Quantized group ADMM for communication efficient decen-
tralized machine learning,” in Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Proces. (ICASSP), May 2020, pp. 8876–8880.

[8] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft, D. Shen,
J. Yin, and W. Gao, “Multiple kernel k-means with incomplete kernels,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 5, pp. 1191–1204, 2020.

[9] Z. Kang, X. Lu, Y. Lu, c. Peng, W. Chen, and Z. Xu, “Struc-
ture learning with similarity preserving,” Neural Networks, p.
10.1016/j.neunet.2020.05.030, 2020.

[10] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “A multi-clustering ap-
proach to scale distributed tenant networks for mobile edge computing,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp.
499–514, 2019.

[11] A. Ali, M. E. Ahmed, F. Ali, N. H. Tran, D. Niyato, and S. Pack, “Non-
parametric bayesian channels clustering (nobel) scheme for wireless
multimedia cognitive radio networks,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 10, pp. 2293–2305, 2019.

[12] Z. Ren, S. X. Yang, Q. Sun, and T. Wang, “Consensus affinity graph
learning for multiple kernel clustering,” IEEE Transactions on Cyber-
netics, 2020.

11

0 5 10 15 20 25 30

Number of iterations

0

2

4

6

S
to

p
 c

ri
te

ri
a

(a) AR

0 5 10 15 20 25 30

Number of iterations

0

2

4

6

8

S
to

p
 c

ri
te

ri
a

(b) BA

0 5 10 15 20 25 30

Number of iterations

0

2

4

6

S
to

p
 c

ri
te

ri
a

(c) COIL20

0 5 10 15 20 25 30

Number of iterations

0

1

2

3

S
to

p
 c

ri
te

ri
a

(d) ORL

0 5 10 15 20 25 30

Number of iterations

0

0.5

1

1.5

2

2.5

S
to

p
 c

ri
te

ri
a

(e) Yale

Fig. 11. Convergence curves of the proposed TMKGC method on five datasets.

[13] Z. Kang, X. Lu, J. Yi, and Z. Xu, “Self-weighted multiple kernel
learning for graph-based clustering and semi-supervised classification,”
in Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, 2018, pp. 2312–2318.

[14] Z. Kang, H. Pan, S. C. Hoi, and Z. Xu, “Robust graph learning from
noisy data,” IEEE transactions on cybernetics, vol. 28, no. 4, pp. 1007–
1021, 2020.

[15] C. Lu, J. Feng, Z. Lin, T. Mei, and S. Yan, “Subspace clustering by
block diagonal representation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 2, pp. 487–501, 2019.

[16] H. Wang, Y. Yang, B. Liu, and H. Fujita, “A study of graph-based
system for multi-view clustering,” Knowledge-Based Systems, vol. 163,
pp. 1009–1019, 2019.

[17] F. Nie, X. Wang, and H. Huang, “Clustering and projected clustering
with adaptive neighbors,” in Proceedings of the twentieth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 977–986.

[18] M. Li, X. Liu, L. Wang, Y. Dou, J. Yin, and E. Zhu, “Multiple kernel
clustering with local kernel alignment maximization,” in Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence. AAAI Press, 2016, pp. 1704–1710.

[19] L. Du, P. Zhou, L. Shi, H. Wang, M. Fan, W. Wang, and Y.-D. Shen,
“Robust multiple kernel k-means using l21-norm,” in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015, pp. 3476–3482.

[20] Z. Kang, L. Wen, W. Chen, and Z. Xu, “Low-rank kernel learning for
graph-based clustering,” Knowledge-Based Systems, vol. 163, pp. 510–
517, 2019.

[21] Z. Ren, H. Li, C. Yang, and Q. Sun, “Multiple kernel subspace clustering
with local structural graph and low-rank consensus kernel learning,”
Knowledge-Based Systems, p. 105040, 2019.

[22] C. Yang, Z. Ren, Q. Sun, M. Wu, M. Yin, and Y. Sun, “Joint correntropy
metric weighting and block diagonal regularizer for robust multiple
kernel subspace clustering,” Information Sciences, vol. 500, pp. 48–66,
2019.

[23] Z. Ren and Q. Sun, “Simultaneous global and local graph structure
preserving for multiple kernel clustering,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[24] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen, “Multiple kernel fuzzy
clustering,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp.
120–134, 2012.

[25] S. Wang, X. Liu, E. Zhu, C. Tang, J. Liu, J. Hu, J. Xia, and J. Yin,
“Multi-view clustering via late fusion alignment maximization,” in
Twenty-Eighth International Joint Conference on Artificial Intelligence.
AAAI Press, 2019, pp. 3778–3784.

[26] H.-C. Huang, Y.-Y. Chuang, and Chen, “Affinity aggregation for spec-
tral clustering,” in IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 773–780.

[27] Z. Kang, C. Peng, Q. Cheng, and Z. Xu, “Unified spectral clustering
with optimal graph,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018, pp. 3366–3373.

[28] S. Zhou, X. Liu, M. Li, E. Zhu, L. Liu, C. Zhang, and J. Yin, “Multiple
kernel clustering with neighbor-kernel subspace segmentation,” IEEE
Transactions on Neural Networks, pp. 1–12, 2019.

[29] Z. Zhang, Y. Zhang, S. Li, G. Liu, D. Zeng, S. Yan, and M. Wang,
“Flexible auto-weighted local-coordinate concept factorization: A robust
framework for unsupervised clustering,” IEEE Transactions on Knowl-
edge and Data Engineering, 2019.

[30] J. Wu, X. Xie, L. Lin, N. Zhouchen, and H. Zha, “Unified graph and
low-rank tensor learning for multi-view clustering,” in Prof. Association
for the Advancement of Artificial Intelligence (AAAI), 2020.

[31] C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor
constrained multiview subspace clustering,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1582–1590.

[32] M. Wei, J. Huang, X. Xie, L. Liu, J. Wang, and J. Qin, “Mesh denoising
guided by patch normal co-filtering via kernel low-rank recovery,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 10,
pp. 2910–2926, 2019.

[33] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” in Advances in neural
information processing systems, 2011, pp. 612–620.

[34] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient
algorithmic framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5052–5065,
2016.

[35] P. Zhou, C. Lu, J. Feng, Z. Lin, and S. Yan, “Tensor low-rank
representation for data recovery and clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

[36] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Q-gadmm:
Quantized group admm for communication efficient decentralized ma-
chine learning,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 8876–8880.

[37] E. Esser, “Applications of lagrangian-based alternating direction methods
and connections to split bregman,” CAM report, vol. 9, p. 31, 2009.

[38] C. Wang, E. Zhu, X. Liu, L. Gao, J. Yin, and N. Hu, “Multiple kernel
clustering with global and local structure alignment,” IEEE Access,
vol. 6, pp. 77 911–77 920, 2018.

