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Abstract  
 
 

The main goal of this thesis is to show how the Theory of Characteristic 
Modes can be systematically applied to design wire and planar antennas. 
Through numerous examples, it will be demonstrated that in contrast with other 
classical design methods, the Theory of Characteristic Modes brings insight into 
the physical phenomena taking place on an antenna.  

 
Examples will be presented in order to demonstrate that an in depth 

knowledge of the radiating mechanisms of very basic antennas helps to design 
novel antennas on a clear and rational basis. It will be also explained how the 
information given by characteristic modes can be used for the selection of the 
most suitable shape for the radiating element, as well as for the choice of an 
optimum feeding arrangement to maximize the impedance bandwidth. 

 
The Theory of Characteristic Modes was first formulated by Garbacz in 1968, 

and later refined by Harrington and Mautz in 1971. Traditionally, characteristic 
modes have been applied to antenna shape synthesis, and control of obstacle 
scattering by reactive loading. However, at present, the Theory of Characteristic 
Modes has practically fallen into disuse, in spite of the fact that it leads to modal 
solutions, which are particularly useful in problems involving analysis, synthesis and 
optimization of antennas and scatterers. 

Characteristic modes are real current modes that correspond with the 
eigenvectors of a particular weighted eigenvalue equation that involves the 
generalized impedance matrix of the body. Thus, characteristic modes can be 
computed numerically for conducting bodies of arbitrary shape, and since they 
form a set of orthogonal functions, they can be used to expand the total current 
on the surface of the body. However, what makes characteristic modes really 
attractive for antenna design is the physical insight they bring into the radiating 
phenomena taking place in the antenna.  

Associated to each characteristic mode there is an eigenvalue whose 
magnitude provides information about the resonant frequency and radiating 
characteristics of modes. Additionally, since characteristic modes are computed 
in the absence of any kind of excitation, they only depend on the shape and size 
of the conducting object. Hence, antenna design using characteristic modes can 
be performed in a controlled way following two steps: 

- Firstly, the shape and size of the radiating element are optimized on the 
base of the information provided by eigenvalues.  

- Next, studying the current distribution of modes an optimum feeding 
arrangement is chosen so that the desired mode or modes may be 
excited, in order to obtain a specific radiating behaviour. 
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Resumen  
 
 

El principal objetivo de esta tesis es demostrar que la Teoría de los Modos 
Característicos puede ser empleada de forma sistemática para diseñar antenas 
de hilo y antena planas. La gran ventaja de los modos característicos, frente a 
otros métodos de diseño, es la clara visión física que proporcionan de los 
fenómenos que contribuyen a la radiación de la antena.  
 

A través de numerosos ejemplos se demostrará como los modos 
característicos permiten comprender mejor el funcionamiento de una antena, de 
forma que el diseño de la misma se puede realizar de forma justificada y 
coherente. También se mostrará como la información proporcionada por los 
modos característicos puede ser aprovechada para seleccionar la forma más 
apropiada para el elemento radiante, al igual que para elegir una configuración 
de alimentación óptima que maximice el ancho de banda de impedancia. 
 

La Teoría de los Modos Característicos fue inicialmente formulada por Garbacz 
en 1968, y posteriormente refinada por Harrington y Mautz en 1971. 
Tradicionalmente, los modos característicos han sido empleados para sintetizar 
formas de antena, y para controlar la difracción de objetos mediante carga 
reactiva. Sin embargo, en la actualidad, la Teoría de los Modos Característicos ha 
caído prácticamente en el olvido, a pesar de que permite obtener una solución 
modal para la corriente, que es de gran utilidad a la hora de analizar problemas de 
análisis, síntesis y optimización de antenas y difractores. 
 

La Teoría de los Modos Característicos parte de la definición de un problema 
de autovalores que involucra la matriz de impedancia generalizada de la 
estructura, y que tras ser resuelto proporciona un conjunto de modos de 
corriente reales, que son los denominados modos característicos. Estos modos 
se corresponden con las resonancias naturales de la estructura y pueden ser 
obtenidos numéricamente para cuerpos conductores de forma arbitraria. 
 

Por otra parte, los modos característicos forman un conjunto de funciones 
cerrado y ortogonal, por lo que pueden ser empleados para expandir la 
corriente superficial que fluye por el cuerpo conductor. Sin embargo, lo que 
hace a los modos característicos especialmente atractivos para el diseño de 
antenas es la visión física que aportan de los fenómenos de radiación que 
determinan el comportamiento de la antena. 
 

Asociado a cada modo característicos existe un autovalor, cuya magnitud 
proporciona información sobre la frecuencia de resonancia y las propiedades de 
radiación de los modos. Además, puesto que los modos característicos se 
calculan en ausencia de cualquier excitación, únicamente dependen de la forma 
y del tamaño del cuerpo conductor. Por tanto, el diseño de la antena se puede 
llevar a cabo de forma controlada en dos pasos: 
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- En primer lugar, se optimiza la forma y el tamaño del elemento radiante 
en base a la información proporcionada por los autovalores. 

- A continuación, a partir del estudio de la distribución de corriente de los 
modos se determina una configuración de alimentación óptima que 
permita excitar el modo o modos deseados, con el fin de obtener un 
comportamiento radiante determinado. 
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Resum  
 
 

El principal objectiu d’aquesta tesi és demostrar que la Teoria dels Modes 
Característics pot ser emprada de forma sistemàtica per a disenyar antenes de 
fil i antenes planes. El gran avantatge dels modes característics, enfront d'altres 
mètodes de disseny, és la clara visió física que proporcionen dels fenòmens que 
contribuïxen a la radiació de l'antena.  
 

Mitjançant nombrosos exemples es demostrarà com els modes característics 
permeten comprendre millor el funcionament d'una antena, de manera que el 
disseny de la mateixa es pot realitzar de forma justificada i coherent. També es 
mostrarà com la informació proporcionada pels modes característics pot ser 
aprofitada per a seleccionar la forma més apropiada per a l'element radiant, 
igual que per a triar una configuració d'alimentació òptima que maximitze 
l'ample de banda d'impedància. 

 
La Teoria dels Modes Característics va ser inicialment formulada per Garbacz en 

1968, i posteriorment refinada per Harrington i Mautz en 1971. Tradicionalment, els 
modes característics han sigut emprats per a sintetitzar formes d'antena, i per a 
controlar la difracció d'objectes per mitjà de càrrega reactiva. No obstant, en 
l'actualitat, la Teoria dels Modes Característics ha caigut pràcticament en l'oblit, a 
pesar que permet obtindre una solució modal per al corrent, que és de gran utilitat 
a l'hora d'analitzar problemes d'anàlisi, síntesi i optimització d'antenes i difractors. 
 

La Teoria dels Modes Característics partix de la definició d'un problema 
d'autovalors que involucra la matriu d'impedància generalitzada de l'estructura, i 
que després de ser resolt proporciona un conjunt de modes de corrent real, que 
són els denominats modes característics. Estos modes es corresponen amb les 
ressonàncies naturals de l'estructura i poden ser obtinguts numèricament per a 
cossos conductors de forma arbitrària. 
 

D'altra banda, els modes característics formen un conjunt de funcions tancat i 
ortogonal, per la qual cosa poden ser emprats per a expandir el corrent 
superficial que fluïx pel cos conductor. No obstant, allò que fa als modes 
característics especialment atractius per al disseny d'antenes és la visió física 
que aporten dels fenòmens de radiació que determinen el comportament de 
l'antena. 
 

Associat a cada mode característics hi ha un autovalor, la magnitud del qual 
proporciona informació sobre la freqüència de ressonància i les propietats de 
radiació dels modes. A més, ja que els modes característics es calculen en 
absència de qualsevol excitació, únicament depenen de la forma i de la 
grandària del cos conductor. Per tant, el disseny de l'antena es pot dur a terme 
de forma controlada en dos passos: 
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- En primer lloc, s'optimitza la forma i la grandària de l'element radiant 
basant-se en la informació proporcionada pels autovalors. 

- A continuació, a partir de l'estudi de la distribució de corrent dels modes 
es determina una configuració d'alimentació òptima que permeta excitar 
el mode o modes desitjats, a fi d'obtindre un comportament radiant 
determinat. 
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CHAPTER 1.  Introduction and Overview                                                   
 
 
1.1. State of the art of antenna design 
 

In past years the rise of wireless communications has gathered significant 
interest in antenna design. In particular, due to market demand, design of small 
antennas for new mobile terminals [1]-[4] is currently receiving a lot of 
attention. Nevertheless, designing a handset antenna is not an easy task, as this 
type of antenna is subjected to very stringent specifications [5]. Small size, light 
weight, compact structure, low profile, robustness and flexibility are the prime 
considerations conventionally taken into account in small antenna design [6]. In 
addition, as new mobile handsets are required to operate at multiple standards, 
their antennas are expected to grab as much spectrum as possible, so they may 
provide multi-band or broadband operation [7]. 

Unfortunately, as the antenna geometry complicates, more often than not, 
there is no close formulation to analyze it, and the use of numerical methods 
[8]-[10] becomes imperative. In consequence, design of modern antennas relies 
on the use of self-developed numerical codes or commercial electromagnetic 
simulators, such as IE3D [11], FEKO [12], Empire [13], or HFSS [14], among 
others, to evaluate antenna performance before a physical prototype is 
fabricated. Under this circumstance, time for antenna design can be dramatically 
reduced thanks to computers. Anyway, even with the support of computers, the 
success of the final design depends upon the intuition and previous experience 
of the designer, and in most cases, the final optimization is in fact made by “cut 
and try” methods. As a result, these days antenna design is very much 
governed by the designer expertise and know-how. 

On the other hand, an alternative and certainly in vogue approach to design 
handset antennas consists of using automated optimization techniques based on 
pseudo-random search algorithms [15]. Typical examples of these techniques 
are genetic algorithms [16]-[17], artificial neural networks [18]-[19], particle 
swarm optimization [20] or bees algorithms [21]. Their main advantage is that 
once the optimization algorithm is programmed, little interaction with the 
designer is required, as the computer is supposed to arrive at the expected 
specifications autonomously. 

As a matter of fact, although all the above mentioned design strategies are 
really suitable when time-to-market is critical, their major problem is that they 
are rather lacking in physical insight, so real knowledge of the operating 
principles of the antenna is mislaid. Actually, publications giving useful 
instructions for better antenna design are scarce. Nevertheless, there exist other 
not so common design strategies, especially those based on modal analysis, 
which can alleviate this problem.  
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1.2. Modal analysis of antennas 
 

As explained before, at present antenna design is essentially focused on 
commercial applications, especially those related with cellular telephony and 
wireless systems. As a result, the main objective of antenna designers is 
obtaining antennas with the desired radiation characteristics in the shortest 
period of time, using the most effective design procedures. Because of this 
trend, commercial electromagnetic simulators and automated design techniques 
are gaining ground among antenna designers. Consequently, publications 
proposing new antennas are mainly devoted to describe the antenna geometry 
and its radiating behaviour, while the design procedure does not receive the 
consideration it deserves, and few attention is paid to the physics of the 
problem.  

 
This thesis is aimed at giving a physical explanation to the radiation 

behaviour of different types of antennas. To some extent, modal analysis can 
cope with this objective, as it brings information about the modes that 
contribute to the radiation of the antenna for each particular excitation.  

 
Modal analysis has long been used in electromagnetism for the analysis of 

close structures like waveguides and cavities, in which it is relatively easy to 
arrive at close solutions, even for structures of non-separable geometry, by 
applying boundary conditions [22]-[23]. However, the calculation of modes in 
open radiating structures, such as antennas or scatterers, is more involved, and 
it is usually quite time consuming. Probably, this is one of the reasons why 
modal analysis is not widely used for antenna design nowadays. In fact, most 
research dealing with the computation of modes in open structures was 
published more than forty years ago.  

 
 

1.2.1. Spherical modes 
 

A revision of the available literature regarding modal analysis shows that the 
first modal approach to antennas was taken by Chu in 1948 [24], and 
subsequently by Harrington in 1960 [25], when trying to determine the 
fundamental limitations in antennas. They postulated that, since any radiating 
field can be written as a sum of spherical vector waves, the antenna can be 
enclosed in a sphere. Then, the radiated power of the antenna is calculated 
from the propagating modes within the sphere, while all modes contribute to 
reactive power.   

 
When the sphere enclosing the antenna is very small, there are no 

propagating modes, as all modes are evanescent (below cut-off). Unlike in a 
close waveguide, evanescent modes present a real part, so they provide a little 
real power. If there is only one propagating mode, the radiated power will arise 
primarily from that mode. However, if the sphere containing the antenna is 
large enough, several propagating modes will be supported, and the approach 
proposed by Chu [24] will be of little value as the modal coefficients will be 
difficult to calculate.  
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1.2.2. Modal expansion methods 

In the seventies, other more general modal expansion methods were 
developed [26]-[27]. These methods are based on expanding the fields radiated 
by an antenna in terms of planar, cylindrical or spherical wave functions. Next, 
the coefficients in the expansion are determined by measuring the near fields of 
the antenna. 

When applying modal expansion methods, first the entire domain of interest 
should be divided into a number of subregions. Then, field expressions in all 
these subregions are expanded into the summation of their modal functions 
weighted by unknown coefficients. By enforcing the continuity conditions of 
tangential field components across the regional interfaces, one can then 
determine these expansion coefficients. Based on the obtained field expressions, 
the current distribution along the surface of the antenna can be readily 
calculated. Finally, the input impedance and radiation pattern of the antenna 
can be computed from the known current distribution. 

 

1.2.3. Eigenfunctions of conducting bodies 

In addition to the modal methods previously described, the eigenfunctions of 
classical analysis also constitute a modal approach to antenna problems. These 
eigenfunctions provide valuable solutions and physical insight for problems 
whose boundaries coincide with the constant coordinate surfaces of a particular 
coordinate system.  

One type of generalization of the classical eigenfunctions, termed 
characteristic modes, was formulated by Garbacz in 1968 [28]. Characteristic 
modes defined by Garbacz correspond with the eigenvectors of a weighted 
eigenvalue equation. These modes have the useful property of being orthogonal 
over both the source region and the sphere at infinity [28]-[29].   

In 1971, Harrington and Mautz obtained the same modes defined by Garbacz 
by diagonalizing the operator relating the current to the tangential electric field 
on the body [30]-[31]. The advantage of the formulation described in [30], 
known as the Theory of Characteristic Modes, is that it leads to a simpler 
derivation of the theory than the one proposed by Garbacz in [28], while it is 
valid for conducting bodies of arbitrary shape. Afterwards, Harrington et al. 
extended the formulation of the Theory of Characteristic Modes to encompass 
dielectric, magnetic, and both dielectric and magnetic bodies [32]. 
 

Some years later, in 1978, another modal formalism was introduced by 
Inagaki for problems of radiation and scattering from arbitrary discrete and 
continuous structures [33]. These modes, that are usually called Inagaki modes, 
correspond with the eigenfunctions of composite hermitian operators [34].  
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Inagaki modes can be considered more general than characteristic modes 
since they can be forced to be orthogonal over any sector of space, as well as 
orthogonal over the source region itself. Because of this characteristic, Inagaki 
modes have been applied to pattern synthesis and array optimization [35]. 

Most recently, in 1990 a modified version of Inagaki modes was proposed 
[36]. This new modes referred to as Generalized Characteristic Modes, are a 
generalization of Inagaki modes, providing advantages such as versatility and 
computational efficiency. 

 Among all the modal approaches alluded to above, the Theory of 
Characteristic Modes formulated in [30] is the one chosen to be analyzed in the 
present work. The choice has been based on the mathematical properties of 
characteristic modes, and on the physical insight they bring to the radiating 
phenomena taking place on the antenna.  

As will be explained in next section, the use of characteristic modes can aid 
the construction of design procedures on a clear and rational basis. 

 

 

1.3. Application of the Theory of Characteristic Modes to antenna 
design 
 

Characteristic modes are real current modes that can be computed 
numerically for conducting bodies of arbitrary shape. Since characteristic modes 
form a set of orthogonal functions, they can be used to expand the total current 
on the surface of the body [30]. 

Traditionally, characteristic modes have been applied to antenna shape 
synthesis [37], and control of obstacle scattering by reactive loading [38].  
However, at present, the Theory of Characteristic Modes has practically fallen 
into disuse, in spite of the fact that it leads to modal solutions, which are 
particularly useful in problems involving analysis, synthesis and optimization of 
antennas and scatterers [39]-[41].  

Probably, the Theory of Characteristic Modes was almost abandoned in the 
eighties, because of the amount of computation it required for the extraction of 
modes. Characteristic modes correspond with the eigenvectors of a particular 
weighted eigenvalue equation that involves the generalized impedance matrix of 
the body. Hence, if characteristic modes are to be obtained, the impedance 
matrix of the body should be calculated at every desired frequency by direct 
application of Method of Moments [42].  

Although Method of Moments calculations were a serious problem twenty 
years ago, at this time, they can be easily managed thanks to the huge 
computation capabilities of modern computers, and to the efficient matrix 
solvers developed for programming environments like Matlab [43]. 
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Evidently, the current distribution on the surface of a conducting body can 
be computed in a more efficient and accurate way by direct inversion of the 
generalized impedance matrix. Nevertheless, for this work the use of 
characteristic modes as basis functions in which to expand the total current is 
preferred, as it lends more insight to the physical phenomena taking place on 
the antenna.  

The main purpose of this thesis is to demonstrate that characteristic modes 
can be effectively used to carry out a controlled design of different types of 
antennas, because of the physical insight they provide. 
 

Since characteristic modes are computed in the absence of any kind of 
excitation, they only depend on the shape and size of the conducting object. 
Thus, antenna design using characteristic modes can be performed in a 
controlled way following next procedure 

 

- Firstly, characteristic currents and associated characteristic fields of the 
radiating element are calculated. 

- Next, the resonance frequency of these modes, as well as their radiating 
behaviour, is determined from the information provided by the 
corresponding eigenvalues.  

- Then, the shape and size of radiating element is modified until the 
desired resonant frequency or radiating characteristic is accomplished. 

- Finally, studying the current distribution of modes an optimum feeding 
arrangement is chosen so that the desired mode or modes may be 
excited, in order to obtain a specific radiating behaviour. 

 
For modelling electrically small conducting bodies few modes are required. 

Thus, small and intermediate size antennas can be fully characterized in a wide 
operating band just considering five or six characteristic modes. 

 
In next chapters, characteristic modes are going to be used to perform a 

systematic analysis and design of different types of antennas which range from 
the wire antenna class, to planar antenna geometries, such as planar monopoles 
or patches. 

 
Characteristic modes of 2D and 3D metallic structures are going to be 

computed using a code based on Mixed Potential Integral Equation (MPIE) [42] 
and Rao-Wilton-Glisson (RWG) functions [44]. This code, which has been 
programmed with Matlab, has been expressly developed to compute 
characteristic modes efficiently at a wide frequency band. The choice of Matlab 
as programming environment has been based on its simplicity, and on the 
robust matrix solvers it provides. Moreover, Matlab graphical interface facilitates 
the visualization of the current distribution of the modes for 2D and 3D 
structures [45]. Finally, execution times have been reduced compiling some 
parts of the code with Matlab C++ compiler, and employing the interpolation 
procedure described in [46]. 
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1.4. General objective of the thesis 
 

As commented above, the main objective of this thesis is to recover the 
Theory of Characteristic Modes for antenna design applications.  

 
In the development of this thesis, it will be shown that the Theory of 

Characteristic Modes is really helpful for antenna design as it provides a clear 
vision of the operating principles of the antenna.  

 
Obviously, from an in-depth knowledge of the radiation mechanisms of the 

antenna, designs can be performed in a more coherent way. In fact, using the 
information provided by characteristic modes it is possible to establish a 
systematic design procedure, valid for different types of antennas. 

 
Some of the issues that are going to be addressed in this work in order to 

show the suitability of characteristic modes for antenna design are the 
following: 
 

- Analysis of the effect of loading wire antennas. 

- Determination of a modal quality factor, and an equivalent circuit for wire 
antennas using the information provided by characteristic modes.  

- Study of the degeneracy of modes for polygonal loop antennas. 

- Acceleration of the convergence of the series of modes for the wire 
antenna class and for planar antennas. 

- Determination of the optimum height of a patch above an infinite ground 
plane in order to obtain maximum bandwidth. 

- Generation of circular polarization in patch antennas by combination of 
modes. 

- Reduction of the cross polarization level for reflectarray antennas. 

- Modelling of the coupling between open resonators. 

- Analysis of the influence of the shape of planar monopoles in the 
impedance bandwidth performance. 

- Use of a double feeding configuration in order to improve the input 
bandwidth of planar monopoles. 

-    Application of planar monopole antenna for MIMO systems. 

- Determination of chassis-antenna modes in cellular handsets. 

- Analysis of the radiation of a folded radiating ground plane. 

- Notch antenna design on finite ground planes. 
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1.5. Structure of the thesis 
 

The first chapters of this thesis are devoted to the modal analysis of different 
wire antennas. Since the visualization of the current distribution of modes is 
easier in wire structures than in planar ones, wire antennas constitute the better 
option to initiate the reader into the Theory of Characteristic Modes. 
 

In Chapter 2, the mathematical formulation of the Theory of Characteristic 
Modes will be reviewed, using as an example a straight wire dipole. The 
objective of this chapter is not really to study the wire dipole itself, which is a 
very well-known antenna, but to show all the possibilities yielded by 
characteristic modes for antenna design. Basically, the choice of the wire dipole 
as example has been based on its simplicity, which aids to understand the 
fundamentals of the modal theory. 
 

Chapter 3 will be dedicated to the study of the characteristic modes of wire 
loops of different geometry. It will be demonstrated that in wire loops there are 
special non-resonant modes that present inductive behaviour at all frequencies. 
These special modes are characterized by currents forming close loops. A modal 
expansion for the input admittance of the antenna will be employed to 
determine which modes are excited for each particular feeding configuration. 
Additionally, it will be explained that drawing an analogy with the folded dipole, 
modes in wire loops can be classified in antenna or transmission-line modes, 
according to its currents flowing in phase or in opposite phase.  
 

Chapter 4 will be focused on the analysis of the main drawback of 
characteristic modes, its slow converge when they are used to expand the total 
current on an antenna. Several examples will be presented in order to 
demonstrate that when an antenna is fed with a delta gap source, characteristic 
modes lead to ill convergent solutions for the imaginary part of the input 
current. This convergence problem will be overcome for both wire and planar 
antennas by adding to the series of characteristic modes an extra mode, with 
evanescent behaviour, called “source mode”. Moreover, a procedure based on a 
Singular Value Decomposition (SVD) will be proposed in order to obtain a 
reduce set of Frequency Independent Characteristic Modes (FICM), appropriate 
to expand the total current very accurately, in a wide range of frequencies. 

 
In Chapter 5, characteristic modes will be obtained for different planar 

antennas, such as patches and planar monopoles.  Examples will be provided to 
show how the information given by characteristic modes can be used for the 
selection of the most suitable shape for the radiating element, as well as for the 
choice of an optimum feeding arrangement to maximize the impedance 
bandwidth. 
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The aim of Chapter 6 will be to demonstrate that characteristic modes are 
very helpful for the design of handset antennas based on the resonance of the 
Printed Circuit Board (PCB) of the mobile terminal. The first part of the chapter 
will be devoted to the study of radiating structures that consist in a folded 
radiating ground plane. In the second part of the chapter, the behaviour of 
notched radiating ground planes will be investigated from a modal point of view. 
 

Finally, Chapter 7 will summarize the most important conclusions of this 
thesis, and will include proposals for future work. 
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CHAPTER 2.  The Theory of Characteristic Modes Revisited                         
 
 
2.1. Introduction 
 

The Theory of Characteristic Modes was first developed by Garbacz in 1968 
[28], and later refined by Harrington and Mautz in 1971 [30]. Garbacz obtained 
the modes of conducting bodies of arbitrary shape by diagonalizing the 
scattering matrix [29].  Alternatively, Harrington and Mautz arrived at the same 
modes by diagonalizing the generalized impedance matrix of the body [30]-[31]. 
This second approach is the one taken for this thesis, as it provides a more 
direct derivation of the theory and leads to explicit formulas for determining 
modal currents and fields.  

 
Modal currents or characteristic currents are defined as the eigenfunctions of 

a particular weighted eigenvalue equation that involves the impedance matrix of 
the body. For conducting bodies they have the following properties: 

 
- They are real or equiphasal, over the surface on which they exist. 
- They form an orthogonal set over this surface. 
- They diagonalize the generalized impedance matrix for this surface. 

 
On the other hand, characteristic fields are defined to be the electromagnetic 

fields produced by the characteristic currents. They present the following 
important properties: 
 

- The characteristic electric fields have equiphasal tangential components 
over the surface of the body. 
- They form an orthogonal set over the radiation sphere. 
- They diagonalize the scattering matrix for the body. 
 

Modal solutions that can be obtained applying this theory have the next 
properties: 

 
- Matrix inversion is not required for computation of the currents since 
generalized impedance matrix is diagonalized. 
- Pattern synthesis can be accomplished without matrix inversion, since the 
scattering matrix is diagonalized. 
- The current on the body can be controlled using the method of modal 
resonance. 
 
Although the Theory of Characteristic Modes is extensively described in [30] 

and [31], this chapter includes, for the sake of completeness, a revision of its 
mathematical formulation. For illustration purposes, numerical examples for a 
very well-known antenna, such as the wire dipole, are presented.    
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2.2. Mathematical formulation of Characteristic Modes 
 

As explained in [30], the formulation of the Theory of Characteristic Modes 
for conducting bodies begins with the definition of an operator equation that 
relates the current J on the surface S of a conducting body with the tangential 
incident electric field Ei  

 
 

tan
( ) 0iL J E − =   (2.1) 

   
where the subscript “tan” denotes the tangential components on the surface S. 
 

Figure 2.1  shows the typical scenario in the computation of characteristic 
modes, together with the system coordinates. 

 
 

 
 

Figure 2.1  Scenario for the computation of characteristic modes, and system 
coordinates. 

 
 

The operator L in (2.1) is linear and it is defined by 
 
 ( ) ( ) ( )L J j A J Jω= + ∇Φ  (2.2) 

 
 ( ) ( ') ( , ') '

S

A J J r r r dsµ ψ= ∫∫  (2.3) 

     

 
1( ) ' ( ') ( , ') '

S

J J r r r ds
j

ψ
ωε
−

Φ = ∇ ⋅∫∫  (2.4) 

 

 
exp( ' )

( , ')
4 '

jk r r
r r

r r
ψ

π
− −

=
−

 (2.5) 

 
where r  is a field point, 'r  is a source point, and ε , µ  y k  are the permittivity, 
permeability and wavenumber, respectively, of free space. 
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Physically, the term – L(J) can be considered as the electric intensity at any 
point in space due to the current J on the surface S. This means that the 
operator L in (2.1) has the dimension of impedance 
 

 [ ]tan
( ) ( )Z J L J=  (2.6) 

  
As drawn from [30], the impedance operator Z is complex, and it can be 

written as 
 
 ( ) ( ) ( )Z J R J jX J= +  (2.7) 

  
 

2.2.1. Characteristic currents 
 
Going after the approach developed in [30], characteristic current modes can 

be obtained as the eigenfunctions of the following particular weighted 
eigenvalue equation 

 
 ( ) ( )n n nX J R Jλ=  (2.8) 

 
where nλ  are the eigenvalues, nJ  are the eigenfuncions or eigencurrents, and R 
and X are the real and imaginary parts a of the impedance operator Z. 
 

It is known from reciprocity theorem that if Z  is a linear symmetric operator, 
then, its hermitian parts (R and X) will be real and symmetric operators. From 
this, it follows that all eigenvalues λn in (2.8) are real, and all the eigencurrents 

nJ  can be chosen real or equiphasal over the surface in which they are defined 
[30]. 

 
Moreover, the choice of R as a weigh operator in (2.8) is responsible for the 

orthogonality properties of characteristic modes described in [30], which can be 
summarized as 

 ( )* ,m n mnJ R J δ=  (2.9)  

  

 ( )* ,m n n mnJ X J λ δ=  (2.10)  

 

 ( )* , (1 )m n n mnJ Z J jλ δ= +  (2.11) 

 
where mnδ  is the Kronecher delta (0  if m n≠ , and 1 if m n= ). 
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Given that all eigencurrents nJ  are real, the conjugate operation in equations 
(2.9), (2.10) and (2.11) can be omitted.  
 

Consistent with (2.8), characteristic modes nJ  can be defined as the real 
currents on the surface of a conducting body that only depend on its shape and 
size, and are independent of any specific source or excitation.  
 

In practice, as explained in [31], to compute characteristic modes of a 
particular conducting body, equation (2.8) needs to be reduced to matrix form 
using Galerkin formulation 

 [ ] [ ]n n nX J R Jλ=  (2.12) 

 
Note that matrix R  is positive semi-defined since the power radiated by a 

current nJ  on the surface of a conducting body, is  [ ]*, 0n nJ R J ≥ . 

 
Next, eigencurrents nJ  and eigenvalues nλ  of the object are obtained by 

solving the generalized eigenvalue problem of (2.12) with standard algorithms 
[47]. See Appendix 1 for more details. 

 
As an example, Figure 2.2  illustrates the current distribution at first 

resonance (f =280 MHz) of the first four eigencurrents for a wire dipole of 
length L=0.5 m and wire diameter d=1 mm, placed along the Y axis. The wire is 
supposed to be a perfect conductor with no losses. Computation of modes was 
made using one hundred triangular functions for expansion and testing when 
applying method of moments.  
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Figure 2.2  Normalized distribution at first resonance (f =280 MHz) for the first 
four eigencurrents of a dipole of length L=0.5 m and wire diameter d=1 mm. 
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All currents in Figure 2.2  have been normalized to its maximum value in 
order to facilitate comparison. It can be observed that eigencurrents have 
sinusoidal form with nulls at the end points of the dipole. These eigencurrents 
also exhibit increasingly oscillatory nature as the order of the mode increases. 
First current mode presents one cycle, second current mode two cycles, and so 
on. Furthermore, modes can be classified in even modes (J1 and J3) or odd 
modes (J2 and J4) depending on the symmetry of their current distribution. It 
will be shown later, using the information provided by eigenvalues, that the 
fundamental mode J1 resonates when the length of the dipole is approximately 

/ 2L λ= . Similarly, higher order modes J2, J3 and J4, resonate when the length 
of the dipole is L λ= , 3 / 2L λ=  and 2L λ= , respectively. 

 
It is worth mentioning that eigencurrents depend upon frequency, so they 

need to be recalculated at every frequency of interest. Figure 2.3 exemplifies 
the variation with frequency of the first four eigencurrents of the 
abovementioned wire dipole. It can be noticed that the oscillation of the modes 
increases with frequency in a significant way. This is because current modes 
couple to radiating spherical field modes with increasing azimuthal variation,   
ejnφ , ej2nφ, ej3nφ….. 
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Figure 2.3  Current distribution of the eigenvectors of a dipole of length 
L =0.5 m and diameter d =1 mm at four different frequencies: (a) First 

eigenvector J1 , (b) Second eigenvector J2, (c) Third eigenvector J3, (d) Forth 
eigenvector J4. 
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Henceforth, all the results dealing with a dipole will refer to the previously 
described one of length L=0.5 m and wire diameter d=1 mm. Since for 
electrically small conducting bodies few modes are required for accurate 
solutions, only the first four modes shown in Figure 2.2  are going to be 
considered from now on.  
 
 

2.2.2. Characteristic fields 
 

Electric fields nE  produced by characteristic currents nJ  on the surface of a 
conducting body, are called characteristic fields [30]. From (2.8) it can be 
derived that these characteristic fields can be written as 

 
 ( ) ( ) ( ) ( ) ( )(1 )n n n n n n nE J Z J R J jX J R J jλ= = + = +  (2.13) 

 
Then, from (2.13) it is extracted that characteristic fields are equiphasal, 

since they are ( )1 njλ+  times a real quantity. Orthoganality relationships for 

characteristic fields can be reached from characteristic currents by means of 
complex Poynting theorem 

 

 

( )

( )
( )

* * *

* * *

' '

, , , ,

1

m n m n m n m n

m n m n m n
S

n mn

P J J J ZJ J RJ j J XJ

E H ds j H H E E d

j
τ

ω µ ε τ

λ δ

= = +

= × + ⋅ − ⋅

= +

∫∫ ∫∫∫  (2.14) 

 
If the surface S  is of finite extent and if 'S  is chosen to be the radiation 

sphere S∞ , as shown in Figure 2.1 , it can be demonstrated that 
 

 *1
n m mn

S

E E ds δ
η

∞

⋅ =∫∫  (2.15) 

  
 Hence, characteristic electric fields form an orthogonal set in the far field. 
 

Figure 2.4  depicts the azimuthal radiation pattern ( XY  plane) at first 
resonance (280 MHz) for the modal electric fields ,nEφ  produced by the current 

modes Jn of the wire dipole. Note that the radiation is null in the axial direction 
of the dipole, because of the nulls in the current modes at the ends of the 
dipole. Also observe that the number of radiating lobes depends on the number 
of cycles of the associated current nJ  that increases with the order of the mode.  
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Figure 2.4  Azimuthal radiation pattern (θ =90º) at 4 GHz of the modal electric 
fields ,nEφ  produced by the current modes nJ  of Figure 2.2 . 

 
 

2.2.3. Modal solutions 
 

Due to the already mentioned orthogonality properties over both the surface 
of the body and the enclosing sphere at infinity, characteristic modes radiate 
power independently of one another. Because of this attractive feature, 
characteristic modes can be used as a basis set in which to expand the unknown 
total current J  on the surface of the conducting body as 
 

 n n
n

J Jα= ∑  (2.16) 

 
where nα  are the coefficients to be determined. 
 

Next step consist of substituting (2.16) into (2.1)  
  
 

tan
( ) 0i

n nL J Eα − =   (2.17) 

 
  

X

Y 

φ
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Then, the inner product of (2.17) with each mJ  in turn is taken, giving the 
following set of equations 

 
 , , 0i

n m n m
n

J ZJ J Eα − =∑  (2.18) 

 
where 1,2,3,.......m =  

 
Applying the orthogonality property of (2.11), equation (2.18) reduces to 
 
 ( )1 , i

n n nj J Eα λ+ =  (2.19) 

 
The right-hand term in (2.19) is called modal excitation coefficient [30] 
 
 ,i i i

n n n
n

V J E J E ds= = ⋅∫  (2.20)  

 
Once coefficients nα  have been obtained from (2.19), equation (2.16) can 

be expressed as 

 
1

i
n n

n n

V JJ
jλ

=
+∑  (2.21) 

 
 

Note the modal excitation coefficient, i
nV , accounts for the way the position, 

magnitude, and phase of the applied excitation influence the contribution of 
each mode to the total current J . Consequently, the product i

n nV J  in (2.21) 
models the coupling between the excitation and the nth mode, and it determines 
if a particular mode is excited by the antenna feed or incident field. 

 
However, the total current in (2.21) also depends on λn, the eigenvalue 

associated to the nth characteristic current mode. Eigenvalues are of utmost 
importance because its magnitude gives information about the resonance 
frequency and radiating properties of the different current modes. 

 
 Next section explains in detail how to make the most of the information 

provided by eigenvalues in order to obtain physical insight into the radiation 
phenomena taking place on the antenna. 
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2.3. Physical interpretation of Characteristic Modes 
 

The easiest way to understand how the magnitude of eigenvalues is related 
to the radiation of modes is analyzing the complex power balance yielded by 
equation (2.14).  From this equation it can be deduced that, by definition, the 
power radiated by modes is normalized to unit value. In contrast, reactive 
power is proportional to the magnitude of the eigenvalues.  

 
In general, eigenvalues λn range from −∞  to +∞ . Considering that a mode is 

at resonance when its associated eigenvalue is zero, it is inferred that the 
smaller the magnitude of the eigenvalue is, the more efficiently the mode 
radiates when excited. Additionally, the sign of the eigenvalue determines 
whether the mode contributes to store magnetic energy (λn >0) or electric 
energy (λn <0). 

 
Figure 2.5  shows the variation with frequency of the eigenvalues λn of the 

four current modes of the wire dipole studied in previous sections. It is observed 
that eigenvalues start being negative, next they resonate (λn =0), and at the 
end they keep a small uniform positive value. Hence, mode J1 resonates at 290 
MHz, mode J2 at 590 MHz, mode J3 at 890 MHz, and mode J4 resonates out of 
the analyzed frequency band.  
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Figure 2.5  Variation with frequency of the eigenvalues nλ  associated to the 
current modes nJ  of the dipole depicted in Figure 2.2 . 
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It is important to highlight that the real nature of characteristic modes 
derived from (2.8) constitutes an advantage in comparison with complex natural 
modes directly obtained from impedance matrix [ ]Z . Working with complex 

basis functions deals to complexity increase in computation, since it is necessary 
to give different treatment to the real and imaginary parts of the current to get 
to accurate results [48].  Another drawback of natural modes is that their 
eigenvalues are also complex, thus they are not so easy to analyze and explain 
physically. 
 
 

2.3.1. Modal significance 
 

As exposed before, an analysis of the eigenvalue variation with frequency is 
very useful for antenna design as it brings information about the resonance 
frequency of modes. Nevertheless, in practice other alternative representations 
of the eigenvalues are preferred. Since the modal expansion of the current 
described in (2.21) is inversely dependent upon eigenvalues, it seems more 
logical to analyze the variation of the term  

 

 
1

1n
n

MS
jλ

=
+

 (2.22) 

 
 better than the variation of the isolated eigenvalue.  
 

The term presented in (2.22) is usually called modal significance (MSn) and it 
represents the normalized amplitude of the current modes [41]. This normalized 
amplitude only depends on the shape and size of the conducting object, and 
does not account for excitation.  
 

Figure 2.6  depicts the variation with frequency of the modal significance 
related to the current modes Jn of the dipole. Now, the resonance of each mode 
can be identified by a maximum value of one in the modal significances curves. 
This means that the nearest the curve is to its maximum value, the most 
effectively the associated mode contributes to radiation.  

 
Then, the radiating bandwidth of a mode can be established according to the 

width of its modal significance curve near the maximum point.  This radiating 
bandwidth constitutes an important figure-of-merit to determine the radiating 
performance of modes. 
 

 Let us define the radiating bandwidth of a mode BWn as the range of 
frequencies within which the power radiated by the mode is not less than one-
half the power radiated at resonance.  
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Translated to modal significance curves, half-power (HP) at resonance 
corresponds to a reduction of the normalized current by a factor 2  

 

 _
1 1 0.707

1 2HP n
n

MS
jλ

= = =
+

 (2.23) 

 
Hence, the radiation bandwidth of a mode BWn can be expressed as a 

fraction of the frequency difference (upper minus lower) over the resonance 
frequency of the mode 

 

 U L
n

res

f fBW
f
−

=  (2.24) 

 
where resf  is the resonance frequency of the mode, and Uf  and Lf  are the 

upper and lower limits, respectively, according to the previous definition. 
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Figure 2.6  Variation with frequency of the modal significance (MSn) related to 
the current modes Jn of the dipole sketched in Figure 2.2 . 

 
 

Moreover, a modal quality factor can be defined from the fractional 
bandwidth as 

 

 ,
1

rad n
n

Q
BW

=  (2.25) 

provided Qrad,n >> 1. 
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The quality factor of a resonant mode measures how sharp its resonance is. 
Then, the higher the Qrad,n, the sharper the resonance of the mode is, and the 
narrower the radiating bandwidth results. 

 
On the basis of the information provided by Figure 2.6 Table 2.1 summarizes 

the resonance frequency, half-power radiating bandwidth and modal quality 
factor of the first three modes of the dipole. 
 

 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Mode J1 290 270 310 13.79 7.25 
Mode J2 590  560 620 10.16 9.84 
Mode J3 890  855 925 7.86 12.72 

 

Table 2.1. Resonance frequency, radiating bandwidth and quality factor 
of the first three modes of the dipole. 

 
 

The modal quality factor proposed in (2.25) presents the advantage of 
simplicity and ease of calculation. To validate its accuracy, results in Table 2.1 
for Qrad,n, are going to be compared with values provided by alternative 
definitions of the quality factor. 

 
A classical formula to obtain the quality factor due to a current I, is that 

based on the Foster reactance theorem [49]-[50]  
 

 

[ ] [ ] [ ]

[ ] [ ]

t

Foster t t

d X
I X I

d
Q

I Z Z I

ω
ω

∗

∗ ∗

 
  ±  

 =
    +     

 (2.26) 

 
where either the + or – value is chosen to give the higher Q. 
 

Similarly, Harrington and Mautz in [38] approximated the quality factor of a 
current I as 

 

 
[ ]

[ ][ ]

*

*2

dXI I
dQ

I R I
ω ω

      =
  

 (2.27) 

 
where R and X are the real, and imaginary parts of the impedance matrix of the 
body, respectively. 
 

Note that although (2.27) is similar to (2.26), they are slightly different. In 
(2.27), [ ]X±  has been neglected, since for high Q values, the term obtained 

from [ ]( )/Xω ω∂ ∂ is usually larger than that obtained from[ ]X . 
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Then, a modal quality factor could be obtained from either (2.26) or (2.27), if 
the current I were a characteristic current Jn. 

 
Nevertheless, the values for the modal quality factor presented in [38] have 

been obtained by solving the following eigenvalue equation directly derived from 
(2.27) 

 

 [ ] [ ][ ]n n n
dX J Q R J
d

ω
ω

  =  
 (2.28) 

 
where Qn are the eigenvalues, and [ ]nJ  are the eigencurrents. 

 
Finally, in [38] an interpretation of a modal Qn made in terms of the 

frequency variation of the eigenvalues is also proposed 
 

 , 2
n

n Harrington
dQ
d
λω
ω

≈  (2.29) 

 
The quality factor defined in (2.29) measures the frequency sensitivity of a 

modal current, so it should be equivalent to that previously defined in (2.25).  
 
Table 2.2 compares the results obtained for the modal quality factor of the 

first three modes of the wire dipole at resonance (ω=ω0), using (2.25), (2.26) 
and (2.29). 

 
 ,n radQ  ,n FosterQ  ,n HarringtonQ  

Mode J1 7.25 7.32 7.08 
Mode J2 9.84 10.17 9.97 
Mode J3 12.72 12.73 12.38 

 

Table 2.2. Modal quality factor for the first three modes of the dipole, computed 
using (2.25), (2.26) and (2.29). 

 
 

 

 Results in Table 2.2 demonstrate that the definitions of the modal quality 
factor in (2.25) ,(2.26) and (2.29) are equivalent, since they provide very similar 
values.  
 

In Chapter 5 further discussion about the modal quality factor of broad band 
radiators will be presented. 

 
Next section deals with another representation of the eigenvalues that is 

based on the use of characteristic angles.  
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2.3.2. Characteristic angle 
 
Characteristic angles are defined in [51] as: 

 
 -1180º - tan ( )n nα λ=  (2.30) 

 
From a physical point of view, a characteristic angle models the phase angle 

between a characteristic current Jn and the associated characteristic field En. 
 
Figure 2.7  presents the variation with frequency of the characteristic angles 

(αn) associated to the current modes of the dipole. Observe that a mode 
resonates when λn=0, that is, when its characteristic angle αn is 180º.  
 

Therefore, when the characteristic angle is close to 180º the mode is a good 
radiator, while when the characteristic angle is near 90º or 270º the mode 
mainly stores energy. Thus, the radiating bandwidth of a mode can be more or 
less deduced from the slope near 180º of the curve described by characteristic 
angles.  

 
To compute the radiating bandwidth of modes from characteristic angles 

using (2.24), it is necessary to determine which values of characteristic angle 
correspond with one-half the power radiated at resonance. From (2.23) it can 
be deduced that there are two eigenvalues, λn=1 and λn=-1, that produce a 
modal significance of 0.707. These eigenvalues generate characteristic angles of 
135º and 225º.  Then, when computing the radiating bandwidth of modes using 
characteristic angles, Hf  and Lf  in equation (2.24) are the frequencies at which 
characteristic angles are 135º and 225º, respectively. 
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Figure 2.7  Variation with frequency of the characteristic angle nα  associated 
to the current modes nJ  of the dipole sketched in Figure 2.2  
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Although the information given by Figure 2.7  could have also been extracted 
from Figure 2.5 or Figure 2.6 characteristic angle representation is often 
preferred as it is the most intuitive one. 

 
In next chapter it will be shown that although the behaviour shown in Figure 

2.7  is the typical behaviour of characteristic angles, there are also special non-
resonant inductive modes with angles below 180º at every frequency. 
 
 

2.4. Excitation of Characteristic Modes 
 

Once current distribution, resonance frequency and radiating bandwidth of 
characteristic modes have been determined, next step is to find out which 
modes are excited when an excitation source is placed over the wire dipole.  

 
In order to determine how each mode contributes to the input bandwidth, the 

input admittance Yin of the antenna is studied. For a voltage excitation of 1V, 
the input admittance of the antenna Yin can be easily calculated, as it is equal to 
the current J in equation (2.21) sampled at feed point P 
 

 
( )( )

1 1

i
n n

in
n n

V J PJ PY
V jλ

⋅
= =

+∑   (2.31) 

 
 In the same manner as in (2.16), the complex input admittance (Yin) can be 

expressed as sum of complex eigenadmittances, or modal admittances (Yn) as 
follows 
 

 2 2

( ) ( )
1 1

i i
n n n n n

in n n n
n n n n n

V J P V J PY Y G jB j λ
λ λ

⋅ ⋅ ⋅
= = + = −

+ +∑ ∑ ∑  (2.32)  

 
Just to conclude the modal characterization of the dipole used in this chapter 

as example, a delta gap source is going to be placed at different locations to 
investigate the excitation of modes. In first place, the case of the centre fed 
dipole is going to be considered. Figure 2.8  shows the complex input 
admittance Yin of this centre fed dipole together with the complex modal 
admittances Yn=Gn+jBn associated to the current modes of Figure 2.2 . As it was 
be expected, only even modes, J1 and J3 are excited, since odd modes, J2 and J4 
present zero current amplitude at the centre of the dipole. Mode J1 dominates at 
lowest frequencies and it is responsible for the resonance at 290 MHz, while the 
resonance at 890 MHz is due to mode J3 that is dominant at highest 
frequencies. In contrast, in the frequency band that ranges from 400 MHz to 
600 MHz there is no dominant mode, and the antiresonance that appears at 525 
MHz is caused by the interaction of modes J1 and J3.  

 
Let us consider now a delta gap source located at a quarter of the length of 

the dipole. The contribution of the modal admittances Yn to the input admittance 
Yin of the dipole, for this new location of the source, is presented in Figure 2.9   
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It should be emphasized that for the case of the non-centre fed dipole, both 
odd and even modes are excited. Mode J1 is responsible for the first resonance 
at 220 MHz. Modes J2 and J3 cause the resonances at 600 MHz and 800 MHz, 
respectively. Also from Figure 2.9 it can be deduced that the first antiresonance 
at 300 MHz is due to the interaction of modes J1 and J2, and the second 
antiresonance at 700 MHz turns out from the combination of modes J1, J2 and 
J3.  

 
These results confirm that the resonances of an antenna can be directly 

attributed to radiating modes, while antiresonances are caused by the 
combination of two or more modes. Furthermore, these results probe that a 
resonant dipole ( L ≈ 0.5λ ) can be analyzed in a wide frequency band (from 
L=0.1λ to L=1.6λ) just using the first four radiating modes.  
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Figure 2.8  Representation of the input admittance Yin and modal admittances 
Yn of the centre fed dipole: (a) Real part (G), and (b) Imaginary part (B). 
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Figure 2.9  Representation of the input admittance Yin and modal admittances 
Yn of a dipole fed at one quarter of its length: (a) Real part (G),  and              

(b)  Imaginary part (B). 
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2.5. Mode resonance by reactive loading 
 

Reactive loading has been extensively used for the last four decades not only 
for designing wire antennas [52]-[54], but also other types of antennas such as 
microstrip patches [55]-[57] or planar monopoles [58]-[59].  

 
First publications dealing with reactive loading can be attributed to the most 

mentioned author in this thesis, R. F. Harrington [60]-[62]. After some 
preliminary works, Harrington proposed the use reactive loading in conjunction 
with the Theory of Characteristic modes for the control of radiation and 
scattering of conducting bodies [38]-[39]. When reactive loading is combined 
with characteristic modes it gains a more practical perspective since total 
control of the electromagnetic behaviour of the antenna can be achieved.  

 

2.5.1. Continuous loading 
 
Using the method reported in [38], any current mode on the body can be 

made resonant at the desired frequency by adding reactive loads. Basically, 
when applying this method, the matrix equation described in (2.12) is 
substituted by 
 

 [ ] [ ]L n n nX X J R Jλ+ =  (2.33) 

 
where [ ]LX  is the imaginary part of the load impedance matrix [ ]LZ , which is a 

pure reactance (RL=0). Moreover, if Galerkin formulation is used to discretize 
the problem [ ]LX  will be a diagonal matrix 
 

 [ ]
1

2

3

0 0 .....
0 0 .....
0 0 .....

...... ...... ...... ......

L

L
L

L

X
X

X
X

 
 
 =
 
 
 

 (2.34) 

 
This new definition of the eigenvalue problem established in (2.33) accounts 

for reactive loading, but it does not alter the properties of characteristic modes. 
So, when solving equation (2.33) eigenvalues are still real, and eigencurrents 
can be chosen real. Orthogonality relationships of modes also remain 
unchanged.  
 

As explained in section 2.3, a mode Jn resonates when its eigenvalue is λn=0.  
This means that at resonance, the left-hand side of (2.33) is zero. Hence, a 
current mode Jn can be forced to resonate at any frequency just by making the 
right-hand side of (2.33) equal to zero at this frequency [38].  
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This artificial resonance can be accomplished by adding an appropriate 
reactive load matrix [ ]LX  whose diagonal elements can be obtained from  

 
 [ ] [ ]( )

iLi n n i
X J X J⋅ = − ⋅  (2.35) 

 
with 1,2,3,i = ⋅⋅⋅⋅ . The notation [ ] [ ]( )n i

X J⋅  means the ith element of the column 

matrix [ ] [ ]nX J⋅ , and Jn  is the desired current mode. 

 
To exemplify this procedure, the fundamental mode J1 of the wire dipole that 

has been used as example along this chapter, is going to be made resonant at 
120 MHz using reactive loading. Figure 2.10  shows the distribution of reactive 
loads XLi required along the one hundred segments of the wire dipole. These 
reactive loads have been computed according to (2.35), using the current mode 
J1, and the imaginary part of the generalized impedance matrix of the dipole 
[ ]X  at 120 MHz.  It can be observed that the distribution of loads is symmetrical 

and that all loads are positive. It is also observed that this load distribution is 
nearly uniform at the centre of the dipole, while at the ends it presents high 
values.   
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Figure 2.10  Distribution along the wire dipole of the reactive loads required to 
make mode J1 resonant at 120 MHz. 

 
 

Once the desired load distribution to make mode J1 resonant at 120 MHz has 
been found, next step is loading the dipole with the corresponding reactances. 
Physically, the distributed load shown in Figure 2.10 can be modelled by lumped 
reactances placed at the different segments of the dipole. Numerically, the 
effect of the loading is included by replacing the generalized matrix of the dipole 
[ ]Z  by [ ]LZ jX+ , where LjX  is the load matrix.  
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Figure 2.11  depicts the characteristic angle variation with frequency for the 
first four modes of the loaded dipole. As expected, mode J1 resonates at 120 
MHz. However, the resonance frequencies of the rest of modes have also been 
shifted to lower frequencies due to the effect of the loading. Another effect is 
the variation of the slope of characteristic angles curves, that now are steepest 
than before. 
 

For brevity, the current distributions of the loaded modes are not going to be 
presented here since they are very similar to those depicted in Figure 2.2 and 
they do not provide any relevant information. 
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Figure 2.11  Characteristic angle variation with frequency for the four first 
current modes of a dipole of length L=0.5 m when it is loaded with the 

distribution of reactances shown in Figure 2.10. 
 
 

Table 2.3 illustrates the resonance frequency, radiating bandwidth and 
quality factor of the first four modes of the loaded dipole. The comparison of 
data in Table 2.3 with those obtained in Table 2.1 for the not loaded dipole 
yields several conclusions. The most obvious one is that all modes have been 
shifted to lowest frequencies. The resonance frequency has been shifted 170 
MHz for mode J1, 285 MHz for mode J2, 365 MHz for mode J3, and more than 
400 MHz for mode J4. Thus, it seems that the higher the order of the mode is, 
the more affected its resonance frequency is by the loading. Another important 
conclusion is that the radiating bandwidth of modes has diminished because of 
the effect of the loading. This radiating bandwidth reduction is caused by the 
steepest slope that present the characteristic angle curves of the loaded dipole.  
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 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Mode J1 120 115 125 8.3 12 
Mode J2 305 300 310 3.2 30.5 
Mode J3 525 520 530 1.9 52.5 
Mode J4 757 755 760 0.7 151.4 

 

Table 2.3.  Resonance frequency, radiating bandwidth and quality factor 
of the four first modes of the loaded dipole. 

 
 
As a rule, by using reactive loading a more compact antenna can be 

achieved at the cost of loosing impedance bandwidth. This can be verified by 
studying the input impedances shown in Figure 2.12 , which correspond with 
the centre-fed dipole analyzed in section 2.4, and the same centre-fed dipole, 
loaded with the distribution of loads of Figure 2.10 For the case of the not 
loaded dipole the frequency separation between first and second resonances is 
600 MHz. As was demonstrated in section 2.4, first and second resonances are 
associated to modes J1 and J3, respectively. Likewise, resonances of the loaded 
dipole are caused by modes J1 and J3, with a separation between them of 405 
MHz.  

 
The distance between two consecutive resonances is critical, as it determines 

the location of the antiresonance that results from the interaction of the 
inductive modes that have already resonated, with the capacitive modes that 
will resonate next. Antiresonances are characterized by very high resistance 
values that degrade the impedance bandwidth of the antenna. In general, the 
closest an antiresonance is to a resonance, the sharpest is the antiresonance, 
and in consequence, the more degraded results the impedance bandwidth 
around the resonance.   

 
 

(a) Centre-fed dipole (b) Loaded centre-fed dipole 
 
Figure 2.12  Input impedance of: (a) Centre-fed dipole of length L=0.5 m. (b) 

Centre-fed dipole of length L=0.5 m loaded with the distribution of 
reactances shown in Figure 2.10. 
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In conclusion, the application of the Theory of Characteristic Modes together 
with reactive loading gives the designer a total control over the resonance 
frequency of a particular mode. However, there is no control over how the rest 
of modes will be affected by the loading.  

 
Results previously presented show that when a continuous inductive loading 

is used, the resonance frequency of all modes shifts to lower frequencies, at the 
same time as its radiating bandwidth worsens. The separation between 
resonances also diminishes because of the loading, resulting in sharp 
antiresonances that degrade the impedance bandwidth of the loaded antenna. 

 

2.5.2. Discrete loading  
 
The technique presented in section 2.5.1 is not recommendable from a 

practical point of view, since the physical implementation of the reactive loads 
shown in Figure 2.10  is really complicated, if not impossible. 
 

An easier solution to modify the resonance frequency of a mode, while 
minimizing the effect over the rest of modes, consists of using lumped loads at 
discrete points of the wire dipole. For instance, the resonance frequency of 
mode J1 can be shifted to a lowest frequency by placing an inductive load just at 
the centre of the dipole, where the mode presents maximum current amplitude 
(see Figure 2.2). The advantage of this solution is that neither mode J2 nor J4, 
will be affected by the loading, since they present a current null at the location 
of the load. In contrast, mode J3, which presents maximum current at the centre 
of the dipole, will also be altered because of the loading.  

 
The main drawback of this technique is that there is not a systematic 

procedure to obtain the exact value of the load needed to resonate the mode at 
the desired frequency, other than cut and try methods. However, if the location 
of the load coincides with the location of the source, the input impedance values 
can be used as a reference to obtain an approximated value of the load. To be 
explicit, in Figure 2.8  it has been demonstrated that the first and second 
resonances of a centre-fed dipole occur when modes J1 and J3 resonate, 
respectively. Then, if a resonance of the input impedance is shifted by placing a 
lumped load in series with the source, the resonance frequency of the mode 
responsible for that resonance will be shifted accordingly.  

 
Suppose the objective is to make mode J1 resonant at 120 MHz. From Figure 

2.12 (a) it is extracted that the input impedance of a centre-fed dipole at 120 
MHz is Zin =7.7– j832 Ω. Hence, to obtain a resonance at 120 MHz, a reactive 
load of value XL=832 Ω should be placed in series with the source. 
Theoretically, the resonance frequency of mode J1 will also be shifted to 120 
MHz.  
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Figure 2.13  evidences that the input impedance of the centre-fed dipole 
when loaded with a 832 Ω reactive load at its centre, presents a resonance at 
120 MHz.  With respect to the behaviour of modes, Figure 2.14  shows the 
variation with frequency of the characteristic angles of the first four modes for 
this loaded dipole. Due to the loading, mode J1 resonates at 120 MHz, mode J3 
at 675 MHz, whereas the resonance frequencies of modes J2 and J4 do not 
change.  

 
Results for the resonance frequency, radiating bandwidth and quality factor 

are summarized in Table 2.4. It is worth noting that only the radiating 
bandwidth of mode J1 has been degraded because of the loading. Surprisingly, 
the radiating bandwidth of mode J3 increases in the presence of the load. 
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Figure 2.13  Input impedance of the centre-fed dipole when loaded with a 832 
Ω reactive load at its centre. 
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Figure 2.14  Variation with frequency of the characteristic angles for the first 
four modes of a dipole with a reactive load of 832 Ω placed at its centre. 
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 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Mode J1 120 115 125 8.3 12 
Mode J2 590  560 620 10.16 9.84 
Mode J3 675 640 730 13.33 7.5 

 

Table 2.4.  Resonance frequency, radiating bandwidth and quality factor of the 
first three modes of the dipole with a reactive load of 832 Ω placed at its centre. 

 
From the previous results it outcomes that discrete loading is less harmful 

with the radiating bandwidth of modes than continuous loading. Nevertheless 
the current distribution of modes is more affected by discrete loading than by 
continuous loading, so do radiation patterns. Figure 2.15  depicts the normalized 
current distribution at first resonance (120 MHz) of the four first modes of the 
discrete loaded dipole. Observe mode J1 exhibits a triangular current distribution 
that is typical of an elemental dipole. This is because the length of the dipole 
(L=0.5 m) is small when compared with the wavelength at 120 MHz 
(λ120MHz=2.5 m). For the same reason, the current distribution of mode J3 is also 
nearly triangular close to the location of the load. On the contrary, since modes 
J2 and J4 present a current null at the location of the load, their current 
distributions remain unaltered.   
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Figure 2.15  Normalized distribution at first resonance (f =120 MHz) for the first 
four eigencurrents for the dipole with a reactive load of 832 Ω placed at 

segment 50. 
 

Finally, it should be emphasized that although the procedure described here 
for determining the value of the reactive load is also valid for resonating higher 
order modes, results are not as precise as when the fundamental mode is 
chosen for the shifting. Often, when higher order modes are selected to be 
reallocated in frequency, the value for the reactive load obtained from the input 
impedance needs to be slightly modified to achieve the desired shifting. In 
contrast, the procedure described in section 2.5.1 is always valid and precise 
whichever the order of the mode is.  



Chapter 2 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

34 

2.6. Equivalent circuit of an antenna using Characteristic Modes 
 

A revision of the available literature shows that extensive studies have been 
reported regarding the derivation of lumped element equivalent circuits for 
antennas and scatterers [63]-[66]. In special, equivalent circuits for modelling 
the input impedance of thin-wire structures have long been investigated [67]-
[70].  

 
Actually, although achieving a single frequency circuit model for an antenna is 

relatively simple, synthesizing a broad-band equivalent circuit is not so easy. 
Schelkunoff developed a general theory of broad-band equivalent circuits for 
radiating structures [71], however, he did not address any realizability 
considerations. Next, other authors proposed a formal equivalent circuit 
development based on the Singularity Expansion Method (SEM) formalism [72]. 
This approach is quite difficult as it involves working in the complex frequency 
plane [73]. 
 

Other methods, like the one described in [74], are based on the generation of 
a rational function approximation with real coefficients in order to model the 
input impedance of the antenna in the frequency domain. Then, an algorithm, 
for example a genetic algorithm, can be employed in order to find the best-fit 
positive-real rational function that is realizable by passive circuits.  
 

However, to some extent all the abovementioned approaches have lacked 
generality, and realizability issues are not considered. 

 
As shown in section 2.4, the input admittance of an antenna can be 

expanded in terms of eigenadmittances. Having in mind this input admittance 
expansion, an equivalent circuit model for the antenna can be synthesized. In 
this equivalent circuit, modal admittances are modelled by series R-L-C 
networks. The value of the each individual element of the network is determined 
from the resonance frequency and the quality factor of the corresponding mode. 
 

To illustrate the method, a broadband equivalent circuit for the centre-fed 
wire dipole analyzed in section 2.4, is going to be synthesized.  This circuit 
accounts for the excitation of modes J1 and J3, and is valid from low frequencies 
to second resonance.  

 
Figure 2.16  shows the proposed lumped element equivalent circuit for the 

centre-fed dipole. Each mode is modelled by a series R-L-C circuit. The 
resistance Rn accounts for the radiation of the mode. The inductance Ln, in 
series with the capacitance Cn, provides the resonance frequency of the mode 
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Figure 2.16  Equivalent circuit based on the modal expansion of the input 
admittance, for the centre-fed wire dipole analyzed in section 2.4. 

 
 
The procedure for obtaining the value of each element of the circuit begins 

with the determination of the resistances R1 and R3. When the mode is at 
resonance, its associated modal admittance is pure reactive 
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From Figure 2.9 (a) it can be extracted that at resonance frequency (fr1=290 

MHz), the modal admittance of mode J1 is 1
1 13 Y m −= Ω . This value yields a 

reactance 1 77 R = Ω . Likewise, for the case of mode J3, the modal admittance at 

resonance (fr3=890 MHz) is 1
3 9.5 Y m −= Ω , which results in 3 105 R = Ω . 

 
Next, the inductances L1 and L3 are obtained using the modal quality factors 

calculated in section 2.3.1. The quality factor of the series R-L-C circuit 
representing each mode is  

 

 _
,

r n n
rad n

n

L
Q

R
ω ⋅

=  (2.38) 

 
When the quality factor in (2.38) takes the value ,1 7.25radQ = , and 

,3 12.72radQ = , the inductances 1 306.4 L nH=  and 3 238.8 L nH=  are obtained, 

respectively. 
 
Once the inductances of the circuit have been calculated, the capacitances C1 

and C3 can be determined using (2.36). The corresponding values are  
1 0.98 C pF=  and 3 0.134 C pF= . 
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Finally, a capacitance C01 is placed in parallel with the R-L-C circuits. This 
capacitance interacts with the series resonant circuits, and facilitates the 
modelling of the antiresonance (parallel resonance) that occurs at 525 MHz. If 
higher order modes had been considered in the circuit, this capacitance C01 
would not have been needed. 
 

The input admittance of the equivalent circuit of Figure 2.16 is 
 

 1 0 3 0

1 1 3 3
1 3

1 1
1 1inY Y j C Y j C

R j L R j L
j C j C

ω ω
ω ω

ω ω

= + + = + +
+ + + +

 (2.39) 

 
Substituting the already known elements in expression (2.39) it is obtained 

that at the antiresonance 
 
 4 4

0525
2.027 10 7.34 10in f MHz

Y j j Cω− −
=

= ⋅ − ⋅ +  (2.40) 

 
Then, the value of the parallel capacitance is derived by enforcing the 

imaginary part of (2.40) to be zero 
 
 0 0.22 C pF=   (2.41) 

 
Figure 2.17 compares the actual input admittance of the centre-fed dipole 

computed with method of moments, with that provided by the equivalent circuit 
proposed in Figure 2.16. As can be seen both results agree favourably.  

 
Lastly, it should be pointed out that a lumped element equivalent circuit for 

an antenna can be very useful, especially if the antenna needs to be integrated 
in a system, and modelled together with other microwave components, using 
specific commercial software, such as Microwave Office.  
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Figure 2.17  Comparison of the input admittance of the centre fed dipole 
computed with MoM, with the input admittance obtained for the 

equivalent circuit shown in Figure 2.16. 
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CHAPTER 3.  Modal Analysis of Wire Loop Antennas                                   
 

 
3.1. Introduction  

In Chapter 2 a review of the Theory of Characteristic Modes was presented 
using a straight wire dipole as an example. The present chapter is devoted to 
the modal analysis of wire loops of different geometry. Wire loops are 
particularly interesting since special non-resonant modes, which are dominant at 
lowest frequencies, appear on them. The dependency of the degeneracy of 
modes with the symmetry of the loop will be studied in detail. Drawing an 
analogy with the folded dipole, modes will be classified in antenna modes and 
transmission line modes. Finally, more complex wire structures will be analyzed 
in order to demonstrate that the Theory of Characteristic Modes can be applied 
to conducting wire objects of arbitrary shape. 

There exist some publications calculating the natural frequencies and modal 
current distributions of natural modes [75]-[76]. All these studies are based on 
the SEM approach [72], and work in the complex frequency domain. However, 
none of the literature has shown so far a systematic modal analysis of loop 
antennas based on the Theory of Characteristic Modes, which provides a clearer 
physical insight than the SEM approach. 

 

 

3.2. Special non-resonant modes and degenerated modes 
 

Let us begin analyzing the behaviour of the special non-resonant modes that 
are inherent in closed wire structures. For this purpose, a circular wire loop is 
going to be considered.  

Circular loops are classical wire antennas that have been extensively studied 
over the last six decades for UHF applications. A search through the available 
literature shows that if the loop is small with respect to the wavelength of 
operation, the current distribution on it will be uniform [77]-[78]. Otherwise, for 
electrically large loops a sinusoidal current distribution is assumed [79]-[80].   

The circular loop that is going to be used for this study is depicted in Figure 
3.1. The loop is placed at the XY plane, and it presents diameter d = 0.229 m, 
and wire radius r = 0.5 mm. The wire is assumed to be a perfect conductor of 
no conducting loss. The perimeter of the loop is divided in 50 segments, as 50 
triangular functions have been used for expansion and testing in the 
computation of the impedance matrix. The current distribution at first resonance 
(f = 440 MHz) for the first five eigencurrents of this loop is shown in Figure 3.2. 
According to their current distribution, modes J0, J2 and J4 present even 
symmetry, and modes J1 and J3 present odd symmetry.  
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For the sake of clarity, Figure 3.3 provides schemes of the projection of the 
eigencurrents along the loop perimeter. Note segments are numbered counter 
clockwise beginning from Y axis. The first two modes, J1 and J2, present two 
current nulls at φ =90º and at φ =0º, respectively. Modes J3 and J4 are higher 
order modes with four current nulls. Nulls of mode J3 are at φ =90º and φ =0º, 
whereas nulls of mode J4 are at φ =±45º.  

Complementarily with these results, Figure 3.4 describes the variation with 
frequency of the characteristic angles associated to these first five current 
modes of the circular loop.  
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Figure 3.1 Circular wire loop of diameter d =0.229 m and wire radius r=0.5 mm. 
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Figure 3.2 Normalized current distribution at first resonance (f =440 MHz) of 
the first five eigencurrents Jn of the circular loop shown in Figure 3.1. 
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Figure 3.3   Schemes of the projection of eigencurrents Jn along the circular 
loop perimeter that is divided in fifty segments. 
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Figure 3.4 Variation with frequency of the characteristic angle αn associated 
to the eigencurrents of the circular loop shown in Figure 3.2. 

 

Relevant information can be obtained from the previous figures. On one 
hand, Figures 3.2 and 3.3 evidence that mode J0 presents uniform current 
forming a closed loop along the perimeter of the loop. This mode is responsible 
for the typical uniform current distribution that appears in electrically small 
loops.  Figure 3.4 proves that this mode exhibits special behaviour when 
compared with the rest of modes, as its characteristic angle stays below 180º at 
every frequency. This means that mode J0 does not resonate and it always 
contribute to store magnetic energy. On the other hand, due to the revolution 
symmetry of the loop, modes resonate in pairs, except for the special mode J0. 
In the studied frequency range, there are two pairs of degenerated modes with 
identical resonance frequency, J1-J2, and J3 -J4. 
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 As stated by Figure 3.4, degenerated modes present the same characteristic 
angle at every frequency. First pair of degenerated modes resonates at 440 
MHz, when the perimeter of the loop is approximately λ. Second pair resonates 
at 860 MHz, when the perimeter of the loop is 2λ. Furthermore, degenerated 
modes present exactly the same current distribution, but with 90º phase 
difference, for the case of modes J1 and J2, and with 45º phase difference, for 
the case of modes J3 and J4.  

It should be pointed out that the current distributions of the degenerated 
pairs shown in Figure 3.2 are perfect sinusoidal functions. The current 
distribution of modes J1 and J2, corresponds with a sinusoidal functions of one 
cycle, whereas the current distribution of modes J3 and J4, is that of a two 
cycles sinusoidal function. 

Additionally, the radiating bandwidth of modes can be determined using the 
information provided by the characteristic angle curves shown in Figure 3.4. As 
it was demonstrated in Chapter 2, the characteristic angle values that 
correspond with one-half the power radiated at resonance, are 135º and 225º. 
Hence, the upper and lower frequencies, Uf  and Lf , which appear in equation 
(2.24), are the frequencies at which characteristic angles are 135º and 225º, 
respectively.  

Table 3.1 sums up the radiating bandwidth and quality factor of the modes of 
the circular loop. These results have been obtained using equations (2.24) and 
(2.25), together with the information provided by Figure 3.4. In next section, 
the values of Table 3.1 will be compared with similar ones obtained for the 
modes of other wire loops of different geometry. 
 
 

 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ

Modes J1 and J2 440 410 475 14.77 6.77 

Modes J3 and J4 860 820 920 11.63 8.60 
 

Table 3.1.  Resonance frequency, radiating bandwidth and quality factor for the 
first two pairs of degenerated modes of the circular loop shown in Figure 3.1. 

 

 Figure 3.5 shows the azimuthal radiation pattern (θ =90º) at 440 MHz of the 
modal electric fields En produced by the current modes Jn of Figure 3.2. It can 
be observed that the radiation pattern generated by mode J0 presents nearly 
omni directional characteristic. The radiation patterns created by degenerated 
modes are identical but with a phase rotation of 90º for the first pair (J1 and J2), 
and a phase rotation of 45º for the second pair (J3 and J4). Observe also that 
the number of lobes increases with the order of the mode, or what is the same, 
in correspondence with the number of current nulls of the mode. 
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Figure 3.5 Azimuthal radiation pattern (θ =90º) at 440 MHz of the modal 
electric fields nE  produced by the current modes nJ  of Figure 3.2. 

 

 No mention has yet been made of the excitation of modes. Due to the 
rotational symmetry of the loop, when a single source is used anywhere along 
the loop perimeter, only one mode of each degenerated pair is excited. This 
assertion can be verified by means of Figure 3.6 which studies the contribution 
of modal admittances (Yn) to the total input admittance of the circular wire loop 
(Yin), when a delta gap source is placed at segment 25. 

 In Figure 3.6 it is observed that because of the location of the source, only 
modes with even symmetry, J0, J2 and J4 are excited. The uniform current mode 
J0 dominates at lowest frequencies. Mode J2 prevails from 300 MHz to 600 MHz, 
and it causes the resonance at 440 MHz. Mode J4 governs the antenna 
behaviour from 800 MHz to 1000 MHz, and it is responsible for the second 
resonance at 860 MHz. Conversely, antiresonances are not caused by a single 
mode, but by the combination of several of them. For instance, the first 
antiresonance that occurs at 200 MHz, when the loop perimeter is 0.5λ, results 
from the combination of the inductive mode J0 and the capacitive mode J2. 
Likewise, the second antiresonance at 600 MHz, which corresponds with a loop 
perimeter of 1.5λ, is the result of the interaction of modes J0, J2 and J4.  
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Figure 3.6 Contribution of modal admittances Yn to the total input admittance 
Yin of the circular loop shown in Figure 3.1.     

 The representation of the modal admittances in Figure 3.6 helps to find out 
which modes are excited when the source is placed at segment 25, however, by 
means of modal admittances it is difficult to determine if the excited modes are 
well matched to the source. In order to establish the input bandwidth of modes, 
a modal input voltage standing wave ratio (VSWRn) can be calculated. Figure 3.7 
shows the VSWR of modes J2 and J4, which has been obtained from the modal 
admittances of Figure 3.6. The total VSWR of the antenna has also been plotted 
in Figure 3.7. Observe that although the total VSWR of the antenna can not be 
expressed as a linear combination of the VSWR of the excited modes, when they 
are represented together it is easy to recognize which modes are contributing to 
the total input bandwidth of the antenna at each frequency. For the circular loop 
under study, there are two operating bands, one at 450 MHz and the other at 
850 MHz. Both bands present poor impedance matching, so the input bandwidth 
of the antenna is not very good. First band can be clearly attributed to mode J2, 
and second band is due to the excitation of mode J4. 

X 
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 It is interesting to note that because of the revolution symmetry of the loop, 
if the delta gap source were located at segment 1, results obtained in Figure 3.6 
and Figure 3.7 would be exactly the same. On the contrary, if the feeding were 
positioned at segments 12.5 or 37.5, modes J1 and J4 would be excited, while 
the total input admittance would behave exactly the same way as in Figure 3.6, 
and the total VSWR would also remain unchanged. 
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Figure 3.7 Contribution of the VSWR of modes J2 and J4 to total VSWR of the 
circular loop antenna when it is fed at segment 25. 

  

 Finally, if both modes of a pair of degenerated modes want to be excited 
simultaneously, for example to obtain circular polarization, the rotational 
symmetry of the loop should be broken by introducing some kind of asymmetry. 
This asymmetry can be a discrete load, a stub, or an open gap at any position 
of the loop. Another alternative to excite simultaneously two degenerated 
modes consist in using two excitation sources in quadrature. However, as the 
number of excited modes increases, also does the number of antiresonances. 
Remember that antiresonances are due to the transition from one mode to 
other, and they produce high resistance values that affect remarkably the 
broad-band property of the antenna. Because of this negative effect of 
antiresonances, when an antenna presents a wideband radiating mode it is 
desirable to avoid the excitation of higher order modes that would interact with 
it, generating an antiresonance. In general, the further two consecutive 
resonances are, the softer the resultant antiresonace is.  

 Next section explains how to use reactive loading to break the rotational 
symmetry and the degeneracy pattern of the modes of the circular wire loop, in 
order to obtain circular polarization. 

 

 

X 
Y 
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3.3. Use of reactive loading for obtaining circular polarization  
 

In section 2.5 of Chapter 2 it was explained how to use reactive loading in 
combination with the Theory of Characteristic Modes for increasing the electric 
length of a wire dipole while maintaining its physical length. In this section, 
discrete reactive loading is going to be employed for splitting the first pair of 
degenerated modes of the circular loop, with the aim of obtaining circular 
polarization using a single feeding source. 
 

It is a well-known fact that to obtain circular polarization it is necessary to 
combine two orthogonal and linearly polarized modes, with the same current 
amplitude and with a phase difference of 90º. As commented above, a circular 
loop with a single source positioned anywhere along the perimeter, yields linear 
polarization, as only one mode of the each degenerated pair is excited. By 
inserting reactive loads at different positions along the loop perimeter, 
degeneracy of modes is broken and circular polarization can be obtained using a 
single feeding source at the precise point. This is achieved just combining two of 
the previous degenerated modes, for example modes J1 and J2. The main 
advantage of this method is that no balun circuit or quadrature hybrid is needed 
to excite the two orthogonal modes. To illustrate this concept the circular loop 
of section 3.2 is going to be used again. 

 
Suppose two reactive loads are placed at segments 1 and 25 of the circular 

loop (see Figure 3.3 to remember how the segments were numbered). These 
two loads will shift the resonance frequency of modes with even symmetry (J2 
and J4) to lowest frequencies. In contrast, modes that present odd symmetry (J1 
and J3), and hence current nulls at segments 1 and 25, will not be altered by 
the loading. Next, if a feeding source is placed at a position 45º away from one 
of the loads, for example at segment 6, where neither mode J1 nor J2 have 
current nulls, and where both of them present the same current amplitude, 
circular polarization will be obtained at the frequency at which the two modes 
combine appropriately.  

 
After some testing, two identical inductive loads of 130 Ω positioned at 

segments 1 and 25, have been found to be the optimum choice for obtaining 
the desired shifting between modes J1 and J2. Figure 3.8 shows the modal 
significance curves (MSn) of these two modes for the loaded circular loop. It can 
be observed that at 409 MHz, both modes present exactly the same normalized 
current amplitude. Moreover, as shown in Figure 3.9, which depicts 
characteristic angle curves for modes J1 and J2, both modes are in phase 
quadrature at 409 MHz. If a delta gap source is now placed at segment 6, 
circular polarization will be obtained at 409 MHz, because at this frequency, 
there are two orthogonal modes that match the required conditions.  
 

Figure 3.10 shows the elevation radiation pattern (φ =0º) at 409 MHz of the 
modal fields created by modes J1 and J2. It can be observed that both modes 
are linearly polarized and that their dominant components (E1φ for mode J1 and 
E2θ for J2) are orthogonal. 
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Figure 3.8 Modal significance curves (MSn) for the first two modes of the 
loaded circular loop.  

 

 
 

Figure 3.9 Characteristic angle curves (αn) for the first two modes of the 
loaded circular loop.  
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Figure 3.10 Elevation radiation pattern (φ =0º) at 409 MHz of the modal 
electric fields produced by modes J1 and J2 of the loaded circular loop. 

Frequency (MHz)
200 240 280 320 360 400 440 480 520 560

M
od

al
 S

ig
ni

fic
an

ce
 (M

S
n)

0.0

0.2

0.4

0.6

0.8

1.0

MS1

MS2 Equal 
Amplitude

Frequency (MHz)
200 240 280 320 360 400 440 480 520 560

C
ha

ra
ct

er
is

tic
 A

ng
le

 (α
n)

90

120

150

180

210

240

270
α1

α2

90º 

Phase 
quadrature

Z 

X 



Chapter 3 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

46 

Using the modal field components of modes J1 and J2 shown in Figure 3.10, 
an axial ratio at broadside direction (θ =0º) can be defined as 

 

 2,
0, 0

1, 0, 0

E
AR

E
θ

φ θ
φ φ θ

= =

= =

=  (3.1) 

 
The magnitude of the field due to mode J0, which will also be excited if the 

source is placed at segment 6, is very small, so it has been neglected in 
equation (3.1). 

 
At last, Figure 3.11, which depicts the axial ratio computed using (3.1), 

attests that the circular loop is circularly polarized at 409 MHz, at broadside 
direction (θ =0º). 
 
 
 

 
 

Figure 3.11 Axial ratio at broadside direction (θ =0º) obtained for the 
loaded circular loop when driven at segment 6. 

 
 

Note that circular polarization could have also been obtained by placing a 
single inductive load of 260 Ω at segment 1, however, this solution produces 
elliptically polarized modal fields that unbalance and degrade the axial ratio.  
 

Similar approaches to the one described here, to obtain a circularly polarized 
circular loop have been recently published [81]-[82]. The main difference with 
the present approach is that in [82], the reactive load required is achieved by 
introducing a small gap in the wire loop in spite of using a lumped element. 
 

From the example just presented, it is extracted that modifying the rotational 
symmetry of the circular loop, pairs of degenerated modes split. Next section 
analyzes in detail the effect of the symmetry of different wire loops on the 
degeneracy pattern of its modes. 
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3.4. Effect of the symmetry of loops on the degeneracy of modes 
 

It is a well-known fact that the current distribution on a wire loop antenna 
depends upon its shape and size. The most typical loop shapes being used for 
wireless communications are the circular, square and triangular loop. Square 
loop and triangular loop antennas have been applied to the HF and UHF bands 
due to its easy of construction and its broad-band input bandwidth. However, 
the circular loop antenna is usually preferred for the UHF band because of its 
higher directivity gain.  

As reported in [76], for regular polygonal loop antennas, the degeneracy 
pattern of modes depends on the number of sides of the loop.  This conclusion 
has been reached by analyzing the natural frequencies and modal current 
distributions of natural modes, obtained when applying SEM approach for 
canonical loop structures.  

Once a modal characterization of the circular loop has been performed, let 
us go one step further, and analyze other loop geometries, such as the square 
loop, or the triangular loop, in order to demonstrate that the degeneracy pattern 
of modes is related directly to the symmetry of the loop rather than to the 
number of sides. 
 

3.4.1. Modal analysis of the square loop antenna. 

Figure 3.12 sketches the geometry of the square loop antenna that is going 
to be analyzed in first place. The loop is located at the XY plane, and its square 
dimension is L=0.229 m. The wire radius used for the simulation is r=0.5 mm, 
and the wire is considered a perfect conductor. 

 
Figure 3.12 Square wire loop of dimension L =0.229 m and wire radius r =0.5 

mm. 
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 Figure 3.13 shows the normalized current distribution at first resonance         
(f =360 MHz) of the first modes of this square loop antenna. For this case, 48 
triangular functions have been used for expansion and testing. Once more, 
schemes of the projection of the eigencurrents along the loop perimeter are 
provided in Figure 3.14. 
 

First remarkable aspect of Figure 3.13 is that although the current 
distributions of modes resemble quite a lot those of the circular loop, they are 
not perfect sinusoidal functions any longer. Second important issue is that now 
the current distribution of mode J0 is not uniform, since it decreases at the 
corners of the loop (segments 6, 18, 30 and 42). Observe also that modes J1 
and J2 present two current nulls, modes J3 and J4 four current nulls, and modes 
J5 and J6 six current nulls.  
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Figure 3.13 Normalized current distribution at first resonance (f =360 MHz) of 
the first eigencurrents of the square loop shown in Figure 3.12. 
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Figure 3.14 Schemes of the projection of eigencurrents Jn of Figure 3.13 
along the perimeter of the square loop. 

 
 As in the analysis of the circular loop, next step is to determine the 
resonance frequency and radiating bandwidth of the modes, using the 
information given by the characteristic angles. From Figure 3.15 it is inferred 
that in the studied frequency range there are only two pairs of degenerated 
modes, J1 -J2 and J5 -J6. It is important to highlight that modes J3 and J4, which 
are associated to the second harmonic frequency, are not degenerated since 
their associated characteristic angles do not behave the same way. This is due 
to the fact that the square loop does not present rotational symmetry. The 
square loop is only symmetric with respect to X axis and Y axis, so when the 
current distribution of mode J3 in Figure 3.14 is rotated 45º, it does not 
correspond with the current distribution of mode J4, and the degeneracy of 
these two modes disappears. 
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Figure 3.15  Variation with frequency of the characteristic angle αn associated 
to the eigencurrents of the square loop shown in Figure 3.12. 
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 Table 3.2 summarizes the resonance frequency, radiating bandwidth and 
quality factor associated to the current modes of the square loop. Results in 
Table 3.2 show that the bandwidth associated to the modes of the square loop 
is wider than that obtained for the modes of a circular wire loop occupying the 
same area.  It can also be observed that mode J4 exhibits wider bandwidth than 
the rest of modes.  
 
 
 
 

resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Modes J1 and J2 360 330 400 19.44 5.14 

Mode J3 710 690 730 5.63 17.75

Mode J4 670 630 780 22.39 4.46 

Modes J5 and J6 1030 980 1100 11.65 8.58 
 

Table 3.2.  Resonance frequency, radiating bandwidth and quality factor for 
the first resonant modes of the square loop shown in Figure 3.12. 

 

 The wideband behaviour of mode J4 can be explained analyzing Figure 3.13 
and Figure 3.14. Observe that mode J4 has current nulls at the corners of the 
loop, and current maxima at the centre of the loop arms. Thus, this mode can 
be interpreted as a combination of two vertical and two horizontal straight 
dipoles. Just the opposite, mode J3 presents current nulls at the centre of the 
loop arms, and maxima at the corners, so it can be understood as four square 
dipoles. The effective length and radiation efficiency of a square dipole are 
smaller than these of a straight dipole. In fact, as shown in Figure 3.16, the 
current distribution of mode J3 is equivalent to four diagonal dipoles that form a 
smaller square loop rotated 45º. Because of this reduction of the effective 
length, mode J3 resonates at a higher frequency than mode J4. 

 
 

 

 

 

Figure 3.16 Equivalence between the current distribution of mode J3 and four 
diagonal dipoles forming a smaller square loop rotated 45º. 

 
 

Hence, studying the current distribution of modes it seems evident that 
mode J4 presents considerable wider radiating bandwidth than mode J3, since its 
current distribution can be considered that of four straight dipoles forming a 
square. However, the wideband behaviour of mode J4 could have also been 
explained by the corner effect [83]-[84].  
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The corner effect is a theory that discusses the relation between the current 
distribution and the corners of a curved wire antenna. This theory was especially 
developed for polygonal loop antennas, and it states that when a current null in 
the standing wave distribution hits a corner of a loop, the loop has a current 
pattern of very low standing wave ratio, and in turn, broadband impedance 
characteristic. 

The problem is that existing publications regarding the corner effect are 
focused on analyzing the relation between the source location and the input 
bandwidth for different polygonal loop antennas, but they do not give a physical 
justification of why the input bandwidth increases.  

Obviously, the Theory of Characteristic Modes yields a more consistent 
explanation of the bandwidth increase than the corner effect, by interpreting the 
current distributions of the modes of polygonal loops as arrangements of 
dipoles, and by analyzing the effective length of these dipoles. 

Since the current distribution of modes in Figure 3.14 can be considered as 
an array of straight and square dipoles (two dipoles for the case of modes J1 
and J2, four for modes J3 and J4, and six for modes J5 and J6), the azimuthal 
radiation pattern due the modal electric fields generated by these current modes 
should be that of the corresponding array of dipoles. This is confirmed by Figure 
3.17 which depicts the azimuthal radiation patterns (θ =90º) at 360 MHz 
associated to the current modes of Figure 3.13.   

With regard to the excitation of modes, results presented above suggest 
that mode J4 should be excited if broad input bandwidth is to be achieved at a 
square loop antenna. To excite mode J4, a delta gap source may be placed at 
the centre of one of the loop arms, for example at segment 24, where this 
mode presents maximum current.   

Figure 3.18 compares the total VSWR of the square loop antenna when fed 
at segment 24, with the modal VSWR obtained for the first seven modes of the 
square loop. As in the circular loop example, modal VSWR have been computed 
from modal admittances. It is observed that for this particular location of the 
source, only modes J2, J4 and J6 are excited. Each mode is responsible for an 
operation band of the antenna. As observed, although mode J4 has been 
demonstrated to be quite an efficient radiating mode, in this particular case, it is 
not well matched to the excitation, so the resulting operating band at 670 MHz 
is not really wide.  

Due to the symmetry of the loop, similar results to that presented in Figure 
3.18 could had been obtained placing the excitation source either at segments 
1, 12 or 36. However, if the excitation is located at one of the vertex of the loop 
results are a bit different.  
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Figure 3.19 depicts the total VSWR obtained for the square loop when it is 
fed at one vertex (segment 18), and the corresponding VSWR of modes. Results 
are similar to those obtained in Figure 3.18. The main difference with Figure 
3.18 is that now mode J3 is excited instead of J4. In addition, degenerated 
modes J1-J2 and J3-J4 are excited simultaneously. As a result of the excitation of 
mode J3, the second operating band is slightly shifted to higher frequencies, and 
although this band is narrower than the one provided by mode J4 in Figure 3.18, 
it presents better matching at resonance frequency.  

Further results related with the square loop antenna driven at one or more 
corners can be found in [85].  
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Figure 3.17 Azimuthal radiation pattern (θ =90º) at 360 MHz of the modal 
electric fields nE  produced by the current modes nJ  of Figure 3.13. 



Modal Analysis of Wire Loop Antennas 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

53

 
 

Figure 3.18 Contribution of the VSWR of modes J2, J4 and J6, to total VSWR of 
the square loop antenna when it is fed at segment 24.  

 

 

 

 

Figure 3.19 Contribution of the VSWR of modes to total VSWR of the square 
loop antenna when it is fed at segment 18. 
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3.4.2. Modal analysis of a regular triangular loop antenna. 
 

As explained before, the symmetry of a loop antenna plays a crucial role in 
the determination of the degeneracy of modes. This section deals with the 
modal analysis of the regular triangular loop antenna shown in Figure 3.20, 
which is symmetric with respect to X axis. This loop of arm length L=0.229 m is 
located at the XY plane. A perfect conducting wire of radius r=0.5 mm has been 
used for its simulation. The loop perimeter is divided in 36 segments, since this 
is the number of basis functions that has been considered for the numerical 
calculations.  

-0.1
0

0.1

-0.1

0

0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X

Z

Y

 
Figure 3.20 Equilateral triangular loop of edge length L=0.229 m and wire 

radius r=0.5 mm. 

 Figure 3.21 shows the normalized current distribution at first resonance (480 
MHz) associated to the first seven characteristic modes of the triangular loop 
under consideration. Since the shape of the loop is quite different from that of a 
circular loop, the modal currents also differ significantly from perfect sinusoidal 
functions, especially currents J3 and J4. As in the square loop, the current 
distribution of mode J0 is not uniform, with amplitude decreasing at the corners 
of the loop (segments 6, 18, 30). 

In order to facilitate the interpretation of the current distribution of modes, 
Figure 3.22 provides approximated schemes of the projection of the current 
modes along the loop perimeter. Segments are numbered counter clockwise 
beginning from X axis. At first sight, it seems there is no pair of degenerated 
modes, since the current distributions of modes with the same number of 
current nulls do not resemble very much. However, as it is going to be 
confirmed next, there are two pairs of degenerated modes, modes J1 and J2, 
and modes J3 and J4.  
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Figure 3.21 Normalized current distribution at first resonance (f =480 MHz) of 
the first eigencurrents of the triangular loop shown in Figure 3.20. 
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Figure 3.22 Schemes of the projection of eigencurrents Jn of Figure 3.21 
along the perimeter of the triangular loop. 
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Figure 3.23 presents characteristic angle variation with frequency for the first 
seven modes of the triangular loop. From the characteristic angle curves it 
outcomes that modes J1 and J2, as well as modes J3 and J4, present a 
degeneracy pattern. In contrast, modes J5 and J6, which are associated to the 
third harmonic frequency, have split, so each mode presents its own resonance 
frequency. Table 3.3 includes precise information about the resonance 
frequency, radiating bandwidth and quality factor of modes. 
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Figure 3.23 Characteristic angle variation with frequency for the first seven 

modes of the triangular loop shown in Figure 3.20. 
 
 
 
 

 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Modes J1 and J2 490 465 545 16.32 6.12 

Modes J3 and J4  930 885 1035 16.13 6.20 

Mode J5 1335 1230 1510 21 4.76 

Modes J6 1375 1370 1435 4.7 21.15
 

Table 3.3.  Resonance frequency, radiating bandwidth and quality factor for 
the first resonant modes of the triangular loop shown in Figure 3.20. 

 
 

When data for the radiation bandwidth of modes in Table 3.3 is analyzed, it 
comes out that mode J5 is the most efficient radiating mode. This broad 
radiating bandwidth of mode J5, as well as its splitting from mode J6, can be 
once more explained by the corner effect already described in section 3.4.1.  
 

Current schematics in Figure 3.22 show that the current nulls of mode J5 hit 
the three corners of the loop. As a result, the current distribution of mode J5 is 
equivalent to an array of six straight dipoles of length L/2. Conversely, as shown 
in Figure 3.24, the current distribution of mode J6 is equivalent to three straight 
dipoles of length L/2, and three angle dipoles of equivalent length L/4.  
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Evidently, the current distributions of modes J5 and J6 are not equal, and thus 
modes are not degenerated. The total effective length of the dipoles that 
conform the current distribution of mode J6, is smaller than that of the dipoles 
of mode J5. This explains why mode J6 exhibits higher resonant frequency and 
smaller radiating bandwidth than mode J5. 
 

 
Figure 3.24 Equivalence between the current distribution of mode J6 and six 

dipoles, three of them of length L/2, and the others of length L/4. 
 

 Few publications have been found in the available literature concerning the 
impedance bandwidth of triangular loop antennas [86]-[87]. Nevertheless, from 
the results presented in [83] it outcomes that, the top-driven regular triangular 
loop (fed at one vertex) provides the broadest impedance bandwidth when 
compared with other triangular shapes and other source positions. Let us try to 
arrive at the same conclusion using characteristic modes. 

Figure 3.25 depicts the contribution of the modal VSWR to the total input 
VSWR of the antenna, for four different positions of a delta gap source. From 
Figure 3.25 (a) and (c) it is extracted that, the total VSWR obtained for the 
base-driven loop is always the same, with independence of the arm of the loop 
that is chosen for placing the source. However, when the source is located at 
segment 1 only modes J1, J4 and J6 are excited, whereas when the source is at 
segment 12, all modes are excited, except mode J5. This effect is once again 
due to the symmetry of the antenna. 

The same phenomenon can be observed for the top-driven loop.  In Figures 
3.25 (b) and (d) it is observed that, the total VSWR obtained when the source is 
positioned at one vertex of the loop, does not depend on the vertex chosen, 
although the modes that contribute to this total input VSWR in each case are 
different.  

Note that as stated in [83], the input bandwidth obtained for the top-driven 
loop is wider than the one given by the base-driven loop. The main difference 
can be found at the operating band centred at 900 MHz, in which the top-driven 
loop is better matched than the base-driven loop. Nevertheless, mode J5 that is 
the better radiating mode is not excited for neither the base-driven loop nor the 
top-driven-loop. To excite mode J5 the source should be located at one-quarter 
of the length of the arm, where the mode presents maximum current.  
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 Figure 3.26 shows the results for the total and modal VSWR when the source 
is placed at segment 9.  It can be observed that now, due to the excitation of 
mode J5, the third operating band is wider than before, although it is not very 
well matched to the source. From this result, it is concluded that as affirmed in 
[83], the top-driven triangular loop provides the wider impedance bandwidth. 
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(a) Base-driven loop                     
(source at segment 1) 
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(b) Top-driven loop                      
(source at segment 18) 

 

(c) Base-driven loop                    
(source at segment 12) 
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(d) Top-driven loop                      
(source at segment 6) 

 

Figure 3.25 Contribution of the modal VSWR to the total input VSWR for four 
different positions of a delta gap source. 
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Figure 3.26 Contribution of the modal VSWR to the total input VSWR when a 

delta gap source is placed at segment 9 of the triangular loop. 
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3.5. Antenna modes and transmission line modes  

In this section, modes are going to be classified in antenna modes or 
transmission line modes, according to its radiating characteristics. The easiest 
way to understand this classification of modes is by performing a modal study of 
an elliptical loop, and drawing a parallel between the modes of this antenna, 
and the classical antenna and transmission line modes of a folded dipole [86]. 

 Let us begin analyzing what happens to characteristic modes when the 
geometrical axial ratio (AR) of a circular loop is modified. Figure 3.27 
demonstrates how the first two resonant modes of the circular loop studied in 
section 3.2, deform as the axial ratio of the loop goes from 1 to 0.2, while the 
perimeter is preserved. The most remarkable aspect of these current modes is 
that their deviation from perfect sinusoidal functions increases as the axial ratio 
decreases. As the axial ratio is reduced, currents associated to mode J1 and 
mode J2, resemble more to triangular and a square functions, respectively. In 
addition, as the axial ratio decreases, degenerated modes of the circular loop 
split in two modes with radically different radiating behaviour. Next example 
tackles this concept of mode splitting in more detail. 

 

                           

(a) Mode J1 

               
                          (b) Mode J2     

  

Figure 3.27 Evolution of modes J1 and J2 of the circular loop as its geometrical 
axial ratio is reduced from 1 to 0.2. 

 
Consider the elliptical wire loop of axial ratio AR=0.2 shown in Figure 3.28. 

This loop, which is place at XY plane, presents major axis Amajor=0.3816 m, and 
minor axis Aminor=0.0764 m. Because of these axis values the elliptical loop 
presents the same perimeter as the circular loop reported in section 3.2. Fifty 
basis functions have been used for expansion and testing in the method of 
moments calculations. Figure 3.29 illustrates the normalized current distribution 
of the first five modes of this loop at first resonance (f =370MHz). As 
demonstrated in [88], these currents correspond with even and odd angular 
Mathieu functions. Like in the circular loop, a special inductive mode, J0, with 
nearly uniform current appears. Among the rest of modes, as will be shown 
next, there are not degenerated pairs. 
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Figure 3.28 Elliptical loop antenna with major axis Amajor=0.3816 m, and minor 

axis Aminor=0.0764m (axial ratio AR=0.2). 
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Figure 3.29 Normalized current distribution of the first five modes for an 
elliptical loop of axial ratio 0.2 at first resonance (f=370 MHz). 

 

 
 

Let us concentrate on the behaviour of the first two resonant modes, J1 and 
J2, of the elliptical loop. Figure 3.30 supplies schemes of the projection of these 
eigencurrents over the loop perimeter. Segments are numbered counter 
clockwise, beginning from Y axis. Figure 3.30 also draws an analogy with the 
folded dipole, as it compares the first and second eigenvectors of the elliptical 
loop with the antenna mode and the transmission line mode of the folded 
dipole. 
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Observe that in the antenna mode, current in both arms of the loop flow in 
phase, so its radiation should reinforce. In contrast, currents in transmission line 
mode flow with opposite phase, so its radiation should cancel. As a result, the 
transmission line mode may exhibit poor radiation characteristics and narrow 
radiating bandwidth, whereas the antenna mode may radiate efficiently.  But let 
us give evidence of this assumption in a more systematic way studying 
characteristic angle variation with frequency. 

 

 

 

 

 

 

 

 
 

Figure 3.30 Analogy between modes J1 and J2 of the elliptical loop and 
transmission line and antenna modes of a folded dipole. 

 
 

Figure 3.31 analyzes the characteristic angles associated to the first five 
current modes of the elliptical loop of axial ratio 0.2. Now, it is evident that 
there are not degenerated modes, since every mode presents a different 
resonance frequency. Besides, the characteristic angle behaviour of resonant 
modes differs quite a lot.  Modes with the steepest slope, J2 and J4, can be 
identified with transmission line modes that only contribute to radiation at 
resonance frequency.  On the contrary, modes with soft slope near 180º, J1 and 
J3, are antenna modes which contribute to radiation in a wide range of 
frequencies. This classification of modes according to its characteristic angle 
confirms the assumption made when analyzing the currents in Figure 3.30. 

 

Just to finish this section, Table 3.4 presents the resonance frequency, 
bandwidth and quality factor of the first radiating modes of the elliptical loop 
already analyzed. From these data it is concluded that when degenerated 
modes of a symmetrical structure split because the geometry of the structure is 
modified, they transform in two separate modes with different radiating 
behaviour. According to the slope of their characteristic angle curves, these two 
previously degenerated modes can be identified with an antenna mode, and a 
transmission line mode. The more altered the symmetry of the structure is, the 
more different radiating behaviour these two modes present.  
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Figure 3.31 Variation with frequency of the characteristic angle αn associated 

to the first five current modes of the elliptical loop of axial ratio 0.2. 
 

 
 
 
 

 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Modes J1  370 330 440 29.73 3.36 

Modes J2 390 385 395 2.56 39 

Mode J3 735 705 855 20.41 4.90 

Modes J4 770 760 775 1.95 51.3 
 

Table 3.4.  Resonance frequency, radiating bandwidth and quality factor for 
the first resonant modes of the elliptical loop shown in Figure 3.28. 

 
 
 

Finally, it should be highlighted that a transmission line mode can become 
an efficient radiator at high frequencies. This is because, far from the resonance 
of the transmission line mode, currents flowing with opposite phase do not 
cancel any longer, as the separation between them becomes bigger than λ/2.  
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3.6. Modal characterization of complex wire structures. 
 

Until now, in this work only very simple and well-known wire antennas, like 
the straight dipole or canonical loops, have been analyzed using characteristic 
modes. This section is focus on demonstrating that Harrington’s Theory can also 
be very useful for the characterization of arbitrarily shaped wire structures.   

 
Figure 3.32 shows a structure formed by a circular loop of radius r=0.1145 

m, and a horizontal dipole of length L=0.229 m. The structure is placed at XY 
plane, and it has been discretized in 68 segments, which are numbered counter 
clockwise beginning from X axis. Segments from 1 to 50 belong to the loop, 
while segments from 51 to 68 correspond with the dipole. Figure 3.33 depicts 
the normalized current distribution of the first modes of this complex structure.  
Note that characteristic currents are quite difficult to analyze now, since there 
are two junctions in which the loop connects with the dipole. For a better 
understanding, these currents have been projected along the structure, as 
shown in Figure 3.34. 
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Figure 3.32 Complex antenna formed by a circular loop of radius r= 0.1145 m, 

and a horizontal dipole of length L=0.229 m. 
 

Figure 3.35 shows the characteristic angle curves associated to the current 
modes of Figure 3.33. It should be pointed out that some modes presented in 
Figure 3.34 are a combination of the already studied modes of the circular loop 
and the dipole, while other modes just correspond with those obtained for the 
single circular loop in section 3.2. Observe that there is current flow along the 
dipole only in modes J2, J4, and J5. This is because modes of the dipole only 
couple with those modes of the loop that present zero current at the ends of the 
dipole. In consequence, in modes J01, J1, and J3, there is no current flow along 
the dipole. Note also that as the dipole divides the circular loop in two 
semicircular loops, in this structure there are two special non-resonant modes, 
modes J01 and J02. Mode J01 presents currents forming a closed loop around the 
circular loop. Currents in mode J02 form two separate closed loops of 
semicircular shape. In Figure 3.35 it can be checked that characteristic angles 
associated to these two special modes are all the time below 180º. 
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Figure 3.33 Normalized current distribution of the first modes of a structure 
formed by a circular loop of radius r=0.1145 m, and a horizontal dipole of 

length L=0.229 m. 
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Figure 3.34 Schemes of the projection of eigencurrents Jn of Figure 3.32 
along the structure. 
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Information about the resonance frequency, radiating bandwidth, and quality 
factor of modes, extracted from Figure 3.35, is summarized in Table 3.5. These 
results evidence that all modes present good radiation bandwidth, except mode 
J3. Mode J3 exhibits poor radiation characteristic because it is a transmission line 
mode, with all currents flowing with opposite phase, and hence, cancelling its 
radiation. Results obtained for modes J1 and J4, in which there is no current flow 
along the dipole, coincide with those obtained in section 3.2 for the first and 
second pair of degenerated modes of the single circular loop.  
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Figure 3.35 Characteristic angle variation with frequency for the current modes 
shown in Figure 3.33. 

 
 
 
 

 resf (MHz) Lf (MHz) Uf  (MHz) nBW (%) ,rad nQ  

Modes J1 440 410 475 14.77 6.77 

Modes J2  530 465 655 35.85 2.79 

Mode J3 605 595 615 3.30 30.25

Modes J4 860 820 920 11.63 8.60 
 

Table 3.5.  Resonance frequency, radiating bandwidth and quality factor for 
the first resonant modes shown in Figure 3.32. 

 
 

Special attention should be paid to mode J2 since it presents very wide 
radiating bandwidth. This wideband property is due to the fact that mode J2 
behaves like a three-element folded dipole. A three-element folded dipole acts 
as an impedance transformer, providing values for the input resistance that are 
six times those given by a simple dipole working on his fundamental mode. 
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An alternative explanation for the wideband behaviour of mode J2 is that it 
results from the combination of two modes with similar radiating behaviour that 
reinforce each other. Figure 3.36 explains how mode J2 can be considered as a 
sum of the fundamental mode of a dipole (mode J1), and the fundamental mode 
of a circular loop (mode J1 or J2 of the first pair of degenerated modes).  
 

 
 
 
 
 
 
 
 

Figure 3.36 Representation of mode J2 of the structure under analysis, as a 
combination of the fundamental modes of the circular loop and the dipole. 

 
 

Figure 3.37 compares the modal significance curves associated to mode J1 
of a dipole of length L=0.229 m, mode J1 of a circular loop of radius r=0.1145 
m, and mode J2 of the complex structure formed by this loop and this dipole. 
Mode J1 of the circular loop resonates at 440 MHz, mode J1 of the dipole 
resonates at 620 MHz, while mode J2 of the complex structure resonates at 530 
MHz. The most significant fact is that 530 MHz is the arithmetic mean of 440 
and 620 MHz. Moreover, the radiating bandwidths of mode J1 of the dipole, and 
mode J1 of the circular loop, are 20.16 %, and 14.77 %, respectively. However, 
when these two modes combined in a new structure, they yield mode J2, which 
presents an improved radiating bandwidth of 35.85 %. 
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Figure 3.37 Modal significance curves for mode J1 of a circular loop, mode J1 of 
a dipole, and mode J2 of the structure which results from the combination of this 

loop and this dipole.  
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In order to excite mode J2 of the structure under analysis, a delta gap source 
should be placed at the centre of the dipole. The main advantage of this feeding 
arrangement is that none of the radiating modes depicted in Figure 3.33, except 
mode J2, will be excited. As a result, mode J2 will not interact with any other 
mode and no antiresonance will appear in the analyzed frequency range. 

 
 Figure 3.38 shows the contribution of the VSWR of mode J2 to the total input 

VSWR of the structure, when the source is located at the centre of the dipole. 
Since mode J2 acts as a three-element folded dipole, the VSWRs have been 
computed for a reference resistance of 426 Ω (six times the input resistance of 
the simple dipole). As expected, the only radiating mode that is excited is mode 
J2. As a result, an impedance bandwidth of 30.2% is obtained for VSWRtotal< 2. 
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Figure 3.38 Contribution of the modal VSWR of mode J2 to the total input 
VSWR of the antenna when a delta gap source is placed at the centre of the 

dipole. 
 
 

The final conclusion of this section is that as a result of combining two simple 
structures with similar radiating characteristics (same polarization and similar 
radiation pattern), a new structure with improved input bandwidth can be 
achieved. Furthermore, these results suggest that wire structures of arbitrary 
shape can be analyzed as a combination of more simple structures of well-
known behaviour, like dipoles or loops. 
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CHAPTER 4.  On the Convergence of Characteristic Modes                          
 
 
4.1.  Introduction  
 

In Chapter 3 characteristic modes were used to analyze several wire 
antennas with the purpose of determining their basic radiation mechanisms. In 
that chapter, some results were presented regarding the contribution of modes 
to the total input admittance of the antenna. However, the accuracy of the 
results provided by the expansion of modes was not checked. 

 
In contrast with Chapter 3, Chapter 4 will not be focused on the physical 

insight yield by characteristic modes, but on the problematic derived from the 
use of Harrington’s modes as basis functions in which to expand the total 
current on the antenna. It will be demonstrated that for antenna problems, the 
series of characteristic modes presents slow converge when approximating the 
imaginary part of the input current. As a contribution of this thesis, such slow 
convergence of the series of modes will be improved by including a new term in 
the expansion, called “source mode”. 

 
On the other hand, the dependency with frequency of characteristic modes 

will also be addressed in this chapter. Following the approach described in [89], 
a method based on a Singular Value Decomposition (SVD) [47] will be 
proposed, in order to obtain a set of frequency independent modes to be used 
as basis functions in the whole band of interest. 
 
 
4.2. The use of characteristic modes as entire-domain basis 

functions for large-scale electromagnetic problems.  
 

It is a well-known fact that the electromagnetic analysis of large-size metallic 
bodies still poses today considerable difficulties, especially when the body 
presents arbitrary shape, and analytical techniques can not be applied. In this 
case, numerical approaches are the only remaining alternative. 

 
Among the different numerical approaches, the method of moments (MoM) 

[42] is the most widespread formulation for antenna problems. It is a common 
practice to use Rao, Wilton and Glisson (RWG) basis functions [44] in the 
conventional MoM analysis. These subdomain basis functions are very flexible, 
as they can be applied to any kind of geometry. However, at least ten of these 
basis functions per wavelength are required to obtain accurate solutions. Since 
the dimension of the moment matrix is equal to the number of employed basis 
functions, as the electric size of the object increases, the number of unknowns 
grows very rapidly. As a result, it is necessary to deal with huge matrix 
equations that need long computational time and large memory requirements to 
be solved.  
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Some of the attempts that have been made in order to reduce the size of the 
matrix equations arising in the MoM analysis of large scale problems, consist of 
using high-level basis functions, like the Macro Basis Functions (MBFs) proposed 
in [48], or the Characteristic Basis Functions (CBFs) described in [90]. The basic 
idea of both these methods is to divide the complex geometry into simpler 
parts, and then to define a set of sub-sectional basis functions for each 
subdomain. Finally, the partial solutions obtained by direct inversion, are 
combined to form a compressed global moment system. 
 

A more efficient alternative to overcome the problem is to use entire-domain 
basis functions [91]-[92] in the MoM analysis. These basis functions extend all 
over the surface of the body. The main problem of these functions is that they 
are really dependent on the geometry of the body. The optimal choice of the set 
of functions is one that resembles the unknown function and leads to 
convergent solutions with the fewest number of terms in the expansion, and 
subject to the shortest computational time. Examples of entire-domain basis 
functions are Fourier trigonometric functions, and Legendre, Hermite and 
Chebyshev polynomials [93]. 
 

On the basis of the previous discussion, it could be considered that when 
Harrington and Mautz defined characteristic modes in the seventies, they found 
the perfect candidates to be used as entire-domain basis functions to expand 
the unknown current on the surface of arbitrarily shaped conducting bodies. 
Since characteristic modes correspond with the natural resonances of the body, 
they incorporate the physics of the problem, and they fit its geometry in perfect 
way. Moreover, characteristic modes can be obtained numerically for any 
antenna shape, so there are not restricted to canonical structures, and due to 
their orthogonality properties, already described in Chapter 2, they provide well-
conditioned MoM matrices.   

 
Hence, characteristic modes seem particularly suitable to reduce the 

computational cost when analyzing large electromagnetic problems, especially 
for the case of large arrays, in which the number of elements, other than their 
electric size, becomes an important factor affecting the complexity of the 
solution. For example, let us suppose an array formed by P identical microstrip 
patches. If this array were analyzed by the conventional MoM using ns sub-
domain basis functions in each patch, it would lead to a problem with s sN n P= ⋅  
unknowns. The computational cost for such a problem would be of the order of 

3( )sO N . Obviously, the number of unknowns becomes prohibitive if the number 
or the size of the elements increases too much. Conversely, if characteristic 
modes were used as entire-domain basis functions, the number of unknowns 
would reduce to c cN n P= ⋅ , where nc is the number of modes used for the 
current expansion. The computational cost would be now 3 2( ) ( )c s cO N O N n+ ⋅ , 
where the additional term would account for the computation of the 
characteristic modes of a single patch. Having into account that nc<<ns, the 
advantage of the second method is evident.  



On the Convergence of Characteristic Modes 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

71

But, why characteristic modes have not been generally accepted as the 
optimum entire-domain basis functions for large scale problems?  The answer to 
this question is that characteristic modes present several drawbacks when they 
are used as basis functions to expand the total current. First one is that 
although characteristic modes have been demonstrated to be very effective in 
the analysis of scattering from conducting objects [94]-[95], they present very 
slow convergence when they are applied to antenna problems. The reason for 
this slow convergence lies in the very definition of characteristic modes. 
Characteristic modes are computed in the absence of any source or excitation, 
so they are only constrained by boundary conditions, and they do not take into 
account the coupling between the excitation and the structure. Then, 
characteristic modes can not account properly for near-field effects, and they 
are not appropriate for the modelling of the particular behaviour of the current 
at the feed point. As it was demonstrated in [96], when a delta gap source is 
placed over an antenna, characteristic modes sometimes lead to even non 
convergent solutions for the imaginary component of the total current, and 
consequently for the input impedance.  
 

The second drawback of characteristic modes, probably less reported in the 
literature than the previous one, is their dependency upon frequency, which 
prevents them from being used as wideband basis functions. 
 

In the following sections these negative aspects of characteristic modes are 
going to be studied thoroughly, and solutions for them are going to be 
proposed. 
 
 

4.3. Slow convergence of the series of characteristic modes for 
wire antennas. 

 
As it was mentioned above, characteristic modes associated to a particular 

radiating structure do not model properly the imaginary or non-radiating 
component of the current at the feed point of the antenna. To illustrate this 
problem, the wire dipole of length L=0.5 m and wire radius r=0.5 mm, already 
studied in Chapter 2, is going to be studied again. 

 
 Figure 4.1 compares the actual total current of the centre fed dipole at first 

resonance (280 MHz) with the one obtained using the modal expansion 
described in equation (2.21) of Chapter 2. Modes with odd current distribution 
have not been considered, because for the centre-fed dipole only even modes 
are excited. As can be observed in Figure 4.1, a very good approximation for the 
real part of the current is obtained just using the first characteristic mode of the 
dipole. On the contrary, the modal approximation fails to model the imaginary 
part of the current, especially at the feeding point (segment 50), even when five 
even characteristic modes are used for the expansion. Note that it is really 
important to obtain an accurate approximation for the current at feeding point, 
since the input current is commonly used to determine some basic antenna 
parameters, such as the input impedance and the return loss.  
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(a) Real part of the current. (b) Imaginary part 
  

Figure 4.1 Comparison of the actual total current of a centre-fed dipole and 
the current obtained with a modal expansion of one, three and five even modes. 
 
 

Table 4.1 shows the relative quadratic error computed at 280 MHz when the 
total input current of the centre fed dipole is approximated by an expansion with 
variable number of even modes. It can be observed that to obtain a relative 
error less than 1% for the imaginary part of the input current, it is necessary to 
consider more than 20 even modes in the expansion. 
 

A possible explanation for the results presented in Figure 4.1 and Table 4.1, 
is the different nature of the real and imaginary parts of the current. On one 
hand, the real part of the current, which is the one responsible for radiation, 
only depends on the resonances of the structure, and do not depend on the 
feeding arrangement. Just the opposite, the imaginary part or non-radiating part 
of the current, is very dependent on the position of the delta gap source. Hence, 
because of its radiating nature, the real part of the current can be easily 
approximated at first resonance, just using the first radiating mode of the 
dipole. In contrast, characteristic modes are unable to model precisely the 
current peak exhibited by the imaginary current at the feed point.  
 
 

Number of even 
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

1 1.48 e-4 14.94  
2 2.03 e-7 9.36 
3  1.42 e-7 5.56 
5  1.07 e-7 3.63 
20 4.72 e-8 1.16 
30  2.94 e-8 0.67 

 

Table 4.1. Relative quadratic error computed at 280 MHz when the total input 
current of the centre fed dipole is approximated by an expansion with variable 

number of even modes. 
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With the aim of verifying the dependency of the imaginary part of the 
current with the position of the source, Figure 4.2 shows the modal 
approximation at 280 MHz for the current of the same dipole of length L=0.5 m, 
when it is fed by a delta gap source placed at segment 25. In this case, both 
even and odd modes have been considered for the expansion of the current. As 
observed, the real part is not affected by the position of the source, since it is 
equal to the one obtained in Figure 4.1 for the centre fed dipole. Once again, 
this real part can be approximated in a precise way using only the first radiating 
mode of the dipole. In contrast, the imaginary part of the current presents a 
peak at the location of the source. As the number of modes used to 
approximate this imaginary part increases, the current resembles more the total 
current, yet it still fails to converge at the feed point. 

 
Table 4.2 presents the relative quadratic error calculated at 280 MHz for the 

total input current of the dipole fed at segment 25, when it is approximated with 
an expansion of increasing number of modes. From these results it comes up 
that to obtain an error less than 1%, more than 40 modes are needed.  
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(a) Real part of the current. (b) Imaginary part 
  

Figure 4.2 Comparison of the actual total current of a centre-fed dipole and 
the current obtained for a modal expansion of one, three and five modes. 

 
 

Number of  
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

1 38.56 e-3 31.38 
2 1.30 e-5 15.20 
3  3.10 e-7 14.82 
5  2.7 e-7 8.65  
20 1.38 e-7 3.22 
40  8.65 e-8 1.72 

 

Table 4.2. Relative quadratic error computed at 280 MHz when the total input 
current of a dipole fed at segment 25 is approximated with an expansion of 

increasing number of modes. 
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4.4. The source mode for wire antennas. 
 

In previous section it has been demonstrated that when a wire antenna is fed 
by a delta gap source, the imaginary part of its current presents a current peak 
at the feed point, in which characteristic modes fail to converge in a fast way. 
This section is aimed at determining more precisely, which is the effect of the 
delta gap source over the total current, in order to find out a solution for 
reducing the number of modes needed to obtain an accurate approximation for 
the current at the feed point.  

 
Figure 4.3 shows the residue that is left after subtracting a series of five even 

characteristic modes from the actual total current at 280 MHz of the centre-fed 
dipole analyzed in section 4.3. Observe that this residue resembles a travelling 
wave with a high peak at the feed point (segment 50), and with a rapidly 
vanishing profile away from it. Since characteristic modes are mainly associated 
to radiating power, the primary content of this residue must be reactive. As can 
be seen in Figure 4.3, this function is nearly singular at the feed point. This type 
of behaviour is due solely to the presence of a source in the structure, and it 
limits severely the convergence of the series of characteristic modes. Due to the 
travelling wave nature of this evanescent mode, it is not an easy task to single it 
out analytically from the eigenvalue problem used to compute characteristic 
modes. Antennas are resonant structures, and characteristic modes, which are 
its resonances, are standing waves by definition. 
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Figure 4.3 Residual current at 280 MHz obtained after subtracting five even 
characteristic modes from the total current of a centre fed dipole.  
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In order to investigate in more detail the nature of this mode, let us consider 
an infinite wire of radius a, fed by a magnetic frill source of radius b, as shown 
in Figure 4.4. All possible current modes along this structure are travelling 
waves.  Therefore, there should be an evanescent travelling-wave mode in the 
vicinity of the source like in finite wires. The analysis of this evanescent mode 
will help to find a solution for the convergence problem of the series of 
characteristic modes. 

 
Figure 4.4 Infinite conducting wire of radius a, fed by a magnetic frill of 

radius b. 
 
 

The evanescent current created by the magnetic frill over the cylindrical wire 
can be derived from the total magnetic field over the wire surface. This 
magnetic field due to the frill can be obtained as a superposition of magnetic 
rings of radius ρ’ between a and b .  

 
The magnetic field radiated by a ring source of radius ρ’ is known in spectral 

form [97] 
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where 2 2

zk k kρ = −  and 0P  is a magnetic current moment in volt ⋅ meters. 
 

Then, the incident electric field can be deduced from (4.1) as follows 
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According to the definition of the Fourier Transform (FT) the incident electric 

field spectrum is given by 
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Enforcing zero tangential electric field at the wire surface (ρ=a), the spectrum 
of the scattered electric field can be expressed as 
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Therefore, the total electric field spectrum takes the form of 
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The total magnetic field spectrum at the wire surface is then obtained from 

(4.5) as 
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The total magnetic field radiated by the frill of radius b, can be obtained 
integrating the magnetic field caused by different magnetic rings of radius 
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After some manipulations, the total magnetic field created by the frill at the 

wire surface can be expressed as  
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where 2 2

zk kα = − .  
 

The current flowing along the infinite wire will be proportional to the total 
magnetic field in (4.8) 
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∫ ∫     (4.9) 

 
with ˆˆ( ) tJ z n Hφφ= ×  
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Two contributions can be identified in the spectral representation of the 
current presented in (4.9). The first term is the main contributor to the total 
current, and if the wire were finite it would be responsible for the resonant 
modes present at the dipole. On the other hand, the second term represents an 
evanescent current, which is pure imaginary. This second term can be easily 
obtained in closed form using just a few exponentials by the Generalized Pencil-
of-Function method (GPOF) [98]. The resulting evanescent current is then 

 

  ( )0 0 0

10

2 ( ) 2( ) Re 1  
( )ln ln

iz

M
jz kjk zevan i

z
i ik

j V K b j VI z e dk e
b bK a jzk k
a a

βα α
α βη η

+∞
− −

=

  
= − =   −         

   

∑∫      (4.10) 

 
Figure 4.5 shows the evanescent current obtained from equation (4.10) for 

an infinite wire of radius a=0.5 mm, fed at its centre by a frill of radius b=5 
mm. This reactive current exhibit a peak at the frill location, and due to its 
vanishing oscillatory behaviour, it resembles quite a lot the residual current 
obtained numerically in Figure 4.3. In fact, current in Figure 4.5 can be 
considered as an evanescent current mode linked to the source. It is expected 
that the addition of this mode, called from now on “source mode”, to the series 
of characteristic modes will improve its convergence significantly.  

 
Nevertheless, the analytical calculation of the source mode for different wire 

antennas and different positions of the source is very complex. Alternatively, the 
source mode can be approximated by an exponential function, capable of 
accounting for the effect of the source over the current of the antenna. Figure 
4.6 shows the exponential source modes proposed for the dipoles already 
analyzed in section 4.3. For a conducting wire of radius r=0.5 mm, the optimum 
choice for the source mode has been found to be an exponential of argument 
2 nπ over the number of segments that separate the source from the closest 
open end. 
 

L / λ

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

E
va

ne
sc

en
t c

ur
re

nt
 (m

A
)

-2

-1

0

1

2

3

4

5

6

 
Figure 4.5 Evanescent current obtained in an infinite conducting wire of 
radius a= 0.5 mm, when fed by a magnetic frill source of radius b = 5 mm. 
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(a) Source at segment 50. (b) Source at segment 25. 

  

Figure 4.6 Exponential source mode for two dipoles of length L=0.5m fed at 
different positions. 

 
Figure 4.7 shows the approximation at 280 MHz for the imaginary part of the 

total current of the centre fed dipole, and the dipole fed at segment 25, when 
the exponential source mode (SM) is added to the series of characteristic 
modes. It can be observed that the addition of the source mode improves the 
convergence of the imaginary part of the series. The approximation for the real 
part of the current has not been depicted since it is not affected by the addition 
of the source mode. 
 

 

 

(a) Source at segment 50. (b) Source at segment 25. 
  

Figure 4.7 Approximation at 280 MHz for the imaginary part of the total 
current of the centre fed dipole, and a dipole fed at segment 25, when the 

exponential source mode is added to the series of characteristic modes. 
 

Results exhibited in Table 4.3 confirm that just using two even characteristic 
modes plus the source mode, a relative quadratic error less than 1% is obtained 
at 280 MHz, for the imaginary part of the input current of the centre-fed dipole. 
Likewise, Table 4.4 demonstrates that for the case of the dipole fed at segment 
25, when the exponential source mode is included in the series, a relative 
quadratic error less than 1% can be achieved for the imaginary part of the input 
current at 280 MHz, considering only five modes. 
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Number of even 
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

1 1.18 e-4 2.2107 
2 1.57 e-8 0.3803 

 

Table 4.3. Relative quadratic error computed at 280 MHz for the imaginary 
part of the input current of the centre fed dipole, when an exponential source 

mode is added to the series of characteristic modes. 
 
 

Number of even 
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

1 0.038 15.33 
2 1.22 e-5 2.68 
3 6.03 e-7 2.48 
4 1.23 e-8 1.3 
5 1.37 e-8 0.31 

 

Table 4.4. Relative quadratic error computed at 280 MHz for the imaginary 
part of the input current the centre dipole fed at segment 25, when an 
exponential source mode is added to the series of characteristic modes. 

 
 

However, the exponential source modes illustrated at Figure 4.6 are not only 
valid to improve the convergence of the series of modes at resonance, but also 
at other frequencies. Table 4.5 summarizes the relative quadratic error obtained 
when approximating the input current of the centre-fed dipole at different 
frequencies, using three, five, and ten even modes, plus the exponential source 
mode of Figure 4.6 (a). From this table it is extracted that using more than five 
modes plus the exponential source mode, a relative quadratic error of less than 
1% is achieved at all frequencies, except close to the antiresonce (525 MHz). At 
the antiresonance the relative error increases, because of the small magnitude 
exhibited by the input current. 
 

 3 even modes + SM 5 even modes +SM 10 even modes +SM 

Frequencies % RQE  
Real part   

% RQE  
Imag. part  

% RQE  
Real part 

% RQE  
Imag. part  

% RQE  
Real part   

% RQE  
Imag. part  

300 MHz 3.70 e-8  0.22 3.13 e-8 0.20 1.48 e-8 0.08 
400 MHz 1.00 e-6 0.94 9.00 e-7 0.79 4.44 e-7 0.37 
500 MHz 4.21 e-6 7.98 3.85 e-6 6.37 1.93 e-6 3.05 
600 MHz 1.04 e-5 3.92 9.80 e-6 3.00 4.98 e-6 1.46 
700 MHz 1.70 e-5 1.83 1.71 e-5 1.31 8.81 e-6 0.65 
800 MHz 9.34 e-6 0.95 1.13 e-5 0.62 5.81 e-6 0.31 
900 MHz 7.97 e-7 1.61 3.10 e-6 0.93 1.60 e-6 0.46 
 

Table 4.5. Relative quadratic error obtained when approximating the input 
current of the centre fed dipole at different frequencies, using three, five and 

ten even modes plus the exponential source mode. 
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4.5. Frequency independent basis functions 
 

As it was commented in the introduction of this chapter, one of the 
drawbacks of using characteristic modes as entire domain-basis functions in the 
MoM formulation is that characteristic modes depend upon frequency. This 
dependency should be taken into account to get to accurate results, especially 
at the highest frequencies. Thus, characteristic modes need to be obtained and 
stored for each frequency under analysis. Because of this limitation, it would be 
very advantageous to obtain a set of basis functions that would not depend 
upon frequency and would comprise the behaviour of characteristic modes in 
the entire frequency band of interest. This can be accomplished using the 
Singular Value Decomposition (SVD) as proposed in [89].  

 
The Singular Value Decomposition (SVD) [47] is a classical technique used to 

factorize any nonzero matrix [ ]m n
W

×
with m>n, and rank r, as 

 
 [ ] [ ][ ][ ] 'W U V= ∑  (4.11) 

 
where [ ]m m

U
×

and [ ]n n
V

×
are orthogonal matrices, and [ ]m n×

∑ is a non-singular 

diagonal matrix, with diagonal entries iσ  
 

 [ ] [ ]
1 0

0
,     with    

0 0
0

m n

r

D
D

σ

σ
×

 
   ∑ = =       

 (4.12) 

 
The diagonal elements σn, that are called the singular values of [ ]W , are 

always positive and sorted so that 1 2 0rσ σ σ≥ ≥ ≥ ≥ . The vector columns 

{ }1 2, , , nv v v  of [ ]V , are the right singular vectors of [ ]W , and the vector 

columns { }1 2, , , mu u u of [ ]U , are the left singular vectors of [ ]W . 

 
If [ ]W is a matrix with rank r, the right and left singular vectors will present 

the following properties 
 
{ }1 2, , , ru u u  forms an orthonormal basis for the vector columns of [ ]W . 

{ }1 2, , , rv v v   forms and orthonormal basis for the vector rows of [ ]W . 

 
Hence, SVD performs a linear transformation of a matrix [ ]W , whose 

columns/rows are linearly dependent vectors, into a reduced size matrix 
[ ]U /[ ]V , whose columns/rows are linearly independent vectors that comprise 

the behaviour of all the vector columns/rows in [ ]W . 
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But, let us see how SVD can be used to obtain a set of frequency 
independent characteristic modes (FICM), from Harrington’s characteristic 
modes. The overall procedure to generate the set of FICM is described below, 
and summarized in Figure 4.8. 
 
 
 General procedure to generate the set of FICM 
 

1. Choose the number of characteristic modes, say M, that are going to be 
used to expand the total current. 

2. Calculate these M characteristic modes at N uniformly spaced frequencies 
over the band of interest. 

3. Form a new matrix [ ]W  whose columns are the M x  N modes obtained in 

step 2, plus the exponential source mode proposed in section 4.4 to 
accelerate convergence. 

4. Then, apply singular value decomposition (SVD) to matrix W, to get a 
new matrix U, whose columns are the left singular vectors that form an 
orthonormal basis that span the subspace formed by the vector columns 
of W. 

5. Take the columns of U with larger associated singular values (σn), say P 
in number, to form the new set of frequency independent basis functions. 

6. Finally, use these P FICM at every frequency to get to a compressed MoM 
equation of dimension PxP that can be solved by direct inversion. 

 

 
Figure 4.8 Procedure used to generate the set of P FICM. 
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To illustrate the procedure described above, and to verify that the 
exponential source mode presented in section 4.4 is valid for any type of wire 
antenna, the input impedance of the square wire loop shown in Figure 4.9 is 
going to be approximated using a set of FICM. This square loop has already 
been analyzed in section 3.4.1 of Chapter 3. It has a perimeter of 0.916 m that 
is divided in 48 segments. The wire radius is 0.5 mm, and the structure is fed at 
the centre of one arm (segment 24) by a delta gap source. 

 
Figure 4.10 compares the total current of the square loop at 360 MHz (first 

resonance), with its modal approximation which uses a few even characteristic 
modes for the expansion. As can be seen, the real part converges just using one 
even mode, whereas for the imaginary part more than seven even modes are 
needed to converge to the exact solution. Once the poor convergence of the 
series of characteristic modes for the square loop has been demonstrated, let us 
apply to this loop the improvements described in the preceding sections.  

 

 
Figure 4.9 Square loop of perimeter 0.916 m and wire radius r =0.5 mm. 
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(a) Real part of the current. (b) Imaginary part 
  

Figure 4.10 Comparison of the total current the square loop fed at segment 24, 
and the current obtained by modal expansion at 360 MHz. 
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To apply the procedure for the generation of the set of FICM, the number of 
modes considered for the expansion of the current is M=7. The current 
distribution of these first seven modes (even and odd) of the square loop, was 
depicted in section 3.4 of Chapter 3. Then, these M modes are computed 
numerically at N=6 uniformly spaced frequency points over the band of interest, 
that ranges from 20 MHz to 1 GHz. Next, the 42 resultant modes plus the 
exponential source mode added to fasten the convergence, are arranged as 
column vectors to form matrix W of size 48x43. Figure 4.11 shows the 
exponential source mode employed for this loop fed at segment 24. 

 
Just to finish with the procedure, SVD is applied to matrix W to get the new 

set of P=15 FICM. Figure 4.12 shows the current distribution of the first eight 
modes of the new set of FICM. Most of these new modes present a current 
distribution with increasing oscillatory nature. However, it is worth highlighting 
that, among these modes there is a uniform current mode (FICM nº3), and also 
a source mode (FICM nº6) which resembles very much the residual current 
mode of Figure 4.3.  

 
Finally, to validate the accuracy of the proposed method, Figure 4.12 

compares the input impedance of the square loop computed using MoM with 
sub-sectional pulse basis functions, with the one obtained by modal expansion, 
using the set of 15 FICM at all frequencies. It can be observed that both results 
are in close agreement. For the shake of completeness, Table 4.6 sketches the 
relative quadratic error obtained at several frequencies for this input impedance, 
when the 15 FICM are used for the approximation. Surprisingly, the error keeps 
below 1% within the whole band of interest. Therefore, these results 
demonstrate that the FICM derived from characteristic modes plus the source 
mode, can be used as an effective set of wide-band basis functions, for the 
analysis of an antenna in a wide frequency range. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.11 Exponential source mode for the square loop fed at segment 24. 
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(a) FICM nº 1 
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(b) FICM nº 2 
Segments

0 6 12 18 24 30 36 42 48

C
ur

re
nt

 a
m

pl
itu

de

0.00

0.05

0.10

0.15

0.20

 

(c) FICM nº 3 
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(d) FICM nº 4 
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(e) FICM nº 5 
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(f) FICM nº 6 
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(g) FICM nº 7 
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(h) FICM nº 8 

Figure 4.12 Current distribution of the first eight frequency independent 
characteristic modes. 
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Figure 4.13 Input impedance of the square loop fed at segment 24 computed 
using MoM with pulse basis functions, and computed using the set of 15 FICM. 
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Frequency  % Relative quadratic error 
Real part of Zin 

 % Relative quadratic error 
Imaginary part of Zin 

20 MHz 4.65 e-5 0.0012 
100 MHz 0.001 0.042 
360 MHz 0.007 0.370 
600 MHz 0.003 0.079 
1 GHz 0.265 0.051 

 

Table 4.6. Relative quadratic error obtained at different frequencies when 
approximating the input impedance of the square loop fed at segment 24, using 

15 FICM. 
 
4.6. Convergence of the series of characteristic modes for patch 

antennas. 
 

Let us verify now that for the case of planar antennas, the series of 
characteristic modes also presents slow convergence when it is used to 
approximate the imaginary part of the input current. For this purpose, the 
narrow metallic strip shown in Figure 4.14, is going to be considered. The strip 
is in free space, and its dimensions are L=6 cm and W=0.5 cm. 

 
The generalized impedance matrix of this structure is obtained using the MoM 

in combination with RWG edge elements (see Appendix 2 for more details). 
First, the surface of the antenna is divided into separate triangles as shown in 
Figure 4.14. Each pair of triangles having a common edge constitutes the 
corresponding RWG edge element [45]. The surface electric current density on 
the antenna surface (a vector) is a sum of the contributions over all the edge 
elements, with unknown coefficients. These coefficients are found from classical 
moment equations.  

 
The first resonance of this structure takes place when the length of the strip 

L is approximately λ/2. Figure 4.15 shows the real and imaginary parts of the 
current on surface of the strip close to first resonance (at 2.4 GHz) when the 
antenna is fed with a delta gap source placed at edge 50. This total current has 
been obtained by direct inversion of the 99x99 impedance matrix. As observed, 
since the strip is very narrow, the current flows longitudinally at both the real 
and imaginary parts.  
 
 

 
Figure 4.14 Metallic strip at free space. 
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Figure 4.15 Real and imaginary parts for the current on the surface of the 

metallic strip when it is fed at edge 50. 
 
 

Now, let us approximate the total current on the surface of the strip, using an 
expansion of characteristic modes. For the sake of example, Figure 4.16 
presents an approximation using 15 characteristic modes, for both the real and 
imaginary parts of the current at 2.4 GHz, when the strip is fed at edge 50. 
When results in Figure 4.15 and Figure 4.16 are compared, it is noticeable that 
the approximation at the feeding point for the imaginary part of the current is 
not accurate enough.  
 

Figure 4.17 compares the actual total current and the current approximated 
with 15 modes at 2.4 GHz, this time using a linear representation of the current 
amplitude along the 99 internal edges. Like in wire antennas, the modal 
expansion yields a very good approximation for the real part of the total current, 
whereas the approximation for the imaginary part exhibits poor convergence, 
with maximum error concentrated at the feeding point (edge number 50). 
Observe the current at edges multiple of five (5, 10, 15, 20, 25….) is nearly 
zero. This is because there is no transverse current flow, so currents passing 
through edges which are a multiple of five are very small. See Figure 4.14 to 
check the position of these edges. 
 

 
 

Figure 4.16 Real and imaginary parts for the current approximated with 15 
characteristic modes, when the strip is fed at edge 50. 

Real Part of the current at 2.4 GHz 

Imaginary part of the current at 2.4 GHz 

   Real part of the current approximated with 15 modes at 2.4 GHz 

   Imaginary part of the current approximated with 15 modes at 2.4 GHz 
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Figure 4.17 Actual total current and current approximated with 15 
characteristic modes at 2.4 GHz for the metallic strip fed at edge 50. 

 
 

As the number of modes used for the expansion increases, the convergence 
improves, but in a very slow way. Table 4.7 summarizes the relative quadratic 
error computed at 2.4 GHz when the total input current of the centre fed strip is 
approximated by an expansion with variable number of modes. Unfortunately, 
although the real part of the input current converges very fast, the relative 
quadratic error for the imaginary component of the current is bigger than 1%, 
even using an expansion of 90 modes. Once again, the explanation for this slow 
convergence of the imaginary part of the current is the presence of the delta 
gap source over the structure, which creates an evanescent current that can not 
be modelled properly by the series of characteristic modes. 

 
Following the approach already presented for the wire antenna class, a 

source mode may be included in the series of characteristic modes in order to 
fasten its convergence. But, which is the optimum shape the source mode may 
have for planar antennas? 
 
 
 

Number of  
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

3 1.48 e-3 134.95 
5 1.48 e-3 134.95 
10  4.22 e-8 98.07 
15 1.67 e-10 81.10 
20 1.05 e-12 83.33 
50  3.35 e-13 18.01 
75 3.35 e-13 5.15 
90 3.35 e-13 1.39 

Table 4.7. Relative quadratic error computed at first resonance (2.4 GHz) when 
the total input current of the centre fed strip is approximated by an expansion 

with variable number of modes. 
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A first approximation for this source mode can be observed in Figure 4.18, 
which shows the residue that is left after subtracting to the actual total current 
at 2.4 GHz, the approximation yield by the expansion of 15 characteristic 
modes. From this linear representation it is extracted that this residue is very 
similar to that obtained in Figure 4.3 for the centre fed wire dipole. Once more, 
due to the presence of the delta gap source, there exist an evanescent current 
along the strip, with a peak value just at the feeding edge, and with a fading 
profile away from it.  
 

A planar strip can be considered the result of flattening a circular cylinder, 
therefore, the analytical demonstration for the existence of an evanescent 
current mode linked to the source presented for wire antennas, is also valid for 
a planar strip.  

 
The source mode in Figure 4.18 could be approximated by an exponential 

function, which has been demonstrated to provide excellent results for wire 
antennas. However, in planar antennas the projection of an exponential source 
mode over the meshing of the structure could be very complex in general and 
quite time-consuming. 

 
A straightforward solution could consist in using a very simplified source 

mode, like the one sketched in Figure 4.19. This delta gap source mode can be 
easily implemented by means of a vector with zeros at all edges, except at the 
feeding edge.  

 

 
Figure 4.18 Residue that is left after subtracting to the actual total current at 
2.4 GHz, the approximation yield by an expansion of 15 characteristic modes. 
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Figure 4.19 Simplified delta gap source mode for the metallic strip fed at edge 

50. 
 
 

Table 4.8 gathers the relative quadratic error computed at 2.4 GHz when the 
total input current of the centre-fed strip is approximated by an expansion with 
variable number of modes plus the simplified delta-gap source mode. As 
observed, the relative quadratic error for the real part of the input current is still 
very small. As expected, the error for the imaginary part has been reduced, 
especially when using small number of modes. However, even including this 
simplified source mode, convergence is still very slow. 

 
Although previous results demonstrate that the addition a the delta gap 

source mode accelerates the converge of the series of modes, the relative 
quadratic error for the imaginary part of the input current at first resonance is 
still 1.28% when 90 modes are considered for the expansion of the current.  
 
 

Number of  
modes  

 % Relative quadratic error 
Real part   

 % Relative quadratic error 
Imaginary part  

3 1.49 e-3 71.67 

5 1.49 e-3 71.67 
10  4.16 e-8 38.42 
15 4.27 e-11 24.88 
20 1.08 e-12 24.83 
50  6.55 e-13 12.75 
75 5.43 e-13 4.52 
90 5.59 e-13 1.28 

Table 4.8. Relative quadratic error computed at first resonance (2.4 GHz) when 
the input current of the centre fed strip is approximated by an expansion with 

variable number of modes plus the delta gap source mode. 
 
 

Some numerical experiments have been carried out adding different 
approximations of the residual source mode in Figure 4.18 to the series of 
modes. Triangular-shaped source modes, as well as exponential source modes 
have been found to provide better results than the simplified delta gap source 
mode. However, these source modes have been created to fit the particular 
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meshing of this strip, so they do not represent a standard solution for the 
convergence problem of characteristic modes in planar antennas.  

 
Of course, if the source mode obtained in Figure 4.18 were added to the 

series of modes, the convergence for the imaginary part of the current at 
resonance would be very fast. But, would this residue obtained at 2.4 GHz 
improve the convergence at the rest of frequencies too?  

 
Table 4.9 verifies that the relative quadratic error for the imaginary part of 

the input current is very much reduced when the residual source mode 
computed at 2.4 GHz is added to the series of 15 modes at different 
frequencies.   

therefore, the question that arises now is whether, it is possible to obtain a 
set of Frequency Independent Characteristic Modes (FICM) valid in a wide of 
frequencies including the effect of the source mode or not. 

 
As explained in Section 4.5, using a SVD decomposition, a set of 

characteristic modes at different frequencies plus the source mode, can be 
transformed in a reduced set of FICM that expands the current very accurately 
in a wide range of frequencies.  Next, the procedure described in Section 4.5 is 
going to be applied to the modes of the metallic strip.  

 
Firstly, Figure 4.20 depicts the normalized current distribution for the first 

modes of the strip at 2.4 GHz. The left side of Figure 4.20 shows the distribution 
of the modal currents along the strip. On the right side, linear representations of 
the current amplitude of modes along the 99 internal edges are presented. As 
the strip is relatively narrow, all modes exhibit longitudinal current flow. Mode J1 
is the fundamental mode, and as well as modes J0, J3 and J4, it presents even 
current distribution. Mode J2 is the only mode with odd current distribution. Note 
in all modes the current at edges multiple of five is very small.  

 
 Expansion with 15 modes + Residual Source Mode 

Frequencies % Relative Quadratic Error 
Real part 

% Relative Quadratic Error 
Imag. part   

1.4 GHz 1.78e-9 3.87 

2.4 GHz 5.59e-13 3.33e-12 

3.4 GHz 9.03e-11 0.0312 

4.4 GHz 3.12e-9 0.023 

5.4 GHz 4.78e-6 0.16 

6.4 GHz 2.78e-6 0.12 

7.4 GHz 2.45e-6 1.04 

8.4 GHz 2.81e-5 1.17 
 

Table 4.9. Relative quadratic error computed at different frequencies when the 
input current of the centre fed strip is approximated by an expansion with 
variable number of modes plus the residual source mode of Figure 4.18. 
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(b) Mode J2 
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(c) Mode J0 
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(d) Mode J3 
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(e) Mode J4 

Figure 4.20 Normalized current distribution of the modes of the metallic strip at 
first resonance (2.4 GHz). 
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Figure 4.21 presents characteristic angle variation with frequency for the first 
modes of the metallic strip. Mode J0 is a special non-resonant mode, with 
inductive behaviour at every frequency. Modes J1, J2 and J3 resonate at 2.4 GHz, 
4.8 GHz and 7.2 GHz, respectively, while mode J4 resonates out of the studied 
frequency band. 

 
As a general rule, for generating a set of FICM valid at first resonance and 

nearby frequencies, at least three modes need to be calculated at each 
frequency selected for the SVD decomposition. If the set of FICM is going to be 
used close to the second resonance, at least seven modes should be considered. 
In this case, the number of modes chosen for expanding the current is M=5. 
These five modes correspond with those depicted in Figure 4.20. As shown in 
Figure 4.21 only three modes resonate in the analyzed frequency band, so the 
choice of M=5 modes, seems reasonable, as it includes the fundamental mode, 
the special non-resonant mode, and three higher order modes that may cause 
the subsequent resonances. Then, the M modes are calculated at N=6 uniformly 
spaced frequencies, from 1 GHz to 7 GHz. Next, the resultant 30 modes plus the 
source mode shown in Figure 4.18 are arranged as columns vectors to form a 
new matrix W of dimension 99x31. Finally, a SVD decomposition is applied to 
matrix W to obtain the new set of P=15 FICM. This new modes are column 
vectors of dimension 99x1. 

 
To validate the above-mentioned procedure, the current on the surface of the 

centred fed strip has been computed at different frequencies using the new set 
of 15 FICM. Table 4.10 presents the relative quadratic error for the input current 
estimated with these 15 FICM. As observed, the error for the imaginary part is 
less than 1% at all frequencies except at the antiresonance (3.4 GHz), where it 
is a bit higher. This extraordinary improvement on the error for the imaginary 
part of the current is due to the addition of the residual source mode to the set 
of modes that has been subjected to the SVD decomposition. 
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Figure 4.21 Characteristic angle variation with frequency for the first modes of 
the metallic strip shown in Figure 4.20. 
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 Expansion with 15 FICM 

Frequencies % Relative Quadratic Error
 Real part 

% Relative Quadratic Error 
 Imaginary part 

1.4 GHz 0.0028 0.0484 

2.4 GHz 0.00026 0.1765 

3.4 GHz 0.00176 1.470 

4.4 GHz 0.00243 0.1336 

5.4 GHz 0.00652 0.0228 

6.4 GHz 0.08013 0.0686 
 

Table 4.10. Relative quadratic error computed at different frequencies when the 
input current of the centre fed strip is approximated by an expansion of 15 

Frequency Independent Characteristic Modes (FICM). 
 
The SVD approach presented above is worthwhile only when the antenna is 

to be analyzed is a wide range of frequencies. Note that applying the SVD 
decomposition, a very good convergence is achieved in a broad range of 
frequencies, at the expense of calculating the actual total current by direct 
inversion of the impedance matrix, at least at one frequency, in order to obtain 
the residual source mode. Also five characteristic modes need to be computed 
at six frequencies. Nevertheless, the SVD is really suitable to reduce the 
computational cost when analyzing large arrays with identical wideband 
radiating elements. 
 

It must be pointed out that although the procedure presented in this work for 
obtaining the source mode is not very smart, it constitutes a standard solution, 
as it does not depend on the meshing of the structure. Note a residual source 
mode calculated by subtraction, can be found for any planar antenna problem. 
Generally, as demonstrated in Table 4.9, a source mode computed close to first 
resonance subtracting a series of 15 modes to the exact current, accelerates the 
convergence of the series from very low frequencies to frequencies close to the 
third resonance. 
 

With the purpose of verifying that the above described process can be 
systematically applied to fasten the convergence of any planar antenna 
problem, next section deals with the approximation of the input current for a 
coaxial fed patch antenna placed over an infinite ground plane.  
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4.7. Convergence of the series of characteristic modes for coaxial 
fed patches. 

 
Figure 4.22 shows the geometry of a rectangular patch whose current is 

going to be studied. This patch is connected to an infinite ground plane through 
a narrow vertical strip. The vertical strip emulates a coaxial feeding probe. 
 

Following the approach described in previous section, a source mode is going 
to be obtained close to the first resonance. The first resonance of this 
rectangular patch depends on its height over the ground plane. Nevertheless, 
for this analysis in which the dielectric is air, it will be supposed that the first 
resonance is close to 3.75 GHz, since at this frequency the length of the patch L 
is λ/2.  
 

Then, the total current on the patch is computed at 3.75 GHz by direct 
inversion of the impedance matrix, and it is also approximated with an 
expansion of 15 characteristic modes. Figure 4.23 compares the real and 
imaginary parts of the exact current and the approximated current at 3.75 GHz. 
As observed, both results are very similar. The relative quadratic error at the 
feeding edge is very small for the real part. However, once more, the 21.7 % 
error obtained for the imaginary part is too high.  
 

 
 

 
Figure 4.22 Rectangular patch antenna placed over an infinite ground plane. 

 
 

Next, a source mode is obtained by subtracting to the actual total current at 
3.75 GHz, the approximation provided by the expansion of 15 characteristic 
modes. Figure 4.24 shows the current distribution of the residual source mode 
obtained this way. As observed, the current is very intense at the vertical strip. 
Due to the complexity of this structure, a linear representation of the current 
amplitude of the error is not presented, as it does not provide any relevant 
information.  
 
 

Feeding edge

h=0.75 cm 

L=4 cm 

W=2 cm Infinite ground plane
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In order to perform a SVD decomposition M=5 modes are computed at N=6 
uniformly spaced frequencies between 2.75 GHz and 4.25 GHz. The resultant 30 
modes plus the source mode shown in Figure 4.24 are arranged as columns 
vectors to form a new matrix W of dimension 232x31. Finally, the SVD 
decomposition is applied to matrix W for obtaining the new set of P=15 FICM. 
This new modes are column vectors of dimension 232x1. 
 
 

 
Figure 4.23 Exact current and current approximated with an expansion of 15 

modes at 3.75 GHz.  
 
 

 
Figure 4.24 Residue that is left after subtracting to the actual total current at 
3.75 GHz, the approximation yield by an expansion of 15 characteristic modes. 

 
 

(a)  Real part  (b) Imaginary part  

(c)  Real part approximated 
with 15 modes 

(d)  Imaginary part approximated 
with 15 modes 
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Table 4.11 presents the relative quadratic error at different frequencies for 
the input current of the rectangular patch, when it is approximated with the 15 
FICM yielded by the SVD decomposition. These results reveal that the 
convergence of the input current in this example is excellent, since the relative 
error for the imaginary part stays below 0.1% at all the studied frequencies.  

 
To sum up, characteristic modes can be used as entire domain basis 

functions in any planar antenna problem. The slow convergence of the series of 
modes can be overcome by adding to the series of modes an evanescent mode 
that models the reactive behaviour introduced by the source. This source mode 
can be systematically obtained at a frequency close to the first resonance, by 
subtracting to the exact current an expansion of modes. As it has been 
demonstrated in section 4.6, a source mode computed this way, is also valid to 
fasten the convergence at other frequencies.  

 
Finally, if the antenna is to be analyzed in a wide range of frequencies, a SVD 

decomposition is recommended in order to condense the collection of frequency 
dependent characteristic modes into a more reduced set of FICM. Examples 
previously presented demonstrated that with just 15 FICM any planar antenna 
can be characterized in a wide range of frequencies. 
 
 

 

 Expansion with 15 FICM 

Frequencies % Relative Quadratic Error
 Real part 

% Relative Quadratic Error 
 Imaginary part 

1.25 GHz 0.0794 0.02889 

2.5 GHz 0.0016 0.06124 

3 GHz 0.28 e-5 0.43637 

3.5 GHz 7.79 e-5 0.03835 

3.75 GHz 0.0004 0.02395 

4 GHz 0.0003 0.01752 

4.5 GHz 0.0062 0.01576 

4.75 GHz 0.012465 0.01366 
 

Table 4.11. Relative quadratic error computed at different frequencies when the 
input current of the rectangular patch is approximated by an expansion of FICM. 
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CHAPTER 5.  Modal Analysis of Planar Antennas                                         
 

5.1.  Introduction  
 

Planar antennas, like patches [99]-[101], and planar monopoles [102]-[103], 
have recently received much attention for wireless communication systems, due 
to its attractive features such as, low profile, light weight, low cost and easy 
fabrication. This chapter is intended to analyze these two types of planar 
antennas using characteristic modes. By means of different examples, it will be 
demonstrated that from the knowledge gained by the modal analysis, design of 
new antennas can be performed in a systematic way. In these examples, the 
information provided by characteristic modes will be used for the selection of 
the most suitable shape for the radiating element, in some instances, and in 
others, for the choice of an optimum feeding arrangement. 

 

5.2. Modal analysis of patch antennas. 
 

Conventional microstrip antennas are composed of a conducting patch 
printed on a grounded microwave substrate. Because of their low profile, 
lightweight, low cost, and conformability, these antennas have long been used 
for aerospace and mobile applications.  
 

Among the different methods of analysis that have been developed for the 
study of microstrip patches, the transmission-line model, the cavity model and 
full-wave models, are the most common ones [86]. The problem with these 
methods is that all of them present a trade-off between simplicity and accuracy. 
For example, the transmission-line and the cavity model, are quite easy to 
implement, however, they do not provide very accurate results and do not 
model coupling properly. Moreover, although these two methods yield some 
physical insight, they lack versatility, since they can only be applied to 
rectangular patches, for the case of the transmission-line model, and to 
canonical structures, for the case of the cavity model. Conversely, full-wave 
methods which are based on integral equation formulations, provide rigorous 
and accurate results. Nevertheless, they are the most complex models and they 
provide few physical insight. 

 
The Theory of Characteristic Modes can be considered a full-wave method, as 

it requires of the application of the MoM to obtain the generalized impedance 
matrix of the antenna. However, as explained in Chapter 1, in contrast with 
other classical full-wave methods, characteristic modes bring clear insight into 
the radiation mechanism of the patch. Furthermore, characteristic modes 
present no limitation over the shape of the patch, the thickness, or the dielectric 
constant of the substrate. 
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5.2.1. Computation of characteristic modes for arbitrary shaped plates. 
 

For the present, a rectangular plate of width W=4 cm and length L= 6 cm 
has been chosen as example to illustrate the behaviour of characteristic modes 
in planar conducting structures. In first instance, no ground plane has been 
considered, so the plate is in free space.  

  
Figure 5.1 depicts the current distribution at first resonance (f =2.2 GHz) of 

the first eigenvectors Jn of the rectangular plate already described. Computation 
of these eigenvectors has been made using 128 RWG functions for expansion 
and testing. All currents have been normalized to its maximum value in order to 
facilitate comparison. Additionally, for a better understanding, Figure 5.2 yields 
current schematics for these eight current modes. Eigenvectors J01, J02, and J03, 
as it will be verified later, present special inductive nature due to its currents 
forming closed loops over the plate. For the case of eigenvector J01, the current 
flows uninterrupted around the plate. Eigenvector J02 exhibits currents forming 
two closed loop in the vertical direction, while currents in eigenvector J03 form 
two closed loops in the horizontal direction. Eigenvectors J1 and J2, which are 
characterized by horizontal and vertical currents respectively, are the most 
frequently used modes in patch antenna applications, while the rest of 
eigenvectors, J3, J4 and J5, are higher order modes that might be taken into 
consideration only at highest frequencies. 

 
Note that due to eigenvectors dependency upon frequency, if a structure is to 

be analyzed in a wide frequency range, modes will need to be recalculated at 
every frequency. 
 

Figure 5.3 depicts the azimuthal radiation pattern (θ =90º) at 4 GHz of the 
modal electric fields Eθ,n produced by the current modes Jn of the rectangular 
plate. It can be observed that the radiation pattern generated by mode J01 
presents nearly omni directional characteristic, while the rest of modes present 
growing number of lobes as the order of the mode increases.    
 

Figure 5.4 presents the variation with frequency of the characteristic angle αn 
associated to the current modes of the rectangular plate of Figure 5.1. Observe 
that modes are at resonance when λn=0, that is, when its characteristic angle is 
αn=180º. Hence, mode J1 resonates at 2.3 GHz, mode J2 at 4.9 GHz, mode J3 at 
4.1 GHz, mode J4 at 5.6 GHz and mode J5 at 9.9 GHz. The special nature of the 
non-resonant inductive modes J01, J02, and J03, can be appreciated in Figure 5.4, 
since its associated angle remains below 180º at every frequency. All modes 
exhibit broad radiating bandwidth, because their characteristic angle curves are 
close to 180º in a wide frequency range after resonance.  
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Figure 5.1 Normalized current distribution at first resonance (f =2.3 GHz) of 

the eigenvectors Jn of a rectangular plate of width W=4 cm and length L= 6 cm. 

 

 

Figure 5.2 Current schematics of the six modes shown in Figure 5.1. 
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Figure 5.3 Azimuthal radiation pattern (θ =90º) at 4 GHz of the modal 

electric fields Eθ,n produced by the current modes Jn. 
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Figure 5.4 Characteristic angle variation with frequency for the current 
modes of the rectangular plate in free space. 
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With the aim of establishing the radiating behaviour of modes in a more 
precise way, equation (2.24) proposed in chapter two, may be used to compute 
the modal radiating bandwidth for half-power radiated at resonance. The 
problem is that this equation is only valid for narrowband radiators. Note 
frequencies fU and fL in equation (2.24) are the frequencies at which 
characteristic angles are 135º and 225º, respectively. In Figure 5.4 it can be 
observed that after resonance, the characteristic angles of the radiating modes 
of the rectangular plate stay close to 180º, so they do not go through 135º. In 
consequence, equation (2.24) can not be applied for obtaining the radiating 
bandwidth of broadband modes, since only the lower end of the radiating band 
can be determined from characteristic angle curves. So, according to the 
information yield by characteristic angle curves, the radiating bandwidth of the 
modes of the rectangular plate would be infinite.  
 

Another approach to determine the radiating behaviour of modes consists in 
studying the steepness of the characteristic value curves at resonance [38]. 
Figure 5.5 illustrates the variation with frequency for the characteristic values of 
the first modes of the rectangular plate. At first sight, all modes seem to present 
similar radiating behaviour. Being more concise, a modal quality factor can be 
calculated from the information provided by Figure 5.5 using equation (2.29). 
Table 5.1 compares the magnitude of the modal quality factors obtained using 
(2.26) and (2.29). The radiating bandwidths have been obtained by inverting 
the corresponding quality factors. As observed, all quality factors are very small. 
It is a well-known that the inverse dependence between the fractional 
bandwidth and the quality factor only exists provided Q>>1 [49]. Moreover, 
these quality factors obtained at resonance may not be representatives of the 
overall radiating behaviour of the modes. Observe that in Figure 5.5, after 
resonance, the slope of the eigenvalue curves changes into a very flat profile 
that would result in a zero derivative, and once again, in an infinite radiating 
bandwidth for low-Q broadband modes after resonance. 

 
Anyway, results presented in Table 5.1, may not be very realistic if it is taken 

into account that the concept of the quality factor was originated in the context 
of narrowband resonant circuits, and so, it can not be generalized to any kind of 
resonators, and it is not particularly suitable for broadband ones.  

 
There are actually other more practical ways to define the bandwidth of an 

antenna, which include impedance, VSWR, pattern, and gain [104]. All these 
definitions of the bandwidth can be extrapolated to modes, although they are 
strongly dependent on the feeding arrangement. 

 
In general, the impedance bandwidth of an excited mode will be not as big as 

its radiating bandwidth, since it depends on the proper choice of the feeding. 
Obviously, a very efficient radiating mode will be worthless, if it is not well 
matched to the source. Likewise, a well matched mode with poor radiating 
behaviour will not contribute very much to the overall radiation of the antenna. 
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Moreover, the interaction of a mode with the rest of modes also degrades its 
impedance bandwidth. For example, based on the excellent radiating behaviour 
of mode J1 of the rectangular plate, if only this mode were excited, and if it 
were well matched to the feeding, it would provide a large impedance 
bandwidth. However, if other modes were excited simultaneously, 
antiresonances would appear as a result of the combination of modes. Usually, 
these antiresonances degrade the impedance bandwidth of the antenna, despite 
the resonances of the interacting modes were closely spaced, and the modes 
had nearly equal matched resistances, in which case the result would be a 
wideband performance due to the combination of modes. 
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Figure 5.5 Eigenvalue variation with frequency for the current modes of the 
rectangular plate in free space. 

 
 
 

 ,n HarringtonQ  ,n HarringtonBW  (%) ,n FosterQ  ,n FosterBW  (%) 

Mode J1 1.09 >100 % 0.814 >100 % 
Mode J2 0.46 >100 % 0.500 >100 % 
Mode J3 0.97 >100 % 0.915 >100 % 
Mode J4 0.59 >100 % 0.490 >100 % 
Mode J5 0.75 >100 % 0.680 >100 % 

 

Table 5.1. Modal quality factors computed using (2.29), and modal radiating 
bandwidths obtained by inversion of the quality factors, for the first five 

radiating modes of the rectangular plate in free space. 
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It is worth noting that eigenvectors presented in Figure 5.1 have been 
computed in free space, however, the presence of a ground plane below the 
plate would not alter significantly their current distribution, although it would 
affect their resonance and radiating bandwidth. Figure 5.6 shows the variation 
with frequency of the characteristic angles associated to the first eight modes of 
the same rectangular plate, when it is placed 0.8 mm above an infinite perfect 
conducting ground plane. It is observed that now modes resonate at a lowest 
frequency. Mode J1 resonates at 2.1 GHz, mode J2 at 2.9 GHz, mode J3 at 3.75 
GHz, mode J4 at 4.35 GHz, and mode J5 at 6.55 GHz. Furthermore, as it was 
expected, the presence of the ground plane reduces the radiating bandwidth of 
all modes. In next section, it will be analyzed in more detail how the height of 
the patch above the ground plane affects the radiating bandwidth of modes. 
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Figure 5.6 Characteristic angle variation with frequency for the current modes 

of the rectangular plate placed 0.8 mm above an infinite ground plane.  
 
 

To sum up on the whole, it should be emphasized that the modal study 
presented here for the rectangular plate could have also been performed for 
planar structures of any shape. In fact, characteristic modes present quite a 
predictable behaviour in planar structures, whichever their shape is. For 
instance, Figure 5.7 shows the normalized current distribution of different 
modes at 2.4 GHz for several planar geometries. From these results it can be 
derived that first mode J1 is always characterized by horizontal current flow, 
except for the contour, where it follows the perimeter of the structures. The 
second mode J2 presents vertical currents along the different plates, exception 
made of the contour. Likewise, the rest of modes exhibit easily identifiable 
current patterns.  Mode J3 has a combination of vertical and horizontal currents, 
while mode J4 is a higher order horizontal mode, and mode J5 presents currents 
flowing in radial direction. 
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Figure 5.7 Normalized current distribution at 2.4 GHz of the first eigenvectors 

of several planar geometries. 
 

(a) Horizontal current mode J1

(b) Vertical current mode J2

(c) Higher order mode J3

(d) Higher order mode J4

(e) Higher order mode J5
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5.2.2. Determination of the optimum height of a microstrip patch 
above a ground plane to obtained maximum radiating bandwidth. 
 

As it has been mentioned before, when a plate is placed above an infinite 
ground plane, the current distribution of the eigenvectors remains more or less 
the same as the one obtained for the free space case. Nevertheless, the 
presence of a ground plane below the structure has great effect on the 
resonance frequency and radiating bandwidth of modes. Bandwidth is an 
important matter of concern for microstrip patches, since they are inherently 
narrow bandwidth antennas. As a result, bandwidth enhancement techniques 
are usually needed for most practical applications. Some of these techniques are 
quite complex, as they consist in mounting stacked elements [105]-[107], 
adding parasitic elements [108]-[109] or using resistive loading [110]-[111]. 
However, an easier alternative to increase the bandwidth of a microstrip patch is 
based on etching the radiating element on a thick low dielectric constant 
substrate [86]. 

Next results exemplify how the variation of the height h over an infinite 
ground plane with air substrate (εr=1), affects the characteristic angle curve of 
the vertical current mode of the rectangular patch of width W=4 cm and length 
L=6 cm, depicted in Figure 5.8. The current distribution of this vertical current 
mode corresponds with the one already plotted for eigenvector J2 in Figure 5.1.  

 Figure 5.9 shows the variation with frequency and height of the 
characteristic angle associated to this vertical current mode of the rectangular 
patch. The height h is expressed in terms of the wavelength λ at 3.75 GHz, 
since at this frequency, the resonant dimension of the patch is W=λ3.75GHz/2.  The 
behaviour of the mode in free space is also included for comparison purposes. 
By observing Figure 5.9 it can be deduced that the maximum radiating 
bandwidth of the vertical current mode occurs when the height over the ground 
plane is h=0.25λ3.75GHz. This conclusion is based on the fact that for h 
=0.25λ3.75GHz, the characteristic angle curve passes through 180º three times, 
approximately at 2.8 GHz, 4.5 GHz and 5.4 GHz, while it keeps close to 180º at 
the rest of frequencies.  It should be also remarked that because the thickness 
of the substrate or the dielectric constant, are not constraints for this method, 
characteristic modes constitute an alternative to analyze patch antennas when 
the classical model of resonant cavities fails. 

 

Figure 5.8   Dimensions of the rectangular patch placed over an infinite 
ground plane with air dielectric. 

L=6 cm

εr =1 

h W=4 cm  
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Figure 5.9 Variation with frequency and height h of the characteristic angle 
associated to the vertical current mode of the rectangular patch. 

 
 
 

5.2.3. Generation of circular polarization in arbitrarily shaped patch 
antennas by combination of modes. 

It is a well-known fact that, to get circular polarization from a microstrip 
patch, it is necessary to excite two orthogonal and linearly polarized modes, 
with equal current amplitude but in phase quadrature [86]. Orthogonality 
properties of characteristic modes make the generation of circular polarization in 
arbitrary patches possible in an easy and intuitive way.  

For the sake of example, let us describe the procedure carried out to design a 
circularly polarized isosceles triangular patch antenna using characteristic 
modes. A triangular patch antenna has already been demonstrated to provide 
circular polarization [112], so the purpose of this section is not presenting a new 
antenna, but exemplifying how to design it using modes. The dimensions of the 
triangular patch are shown in Figure 5.10, and the current distribution at 3.4 
GHz of the modes to be combined, which are the horizontal and the vertical 
current ones, is shown in Figure 5.11. 

From the information provided by the modal significance curves in Figure 
5.12 it can be determined that both modes present exactly the same current 
amplitude at 3.4 GHz. Moreover, from the characteristic angle curves presented 
in Figure 5.13 it is derived that at 3.4 GHz both modes present 90º phase 
difference. Hence, if these two modes were properly excited and combined, they 
would yield circular polarization at 3.4 GHz.  So, next step is to identify where 
the feed point should be located to excite these modes 
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 Figure 5.14 shows the optimum feed position where the two modes present 
exactly the same current amplitude. This point corresponds with the minimum 
value obtained after subtracting the two current distributions in Figure 5.11 at 
3.4 GHz. Last of all, the axial ratio plotted in Figure 5.15, which has been 
obtained using an aperture feed with a 45º rotation, located at the previously 
specified point, attests that the triangular patch is circularly polarized at 
broadside direction at 3.4 GHz. 

 

Figure 5.10 Dimensions of the triangular patch antenna placed over an infinite 
ground plane with air dielectric.   

 

 
Figure 5.11 Current distribution at 3.4 GHz for the horizontal and vertical 

current modes of the triangular patch. 
 

 

 

Figure 5.12 Modal significance curves for the horizontal and vertical current 
modes of a triangular patch. 
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Figure 5.13 Characteristic angle variation with frequency for the horizontal and 

vertical current modes of a triangular patch. 
 

 

Figure 5.14 Optimum feed position to obtain circular polarization in a triangular 
patch. 

 

 

Figure 5.15 Aperture-coupled feed at 45º:  (a) Axial ratio at broadside 
direction, (b) Phase difference at broadside direction. 
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5.2.4. Reduction of the cross polarization level for reflectarray 
antennas. 
 

Another interesting application of characteristic modes is to adjust the phase 
of the field reflected by the individual elements of a reflectarray antenna [113]-
[115]. As described in [30] eigenvalues λn are related to the scattering 
coefficient Sn as 

 
1
1

n
n

n

jS
j
λ
λ

−
= −

+
 (5.1)

          
Then, the reflection phase of the nth mode can be expressed as 

 12 tan ( )n nϕ λ−= −  (5.2)
         

Since equation (5.2) does not depend on the excitation, the total reflection 
phase, when considering the illuminating feed, will be a combination of the 
reflection phases of the excited modes 

Typically, square and rectangular patches are the most widely used elements 
for reflectarray applications due to their simplicity, yet they do not always 
provide the desired bandwidth performance [116]. Recently, the use of ridges 
has been proposed in order to improve the bandwidth performance of 
rectangular patches [117], however this solution degrades the cross-polarization 
level, especially for the case of oblique incidence. In general, a square patch 
excited by an oblique incident plane wave presents currents on its surface 
flowing in diagonal direction.  
 

Figure 5.16 (a) shows the current distribution at 8 GHz generated by a φ-
polarized incident plane wave in the direction θ=30º and φ=45º, over a square 
patch of dimension 15 mm, placed 3 mm above an infinite ground plane. This 
current flows in diagonal direction (-45º), because of the excitation of two 
orthogonal degenerated modes: The vertical current mode (Figure 5.16 (b)), 
and the horizontal current mode (Figure 5.16 (c)).  The radiation patterns in the 
XZ and YZ planes due to the total current are plotted in Figure 5.17.  As a result 
of the excitation of the two degenerated modes, the theta and phi components 
of the electric field are present in both planes.  

 
One solution to improve the polarization purity of the square patch for the 

case of oblique incidence is to split the degenerated modes, so only one of them 
would be excited at the desired frequency. This can be accomplished just by 
dividing the patch in two rectangular strips along the direction of the desired 
polarization.  

 
 
 
 

(5.3)(5.4)(5.5) 
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Figure 5.16 Total current at 8 GHz of a square patch when excited by a φ-
polarized incident plane wave (θ=30º, φ=45º). (b) Vertical current mode at 8 

GHz. (c) Horizontal current mode at 8 GHz. 
 

 

Figure 5.17 Radiation patterns in the XZ and YZ planes due to the diagonal 
current plotted in Figure 5.15 (a). 

 
 
Figure 5.18 illustrates the normalized current distribution at 8 GHz of the first 

three modes of the square patch divided in two vertical strips. When the square 
is divided along the Y-axis direction, the vertical mode is preserved, while the 
horizontal mode, whose current is interrupted by the gap, resonates at a higher 
frequency. Additionally, a new vertical mode, with currents flowing with 
opposite phase in the strips, also appears.  Figure 5.19 shows the reflection 
phase versus frequency curves associated to the aforementioned modes of the 
two vertical strips. This reflection phase has been obtained using equation (5.2). 
For the sake of comparison, Figure 5.19 also includes the reflection phase of the 
vertical mode of the square patch.  From these results it can be extracted that 
the vertical current mode of the two vertical strips presents the same reflection 
phase as the vertical mode of the complete square patch, and also that the 
resonance (ϕn=0) of the horizontal mode is shifted to higher frequencies.  
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Figure 5.18 Normalized current distribution at 8 GHz for the first modes of two 
vertical strips placed 3 mm above an infinite ground plane. (a) Vertical current 

mode, (b) Vertical current mode with currents flowing in opposite way, (c) 
Horizontal current mode. 

 

 
 

Figure 5.19 Reflection phase against frequency for the modes of the two 
vertical strips, and for the vertical mode of the square patch. 

 

Finally, when the vertical strips are placed 3 mm above an infinite ground 
plane and excited with the φ-polarized incident plane wave used in the previous 
case, it results in the current sketched in Figure 5.20. This current that flows in 
vertical direction, resembles very much the vertical current mode shown in 
Figure 5.18 (a). This means that only the vertical current mode is excited. 
Figure 5.21 shows the radiation patterns in the XZ and YZ planes generated by 
the current plotted in Figure 5.20. Now, it is observed that the phi component of 
the electric field is only present at the XZ plane, and the theta component is 
only present at the YZ plane.  
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Figure 5.20 Total current at 8 GHz of two vertical strips when excited by a φ-
polarized incident plane wave in the direction θ=30º, φ=45º. 

 
 

 
Figure 5.21 Radiation patterns in the XZ and YZ planes generated by the 

current plotted in Figure 5.18. 
 
 

To sum up, by means of characteristic modes it has been demonstrated that 
for the case of oblique incidence the polarization purity of a square patch can be 
improved just by dividing the patch in two rectangular strips in the direction of 
the desired polarization.  With this simple modification of the square patch, the 
bandwidth performance of the fundamental mode is preserved, while the cross-
polar component is very much reduced. 
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5.2.5. Coupling between planar structures. 
 

From section 5.2.4, it comes up that characteristic modes can not only be 
obtained for an isolated radiator, but also for an array formed by several of 
them. In particular, the structure analyzed in previous section was a very simple 
one that consisted in two conducting strips placed in close proximity.  As a 
result of the coupling between the strips, when the structure was considered as 
a whole, a new collection of modes appeared. These new modes could be 
understood as a combination of the modes of the single rectangular strip 
flowing with the same phase, or with opposite phase, in both strips.  

Generally, modes in coupled resonators can be classified in antenna, or 
transmission-line modes, depending on the kind of coupling they exhibit. 
Antenna modes can be identified by its currents flowing in phase in the coupled 
resonators. Conversely, in transmission-line modes the currents flow with a 
phase difference of 180º between the elements. As it will be demonstrated next, 
antenna modes are efficient radiators, whereas transmission-line modes are 
characterized by poor radiating performance. 

Then, it seems that a good understanding of the coupling phenomena that 
occur between multiple resonators could be very helpful when designing 
wideband structures. Consequently, this section is going to be focused on 
analyzing the coupling phenomena between coplanar and parallel planar 
resonators, in order to determine how to use coupling to increase the antenna 
impedance bandwidth.  

 
5.2.5.1. Coupling phenomena in coplanar plates 

The characteristic modes of a rectangular plate in free space have already 
been studied in section 5.2.1. Now, Figure 5.22 illustrates how characteristic 
modes behave when two rectangular plates are placed side-by-side. The plates, 
which are in free space, are identical, with length L1=2.8 cm and width W1= 4 
cm. The edge-to-edge separation between them is 0.4 cm. It is observed that 
now, there are two horizontal current modes, J1 and J1’, and two vertical current 
modes, J2 and J2’. This duplication of modes is due to the different coupling that 
occurs at the edge-to-edge separation. Drawing an analogy with the modes of a 
folded dipole, modes J1 and J2, in which current flows in phase in both plates, 
are called antenna modes. Following the same sort of criterion, modes J1’ and 
J2’, in which the current flows with 180º phase difference in the two plates, are 
called transmission-line modes. It is expected that when the two plates are 
coupled in a transmission-line way, the total radiation will diminish because of 
the cancellation of the currents. This cancellation increases when currents are 
intense, and flow parallel to the edge-to-edge separation, like in vertical mode 
J2’. 
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Figure 5.23 represents the variation with frequency of the characteristic 
angles associated to the previously described current modes. The observation of 
the slope of characteristic angle curves confirms that antenna modes, J1 and J2, 
present good radiating behaviour and broad bandwidth. The horizontal 
transmission-line mode, J1’ still presents quite an acceptable radiating 
bandwidth, while the vertical transmission-line mode J2’, in which the current 
cancellation is higher, presents poorer radiating characteristics than the rest of 
modes.  

 

 
Figure 5.22 Normalized current distribution at 2.4 GHz of the horizontal and 

vertical current modes of two identical plates placed close together. 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.23 Characteristic angle variation with frequency for the current modes 
of Figure 5.21. 
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Using different approaches, other authors have arrived at similar conclusions 
regarding the existence of different modes in coupled resonators, and its 
radiating properties. For example, in [109] the identification of the modes of 
two-coupled strip resonators is done through the distribution of voltages on the 
interface between the strips, and the input impedance. At first resonance, they 
infer that an even mode (antenna mode) is excited, since the phase difference 
between the voltages on the strips is nearly zero. Conversely, the mode at 
second resonance is identified as an odd mode (transmission-line mode), 
because of nearly 180º phase difference between the strips.  In [109] it is also 
stated that the radiated power is expected to be bigger for the even mode 
because of the in-phase excitation of the strips. 
 
From these conclusions, it may be noted that when analyzing antennas based 

on the use of multiple resonators, the existence of antenna and transmission-
line modes, should be taken into consideration. Classical applications are the use 
of parasitic elements placed next to a planar radiating element, or the design of 
planar reflectarrays. As a general rule, to obtain wide impedance bandwidth in 
coupled structures the excitation of antenna modes should be enhanced, while 
the excitation of transmission-line modes should be avoided. Sometimes this can 
be accomplished by choosing a proper feeding arrangement capable of 
preventing the creation of transmission-line currents. 

Nevertheless, as the number of coupled elements increases also does the 
complexity of the modal analysis. For instance, Figure 5.24 shows the current 
distribution of the collection of horizontal current modes that appear in four 
coupled rectangular plates. As observed, now the number of horizontal modes 
multiplies by four. There is only one antenna mode characterized by currents 
flowing in-phase in the four plates. The rest of modes can be considered 
transmission-line modes, in which there is a different amount of current 
cancellation depending on the intensity and location of the transmission-line 
currents. For example, the first transmission-line mode experiments a strong 
coupling in the gap between the upper and lower plates, so it would suffer from 
strong current cancellation. In the second transmission-line mode the coupling 
occurs at the vertical gap between the left and right plates, and although 
currents flow with opposite phases, they do not cancel as much as in the first 
mode. Finally, in the third transmission-line mode, there are coupling effects at 
every gap between plates, so the mode is expected to be quite an inefficient 
radiator.  

Figure 5.24 just constitutes a particular example of how the number of 
horizontal modes multiplies by four when four coupled plates are analyzed. 
However, it could be demonstrated that, all the modes of the rectangular plate 
presented in Figure 5.1 experiment similar coupling phenomena when the 
rectangular plate is placed close to other radiating elements.  
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Figure 5.24  Current distribution of the horizontal current modes that appear 

as a result of the coupling phenomena between four rectangular plates. 

 
 

Typically, structures formed by multiple resonators are used to obtain 
multiple frequency operation, or dual polarization. As a way of example, Figure 
5.25 presents a wideband planar antenna formed by four coupled circular 
plates, which employs multiple feeding to provide multiple polarizations [118]. 
The antenna can also be considered as two planar circular dipoles. To avoid the 
excitation of transmission-lines modes, a correct choice of the polarity of voltage 
generators must be made. Figure 5.26 presents the normalized current 
distribution at 2 GHz for the horizontal and vertical antenna modes of the 
structure. Horizontal current mode J1 will be excited yielding horizontal 
polarization, if the antenna is symmetrically fed by voltage generators V3 and V4. 
Likewise, if voltage generators V1 and V2 are used, the excited mode will be the 
vertical current mode J2, which will provide vertical polarization.  Finally, feeding 
simultaneously with the four voltage generators, linear polarization at ±45º can 
be achieved, as a result of the combined excitation of degenerated modes J1 
and J2. 

 At last, the wideband performance of the double dipole antenna can be 
checked in Figure 5.27, which shows the VSWR for 50 Ω either when the 
antenna is fed simultaneously by voltage generators V1 and V2, or by V3 and V4.  
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Figure 5.25 Wideband planar antenna formed by four coupled circular plates, 

which employs multiple feeding to provide multiple polarizations. 
 

 

 
 

Figure 5.26 Normalized current distribution at 2 GHz of the horizontal and 
vertical antenna modes. 
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Figure 5.27 VSWR for 50 Ω when the antenna is fed in parallel by voltage 
generators V1 and V2. 
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5.2.5.2. Coupling phenomena in parallel plates 

The coupling phenomena already described for coplanar plates are also 
present at parallel plates, so modes existing in coupled parallel structures can be 
once more classified in antenna modes and transmission-line modes. Figure 
5.28 depicts the current distribution for horizontal and vertical current modes of 
a set of two parallel rectangular plates at 1 GHz. The dimensions of each plate 
are W=4 cm and L=6 cm. The distance between plates is h=1.5 cm. The 
characteristic angle curves shown in Figure 5.29 can be used to determine the 
radiating properties of each mode. As expected, antenna modes present softer 
slope and hence, better radiation properties and wider bandwidth than 
transmission-line modes. Note however that due to the strong capacitive 
coupling between both plates, characteristic angle curves are shifted upwards, 
so antenna modes exhibit capacitive contribution (αn>180º) at every frequency. 
Actually, due to this shifting, the vertical antenna mode J2 does not resonate in 
the studied frequency band.  

In order to illustrate that mode duplication happens with every mode, Figure 
5.30 shows de current distribution at 1 GHz for the first antenna and 
transmission-line higher order modes of the set of two parallel rectangular 
plates. As observed, both higher order modes exist in its antenna and 
transmission-line version, J3 and J4, and, J3’ and J4’, respectively. 
 
 

 
Figure 5.28   Normalized current distribution at 1 GHz for the horizontal and 

vertical current modes J1 and J2 of a set of two parallel rectangular plates. 
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Figure 5.29 Characteristic angle variation with frequency for the current modes 
of Figure 5.27. 

 
 

 
Figure 5.30 Normalized current distribution at 1 GHz for higher order current 

modes J3 and J4 of a set of two parallel rectangular plates. 
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Antenna and transmission-line modes should be taken into account when 
designing antennas formed by parallel radiators, like stacked patches, or 
patches mounted above a finite ground plane.  Figure 5.31 presents an example 
of the current distribution at 2 GHz for the first modes of a rectangular patch of 
dimension 2 cm x 4 cm, mounted 0.75 cm above a finite ground plane (10 cm x 
10 cm), with air dielectric. As it can be observed, although the patch and the 
plane are connected with a strip, the current distribution of modes is very 
similar to that obtained for the parallel plates analyzed above. This means that 
all the results previously presented can be applied to the analysis of radiating 
patches over finite ground planes. 
 

 
Figure 5.31 Normalized current distribution of the first modes of a rectangular 

patch over finite ground. 
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5.3. Modal analysis of planar monopoles 
 

Planar monopoles are very well-known antennas that have long been used in 
mobile communications due to their remarkable properties such as wide 
impedance bandwidth, omnidirectional radiation pattern, simple structure, small 
size, and low cost. Because of the broad bandwidth they provide, planar 
monopole antennas are extremely attractive to be used in emerging ultra-
wideband applications [104]. Moreover, they are also considered excellent 
candidates to face up the increasing demand for wireless communication 
services, which require multi-band or broadband antennas capable of operating 
at different standards.  
 

In last years, a lot of work has been focused on the determination of the 
planar monopole shape which provides the wider impedance bandwidth. As a 
result, a great number of different planar monopole geometries have been 
characterized experimentally [119]-[123], and automatic design methods have 
been developed to achieve the optimum planar shape [124]. Moreover, other 
strategies to improve the impedance bandwidth which do not involve a 
modification of the geometry of the planar element have been investigated. 
Basically, these strategies consist of adding a shorting pin to the structure 
[125]-[127] or using multiple feeding points to excite the antenna [128].  

 
Therefore, a great variety of experiments related to planar monopole 

geometries and feeding configurations have been carried out, but due to the 
lack of an analytical model, very little analysis on the physical understanding of 
the operating behaviour of monopoles has been considered up to now.  

 
The main purpose of this section is to perform a modal analysis of various 

planar monopole geometries in order to acquire a clear knowledge of their 
operating principle. In the first instance, it will be demonstrated that the shape 
of the monopole in the feeding gap zone is very critical, as it determines the 
bandwidth performance of the monopole. In general, the impedance bandwidth 
of a monopole can be increased by bevelling its base appropriately. On the 
contrary, the upper part of the monopole is not so important, as it only acts as a 
load, and it does not affect very much the matching of the antenna. 

 
Next, using characteristic modes it will be proved that feeding arrangements 

that preserve the symmetry of the monopole, avoid the excitation of modes with 
transverse currents, and reduce the cross polarization levels. Conversely, non-
symmetrical feedings enhance the excitation of transverse modes, and yield 
wider bandwidth than centre-feedings when all modes contributing to radiation 
present similar resistance values. Finally, the effect of the insertion of a shorting 
pin, and the improvement obtained when using multiple feeding points, will also 
be explained in terms of characteristic modes. 
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5.3.1.  Influence of the shape of planar monopoles in the impedance 
bandwidth performance. 

 
The most commonly used planar monopole shapes are square, rectangular, 

triangular, circular, elliptical, and pentagonal. Figure 5.31 shows some of these 
monopole geometries. Among them, the circular monopole and the elliptical 
monopole fed along the major axis, have been reported to yield maximum 
bandwidth [102]. However, it has been demonstrated that although the square 
monopole provides smaller bandwidth than the circular monopole, its radiation 
pattern suffers less degradation within the impedance bandwidth [120]. As will 
be shown next, the different impedance bandwidth of the circular and the 
square monopole can been explained using characteristic modes. 
 

 
 

Figure 5.32  Most commonly used planar monopole shapes. 

 
In order to find out how the shape of planar monopoles affects its impedance 

bandwidth performance, a modal analysis of four typical monopole geometries is 
going to be performed. The selected geometries, which are shown in Figure 
5.33, are square, bowtie, reverse bowtie, and circular. For the shake of 
comparison, the height of all monopoles is L=4 cm, the feed gap distance is 
h=2.5 mm, and the ground plane presents infinite dimension, in all cases.   
 

 
 

Figure 5.33  Planar monopole geometries to be compared. 
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Figure 5.34 shows the normalized current distribution for the first 
characteristic modes of these planar monopoles. Mode J0 is a special non 
resonant inductive mode whose currents form close loops. Mode J1 presents 
vertical current flow along the monopoles, with intense currents at the feeding 
strip. In contrast, mode J2 can be identified by horizontal currents flowing 
parallel to the ground plane. Mode J3 is a higher order mode that, as mode J1, 
exhibits vertical currents. The difference between these two modes is that J3 has 
a current null near the base of the monopoles, and intense currents on the side 
edges of the structures. An analysis of the variation with frequency of 
characteristic currents would reveal that this current null of mode J3 moves 
forward the top of the monopole as the frequency increases. Finally, J4 is a 
mixed current mode with vertical and horizontal currents. As observed, the 
current distribution of mode J4 changes quite a lot with the monopole geometry.  

 
 As observed in Figure 5.34 modes J0, J2 and J4, present low current intensity 

(blue colour) at the feeding strip in some monopole geometries. This means that 
this location of the feeding would not be optimum for these modes, which would 
be weakly coupled to a vertical feeding port placed at this strip. It should be 
remarked that for the case of the circular monopole, all modes exhibit quite a 
high current intensity at the feeding strip. This happens because the base of the 
circular monopole acts as a soft transition between the feeding strip and the 
monopole, so it improves the matching of modes with transverse current 
components. 
 

Next, the radiating behaviour of the modes for the different monopoles is 
going to be compared by means of characteristic angle curves.  Figure 5.35 
presents the characteristic angle variation with frequency for the first four 
radiating modes of the monopoles. As observed, mode J1 exhibits similar 
radiating behaviour and resonant frequency in all the monopoles. This happens 
because the resonance of mode J1 depends on the height of the monopoles, 
which is the same in all cases. In contrast, the resonant frequency and radiating 
properties of modes J2, J3, and J4, differ quite a lot from one shape to the other.  

 
Table 5.2 summarizes the resonant frequencies for the first three radiating 

modes of the monopoles. Mode J4 has not been included in the table since it 
presents a resonant frequency higher than 8 GHz, in all the monopoles except in 
the square one. Table 5.3 compares the modal quality factors computed using 
(2.29), and Table 5.4 presents the modal radiating bandwidths that have been 
obtained by inversion of the modal quality factors. For the case of mode J3 of 
the square monopole, and modes J2 and J3 of the circular monopole, the modal 
quality factor is very small, so the approximation BWn=1/Qn fails. On the base of 
the information yield by the previous tables, it can be concluded that the circular 
monopole seems to be the most efficient radiating structure. However, the final 
contribution of each mode to the total radiation of the antenna will depend on 
the antenna feeding. 
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Figure 5.34  Normalized current distribution for the first five modes of 

different planar monopole geometries. 
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       (c) Mode J3 
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       (d) Mode J4 
 
 

Figure 5.35  Characteristic angle variation with frequency for the first three 
radiating modes of a square, reverse bowtie, bowtie and circular monopole. 

 
Resonant frequency: resf  

 

 Mode J1 Mode J2 Mode J3 
Square 1.20 GHz 3.10 GHz 5.30 GHz 

Reverse bowtie 1.60 GHz 3.70 GHz 4.35 GHz 
Bowtie 1.10 GHz 4.75 GHz 5.15 GHz 
Circular 1.30 GHz 8.00 GHz 6.75 GHz 

 

Table 5.2. Resonant frequencies for the first three modes of different planar 
monopole geometries. 

 

 
Modal quality factor: nQ  

 

 Mode J1 Mode J2 Mode J3 
Square 3.17 1.09 0.34 

Reverse bowtie 4.14 5.10 1.19 
Bowtie 5.20 1.04 1.97 
Circular 3.52 0.13 0.12 

 

Table 5.3. Modal quality factor for the first three modes of different planar 
monopole geometries. 
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Modal radiating bandwidth: nBW  

 

 Mode J1 Mode J2 Mode J3 
Square 31.54 % 91.74 % >100 % 

Reverse bowtie 24.15 % 19.60 % 84.10 % 
Bowtie 19.23 % 96.15 % 50.76 % 
Circular 28.40 % >100 % >100 % 

 

Table 5.4. Modal radiating bandwidth for the first three modes of different 
planar monopole geometries. 

 

 
Now, monopoles are going to be fed with a voltage generator placed at the 

vertical strip. As it was demonstrated in (2.32), the total input admittance of an 
antenna Yin can be expanded in terms of complex modal admittances Yn=Gn+jBn. 
The visualization of the variation with frequency of modal admittances helps to 
identify which modes are excited.  

 
Figure 5.36 depicts the contribution of modal admittances to the total input 

admittance of the different planar monopoles. As observed, the voltage 
difference created at the vertical strip favours only the excitation of vertical 
current modes, J1 and J3. In all geometries, the fundamental mode J1 is 
dominant at lowest frequencies, and forces the first resonance. Conversely, the 
resonance of mode J3 is only present in the bowtie monopole. Two different 
behaviours are observed regarding the interaction of modes. On one hand, at 
the square, reverse bowtie, and circular monopole, the antiresonance that 
results from the combination of modes J1 and J3, is very soft. On the other 
hand, in the bowtie monopole, the interaction of the inductive mode J1 and the 
capacitive mode J3, creates a sharp antiresonance at 2.45 GHz. 

 
Alternatively, with the aim of determining if the modes are well matched to 

the feeding, modal voltage standing wave ratios (VSWRn) can be computed from 
the modal admittances Yn. In Figure 5.37 the total VSWR of every monopole has 
been plotted together with the modal VSWRn. 

 
From Figure 5.37 it is extracted that the square, and the reverse bowtie 

monopole present a single matched band, with an impedance bandwidth for 
VSWR<2.0 of 83% and 57%, respectively. In both cases, mode J1 imposes the 
lowest matched frequency of the band, while mode J3 determines the highest 
matched frequency. A cursory examination of the modal admittances in Figure 
5.36 reveals that for both the square and the reverse bowtie monopoles, the 
conductances G1 and G3 of modes J1 and J3, are close to 20 mΩ-1 in a wide 
range of frequencies. The inversion of these modal conductances will provide 
equal well matched modal resistances that will yield a wide matched band. The 
similar admittance behaviour of the square and reverse bowtie monopole can be 
attributed to the identical not bevelled feeding gap configuration of both 
geometries.  
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On the contrary, the bowtie monopole, which can be considered the planar 
form of the conical antenna, presents a continuous bevelling from the base to 
the top of the monopole, and exhibits two separate weakly matched bands. The 
first band is due to mode J1, while the second band is a consequence of the 
interaction of modes J1 and J3. Note that although the influence of mode J1 
extends up to 8 GHz, the mode is not very well matched, since its modal 
conductance G1 is very low at all frequencies except from 1.2 GHz to 1.6 GHz. 
The matching of mode J1 could be improved by reducing the bevelling angle, 
which would increase the modal conductance values.  

 
Further discussion about the dependence of input impedance matching of the 

bowtie and the reverse bowtie monopoles, with the height and the bevelling 
angle can be found in [129].  
 

With regard to the circular monopole, the smooth curvature of its base can 
be considered as a progressive bevelling. This soft bevelling acts as a broadband 
transition between the feeding strip and the monopole, so it improves the 
matching. In this case, the circular monopole provides the widest impedance 
bandwidth (93% for VSWR< 2.0). The good matching from 1.4 GHz to 4.6 GHz 
is mainly due to the contribution of mode J1 to the total VSWR, while mode J3, 
which is not well matched by its own, cooperates to improve the matching only 
at 3.8 GHz.  

 
Note that the progressive bevelling of the circular monopole improves the 

matching of mode J1, leading to a well matched mode in a broad frequency 
band. Nevertheless, mode J3 is not altered by the bevelling as it presents a 
current null near the base of the monopoles, which creates a very low current at 
the feeding point. 
 

To sum up, the feeding gap configuration at the base of the monopoles is 
crucial, as it affects the matching of modes, and in particular of mode J1. By 
bevelling the base of the monopoles, mode J1 transforms in a broadband 
matched mode, whose influence extends up to high frequencies. The bowtie 
monopole and the circular monopole are examples of monopoles with a bevelled 
base. For the case of the bowtie, the excessive bevelling results in two separate 
ill matched bands. The circular monopole presents a progressive bevelling that 
creates a soft transition from the feeding strip to the radiating element. This 
effect favours the radiation and improves the coupling between the radiating 
element and the feeding strip.  

 
As will be demonstrated in next sections, any alteration in the symmetry of 

the monopoles, like a non-centred feeding strip, or the introduction of a shorting 
pin in one of the corners, would result in the excitation of transverse modes, like 
mode J2. The excitation of these modes may increase the impedance bandwidth 
at the cost of ruining the polarization purity of the antenna. But, before going to 
next sections, let us present another example in order to illustrate the role 
played by the upper part of planar monopoles.  
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Figure 5.36  Contribution of modal admittances Yn to the total input admittance 
Yin of different planar monopole geometries. 
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Figure 5.37  Contribution of the VSWR of modes to the total VSWR of different 

planar monopoles fed with a centred vertical strip. 
 

 
 

With the aim of analyzing the effect of the upper part of a monopole, the 
square and the circular monopoles are going to be compared with a square 
monopole with semi-circular base. Figure 5.38 shows the normalized current 
distribution for the first modes of the square monopole with semi-circular base. 
These modes are very similar to those depicted in Figure 5.34 for other planar 
monopoles.  

 

 
 

Figure 5.38  Normalized current distribution for the first modes of a square 
monopole with semi-circular base. 
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The characteristic angle curves associated to the current modes of the square 
monopole with semi-circular base are illustrated in Figure 5.39. The information 
provided by characteristic angles regarding the resonance frequency, quality 
factor, and radiating bandwidth of modes is gathered in Table 5.5. It is 
noticeable that now mode J1 presents wider radiating bandwidth than in the 
square and the circular monopole. It can also be seen that, like in the circular 
monopole, modes J2 and J3 are broad band radiators with an associated 
radiating bandwidth bigger than 100%. 
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Figure 5.39  Characteristic angle variation with frequency for the current 
modes depicted in Figure 5.38  

 

 

 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1.2 GHz 2.95 33.90 % 
Mode J2 4.9 GHz 0.032 > 100 % 
Mode J3 5.9 GHz 0.083 > 100 % 

 

Table 5.5. Resonant frequencies, modal quality factors computed using (2.29), 
and modal radiating bandwidths for the first radiating modes of a square 

monopole with semicircular base. 
 

 

The contribution of the VSWR of the excited modes to the total VSWR of the 
square monopole with semicircular base is presented in Figure 5.40. A quick 
inspection of these results reveals that the total VSWR of this monopole is very 
similar to that of the circular monopole, while it does not resemble very much 
the total VSWR of the square monopole. As in the circular monopole, the 
progressive bevelling in the base improves the matching between the excitation 
and the vertical mode J1, so a broad matched band is obtained due to the 
contribution of modes J1 and J3.   
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Figure 5.40  Contribution of the VSWR of modes to the total VSWR of a square 
monopole with semicircular base. 

 
 

Hence, from these results it can be concluded that the overall performance of 
a square monopole with semi-circular base resembles more that of the circular 
monopole, than that of the square one. The explanation is that the feeding gap 
configuration determines the impedance bandwidth of the monopole, while the 
effect of the shape of its upper part over the bandwidth is not so relevant. 

 
Note that the square monopole with semicircular base had already been 

reported to provide wide impedance bandwidth [130], yet no modal analysis of 
this monopole, previous to the one presented here, has been found in the 
available literature. Lastly, more examples of wideband monopoles with circular 
base and modified shape in the upper part can be found in [131].  

 
 

5.3.2.  Modal analysis of a non-centred fed monopole. 
 

Now, let us examine the behaviour of a non-centred fed square monopole 
[132]. Figure 5.41 presents the geometry of this monopole. The size of the 
square monopole, and the feeding gap distance, are the same as in the square 
monopole analyzed in section 5.3.1.  

 
 

 
Figure 5.41  Non-centred fed square planar monopole 
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Figure 5.42 shows the normalized current distribution for the first five modes 
of this non-symmetric square monopole. As observed, currents are distorted by 
the presence of an asymmetry in the structure. Special mode J0 is not really 
changed, however, currents in mode J1 are not as vertical as in the symmetric 
monopole, and currents in mode J2 are not parallel to the ground plane, but 
flowing in diagonal direction. In mode J3, the current null in the base of the 
monopole does not extend from one end to the other, but concentrates in the 
left part.  In mode J4, the current null in the lower left part is not exactly at the 
corner but a bit above, however the current distribution of the mode resembles 
considerably that of a symmetrical square monopole. 
 

But, does a variation in the position of the feeding strip alter the radiating 
properties of modes? Figure 5.43 plots characteristic angle variation with 
frequency for the modes of Figure 5.42. Table 5.6 presents the resonant 
frequency, quality factor and radiating bandwidth of the first three radiating 
modes of the monopole. The fourth radiating mode J4 has not been included, 
since it resonates out of the studied frequency band. 
 

Comparing results in Table 5.6 with those obtained for the symmetrical 
square monopole analyzed in previous section, it can be noticed that the 
asymmetry created by the feeding strip has no noticeable effect on the 
fundamental mode J1, while it enhances the radiating performance of the 
transverse current mode J2, and degrades the efficiency of the higher order 
vertical current mode J3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.42 Normalized current distribution of the first five modes of a square 
monopole with a non-centred feeding strip. 
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Figure 5.43  Characteristic angle variation with frequency for the current modes 
depicted in Figure 5.42  

 

 
 

 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1.2 GHz 3.35 29.85 % 
Mode J2 3.4 GHz 0.37 > 100 % 
Mode J3 4.9 GHz 1.47 67.80 % 

Table 5.6. Resonant frequencies, modal quality factors, and modal radiating 
bandwidths for the first radiating modes of a non-symmetrical square monopole. 
 

 

 

The radiation enhancement experimented by mode J2 can be justified by the 
image theory. When currents of mode J2 are pure horizontal, they are strongly 
cancelled by their corresponding images, especially close to the base of the 
monopole. For the case of the non-symmetrical monopole, mode J2 presents 
diagonal currents that result in a vertical current component that is not 
cancelled by its image, increasing the radiating efficiency of the mode. Similarly, 
currents in mode J3 are not pure vertical, so they present a horizontal 
component that cancels with its image, worsening the radiating behaviour of the 
mode. Later, it will be demonstrated that the presence of diagonal currents in 
the current distribution of modes J1, J2 and J3, degrades the polarization purity 
of the antenna. 
 

 

Nevertheless, the main difference between the symmetric and the non-
symmetric square monopole resides in the number of excited modes when a 
voltage generator is placed at the vertical feeding strip. As demonstrated in 
previous section for different planar monopole geometries, feeding 
configurations that preserve the symmetry of the monopole avoid the excitation 
of transverse and special inductive modes.  
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Figure 5.44 proves that when a non-symmetric feeding is used, not only 
vertical current modes are excited, but also the rest of modes. Nevertheless, 
only modes J1, J3 and J4 contribute to the real part of the input admittance, and 
hence to radiation. The rest of modes, J0 and J2, yet excited, do not radiate, but 
store energy. An examination of the imaginary part of the input admittance 
shows that the first resonance is due to the fundamental mode J1. The 
transverse mode J2 is weakly coupled to the feeding, and although it resonates 
at 3.4 GHz, this resonance does not reflect in the total susceptance, as it is 
hidden by the excitation of the rest of modes. The inductive behaviour of modes 
J1 and J0, compensates the capacitive behaviour of mode J3 between 1.5 GHz 
and 3.5 GHz. The result is a flat profile for the imaginary part of the input 
admittance in this frequency range. Similarly, the total susceptance is also flat 
from 3.5 GHz to 5 GHz as a result of the combination of the inductive modes J1 
and J0, and the capacitive modes J3 and J4.   
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Figure 5.44  Contribution of modal admittances to the total modal 

admittance of the non-centred fed square monopole. 
 
 

Figure 5.45 shows that only radiating modes J1, J3, and J4, are responsible 
for the final VSWR of the monopole with offset feed. As observed in Figure 5.44, 
these three modes present similar conductance values, so the transition from 
one mode to the following is made in a soft way, reducing the undesirable effect 
of the antiresonances. Because of these soft transitions between modes the 
monopole presents wide impedance bandwidth. Note that a total VSWR lower 
than two could be easily accomplished in the whole studied frequency band, just 
by slightly varying the feeding gap distance, or the position of the feeding strip. 

 
However, despite this example, in general the impedance bandwidth of an 

antenna does not increase with the number of excited modes. More often than 
not, it is difficult to achieve a soft transition between the modes of the antenna, 
so the impedance bandwidth does not result in that of a broadband antenna, 
but in that of a multi-band one. 
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Figure 5.45 Contribution of the VSWR of modes to the total VSWR of a non-
centred fed square monopole. 

 
 

Let us verify now, how the polarization of the modes of the monopole is 
ruined by the presence of an asymmetry in the geometry. Figure 5.46  
compares the elevation radiation patterns (φ=90º) for the modal electric field 
produced by the first four modes of the symmetric square monopole and the 
non-symmetric square monopole. These modal electric fields have been 
computed from the modal currents, so no excitation has been considered yet. 
As it can be seen, all the modal radiation patterns in the YZ plane are 
symmetrical.  

 
As explained before, the presence of an asymmetry in the monopole, forces 

the current of radiating modes to flow in diagonal direction. Thus, these modes 
present a horizontal and a vertical current component.  It can be assumed that 
currents flowing in vertical direction are responsible for the Eθ component of the 
field, while currents flowing in horizontal direction generate the Eφ component. 
Hence, if polarization purity is to be achieved in planar monopoles, the 
excitation of horizontal currents may be avoided. The more horizontal currents 
are excited, the more the cross polarization level increases. 

 
As observed in Figure 5.46 the radiation pattern of mode J0 is very similar in 

both monopoles. However, the cross-polar component of the field (Eφ) for mode 
J1, increases considerably for the non-symmetric monopole. In the symmetric 
monopole, the dominant component of the electric field created by mode J2 is 
Eθ, while in the non-symmetric monopole the dominant component for mode J2 
is Eφ. With respect to the radiation pattern of mode J3, in both monopoles the 
most important field component is Eφ, while the increase in the number of 
radiating lobes is due to the current null at the base of the monopoles.    
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Figure 5.46  Elevation radiation patterns (φ=90º) of the modal electric field 
produced by the first four modes of the centre-fed square monopole and the 

non-centred fed square monopole  
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To validate the polarization degradation experimented by the non-centred fed 
square monopole when excited at the vertical feeding strip, the total current for 
both the centre fed and the non-centred fed monopole, as well as its associated 
radiation patterns, are going to be compared.  

 
Figure 5.47 shows the real and imaginary parts of the total current for the 

centred fed square monopole at 1.2 GHz and 4 GHz. Figure 5.48 presents the 
same results for the non-centred fed square monopole. Let us begin analyzing 
the centre fed monopole.  Both the real and imaginary parts of the total current 
at 1.2 GHz correspond with the current distribution of the fundamental mode J1. 
The same happens with the components of the total current at 4 GHz, which 
exhibit the current distribution of the higher order vertical current mode J3. 
Nevertheless, the behaviour of the components of the total current for the non-
centred fed monopole is a bit different, since the real part is due to the 
excitation of one mode, while the imaginary part is due to the excitation of a 
different one. Observe that in Figure 5.48, the current distribution of the real 
part is that of the fundamental mode J1 at 1.2 GHz, and that of mode J3 at 4 
GHz. Conversely, the imaginary part of the total current is caused by the 
excitation of transverse mode J2 at 1.2 GHz, and by the excitation of mode J4, 
which also presents a transverse component, at 4 GHz.  

 
Lastly, Figure 5.49 compares the elevation radiation patterns at two different 

planes, generated by the total currents considered above. As expected the cross 
polarization level is higher for the non-centred fed monopole than for the 
centred feed one. Moreover, the effect of the asymmetry introduced by the 
feeding can be observed at the XZ plane at 4 GHz.  
 

 
Figure 5.47  Real and imaginary parts of the total current for a centred fed 

square monopole at 1.2 GHz and 4 GHz. 

Real part (1.2 GHz) Imaginary part (1.2 GHz) 

Real part (4 GHz) Imaginary part (4 GHz) 
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Figure 5.48  Real and imaginary parts of the total current for a non-centred fed 

square monopole at 1.2 GHz and 4 GHz. 
 

 

 
Figure 5.49  Radiation patterns at 1.2 GHz and 4 GHz for the centred fed 

square monopole and the non-centred fed square monopole. 
 

Note that for the brevity, the azimuthal radiation patterns due to the total 
currents have not been included since all of them are omnidirectional, and they 
do not supply important information. 
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5.3.3. Effect of the addition of a shorting pin on the monopole base. 
 

Another well-known technique to increase the impedance bandwidth of 
planar monopoles consists in adding a shorting pin to one of the ends on the 
base of the monopole [125]-[127]. The insertion of this shorting pin creates an 
asymmetry on the monopole that allows the excitation of transverse and special 
inductive modes. 

 
 But, has the asymmetry created by the shorting pin the same effect over the 

impedance bandwidth than the asymmetry due to a non-centred feeding strip? 
Which solution is more respectful with the polarization of the monopole? The 
purpose of this section is to answer these questions with the information yield 
by characteristic modes. Figure 5.50 shows the geometry of the shorted square 
monopole that is going to be analyzed as example. Its dimensions are identical 
to those of the square monopoles already studied in previous sections. 

 

  
Figure 5.50  Square monopole with a shorting pin. 

 
 

 As usual, to begin the study, Figure 5.51 presents the normalized current 
distribution for the first modes of the shorted square monopole. The current of 
these modes behaves more or less like in other planar monopoles. There is a 
special inductive mode (J0), a vertical current mode (J1), a horizontal current 
mode (J2), a higher order vertical current mode (J3), and a mode with both 
vertical and horizontal currents (J4). In all modes, the current flowing in the 
feeding strip is very intense, so all this modes are prone to be excited by a 
voltage generator placed at this vertical strip. Likewise, currents in the vertical 
shorting pin are also intense. As observed, the asymmetry introduced by the pin 
shifts the position of current nulls with respect to its position in a common 
symmetrical non-shorted square monopole. 
 

Figure 5.52 depicts the characteristic angle curves for these modes. Table 5.7 
comprises the information for the resonant frequency, quality factor and 
radiating bandwidth of modes. The conclusions that can be extracted from these 
results are similar to the same ones that were obtained for the non-centred fed 
square monopole. The effect of the asymmetry does not affect very much 
modes J1 and J3, whereas it enhances the radiating bandwidth of mode J2. Once 
more, these variations in the efficiency of modes can be attributed to the 
presence of diagonal currents. Like in the non-centred fed monopole, the 
presence of modal currents flowing in diagonal direction may increase the level 
of the cross-polar component of the electric field. 

2.5 mm 

4 cm 

4 cm
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Figure 5.51  Normalized current distribution for the first modes of the shorted 
square monopole. 
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Figure 5.52  Characteristic angle variation with frequency for the firs modes of 
a shorted square monopole.  
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 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1.3 GHz 2.94 34 % 
Mode J2 4.3 GHz 0.15 > 100 % 
Mode J3 5.1 GHz 0.82 > 100 % 
Mode J4 5.9 GHz 0.43 > 100 % 

 

Table 5.5. Resonant frequencies, modal quality factors computed using (2.29), 
and modal radiating bandwidths for the first radiating modes of a shorted 

square monopole. 
 

However, which modes contribute to the radiation of the monopole when it is 
excited at the vertical strip? Figure 5.53 sketches how the modal admittances 
contribute to the total admittance of the shorted square monopole. Modes J1 
and J3 are the most relevant modes for the real part of the admittance. 
Nevertheless, the rest of modes are also excited, and they also help to give 
shape to the real part of the total input admittance. The real part of the 
admittance of mode J2 takes significant values just before its resonance, from 2 
GHz to 4 GHz. Surprisingly, the special mode J0 also contributes considerably to 
radiation from 2 GHz to 4 GHz. In Figure 5.51 it can be appreciated that not all 
currents in mode J0 form closed loops. The more intense currents of this mode 
flow uninterrupted from the vertical feeding strip to the shorting pin, and 
probably these currents are the reason for the increase of radiation. Finally, 
mode J4, yet excited, only contributes slightly to the total conductance from 5 
GHz to 6 GHz.  

 
On the other hand, the imaginary part of the total admittance results from 

the combination of the modal admittances of all the five modes. The only 
identifiable resonance happens at 1.3 GHz and it is forced by mode J1.  At the 
rest of frequencies, the imaginary part of the total admittance keeps quite a flat 
profile, as a consequence of the compensation between capacitive and inductive 
modes. 

 
If the admittances of Figure 5.53 are compared with the admittances of 

Figure 5.44, it arises that for the case of the non-centred fed square monopole, 
the excitation of modes J0 and J2 was only perceptible at the imaginary part of 
the admittance. By contrast, for the case of the shorted square monopole the 
excitation of modes J0 and J2 is reflected in both the real and imaginary parts of 
the input admittance.  
 

Figure 5.54 reveals that the final shape of the total VSWR is basically 
determined by the modal VSWR of mode J1. Mode J3 helps to improve the total 
matching from 3.4 GHz to 4 GHz. Modes J2 and J0 and are not very well 
matched, but they aid to improve the matching of the total VSWR, from 2.5 GHz 
to 3 GHz, for the case of mode J2, and for frequencies higher than 5.5 GHz for 
mode J0.  
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Figure 5.53  Contribution of modal admittances Yn to the total input admittance 
Yin of different planar monopole geometries. 
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Figure 5.54 Contribution of the VSWR of modes to the total VSWR of a the 
shorted square monopole. 

 

 
But now it raises the question, does the shorted square monopole present 

lower cross-polarization levels than the non-centred fed monopole? Figure 5.55 
depicts the real and imaginary parts of the total current for the shorted square 
monopole at 1.2 GHz and 4 GHz. At first glance, it seems that the flow of 
transverse currents is lower in this monopole than in the non-centred fed one. 
However, these results are not conclusive.  

 
To verify that the shorted square monopole presents lower cross polarization 

levels than the non-centre fed square monopole, the elevation radiation patterns 
generated by the total electric field of these two monopoles are going to be 
analyzed at 1.2 GHz and 4 GHz.  
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Figure 5.55  Real and imaginary parts of the total current for a non-centred fed 
square monopole at 1.2 GHz and 4 GHz. 

 
 

Figure 5.56 compares the above mentioned radiation patterns. As expected, 
the Eφ component of the field in the YZ plane is smaller for the shorted square 
than for the non-centred fed square at both 1.2 GHz and 4 GHz, although there 
is no much difference between them. However, it should be remarked that the 
asymmetry created by the shorting pin is not as noticeable in the XZ plane as it 
is the asymmetry due to the non-centred feeding, in special at highest 
frequencies. Observe that at 4 GHz, the shorted square monopole does not 
present the radiation null at 45º exhibited by the non-centred fed monopole.  

 
For the sake of comparison, Figure 5.57 shows the total VSWR computed for 

all the square monopoles already analyzed. As observed, the non-centred fed 
square monopole presents the widest impedance bandwidth for VSWR<2.5. 
Nevertheless, this monopole is the one which exhibits the highest cross 
polarization level, as well as radiating nulls, due to the non-centred feeding. Just 
the opposite, the symmetric square monopole presents the narrowest matched 
band for VSWR<2.5, but the purest polarization, and the most symmetric 
radiation patterns. That is why this monopole may be the perfect choice when 
the polarization purity is important.  

 
Hence, it seems that the shorted square monopole is an intermediate 

solution, as it presents a trade off between impedance bandwidth and radiation 
pattern bandwidth. Moreover, this monopole yields the lowest matched 
frequency, so it constitutes the most compact solution. 
 

Real part (1.2 GHz) Imaginary part (1.2 GHz) 

Real part (4 GHz) Imaginary part (4 GHz) 
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Figure 5.56  Radiation patterns at 1.2 GHz and 4 GHz for the centred fed 
square monopole and the non-centred fed square monopole. 
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Figure 5.57  Comparison of the total VSWR for the centred-fed square 
monopole, the non-centred fed square monopole and the shorted square 

monopole. 
 

Summing up, although the impedance bandwidth of the shorted square 
monopole is not as wide as the bandwidth of the non-centred fed monopole, 
sometimes this monopole may be preferred, since its radiation patterns are 
reasonably symmetric, and its lowest matched frequency is smaller than that 
provided by the non-centred fed monopole. 
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 As explained in section 5.3.1 monopoles with a proper bevelled base, provide 
wider impedance bandwidth than its non-bevelled counterparts. Thus, if the 
impedance bandwidth yielded by the shorted square monopole were not wide 
enough, the base of the monopole could be properly bevelled in order to 
increase the matched band [133].  
 
 Since the square monopole has already been thoroughly examined, let us 
validate this last statement using a reverse bow-tie monopole. As commented in 
section 5.3.1, the behaviour of a square monopole and a reverse bowtie 
monopole is very similar, as they both present the same non-bevelled feeding 
configuration. 
 
 Figure 5.58 shows the different monopoles derived from the reverse bow-tie 
monopole that are going to be studied: (a) Reverse bowtie monopole, (b) 
Shorted reverse bowtie monopole, (c) Bevelled reverse bowtie monopole, 
henceforth called arrowhead monopole, and (d) Shorted arrowhead monopole. 
All the monopoles are placed over an infinite perfect ground plane, and are fed 
at the middle of its base. In all cases, the height is H=4 cm, and the feeding 
gap distance is h=2.5 mm. For the arrowhead monopole the distance h2 is 8.5 
mm. Figure 5.59 compares the VSWR obtained for these monopoles using the 
electromagnetic simulator WIPL-D. As observed, because of the bevelling, the 
arrowhead presents wider bandwidth than the reverse bow-tie. Moreover, the 
shorted versions of both these two monopoles provide broader matched bands 
than the non-shorted ones.  
 
 Thus, the shorted arrowhead provides the widest impedance bandwidth due 
to the combination a shorting pin with a bevelled base. Yet, an even broader 
impedance bandwidth could be achieved, if the dimensions of this shorted 
arrowhead monopole were correctly optimized.  
 
 

 
Figure 5.58  Different planar monopoles derived from a reverse bowtie 

monopole: (a) Reverse bowtie monopole, (b) Shorted reverse bowtie monopole, 
(c) Arrowhead monopole, and (d) Shorted arrowhead monopole. 
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Figure 5.59  VSWR referred to 50 Ω computed for the monopoles of Figure 5.58  
using WIPL-D. 

 
After using a genetic algorithm in combination with WIPL-D, the optimum 

dimensions of the shorted arrowhead monopole, to obtain the widest impedance 
bandwidth have been found to be: H=46 mm, h=1 mm, and h2=7 mm. The final 
design, published in [134] , is sketched in Figure 5.60 (a). Note the dimensions 
of the monopole may be scaled to reduce the low frequency of the matched 
band if necessary. 
 

Figure 5.60 (b) shows a photograph of a prototype of the antenna fabricated 
at the laboratories of the GRE (Electromagnetic Radiation Group) in UPV 
(Technical University of Valencia). This prototype includes a 20 cm square 
aluminium ground plane, and it is fed via a standard SMA connector.  
 

Figure 5.61 compares the VSWR measured for the prototype with the VSWR 
simulated with different numerical codes: WIPL-D, IE3D and our own code 
based on the method of moments. As observed, IE3D is the code that predicts 
in a more close way the values of the measured VSWR, which are a bit higher 
than 2 from 3.8 GHz to 4.5 GHz. This small mismatch could be avoided just by 
modifying slightly the feed gap separation h, which has proved to be a very 
critical parameter.  

 
Results obtained with the code based on the method of moments are also in 

close agreement with measured results. In contrast, the most imprecise 
simulator has been discovered to be WIPL-D. For the case of WIPL-D, results 
are very sensitive to the feeding gap distance h, so the curve obtained for the 
VSWR is a bit shifted in frequency. Anyway, the impedance bandwidth measured 
for the shorted arrowhead monopole is larger than 100% for VSWR<2.1. 
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Figure 5.60  (a) Optimum dimensions obtained for the shorted arrow tip 

monopole. (b) Photograph of a prototype of the optimized antenna. 
 

 
Figure 5.61  Simulated and measured VSWR for the optimised arrowhead 

monopole. 

 
Figure 5.62 illustrates the normalised radiation patterns in the azimuthal 

plane (XY plane) and in two elevation planes (YZ and XZ planes) for the shorted 
arrowhead monopole at three different frequencies. The asymmetry suffered by 
the radiation pattern is due to the asymmetry introduced by the shorting pin. 
Anyhow, the azimuthal radiation pattern is more or less omnidirectional in the 
whole band. As usual, the cross polarisation level rises as the frequency 
increases. This can be explained by the increase of the transverse current 
component in the surface of the monopole. 
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Figure 5.62  Normalised radiation patterns in the YZ plane, XZ plane, and 
XY plane, for the arrowhead monopole at three frequencies: (a) 1.8 GHz, (b) 

5 GHz, and (c) 8 GHz 

 
In conclusion, after an optimization process, the shorted arrowhead 

monopole has been demonstrated to be a really compact and wideband planar 
antenna. This attractive behaviour is based on the combination of different 
techniques to increase the impedance bandwidth, such as the insertion of a 
shorting pin, and the bevelling of the base. Due to its compact size the antenna 
is suitable for handsets and base stations, for wireless systems. Moreover, its 
broadband behaviour allows multi-service operation, since the antenna covers 
DCS1800, DECT, PCS1900, UMTS, WLAN, and Bluetooth bands, experimenting 
little degradation of its radiation patterns.  
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5.3.4. Use of a double feeding configuration to improve the input 
bandwidth of planar monopoles. 

 

To explain how the use of a double excitation can improve the impedance 
bandwidth of a monopole, let us consider a square planar monopole analyzed 
from image theory point of view. As shown in Figure 5.63 (a) the monopole can 
be modelled as a planar plate with two narrow slits that account for the feeding 
gap. In patch antenna design, the insertion of narrow slits at the patch’s non-
radiating edges is a commonly used technique to obtain compact antennas [7]. 
The slits force the current to meander, so the resonant frequency decreases. 
The main problem of this technique is that the current meandering results in a 
horizontal component of the current that degrades the polarization and 
bandwidth of the antenna. With the aim of verifying this assessment, Figure 
5.63 illustrates the current distribution at resonance for the vertical current 
mode of a rectangular plate of dimensions 8.5 cm x 4 cm, with and without slits. 
The vertical current mode of the slitted structure resonates at 1.3 GHz, and 
presents horizontal current flow near the slits, while the vertical current mode of 
the complete rectangular plate resonates at a higher frequency, 1.6 GHz, and 
displays pure vertical currents. Moreover, currents in the rectangular plate are 
much more intense than in the one with slits, for the same colour scale.  

 

 

Figure 5.63  Current distribution at resonance for the vertical current mode of a 
rectangular plate of dimensions 8.5 cm x 4 cm: (a) With slits. (b) Without slits. 

 
 
 

Let us continue studying the characteristic angle versus frequency curves 
depicted in Figure 5.64 These curves demonstrate that the vertical current mode 
of the rectangular plate offers broader radiating bandwidth than the one with 
slits, since its associated characteristic angle stands near 180º in a wider 
frequency range.  
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 From previous results, it arises that the bandwidth performance of the square 
monopole would improve if only the existence of vertical currents were allowed. 
This can be accomplished using the double feeding configuration proposed in 
[128], which is shown in Figure 5.65 The feeding structure consists in a splitting 
network connected to two symmetrical ports at the base of the monopole. The 
symmetry of the ports prevents the excitation of horizontal currents and assures 
that only the dominant vertical current mode is present in the structure. The 
square dimension of the monopole is 4 cm, and the dimensions of the splitting 
network and the position of the ports, have been optimized by E. Antonino for 
her Phd. Full detail of the dimensions of the splitting network can be found in 
[128] 
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Figure 5.64  Characteristic angle versus frequency curves obtained for the 
rectangular plates presented in Figure 5.63  

 

 
 

Figure 5.65  Prototype of the square monopole with double feeding 
configuration. 
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To conclude, Figure 5.66 compares the VSWR of the double-fed square 
monopole to that of a single-fed square monopole of the same dimension. 
These results for the VSWR have been obtained using the commercial 
electromagnetic software Zeland IE3D. As it was expected from the previous 
discussion, when using a double-feed configuration the impedance bandwidth of 
the square monopole is greatly improved. Figure 5.67 reveals that simulated 
and measured results for the return loss of the prototype are in good 
agreement. For brevity, demonstration of the reduction of the cross-polar 
component of the radiation pattern for the double-fed square monopole has not 
been included, yet it can be found in [128]. 

 
Before finishing this section it should be highlighted that the double fed 

square monopole presented in [128] has inspired other authors that later have 
proposed other monopoles based on the same design concept [135]-[136].  
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Figure 5.66  Comparison of the VSWR for a double-fed square monopole and a 

single-fed square monopole of the same dimension. 
 

 

Figure 5.67  Comparison of simulated and measured results for the return loss 
referred to 50 Ω, for the antenna prototype in Figure 5.65  
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5.3.5. Application of planar monopole antennas to MIMO systems. 
 

Multiple Input Multiple Output (MIMO) systems are a very up-to-date 
solution to face the growing capacity demand for new wireless communication 
systems. By using multiple inputs and multiple outputs significant improvement 
in the system capacity is achieved. Generally, MIMO systems employ multiple 
antennas at both ends of a wireless link. If the signals received by different 
antennas are uncorrelated, very high data rates may be reached [137]. The 
problem is that the volume occupied by multiple antennas is often prohibited, 
especially for modern compact handsets. 

 
 Recent studies have shown that multiple antennas can be replaced by a 

single multimode antenna, like the archimedian four-arm spiral proposed in 
[138]. A different approach to reduce system size consists in using compact 
integrated diversity antennas, such as the one described in [139]. This antenna 
that is based on a Y-patch, incorporates two antennas into one, and it uses two 
isolated feed ports to provide diversity signals.  

 
In previous section, a square planar monopole with two symmetrical feeding 

ports, suitable for UWB systems, has been presented. The thing is that, if the 
correlation between the two ports of this antenna were small, the ports could be 
fed independently providing diversity, the same way as the Y-patch proposed in 
[139]. With this consideration in mind, a long slit cut along the symmetry axis of 
the antenna was found to be the solution to get the required isolation between 
the ports. Figure 5.68 shows the geometry of the definitive design. The 
dimension of the antenna has been optimized to operate at 2.5 GHz, and the 
location and size of both ports have been adjusted to match the connectors’ 
impedance of 50 Ω. The dimension of the square radiating element, which is in 
XZ plane, is 55x55 mm2. The feeding ports are two 2x4 mm2 strips placed 
symmetrically at 9 mm, on both sides of the slit, whose size is 2x32 mm2. A 
prototype of the definitive monopole, fabricated at the laboratories of the GRE in 
UPV, can be seen in Figure 5.69 . 
 

 
Figure 5.68  Geometry of the definitive design for MIMO applications. 
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Figure 5.70 shows the simulated and measured S parameters against 
frequency for the antenna prototype. Simulations have been performed using 
IE3D. Simulated and measured results are in fairly good agreement. The 
structure presents a S11 parameter of less than -10 dB in a range of frequencies 
of about 1 GHz. Besides, the S12 parameter stays below -20 dB in most part of 
this frequency range, taking values below -35 dB at the design frequency.  

 

 

Figure 5.69  Prototype of the square monopole with isolated ports. 
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Figure 5.70  Simulated and measured S parameters for the antenna prototype 
in Figure 5.69  

 
 

To characterize port isolation in a more precise way, the envelope 
correlation is calculated from S parameters, as described in [140]. As can be 
seen in Figure 5.71 the prototype provides correlation values that stay below 
0.02 in all the bandwidth of interest.  
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Therefore, it seems that this antenna meets the requirements for 
achieving diversity, and hence to increase the system’s capacity. At the same 
time the antenna presents compact size and wide impedance bandwidth. 

  
Finally, Figure 5.72 shows the gain radiation patterns, computed at 2.5 GHz 

for this structure using IE3D. These patterns are obtained by exciting port 1, 
while terminating port 2 with a 50 Ω load. Due to the symmetry of the system, 
the patterns are the identical for both ports. 
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Figure 5.71 Correlation values obtained from the prototype. 
 

 

 

Figure 5.72  Gain radiation patterns at 2.5 GHz computed with IE3D: (a)  XY 
plane. (b) XZ plane. (c) YZ plane. The reference angle 0º corresponds with the 

Z-axis. 
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CHAPTER 6.  Modal Analysis of Radiating Ground Planes                             
 

6.1.  Introduction  
 

The fast development of wireless communications and mobile systems in the 
last decade has stimulated the market demand for novel antenna designs for 
mobile terminals. However, antennas for actual mobile terminals are subjected 
to more stringent requirements every time. On one hand, antennas are 
demanded to operate at different mobile standards which work at different 
frequency bands, so they may exhibit multi-band or broadband behaviour. On 
the other hand, due to the rapid advance of integrated circuit technology, 
mobile handsets are becoming smaller and smaller, so the space available for 
the antenna is every time more reduced.   
 

Consequently, a lot of investigation has been focused on small antennas, 
resulting in a great variety of compact wideband, and multiband designs [3]. In 
general, the actual trend is to implement the antennas internally to the phone, 
so they are more protected, and less visible than the classical external helix-
antennas used in the 90’s. Among internal compact antennas, the Planar 
Inverted-F Antenna (PIFA) is the most commonly employed for GSM900/1800 
cellular phone handsets [7]. 

 
A PIFA antenna is a quarter-wavelength resonator that can be considered as 

probe-fed shorted patch over an infinite ground plane. Double band [141]-
[142], and triple band operation [143], can be achieved by inserting slits at the 
radiating path of the PIFA. However, PIFA antennas present an important 
drawback. As microstrip patches, they are inherently narrow bandwidth 
antennas.  

As a matter of fact, the size of an antenna can not be decreased arbitrarily 
without affecting other important properties, such as the impedance bandwidth 
or the efficiency [4]. In general, the performance of compact antennas is limited 
by the well-known small antennas fundamental limits [5].   

 
Recently, new design strategies have been explored in order to increase the 

radiation efficiency, and the bandwidth of handset antennas [6]. An example of 
innovative PIFA design is one that considers the Printed Circuit Board (PCB) of 
the mobile as part of the antenna [65]. Since the mobile PCB, which acts as the 
antenna ground plane, presents resonant dimension at mobile frequencies, its 
shape and size affect the antenna performance in a significant way. In fact, at 
lowest operating frequencies, the PCB is the main radiator, while the antenna 
only works as a probe to excite the current modes of the PCB.  
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Obviously, to design an antenna from this new perspective, an in-depth 
knowledge of the current modes of the structure is needed. To that purpose, 
the Theory of Characteristic Modes, may be very helpful. Thus, the present 
chapter is going to be focused on the application of characteristic modes to the 
analysis of different types of radiating ground planes.  

The first part of the chapter will be devoted to the study of radiating 
structures that consist in a folded radiating ground plane. From the current 
distribution of characteristic modes, it will be demonstrated that the impedance 
bandwidth of these antennas, can be increased by replacing the classical coaxial 
probe feeding by a small planar monopole. Moreover, the impedance matching 
will be improved by inserting slots close to the feeding point. The insertion of 
these slots forces the current of longitudinal modes to flow through a smaller 
surface area, so the input resistance is increased.  

 
 In the second part of the chapter, the behaviour of notched radiating ground 

planes will be investigated. The filtering effect due to the interaction between 
the resonances of the notch and the ground plane will be explained with the 
information provided by characteristic currents. It will also be demonstrated 
that, using a radiating ground plane with two notches and two excitation ports, 
the undesired filtering effect is reduced, and the antenna matching is improved. 

 
 

6.2. Design of a folded radiating ground plane antenna for mobile 
terminals. 

 
This section describes the procedure carried out to design a handset antenna, 

based on the PCB resonance design concept, using characteristic modes. It will 
showed that, characteristic modes not only bring information about the 
resonance frequency and radiation properties of the current modes of the 
structure, but also help to select an appropriate location for the probe, to excite 
the desired current modes flowing on the folded PCB.  
 

6.2.1. Modal analysis of the basic folded radiating ground plane. 
 
Figure 6.1 shows the normalized current distribution at first resonance (1.1 

GHz) for the first six characteristic modes of the basic antenna. The basic 
antenna can be considered either as a PIFA over a finite ground plane, or as a 
folded radiating ground plane. Arrows have been plotted together with 
characteristic currents for a better understanding of the current flow. The 
dimensions of the antenna are:  L= 100 mm, W= 40 mm, Ws= 35 mm, h= 10 
mm and L1= 49.15 mm. Note dimensions L and W coincide approximately with 
the length and width of the PCB of a common mobile telephone.  
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 As depicted in Figure 6.1, there are two modes, J01 and J02, with currents 
forming closed loops. It will be verified later with the information given by 
characteristic angles that modes J01 and J02 are special non-resonant modes. 
Other modes, such as J1, J3 and J4, exhibit longitudinal currents along the 
structure. Mode J1 is the fundamental mode, and it flows uninterrupted from the 
open end on the upper plate to the open end in the lower plate. This 
fundamental mode resonates when the current path is approximately half a 
wavelength. Modes J3 and J4, are higher order longitudinal modes that present 
one current null, and two current nulls, respectively, along the structure. Finally, 
mode J2 is the only transverse current mode. 
 

The resonance frequency and radiating bandwidth of the above described 
current modes can be obtained from the characteristic angle curves illustrated in 
Figure 6.2. It is observed that modes J01 and J02 do not resonate, and present 
inductive contribution at every frequency. Longitudinal current modes, J1, J3 and 
J4, resonate at 1.1 GHz, 1.7 GHz and 3.25 GHz, respectively, while the 
transverse mode J2 resonates at 3.35 GHz.  
 

Table 6.1 comprises the resonant frequencies, the modal quality factors 
computed using (2.29), and the modal radiating bandwidths obtained by direct 
inversion of the modal quality factors,  for the first resonant modes of the folded 
radiating ground plane. As expected, the poorest radiating mode is J1 since it 
exhibits the characteristic angle curve with steepest slope at 180º. Modes J2 and 
J3 are quite good radiators, while mode J4 presents the widest radiating 
bandwidth.  

 
 

 
 

Figure 6.1 Normalized current distribution at first resonance (f =1.1 GHz) for 
the first six characteristic modes of the basic folded radiating ground plane. 
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Figure 6.2 Characteristic angle variation with frequency for the first six 
characteristic modes of the basic folded radiating ground plane. 

 
 

 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1.10 GHz 6.13 16.31 % 
Mode J2  3.35 GHz 3.43 29.15 % 
Mode J3 1.70 GHz 1.91 52.35 % 
Mode J4 3.25 GHz 0.15 >100 % 

 

Table 6.1. Resonant frequencies, modal quality factors computed using (2.29), 
and modal radiating bandwidths, for the first radiating modes of the folded 

radiating ground plane. 
 
 

Results presented in Table 6.1 for the modal radiating bandwidth of 
longitudinal current modes can be more or less explained by simple inspection 
of the modal current distributions shown in Figure 6.1. As observed, currents in 
the parallel plate region flow with opposite phase at the lower and upper plates 
for modes J1 and J3. This means that there exists some cancellation between 
these currents flowing like in a transmission line. Conversely, the longitudinal 
current mode J4 presents the broadest radiating bandwidth because its currents 
flow in phase in the parallel plate region, so its radiation reinforces. 
 
 

Once the modal analysis of the basic folded structure has been performed, 
the next step is to select an optimum feeding arrangement to properly excite 
the desired modes. For the case of a handset antenna for a cellular phone, 
longitudinal current modes seem to be the most convenient modes to excite, as 
they resonate close to GSM900, DCS1800, PCS1900 and UMTS operating bands. 
At the same time these modes present reasonably good radiating bandwidth, in 
special mode J3, that is supposed to provide a matched band wide enough to 
cover DCS1800, PCS1900, and UMTS services. 
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6.2.2. Determination of the optimum feeding arrangement. 
 

The optimum feeding configuration should produce a voltage difference in the 
structure that may favour the appearance of the current distribution of 
longitudinal modes. The use of a classical coaxial probe feeding has been 
discarded as it creates a discrete voltage difference between the two points in 
the lower and upper part of the structure that it connects. This kind of excitation 
yields narrowband matching, and degrades the current distribution of 
longitudinal modes, as it increases its transverse current component.  
 

A small planar monopole seems to be a better choice than a coaxial probe, 
since it creates a distributed voltage difference between the lower and upper 
plates [144]. Additionally, as it will be shown next, this feeding monopole 
behaves as a wideband impedance transformer between the feeding port and 
the upper plate, providing better performance than the classical coaxial probe.  

 
Consequently, as a first instance, a planar rectangular monopole has been 

chosen to excite the folded radiating ground plane. Figure 6.3 presents the 
definitive structure and the dimensions of the feeding rectangular monopole that 
after an optimization process have resulted in: h= 10 mm, h0= 0.5 mm, w0= 1.2 
mm, w= 27 mm and Lf =72.5 mm. Further details about the antenna design are 
given in [145]. 

 

 
 

Figure 6.3  (a) Geometry of the definitive structure. (b) Dimensions of the 
rectangular feeding monopole. 

 
 
 

Nevertheless, when the rectangular feeding monopole is added to the basic 
structure, it acts as an inductive loading. Hence, the presence of the feeding 
monopole may alter the resonance frequency and the radiating behaviour of 
modes. To verify this assessment, characteristic angles of the basic antenna, 
have been computed again including in the structure the feeding monopole.   

Figure 6.4 shows that due to the inclusion of the feeding monopole, the 
resonant frequencies of our modes of interest, J1 and J3, are shifted to 1.25 GHz 
and 2.3 GHz, respectively.  
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Table 6.2 provides the same information as Table 6.1, but now including the 
effect of the feeding monopole. Mode J2 has not been included as now, it 
resonates out of the studied frequency band. Comparing the results in both 
tables, it is extracted that the radiating behaviour of modes J1 and J3 improves 
when the feeding monopole is included. The radiating bandwidth of mode J1 is 
only a bit better, while the one of mode J3 duplicates. This is because the highly 
capacitive nature that modes J1 and J3 present in the parallel plate region is 
compensated by the inductive feeding monopole. 
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Figure 6.4  Characteristic angle variation with frequency for the first six 
characteristic modes of the folded radiating ground plane including the effect of 

the rectangular feeding monopole. 
 
 
 

 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1.25 GHz 5.50 18.18 % 
Mode J3 2.30 GHz 0.95 >100 % 
Mode J4 3.35 GHz 0.22 >100 % 

 

Table 6.2. Resonant frequencies, modal quality factors computed using (2.29), 
and modal radiating bandwidths, for the first radiating modes of the folded 

radiating ground plane including the effect of the rectangular feeding monopole. 
 

Next, in order to find out which modes are excited, the power radiated by the 
modes (RPJn) is going to be studied. Figure 6.5 analyzes the contribution of 
modes to the total radiated power of the antenna (RPtotal). It should be noted 
that only longitudinal current modes J1, J3, and J4 are excited. Surprisingly, the 
maximum radiation of mode J1 does not happen at its resonance frequency, 
1.25 GHz, but at 1.8 GHz. 
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Figure 6.5 Contribution of the different modes to the total power radiated by the 
folded radiating ground plane excited with a rectangular monopole. 

 
 

Finally, Figure 6.6 compares the return loss obtained for the antenna using a 
coaxial feeding probe, and using the rectangular feeding monopole. Both 
feeding elements have been placed at exactly the same position Lf =72.5 mm. 
As observed, the rectangular feeding monopole provides wider impedance 
bandwidth than the coaxial probe, yielding a return loss less than -6 dB from 
1.15 GHz to more than 4.5 GHz.  

 

 
 
Figure 6.6 Return loss for the folded radiating ground plane when excited with 

a coaxial probe and with a rectangular monopole. 
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6.2.3. Effect of the insertion of a slot. 
 

Results in Figure 6.6 confirm that the previously analyzed antenna provides 
wide-band performance for return loss less than -6 dB. Note that -6 dB is the 
typical reference value considered in mobile handsets. However, the antenna 
impedance matching can be improved by inserting a slot in the lower plate of 
the structure as shown in Figure 6.7. This slot not only produces a meandering 
effect that reduces the resonant frequencies of longitudinal modes, but also 
changes the current distribution of these modes near the source, favouring the 
coupling between them and the feeding monopole. 

 
Figure 6.8 shows the meandering effect experimented by longitudinal current 

modes due to the insertion of the slot. For brevity, the special non-resonant 
modes J01 and J02, which do not contribute to radiation, has not been included 
here. Mode J5, which had not been represented before, is a mixed mode with 
longitudinal and transverse currents. Note that modes J1, J3, J4 and J5, present 
transverse currents flowing with opposite phase in the upper and lower plates,   
due to the current meandering. In the rest of the structure, the current 
distributions of modes are very similar to those depicted in Figure 6.1 for the 
basic folded radiating ground plane.  

 
The reduction in resonance frequency of characteristic modes caused by the 

current meandering is confirmed by Figure 6.9, which presents the characteristic 
angles curves associated to the first seven modes of the folded slotted ground 
plane.  

 
Table 6.3 summarizes the resonant frequencies, modal quality factors, and 

modal radiating bandwidths, for the resonant modes of the folded slotted 
radiating ground plane that resonate before 3.5 GHz. Observe that the slot 
increases slightly the radiating bandwidth of modes J1 and J3, whereas it 
worsens the radiating behaviour of mode J4. 

 
Figure 6.10 analyzes the contribution of each mode to the total power 

radiated by the antenna (RPtotal). It is observed that the first power maximum, 
approximately at 1.12 GHz, is caused by mode J1, the second maximum at 1.8 
GHz is due to the excitation of mode J3, and the third maximum at 3 GHz results 
from the contribution of longitudinal modes J3 and J4, and mode J5. Note also 
that although transverse mode J2 is weakly coupled to the excitation, it 
contributes to the total power at the highest frequencies. 

 
 

 
Figure 6.7 Folded slotted ground plane excited with a rectangular monopole. 
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Figure 6.8 Normalized current distribution at first resonance (f =1.1 GHz) for 
the first six characteristic modes of the basic folded radiating ground plane. 
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Figure 6.9 Characteristic angle curves for the first six characteristic modes of 
the folded slotted radiating ground plane fed with a rectangular monopole. 

 
 
 
 

 resf  ,n HarringtonQ  ,n HarringtonBW  (%) 

Mode J1 1 GHz 4.20 23.80 % 
Mode J3 2.2 GHz 0.92 >100 % 
Mode J4 2.7 GHz 2.75 36.36 % 

 

Table 6.3. Resonant frequencies, modal quality factors, and modal radiating 
bandwidths, for the first radiating modes of the folded slotted radiating ground 

plane. 
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Figure 6.11 sketches the return loss achieved by the folded radiated ground 
plane fed with the rectangular monopole, with the slot and without the slot. The 
return loss of the slotted structure presents a clear improvement on the non-
slotted one. The insertion of the slot also reduces the lowest limit of the first 
matched band, at the same time as it improves the matching in the whole 
frequency band that ranges from 0.9 GHz to 5 GHz. As observed, the three 
discernible matched bands for the slotted antenna correspond with the power 
maxima at Figure 6.10. 
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Figure 6.10 Contribution of the different modes to the total power radiated by 
the folded slotted radiating ground plane fed with a rectangular monopole. 
 

 
 

Figure 6.11 Return loss achieved by the folded radiated ground plane fed with 
the rectangular monopole, with the slot and without the slot 
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To validate the simulated results, a prototype of the antenna has been 
fabricated at the laboratories of the GRE in UPV. A photograph of this prototype 
can be seen in Figure 6.12. Figure 6.13 illustrates that the return loss simulated 
with IE3D and measured for the antenna prototype are in good agreement at 
lowest frequencies. As observed, the antenna is well matched at GSM900, 
DCS1800, PCS1900, and UMTS operating bands.  

 
Figure 6.14 shows the radiation patterns in the ZY and XY planes at 900 MHz, 

and 1800 MHz. The omnidirectional behaviour observed at both bands, together 
with the excellent wideband performance, makes the antenna a good candidate 
for mobile handsets. 

 
Finally, to evaluate if the matching of the proposed antenna will be altered by 

the presence of the battery of the mobile terminal, a commercial mobile battery 
has been added to the antenna prototype as shown in the setup of Figure 6.15 
(a). Figure 6.15 (b) shows that the return loss of the antenna has not changed 
very much because of the addition of the battery. For a return loss of less than  
-6 dB, the upper limit of the matched band has been reduced. However, in 
general the matching levels of the band have improved due to the effect of the 
battery. 
 
 
 
 
 
 
Figure 6.12 Prototype of the folded slotted  radiating ground plane fed with a 

rectangular monopole. 
 

 
 

Figure 6.13 Simulated and measured return loss for the antenna prototype. 
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Figure 6.14  Radiation patterns in the YZ and XY planes for the folded slotted 
radiating ground plane at 900 MHz and 1800 MHz. 

 
 

 
 

Figure 6.15 (a) Setup to measure the effect of the battery on the antenna.   
(b) Simulated and measured return loss for the antenna prototype including the 

battery. 
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6.2.4. Use of a bow-tie shaped feeding monopole. 
 

In section 6.2.2 a rectangular monopole has been proposed for feeding the 
folded radiating ground plane. The choice of this monopole shape was based on 
its simplicity. However, any other monopole shape could have been used.  

 
In this section, a bowtie shaped monopole has been selected to excite the 

folded radiating ground plane. The advantage of the bowtie monopole is that it 
has more parameters to adjust than the square or the rectangular monopole, 
and therefore, it is easier to achieve maximum matching using this shape.  
 

Figure 6.16 presents the optimized dimensions for the feeding bowtie 
monopole, which have resulted in: h=10 mm, h1=h2=4.75 mm, wp=1 mm, 
w1=16 mm and w2=32 mm. Like with the rectangular monopole, the addition of 
the feeding bowtie monopole, shifts the resonant frequency of longitudinal 
modes J1 and J3 to higher frequencies, and hence far from GSM900, DCS1800 
and UMTS operating bands. Thus, it is necessary to insert a slot to the antenna 
again, in order to reduce the resonant frequencies of longitudinal modes J1 and 
J3. In this case, as shown in Figure 6.17, two slots of width 2 mm and length 25 
mm have been added to the structure to achieve the desired compactness. The 
rest of dimensions are Lf =72.5 mm, R1=48 mm, and R2=65.25 mm. 

 
Figure 6.18 shows photographs of a prototype of the antenna, and 0 

compares the return loss measured for the prototype with the return loss 
simulated with IE3D. Observe that measured and simulation agree very well at 
the lowest frequencies. The return loss is less than -6 dB, from 0.9 GHz to 4.5 
GHz, so the antenna operates at GSM900, DCS1800, PCS1900, UMTS and 
802.11.g bands. 
 

 
Figure 6.16 Dimensions of the feeding bowtie monopole. 

 
 

 
 

Figure 6.17 Geometry of the folded radiating ground plane with bowtie shaped 
feeding monopole. 
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Figure 6.18 Photographs of the prototype of the slotted folded radiating 
ground plane fed with a bow-tie shaped monopole. 

 

 
 

Figure 6.19 Simulated and measured return losses of the antenna prototype in 
Figure 6.18. 

 
 

6.2.5. Conclusions 
 
 An example showing how to use the Theory of Characteristic Modes for 
controlled antenna design, based on the PCB resonant concept, has been 
presented with the aim of demonstrating, that characteristic modes are really 
helpful for the design and optimization of handset antennas. It has been shown 
that having in mind the current distribution of modes, the geometry of the 
antenna can be modified to accomplish the desired specifications, while an 
appropriate feeding configuration can be selected in order to excite the desired 
modes. 
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6.3. Design of notched radiating ground planes. 
 

Notch antennas have long been used for HF communications, VHF telemetry, 
and command on aircraft and missiles. However, self-resonant notch antennas 
fabricated using microstrip technology, are very compact structures that can be 
effectively used for wireless communications [146]-[148]. Typically, notch 
antennas consist in a quarter wavelength slot cut on the edge of a semi-infinite 
ground plane. They are commonly fed from a coaxial cable without the need of 
any balancing system, as depicted in Figure 6.20. 

 
 However, when a notch is cut on a finite ground plane of resonant 

dimension, the shape and size of the ground plane significantly affect the 
performance of the notch antenna. It can be demonstrated that sometimes the 
interaction between the resonances of the notch and the ground plane results in 
a filtering effect at some frequencies. Next, different configurations of notch 
antennas on finite ground plane are going to be analyzed using the theory of 
characteristic modes.  

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6.20 Typical quarter wavelength notch antenna cut on the edge of a 

semi-infinite ground plane, and fed from a coaxial cable. 
 
 

6.3.1. Radiating ground plane with a notch. 
 

Let us consider a notch of length L1=4.5 cm, and width W1=1 cm, cut on a 
metallic ground plane of dimensions L=10 cm, and W=6.5 cm. The size of the 
ground plane has been chosen that of a typical Personal Digital Assistant (PDA). 
Figure 6.21 sketches the normalized current distribution at 1.2 GHz for the first 
six characteristic modes of this structure. Mode J0 is a special non-resonant 
mode, with currents forming a closed loop around the perimeter of the ground 
plane. Mode J1 is the fundamental mode, and its current flows from the upper 
right corner to the lower left corner. Mode J2 is a horizontal current mode. Mode 
J3 is a mixed mode with vertical and horizontal currents. Modes J4 and J5 are 
higher order vertical modes, with a current null at the centre of the ground 
plane, and two current nulls, respectively.   
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 As observed, modes J0, J1, J3 and J5 present intense currents flowing around the 
notch. Unfortunately, these intense currents do not contribute to radiation as they 
are in opposite phase, like in a transmission line, and they cancel each other out 
along the notch. In contrast, the notch has little effect on the current distribution of 
mode J2, whose currents flow in phase along the whole ground plane, and on the 
current distribution of mode J4, which presents a current null just at the notch.   

 
Figure 6.22 presents the variation with frequency for the characteristic angles 

associated to the current modes of Figure 6.21. As it had been anticipated, 
mode J0 is a special non-resonant inductive mode, whose characteristic angle 
stays below 180º at every frequency. Fundamental mode J1 exhibits the 
narrowest radiating bandwidth, while the rest of modes are all quite efficient 
radiators as its characteristic angles keep close to 180º in a wide range of 
frequencies.  

 
For the sake of completeness, Table 6.4 summarizes the resonant frequencies 

of all the resonant modes. It is not worth presenting the modal quality factors, 
nor the modal radiating bandwidths, since all modes except J1 present quality 
factors of less than 1, and hence radiating bandwidths bigger than 100 %. 

 

 
Figure 6.21 Normalized current distribution at 1.2 GHz for the first six modes of 

a the radiating ground plane with a notch. 
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Figure 6.22 Variation with frequency of the characteristic angle associated to 

the current modes of Figure 6.21. 
 

 

 resf  
Mode J1 1.20 GHz 
Mode J2 2.90 GHz 
Mode J3 2.50 GHz 
Mode J4 3.45 GHz 
Mode J5 4.45 GHz 

 

Table 6.4. Resonant frequencies for the radiating modes of the radiating ground 
plane with a notch. 

 

 
Next thing to do is to feed the notch, and check which modes are excited. 

Figure 6.23 shows the return loss obtained when the notch is fed with a voltage 
gap generator placed at a narrow vertical strip at 3.75 cm from the shorted end 
of the notch. Unluckily, the antenna is not well matched, and it exhibits poor 
impedance bandwidth. But let us try to explain this behaviour with characteristic 
modes.  

 
Understandably, the vertical voltage difference created by the feeding strip 

will favour the appearance of transmission-line currents flowing around the 
notch. This means that modes that present this kind of currents around the 
notch, like modes J0, J1, J3 and J5, will couple to the excitation and will be 
excited. 

 
Figure 6.24 presents the total power radiated by the notched plane, together 

with the power radiated by the excited modes. These results confirm our 
previous deduction, since only modes J0, J1, J3 and J5, are excited. 
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 The total power radiated by the notch exhibits three maxima which 
correspond to the three minima of the return loss at 1.2 GHz, 2,25 GHz, and 
3.25 GHz. Mode J1 is responsible for the first maximum of the total radiated 
power at 1.2 GHz. The second maximum at 2.25 GHz is due to the superposition 
of the power radiated by modes J0 and J3, to the power radiated by mode J1. 
Finally, the highest maximum at 3.25 GHz is mainly due to mode J0, but with the 
collaboration of modes J1 and J5.  

 

 
 

Figure 6.23 Return loss for 50 Ω, when the notch is fed with a voltage gap 
generator placed on a narrow metallic strip at 3.75 cm from the shorted end of 

the notch. 
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Figure 6.24 Contribution of the different modes to the total power radiated by 
the notched radiating ground plane. 
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Now that all modes excited on the antenna are known, let us justify why the 
antenna is not well matched by studying the total current distribution at key 
frequencies. 
 

Figure 6.25 presents the total current computed with IE3D at 1.2 GHz (first 
resonance), 1.6 GHz (antiresonance) and 3.25 GHz (second resonance), when 
the notch is fed as described before. It can be observed that at 1.2 GHz and 1.6 
GHz there are intense currents forming a closed loop around the notch. Thus, it 
can be derived that when the notch is fed, the excitation of modes J0, J1, J3 and 
J5, creates transmission-line currents around the notch that cause its resonance.  

 
The notch resonates at 1.6 GHz, when its length L1 is approximately λ/4. This 

resonance of the notch interacts with the ground plane resonances at 1.2 GHz 
and 2.4 GHz, associated to modes J1 and J3, respectively. The result is an 
antiresonance that causes the filtering effect at 1.6 GHz. On the other hand, the 
resonance at 3.25 GHz is due to the excitation of the higher order vertical mode 
J5, which does not interact with the notch. This is why the third minimum of the 
return loss presents better matching than the other two. 

 
Next section proposes a doubly notched radiating ground plane with two 

excitations, to reduce the undesired filtering effect caused by the notch 
resonance.  

 
 

 
 

Figure 6.25 Total current computed with IE3D at 1.2 GHz, 1.6 GHz, and 3.2 
GHz when the notch is fed as described in Figure 6.23. 
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6.3.2. Radiating ground plane with two notches. 
 

In order to improve the impedance matching of the radiating ground plane 
above described, a double-notch configuration is proposed. The ground plane is of 
exactly the same dimension of the one employed in section 6.3.1. The length of the 
notches is L1=4.7 cm, and its width is W1=0.65 cm. 

 
 Figure 6.26 illustrates the normalized current distribution at 1.1 GHz for the first 

six characteristic modes of this ground plane with two notches. These modes 
resemble very much those obtained in Figure 6.21 for the ground plane with one 
notch, but now modes J0, J1, J3 and J4 are the modes that present transmission-line 
currents flowing along the notches. Observe that in modes J2 and J5 currents flow 
in phase in the upper and lower notches. 

 
Figure 6.27 plots the variation with frequency of the characteristic angle 

associated to the modes of Figure 6.26. The bandwidth of these modes is not very 
different from that of the modes of the singly notched ground plane, with the 
exception of mode J4, which now resonates at a lower frequency and presents 
poorer radiating bandwidth than in the singly notched ground plane. 

 

 
 

Figure 6.26 Normalized current distribution at 1.1 GHz for the first six modes of 
the ground plane with two notches. 
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The different behaviour of mode J4 can be explained by examining its current 
distribution. In Figure 6.21 mode J4 presents pure vertical currents and no current 
flow along the notch. In contrast, in Figure 6.26 mode J4 has transverse current 
components that flow in a transmission line way along both the upper and lower 
notches. These current components are responsible for the reduction in the 
resonant frequency of the mode, and for the bandwidth degradation. 

 
Table 6.5 summarizes the resonant frequencies of the radiating modes of the 

doubly notched ground plane. All these frequencies are smaller than those in Table 
6.4, because the two notches produce a longer current meandering than the single 
notch. 

 
Regarding the impedance bandwidth that can be achieved from this structure, it 

is a well-known fact that when this E-shaped plane is mounted as a microstrip 
patch, and fed by a coaxial probe at its centre, it provides wideband performance 
[8]. Figure 6.28 depicts the return loss when an alternative feeding configuration is 
used. This new feeding consists in two voltage gap generators placed at 3.8 cm 
from the shorted ends of the notches.  
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Figure 6.27 Variation with frequency of the characteristic angle associated to 
the current modes of Figure 6.26. 

 
 

 resf  
Mode J1 1.10 GHz 
Mode J2 2.85 GHz 
Mode J3 2.45 GHz 
Mode J4 2.42 GHz 
Mode J5 3.9 GHz 

 

Table 6.5. Resonant frequencies for the radiating modes of the doubly notched 
radiating ground plane. 
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The return loss of Figure 6.28 has been computed from the total input 
impedance obtained as the sum of the individual input impedances at each port, 
divided by two (parallel impedances). This return loss is much better than the one 
obtained for the singly notched ground plane. The second and third resonances are 
now at lowest frequencies, and the filtering effect at 1.6 GHz has been attenuated.  

 
Figure 6.29 shows the total current computed with IE3D at 1 GHz, 2 GHz and 3 

GHz, using this double excitation. On one hand, it is observed that the current 
distribution of mode J1 is dominant at 1 GHz. Due to the feed symmetry, at 1 GHz 
the current flowing on the centre of the plane is very weak. Moreover, because of 
the proximity of the two notches, there would be current cancellation between 
them. On the other hand, at 2 GHz and 3 GHz there is intense current flow on the 
feeding strips, so currents flowing on vertical direction are favoured, while 
transmission-line currents are minimized. Consequently, using two feed points the 
filtering effect due to the antiresonance is reduced, and the matching is improved.  

 
Nevertheless, neither the feeding used for the single notch nor the double 

feeding just described, are realistic feedings. For the case of the doubly notched 
ground plane, a possible practical implementation of the feeding configuration 
could be that presented in Figure 6.30, where the two notches are fed by a 
microstrip power divider printed in the back side of the substrate. The substrate 
height is 7.6 mm and its permittivity 3.2. The length of the microstrip lines has 
been designed so that the two notches are fed in phase. Figure 6.31 shows two 
photographs of a prototype of this antenna fabricated at the laboratories of the 
GRE in UPV.  
 

 
 

Figure 6.28 Return loss for 50 Ω, when the two notches are fed with voltage 
gap generators placed on narrow metallic strips at 3.8 cm from the shorted ends 

of the notches. 
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Figure 6.29 Total current computed with IE3D at 1 GHz, 2 GHz, and 3 GHz 

when the notches are fed as described in Figure 6.28. 
 

 
Figure 6.30 Possible feeding configuration for the doubly notched radiating 

ground plane.  
 
 

 

Figure 6.31 Photographs of the prototype for the doubly notched ground 
plane. 

 

a) 1 GHz b) 2 GHz c) 3 GHz 
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Figure 6.32 depicts the return loss obtained from the IE3D simulations and 
the measurement.  As observed, acceptable agreement exist between them, 
and the antenna presents a matched bandwidth for a return loss less than -6 dB 
that extends from 1.6 GHz to more than 5 GHz. A very wide bandwidth is hence 
obtained for this structure using this new feeding configuration. 

 
Finally, it should be highlighted that, although the feeding configuration 

proposed in Figure 6.30 excites both notches simultaneously, it is not completely 
equivalent to that of the two voltage gap generators represented in Figure 6.28, 
because the two narrow metallic strips that support the feedings in the second 
case allow the current to flow though them, favouring in this way the excitation 
of vertical currents in the ground plane. 

 

 
Figure 6.32 Simulated and measured return loss for the antenna prototype in 

Figure 6.31. 
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CHAPTER 7.  Conclusions and Future Work                                                
 
 
7.1. Conclusions 
 
7.1.1. Suitability of characteristic modes for antenna design.  
 

The main goal of this thesis has been to demonstrate that the classical 
Theory of Characteristic Modes can be systematically applied to the design of 
wire and planar antennas.  

 
Characteristic modes can be computed numerically for arbitrarily shaped 

conducting bodies. Since they form a set of orthogonal functions, they can be 
used to expand the total current on the surface of the body. However, what 
makes characteristic modes really attractive for antenna design is the physical 
insight they bring into the radiating phenomena taking place in the antenna.  
 

As explained in Chapter 1, there exist alternative modal theories to analyze 
open radiating structures. However, the advantage of the Theory of 
Characteristic Modes with respect to other modal formalisms is the real nature 
of the eigenvectors and eigenvalues it supplies [30]. Especially important is the 
real nature of the eigenvalues that allows a physical interpretation of the 
radiating mechanisms of the antenna. As it has been demonstrated, information 
about the resonant frequency and radiating characteristics of modes can be 
obtained by studying the variation with frequency of the eigenvalues. 
Additionally, to compare the radiating behaviour of modes, a modal quality 
factor can be derived from the eigenvalues [38]. However, as it has been 
demonstrated in this work, this modal quality factor is only valid for narrow 
band radiators.   

 
Moreover, the knowledge of the current distribution of the real eigenvectors 

is also very helpful for antenna design. A careful observation of the current 
distribution of the different modes brings information about its radiation 
efficiency and polarization purity. Also, by identifying the location of the current 
maxima, and taking into account the direction of the current flow, it is possible 
to find out an optimum feeding arrangement to excite the desired mode or 
modes. In general, modes in which currents flow in opposite phase, like in a 
transmission line, are not very efficient radiators, whereas modes with currents 
flowing in phase are good radiators in a wide range of frequencies.  

 
Since characteristic modes are computed in the absence of any source or 

excitation, characteristic modes only depend on the shape and size of the 
radiating object. Thus, as demonstrated though numerous examples, antenna 
design using characteristic modes can be performed systematically in two steps. 
Firstly, the shape and size of the radiating element are optimized. Next, an 
optimum feeding configuration is chosen so that the desired modes may be 
excited. 



Chapter 7 
 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

180 

 For modelling electrically small conducting bodies few modes are needed. 
Hence, small and intermediate size antennas can be fully characterized in a wide 
operating band just considering three or four characteristic modes.  
 

An original contribution of this thesis is the determination of three different 
ways to identify which modes are excited for a particular excitation. First option 
consists in analyzing the contribution of modal input admittances to the total 
input admittance. Using this kind of representation it is possible to identify 
which modes are responsible for each resonance, and also which modes 
combine with each other to create an antiresonance. Nevertheless, modal 
admittances give no information about the matching of modes. 

 
With the aim of determining which modes are well coupled to the source a 

modal VSWR can be computed from the modal input admittance. The main 
drawback of this representation is that the total VSWR can not be expressed as 
a linear expansion of the VSWR of the excited modes. However, it allows the 
identification of broadband matched modes, such as the modes that appear on 
monopoles with bevelled base. 

 
The third and last option is the visualization of the modal radiated power. In 

this case, the total power of the antenna can be expanded very accurately in 
terms of power radiated by modes. With this representation it is possible to 
identify which modes produce the radiated power maxima at resonant 
frequencies.  
 

It must be highlighted that many of the examples that have been presented 
in the first chapters, are not new designs, but well-known antennas whose 
behaviour is described in classical books of antenna theory. These examples 
have been chosen in order to initiate the reader into the Theory of Characteristic 
Modes by means of familiar antennas. For example, in Chapter 2 the basic 
formulation of the theory has been reviewed using a wire dipole as example, in 
order to facilitate the comprehension of the fundamentals of the theory. In 
Chapter 3 loop antennas of different geometry have been analyzed from a 
modal point of view. The objective of Chapter 3 was to make the reader realize 
that the Theory of Characteristic Modes complements classical antenna theory, 
bringing a physical explanation of the radiating mechanisms of the antenna. 
Actually, examples presented in the first chapters are perfect to provide novel 
antenna designers with a physical understanding of the radiation of antennas.  

 
In the first part of Chapter 5, it has been demonstrated that characteristic 

modes constitute an alternative to analyze patch antennas when the cavity 
model fails. In contrast with the cavity model, characteristic modes present no 
limitation over the shape of the patch, the thickness, or the dielectric constant 
of the substrate.  
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Moreover, also in Chapter 5 characteristic modes have been used to adjust 
the phase of the field reflected by the individual elements of a reflectarray 
antenna. An expression for the reflection phase of each mode has been derived 
from the eigenvalues, and it has been shown that for the case of oblique 
incidence, the polarization purity of a square patch can be improved just by 
dividing the patch in two rectangular strips along the direction of the desired 
polarization.  
 

The second part of Chapter 5 has been intended to give some guidelines for 
the design of planar monopoles. This part shows how a clear knowledge of the 
basic operating principles of very simple monopoles has lead to the design of 
new antennas, such as the shorted arrowhead monopole, the double fed square 
monopole, and the slitted monopole for MIMO applications.  

 
Chapter 6 describes the procedure carried out to design several handset 

antennas, based on the PCB resonance concept, using characteristic modes. In 
these designs, wideband impedance matching is achieved by a proper choice of 
the feeding configuration. For the case of the folded radiating ground plane, 
using characteristic modes it has been demonstrated that a planar feeding 
monopole provides better performance than a classical coaxial feeding probe. In 
contrast, for the case of the radiating ground plane with two notches, a double 
fed has been found to be the optimum choice.  
 
 
7.1.2. Suitability of characteristic modes for numerical analysis. 
 

Chapter 4 has been focused on analyzing the problematic derived from using 
characteristic modes as basis functions in which to expand the total current on 
the antenna. By means of different examples, it has been demonstrated that for 
antenna problems, the series of characteristic modes presents slow convergence 
when approximating the imaginary part of the input current. As a contribution of 
this thesis, the convergence problem of the series of modes has been overcome 
by including a new term in the modal expansion, called “source mode”. This 
source mode exhibits evanescent behaviour and models the reactive behaviour 
introduced by the source. Guidelines have been given in order to systematically 
obtain the source mode for both the wire antenna class and planar antennas. 

 
On the other hand, the dependency with frequency of characteristic modes 

has also been solved by using a Singular Value Decomposition (SVD) [47]. The 
Singular Value Decomposition provides a set of frequency independent modes 
that can be used as basis functions in the whole band of interest. If the source 
mode in included in the SVD, a set of frequency independent characteristic 
modes that fastens the convergence of the series in a wide range of frequencies 
is obtained.  Note that although the SVD approach is not new [89], the inclusion 
of the source mode in the decomposition in order to solve the convergence 
problem of characteristic modes has been proposed in this thesis for the first 
time. 
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7.2. Future work 
 

One of the most appealing aspects of the Theory of Characteristic Modes is 
the possibility of using characteristic modes in conjunction with reactive loading 
for the control of radiation and scattering of conducting bodies [38]-[39]. As 
explained in Chapter 2, when reactive loading is combined with characteristic 
modes it gains a more practical perspective since total control of the 
electromagnetic behaviour of the antenna can be achieved. In fact, using 
reactive loading a mode can be made resonant at any desired frequency. In this 
work only the effect of reactive loading on wire antennas has been analyzed. 
However, further research could be made in order to include reactive loading in 
planar structures. This loading could be discrete or distributed. An example of 
distributed load could consist in a slot. The effect of the slot could be modelled 
by a series of discrete loads placed at different edge elements. Using a discrete 
model, slots of different length and at different positions, could be simulated 
without creating a new structure, just changing the value of the discrete loads. 

 
Another option for future work could consist in making the design procedure 

even more systematic. This could be accomplished by combining the information 
yielded by characteristic modes with a genetic algorithm, or another automatic 
optimization technique, in order to find the optimum location for the feeding of 
the antenna. Note that although characteristic modes help to identify the 
current maxima of modes, these maxima may not be exactly the optimum 
feeding location. In practice, the optimum position of the feeding is obtained by 
“cut and try” methods. Hence, characteristic currents could be used to obtain a 
coarse approximation of the optimum location for the feeding, while a genetic 
algorithm would perform a refine search.  
 

On the other hand, in Chapter 4 it has been commented that the SVD 
approach to obtain a set of frequency independent characteristic modes is 
worthwhile only when the antenna is to be analyzed is a wide range of 
frequencies, and also that this approach is especially suitable to reduce the 
computational cost when analyzing large arrays with identical wideband 
radiating elements. Nevertheless, no experiment has been performed in order to 
compare the time requirements to solve a large array problem using classical 
MoM formulation, and using characteristic modes as entire domain basis 
function. Thus, future work may verify that the use of characteristic modes in 
large array problems reduces computational time. 

 
 Finally, it should be mentioned that Eva Antonino is developing a thesis 

related with Characteristic Modes that complements the present work. Basically, 
this second thesis concentrates on analyzing the effect of using multiple feeding 
ports, and on modelling the feeding gap zone of square planar monopoles using 
a transmission line theory approach. 
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 Appendix 1.  Computation of Eigenvectors and Eigenvalues 
 

 

 
A. Definition of eigenvectors and eigenvalues 
 

An N x N matrix A is said to have an eigenvector x and corresponding 
eigenvalue λ if 

 
A x xλ⋅ =                                            (A1.1) 

 
Obviously, any multiple of an eigenvector x will also be an eigenvector. The 

zero vector is not considered to be an eigenvector at all.  
 
Evidently, (A1.1) can hold only if 
 

det 1 0A λ− =                                       (A1.2) 
 

which if expanded out, is an Nth degree polynomial in λ whose roots are the 
eigenvalues. This proves that there are always N (not necessarily distinct) 
eigenvalues. Equal eigenvalues coming from multiple roots are called 
degenerate. 
 
 

B. Different types of matrices and its associated eigenvalues 
 

A matrix is called symmetric if it is equal to its transpose   
 

TA A=   or   ij jia a=                                (A1.3)    
  

It is called Hermitian of self-adjoint if it equals the complex-conjugate of its 
transpose (its Hermitian conjugate denoted by †) 

 
     †A A=   or   ij jia a ∗=                                (A1.4)  

 
It is termed orthogonal if its transpose equals its inverse 
 
     1T TA A A A⋅ = ⋅ =                                     (A1.5) 
 

and unitary if its Hermitian conjugate equals its inverse. 
 

A matrix is called normal if it commutes with its Hermitian conjugate 
 

       † †A A A A⋅ = ⋅                                        (A1.6) 
 

For real matrices, Hermitian means the same as symmetric and unitary 
means the same as orthogonal. 
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The eigenvalues of a Hermitian matrix are all real. In particular, the 
eigenvalues of a real symmetric matrix are all real. Contrariwise, the eigenvalues 
of a real non-symmetric matrix may include real values, but may also include 
pairs of complex conjugate values. Finally, eigenvalues of a complex matrix that 
is not Hermitian will in general be complex. 

 
On the other hand, the eigenvectors of a normal matrix with non-degenerate 

eigenvalues are complete and orthogonal, spanning the N-dimensional vector 
space. For a normal matrix with degenerate eigenvalues, we have the additional 
freedom of replacing eigenvectors corresponding to degenerate eigenvalues by 
linear combinations of themselves. 

 
When a matrix is not normal, in general, we can not find any orthogonal set 

of eigenvectors, nor even any pairs of eigenvectors that are orthogonal. While 
the N non-orthogonal eigenvectors will “usually” span de N-dimensional vector 
space, they do not always do so. That is, the eigenvectors are not always 
complete. These matrices that do not have eigenvalue decomposition are said to 
be defective or non-diagonalizable.  

 
For defective matrices Schur decomposition can be used instead of 

eigenvalue decomposition. Using Schur decomposition a defective matrix A can 
be expressed as 

 
        TA U S U= ⋅ ⋅                                         (A1.7) 

 
where the columns of U provide a basis with much better numerical 

properties than a set of eigenvectors. 
 

 
C. Generalized eigenvalue problems 
 
In Chapter 2 is was explained that the eigenvectors and eigenvalues of an 

antenna can be obtained by solving the following eigenvalue problem 
 

                                             [ ] [ ]n n nX J R Jλ=                                      (A1.8) 

 
This kind of problem is called generalized eigenvalue problem, and it present 

the general form 
 

xBxA ⋅=⋅ λ                                         (A1.9) 
 

Often A and B are symmetric, and B is positive definite. In this case, the 
generalized eigenvalues of A and B can be computed using the Cholesky 
factorization .  
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Cholesky factorization expresses the symmetric matrix B as the product of a 
triangular matrix and its transpose 

 
TB L L= ⋅                                            (A1.10) 

 
where L is an upper triangular matrix. 
 

However, not all symmetric matrices can be factored in this way. The 
matrices that have a Cholesky factorization are said to be positive definite. This 
implies that all the diagonal elements of B are positive and that the off-diagonal 
elements are not too big. 
 

If B is non-singular the problem can be solved by reducing it to an 
equivalent standard eigenvalue problem 
 

    ( )1B A x xλ− ⋅ ⋅ =                                       (A1.11) 

 
If B is a singular matrix, the generalized eigenvalue problem can not be 

directly transformed into a standard eigenvalue problem, so an alternative 
algorithm called QZ factorization is necessary. QZ factorization is also valid for 
non-symmetric (non-Hermitian) A and B matrices. 

 
In order to solve the generalized eigenvalue problem in (A1.8), it can be 

reduced to its standard eigenvalue problem 
 

              ( )1
n n nR X J Jλ− ⋅ ⋅ =                                  (A1.12) 

 
This can be done because R and X matrices correspond with the real and 

imaginary parts of the generalized impedance matrix of the antenna Z, which is 
a symmetric matrix, since it has been obtained from a Galerkin formulation. 
Therefore, its hermitian parts R and X are real and symmetric matrices.  

 
Moreover, matrix R  is positive semi-defined since the power radiated by a 

current nJ  on the surface of a conducting body, is [ ]*, 0n nJ R J ≥ .  

 
However, in practice, due to roundoff errors, R can be a non-definite matrix, 

with very small negative eigenvalues. In this case, a Singular Value 
Decomposition (SVD), already described in section 4.5 of Chapter 4, can be 
used to solve the problem. 
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D. Computation of Characteristic Modes using Matlab. 
 
 The eigenvalues and eigenvectors of any antenna can be obtained in quite a 
straight forward way, by solving (A1.8) with Matlab’s command eig  
 
      [ ], ( , )J D eig X R=                                  (A1.13) 
 
where D is the canonical form of (B-1.A), that is, a diagonal matrix with the 
eigenvalues on the main diagonal, and J is a matrix whose columns are the 
eigenvectors.   
 

Matlab uses LAPACK routines to compute eigenvalues and eigenvectors, so it 
selects the most suitable decomposition algorithm depending on the 
mathematical properties of matrices R and X. 
 

Note Matlab’s command eig returns the eigenvectors and eigenvalues, only if 
R and X are square matrices. If the dimension of these matrices is MxM, Matlab 
will return M eigenvectors and M associated eigenvalues. 
 

It must also be highlighted that eigenvectors yield by the Matlab instruction 
eig are normalized to have Euclidean length, norm(v,2), equal no one. Then, 
eigenvectors provided by Matlab are not normalized to radiate unit power.  

 
If unnormalized current modes are used, the factor ,n nJ RJ  must be 

properly introduced in the theory. As a result in Chapter 2, if unnormalized 
current modes are considered, orthogonality properties of modes transform in  

 
          ( ),m n n mnJ R J P δ= ⋅                                  (A1.14) 

 
                                     ( ),m n n n mnJ X J P λ δ= ⋅ ⋅                                (A1.15) 

  
 ( ) ( ), 1m n n n mnJ Z J P jλ δ= +    (A1.16) 

 
 Moreover, when working with unnormalized current modes, equations 
(2.21) and (2.32) in Chapter 2 must be divided by Pn. 

   
The information presented in this appendix has been extracted from 

“Numerical Recipes in C: The art of scientific computing” (www.nr.com) and 
from Matlab’s help. 
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Appendix 2.  The Mixed Potential Integral Equation  
 

 
 

A. Formulation of the problem 
 
In Chapter 4 it has been explained that the generalized impedance matrix 

from which characteristic modes are obtained, is computed using MoM in 
combination with RWG edge elements. In this appendix the general formulation 
used to compute this generalized impedance matrix is going to be reviewed. 
 

Consider, as shown in Figure A2.1, a perfectly conducting body which is 
placed in a homogenous medium (µ,ε), and whose surface is denoted by S with 
unit normal vector n̂ . The body is illuminated by an incident or impressed field 
( , )i iE H
G G

, defined to be that which would exist in space if the body were not 
present. This incident field induces a surface current on the conductor, and this 
current in turn radiates a scattered field ( , )s sE H

G G
. The total field exterior to the 

body is a superposition of the incident field and the scattered field 
,i s i sE E E H H H= + = +

G G G G G G
. The induced surface current is unknown, but it is 

related to the surface transverse magnetic field as ˆJ n H= ×
G G

.  
 
The general idea is to combine Maxwell Equations with boundary conditions 

in order to derive an integral equation, known as Electric Field Integral Equation 
(EFIE), which relates the incident electric field with the induced surface current. 
Then, if the integral equation can be solved for this current, all other 
electromagnetic quantities may be determined from it. 

 
However, sometimes it is preferred to work with a different formulation of the 

EFIE that is known as Mixed Potential Integral Equation (MPIE).  
 
 

 
 

Figure A2.1. Typical scenario for the problem. 
 

Source  

Conducting Object

M
G

 

J
G
 

n̂

S

rG  ( ) ( ) ( )
( ) ( ) ( )

i s

i s

E r E r E r
H r H r H r

 = +


= +

G G GG G G
G G GG G G  

( ),i iE H
G G

 ( ),s sE H
G G

 



Appendix 2 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

196 

 
The MPIE is a particularization of the EFIE, and it relates the surface currents 

with the vector potential and the gradient of the scalar potential. 
 
The equation for the charge density σ and current J on a conducting body S 

in a known impressed field iE
G

 is obtained as follows.  
 
As explained in [44], the scattered field sE

G
 produced by σ and J, can be 

expressed in terms of retarded potential integrals as 
 

( )sE r j Aω φ= − −∇
GG G                                                   (A2.1) 

 
with the magnetic vector potential defined as 
 

( ) ( )
4

jkR

SS

eA r J r dS
R

µ
π

−

′ ′= ∫∫
G GG G                                            (A2.2) 

 
and the scalar potential as 

 
1( )

4

jkR

S

er dS
R

φ σ
πε

−

′= ∫
G                                                (A2.3) 

 
A harmonic time dependence exp( )j tω  is assumed and suppressed, and 

'R r r= −
G G  is the distance between an arbitrarily located observation point rG and 

a source point 'rG  on S. 
 

The equation of continuity relates the charge density σ with the surface 
divergence of J  

 

S J jωσ∇ ⋅ = −
G

                                                    (A2.4) 
 

Finally, the boundary condition ( )ˆ 0i sn E E× + =
G G

 on S is applied to obtain 

 

( )tan tan
( )iE r j Aω φ= +∇

GG G       rG   on   S                         (A2.5) 

 
Equation (A2.5) together with (A2.2) and (A2.3) constitutes the MPIE. 

 
But let us see how to use the MPIE in combination with the RWG basis 

functions and with MoM, with the aim of converting the integral equation into a 
matrix equation for numerical solution. 
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B. RWG basis functions 
 

 In this work, RWG elements have been chosen as basis functions to 
represent the unknown current on planar structures, since they have been 
demonstrated to be very suitable for problems involving the EFIE and triangular 
patch modelling [149]. 
 

It is assumed that a suitable triangulation, defined in terms of an appropriate 
set of faces, edges, vertices, and boundary edges, has been found to 
approximate S. As shown in Figure A2.2 and Figure A2.3, each pair of triangles 
having a common edge constitutes the corresponding RWG edge element. This 
means that each basis function is associated to an interior edge of the patch 
model, and it vanishes everywhere on S except in the two triangles nT +  and nT −  

attached to the edge. Points in nT +  are designated by the position vector nρ
+  

defined with respect to the free vertex of nT + . Similar remarks apply to the 

position vector nρ
−  except that it is directed toward the free vertex of nT − .The 

plus or minus design of the triangles is determined by the choice of a positive 
current reference direction for the nth edge, the reference for which is assumed 
to be from nT +  to nT − . The vector basis function associated with the nth edge is 
defined as  

 

,
2

( ) ,
2

0,    

n
n n

n

n
n n n

n

l r in T
A
lf r r in T
A

otherwise

ρ

ρ

+ +
+

− −
−






= 





G G

GG G                                     (A2.6) 

 
where ln is the length of the edge, and An

± is the area of the triangle Tn
±. 

 
More detailed considerations concerning the mathematical representation and 

topological properties of triangular patch models may be found in [150]. 
 

The current on the surface S can be approximated by a sum of the 
contributions over all the interior edge elements, with unknown coefficients In 
 

         
1

N

n n
n

J I f
=

≅ ∑
GG

                                                (A2.7) 

 
where N is the number of interior edges. 
 

The unknown coefficients In can be found from classical moment equations. 
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Figure A2.2. Geometrical parameters associated with the nth interior edge. 

 
 

 
Figure A2.3. RWG basis function description for the nth interior edge. 

 
 
C. Matrix equation derivation 
 

Since Galerkin formulation of MoM [42] is going to be applied, RWG basis 
functions fn are going to be used as expansion and testing functions. 

 
A symmetric product is then defined as 
 

,
S

f g f g dS≡ ⋅∫∫
G GG G                                        (A2.8) 

 
Next, for each internal edge, equation A2.5 is tested with the corresponding 

fm yielding 
 

  , , ,i
m m mE f j A f fω φ= + ∇
G G GGG

                             (A2.9) 

 
 

nρ
+  

nρ
−  

nT+ (area= nA+ )
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G
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variation 
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-
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When the symmetric product of (A2.8) is applied to (A2.9) it results in  
 

   
m m m m m m

i
m m mT T T T T T

f E dS j A f dS f dSω φ
+ − + − + −∪ ∪ ∪

⋅ = ⋅ + ∇ ⋅∫∫ ∫∫ ∫∫
G G GGG

           (A2.10) 

 
Using the distributive property of the ∇ operator, last term in (A2.10) can be 

rewritten as 
 

 ( )
m m m m m m

m m mT T T T T T
f dS f dS f dSφ φ φ

+ − + − + −∪ ∪ ∪
∇ ⋅ = ∇ ⋅ − ∇ ⋅∫∫ ∫∫ ∫∫

G G G
            (A2.11) 

 
By applying Gauss Theorem, and taking into account that the testing 

functions fm do not have a component normal to the boundary, it can be 
demonstrated that  

 
 ( ) 0

m m
mT T

fφ
+ −∪

∇ ⋅ =∫∫
G

                                      (A2.12) 

 
Thus, equation (A2.10) can be rewritten as 
 

m m m m m m

i
m m mT T T T T T

f E dS j A f dS f dSω φ
+ − + − + −∪ ∪ ∪

⋅ = ⋅ − ∇ ⋅∫∫ ∫∫ ∫∫
G G GGG

          (A2.13) 

 
    The magnetic vector potential due to the nth interior edge can be expressed 
as 
 

                 
1

( ) ( )
4 n n

jkR jkRN

n nS T T
n

e eA r J dS I f r dS
R R

µ
π + −

− −

∪
=

′ ′ ′= =∑∫∫ ∫∫
GG GG G

          
(A2.14) 

 
Similarly, considering (A2.4), the scalar potential can be rewritten as 
 

1( )
4 4

jkR jkR

S S

e j er dS J dS
R R

φ σ
πε πωε

− −

′ ′ ′= = ∇ ⋅∫∫ ∫∫
GG          

 
(A2.15) 

  
1

( ) ( )
4 n n

jkRN

n nT T
n

j er I f r dS
R

φ
πωε + −

−

∪
=

 
′ ′ ′= ∇ ⋅ 

 
∑ ∫∫

GG G

                  
(A2.16) 

 
where 'R r r= −

G G . 
 

Next, ( )nf r
G G

 and ( )nf r′ ′∇
G G

 in (A2.14) and (A2.16) are replaced by its 
corresponding values giving 

 

( )
4 2 q

jk r r
n

n nq T

l eA r dS
A r r

µ ρ
π ±

′− −
±

±
′= ⋅

′−∫∫
G GG GG

G G
                     

(A2.17) 
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1( )

4 q

jk r r
n

n q T

jl er dS
A r r

φ
πωε ±

′− −
±

±
′= ± ⋅

′−∫∫
G G

G
G G

                     
(A2.18) 

 
Note ( )n rφ± G  and ( )nA r±

G G are the contributions of the nth interior edge associated 

to source triangles qT +  and qT − , to the total scalar potential and vector 
potential, respectively. 
  

Finally, the left part of equation (A2.13) can be transformed in 
 

 ( )

( ) ( )

´ ´
1 1

( )

1 1
2 2

1

m m m m

m m m m

m m

m mT T T T

N N

n n n m n n n m
n nT T T T

m n n m n n m
m mT T

n

m n
m

j A f dS f dS

j I A A f dS I f dS

j l A A dS A A dS
A A

I

l
A

ω φ

ω φ φ

ω ρ ρ

φ φ

+ − + −

+ − + −

+ −

∪ ∪

+ − + −

= =∪ ∪

+ − + + − −
+ −

+
+

⋅ − ∇ ⋅ =

   
= + ⋅ − + ∇ ⋅ =   

   

 
 + ⋅ + + ⋅
 
 =

− +

∫∫ ∫∫

∑ ∑∫∫ ∫∫

∫∫ ∫∫

G GG

G GG G

G G G GG G

( ) ( )
1 1

m m

N

n

n n n
mT T

dS dS
A

φ φ
+ −

=
− + −

−

 
 
 
 

  
 − + 
    

∑
∫∫ ∫∫

    
(A2.19) 

 

and the right part of equation (A2.13) transforms in 
 

                  1 1
2 2m m

m m

i i i
m m m mT T

m mT T

f E dS l E dS E dS
A A

ρ ρ
+ −

+ −

+ −
+ −∪

 
⋅ = ⋅ + ⋅ 

  
∫∫ ∫∫ ∫∫

G G G GG G           (A2.20) 

 
The current density over a perfectly conducting body can be obtained by 

solving the following system 
 

      [ ][ ] [ ]Z I V=                                               (A2.21) 

 
The column vector [I] in (A2.21) is the current density vector, and its 

elements are the coefficients nI  of (A2.7). 
 

The column vector [V] in (A2.21) is called the excitation vector, and its 
elements are defined as 
 

   1 1 1, ,
2 2

m m

i i
m m m m

m mT T

V l E dS E dS m N
A A

ρ ρ
+ −

+ −
+ −

 
= ⋅ + ⋅ = 

  
∫∫ ∫∫
G GG G …       (A2.22)
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Matriz [Z] is an N x N matrix known as generalized impedance matrix, and its 
elements Zmn model the coupling between the currents associated to interior 
edges m and n of the meshing surface 

 

 

( ) ( )

( ) ( )

1 1
2 2
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m m

m m
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+ −
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 
 − + − + =
 
 

∫∫ ∫∫

∫∫ ∫∫

G G G GG G

…

 (A2.23) 

 
where  nA±

G
 and nφ

±  have already been defined in (A2.17) and (A2.18), 
respectively. 
 

Evidently, [Z] is a square matrix because of the use of Galerkin formulation. 
Moreover, on the base of the reciprocity theorem [Z] is symmetric. This 
symmetry of the impedance matrix makes its computation easier. 

 
 
 

D. Efficient numerical evaluation of matrix elements 
 

To obtain the elements of matrix [Z], ( )n rφ± G  and ( )nA r±
G G  are going to be 

evaluated at the mth edge associated to the basis function fm , with qT +  and qT −  
being the triangles attached to the mth internal edge. This way, equations 
(A2.17) and (A2.18) can be rewritten as 

 

                                    ( )
4 2

p
j

q
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p n

n j nq pT
j

l eA r dS
A r r

µ ρ
π ±

′− −
±

±
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G G

G GG
G G                        (A2.24) 

                                    1( )
4

p
j

q

jk r r
p n

n j q pT
j

jl er dS
A r r

φ
πωε ±

′− −
±

±
′= ± ⋅

′−∫∫
G G

G
G G                        (A2.25) 

 
Integrals (A2.24) and (A2.25) are most conveniently evaluated by 

transforming from the global coordinate system to a local system of coordinates 
defined within qT .  To define these coordinates, note that the vectors iρ  in 

Figure A2.4 divide qT  into three subtriangles of areas A1, A2, and A3, with l1, l2 
and l3, respectively, as one of their sides. The areas are not independent, 
however, they must satisfy 1 2 3

qA A A A+ + = .   
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Figure A2.4. Local coordinates and axis for the source triangle qT  

 
 

Now, the normalized area coordinates can be defined as 
 

 1
q

A
A

ξ =  (A2.26) 

 2
q

A
A

η =  (A2.27) 

 3
q

A
A

τ =  (A2.28) 

  
Because of the area constraint these coordinates must satisfy 
 

1ξ η τ+ + =                                                   (A2.29) 
 
 

Note that all three coordinates vary between zero and unity in qT  and that at 
the triangle corners 1r

G
, 2r
G

 y 3r
G

, the triplet  ( , , )ξ η τ  takes on the values (1,0,0) , 
(0,1,0)  and (0,0,1) , respectively. The transformation from Cartesian to 
normalized area coordinates may be written in vector form as 
 

           1 2 3r r r rξ η τ′ = + +
G G G G

                       (A2.30) 

                                  1 2 3(1 )r r r rξ η ξ η′ = + + − −
G G G G

        (A2.31)             

[ ]1 3 2 3 3( ) ( ) ( ) ( ) 1, 2,3n n nr r r r r r r r n vertexρ ξ η± ′= ± − = ± − + − + − =
G G G G G G G G G

     (A2.32) 
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It can easily be demonstrated that surface integrals  over qT  transform as 

follow 
 

 
11

1 2 3
0 0

( ) 2 ( (1 ) )
q

q

T

g r dS A g r r r d d
η

ξ η ξ η ξ η
−

= + + − −∫∫ ∫ ∫
G G G G    (A2.33) 

 
 By applying (A2.33) and substituting (A2.32) in (A2.24), ( )p

n jA r±
G G

 can be 

expressed as 
 

11

1 3 2 3 3
0 0

( ) 2 ( ) ( ) ( )
4 2
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p q q q q q q q q q q qn
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G G G G G G G G    

(A2.34) 
 
where pq p q

j jR r r′= −
G G

.  

 
The physical meaning of pq

jR  is the distance between an observation point j 
located at triangle p, and a source point located at triangle q.  

 
A more compact expression for ( )p

n jA r±
G G

 is 

 

                       1 3 2 3 3( ) ( ) ( ) ( )
4 q q

p q q pq q q pq q q pqn
n j n
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with 
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Likewise,  an alternative expression can be derived for ( )p

n jrφ± G  
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Thus, only three independent integrals must be evaluated for each 
combination of triangles p and q. Then, the elements Zmn of matrix [Z] can be 
expressed as a linear combination of integrals that are independent of the 
observation and source edges. Each triangle presents a maximum of three 
internal edges, so the advantage of using the previously described formulation is 
obvious, since all the contributions coming from the edges of triangles ( qT , pT ) 
to the impedance matrix, can be derived just from the three integrals pqI , pqIξ  

and pqIη . As a result, the total number of matrix elements requiring evaluation of 

the same potential integrals can be as large as nine.  
 
When the source triangle and the observation triangle are far away from each 

other, integrals pqI , pqIξ  and pqIη , present a soft variation over the surface of 
qT . In this case, the abovementioned integrals can be evaluated numerically. 

The numerical evaluation is based on the use of numerical quadrature 
techniques [151] specially developed for triangular domains 

 
 

 
11

10 0

( )
pq pqq
j jiijkR jkRN

pq p q q
j ipq pq

ij ji

e eI r d d
R R

η

ξ η α
− − −

=

= =∑∫ ∫
G  (A2.40) 

where: 

iN : Number of points evaluated over the source triangle. 

iα : Weighting coefficient. 

pq
jiR : Distance between an observation point located at triangle p, and a source 

point located at triangle q. 

 

( )( ) ( )( )1 3 2 3 3 1 3 2 3 3( ) ( )pq p q p p p p p p p q q q q q q q
ji j i j j i iR r r r r r r r r r r r rξ η ξ η= − = − + − + − − + − +

G G G G G G G G G G G G

                                                                                                                                 (A2.41) 

( , )q q
i iξ η  are the coordinates for an integration point i over source triangle q. 

( , )p p
j jξ η  are the coordinates for an integration point j over source triangle p. 

 
 
However, for the terms in which p=q the integrands are singular and for 

these cases, the singular portion of each integrand must be removed and 
integrated analytically [152]-[153]. 

 
 
 



 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

205

Related Publications 
 
 

 
International Magazines 
 
[1] M. Cabedo-Fabrés, A. Valero-Nogueira, and M. Ferrando-Bataller, “A Wideband 

Arrowhead Planar Monopole Antenna for Multi-Service Mobile Systems,” Microwave 
and Optical Tech. Letters, vol. 37, no.3, pp. 188-190, March 2003. 

[2] E. Antonino, M. Cabedo, M. Ferrando, A. Valero, “Novel Wide-band Double-fed 
Planar Monopole Antennas,” Electronics Letters, vol. 39, November 2003, pp.1635-
1636. 

[3] E. Antonino-Daviu, C. A. Suarez-Fajardo , M. Cabedo-Fabrés , and M. Ferrando-
Bataller, “Wideband Antenna for Mobile Terminals Based on the Handset PCB 
Resonance,” Microwave Opt. Technol. Lett., vol. 48, no. 7, pp. 1408-1411, April 
2006. 

[4] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “The Theory of Characteristic Modes Revisited: A Contribution to the 
Design of Antennas for Modern Applications,” Accepted for publication in IEEE 
Trans. Antennas Propagat. Magazine. Expected publication date: October 2007. 

[5] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “Notched Radiating Ground Plane Analyzed from a Modal Perspective,” 
Accepted for publication in Frequenz. Expected publication date: March 2007. 

[6] N. Belmar-Moliner, A. Valero-Nogueira, M. Cabedo-Fabrés and E. Antonino-Daviu, 
“Simple design for cost-effective diversity antennas” Microwave Opt. Technol. Lett., 
vol. 49, no. 4, pp. 994-996, April 2007. 

 

 
International Conferences 
 
[1] M. Cabedo-Fabrés, M. Ferrando-Bataller, and A. Valero-Nogueira, “Systematic 

study of elliptical loop antennas using Characteristic Modes,” Antennas and 
Propagation Society International Symposium, 2002. IEEE 
Vol. 1,  16-21 June 2002, Page(s):156 – 159. 

[2] M. Cabedo, M. Ferrando and A. Valero, “Innovative wide-band planar monopole  
antenna for multi-service mobile systems”, Journées Internationales de Nice sur les 
Antennes - International Symposium on Antennas, Nice, November 2002. 

[3] M. Cabedo-Fabrés, E. Antonino-Daviu, M. Ferrando-Bataller and A. Valero-
Nogueira, “On the use of Characteristic Modes to describe patch antenna 
performance,” Antennas and Propagation Society International Symposium, 2003. 
IEEE Vol. 2,  22-27 June 2003, Page(s):712 – 715. 

[4] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira and M. Ferrando-
Bataller, “Analysis of wide band planar monopole antennas using Characteristic 
Modes,” Antennas and Propagation Society International Symposium, 2003. IEEE 
Vol. 3, 22-27 June 2003, Page(s):733 – 736. 

[5] M. Ferrando-Bataller, A. Valero-Nogueira, M. Cabedo-Fabrés and E. Antonino-
Daviu, “Design of ultra-wideband antennas using Characteristic Modes,” 
INICA/COST 284 Workshop, Berlin, Germany, 2003. 



 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

206 

[6] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “Controlled antenna design method based on the use of Characteristic 
Modes,” PIERS 2004, Pisa, Italy, March 2004. 

[7] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, and J. I.  Herranz, 
“Analysis of the coupled chassis-antenna modes in mobile handsets,” Antennas 
and Propagation Society International Symposium, 2004. IEEE Vol. 3, 20-25 June 
2004, Page(s):2751 – 2754. 

[8] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, and A. Valero-
Nogueira, “A discussion on the feed configuration of planar monopole antennas to 
obtain ultra wideband performance,” Antennas and Propagation Society 
International Symposium, 2004. IEEE Vol. 2, 20-25 June 2004, Page(s):1867 – 
1870. 

[9] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “Optimization of the polarization of reflectarrays using Characteristic 
Modes,” Antennas and Propagation Society International Symposium, 2004. IEEE 
Vol. 1, 20-25 June 2004, Page(s):13 – 16. 

[10] M. Cabedo-Fabrés, A. Valero-Nogueira, J.I. Herranz-Herruzo and M. Ferrando-
Bataller, “A discussion on the Characteristic Mode Theory limitations and its 
improvement for the effective modelling of antennas and arrays,” Antennas and 
Propagation Society International Symposium, 2004. IEEE Vol.1, 20-25 June 2004, 
Page(s):121 – 124. 

[11] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “Systematic antenna design using the Theory of Characteristic Modes,” 
JINA 2004, International Symposium on Antennas, Nice, France, November 2004. 

[12] E. Antonino-Daviu, M. Cabedo-Fabrés, A. Valero-Nogueira and M. Ferrando-
Bataller, “Design of very wide-band linear polarized antennas,” JINA 2004, 
International Symposium on Antennas, Nice, France, November 2004. 

[13] E. Antonino-Daviu, M. Cabedo-Fabrés, A. Valero-Nogueira and M. Ferrando-
Bataller, “Resonant modes in antenna handsets,” INICA/COST 284 Workshop, 
Gothenburg, Sweeden, 2004. 

[14] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, A. Valero-Nogueira 
and Marta Martínez-Vazquez, “Novel antenna for mobile terminals based on the 
chassis-antenna coupling,” Antennas and Propagation Society International 
Symposium, 2005. IEEE, July 2005. 

[15] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-
Bataller, “Wideband Radiating Ground Plane with Notches,”  Antennas and 
Propagation Society International Symposium, 2005. IEEE, July 2005. 

[16] M. Cabedo-Fabrés, A. Valero-Nogueira, E. Antonino-Daviu, and M. Ferrando-
Bataller, “Modal analysis of a radiating slotted PCB for mobile handsets,” European 
Conference on Antenna and Propagation (EUCAP), Nov. 2006. 

[17] M. Ferrando-Bataller, M. Cabedo-Fabrés, E. Antonino-Daviu, and A. Valero-
Nogueira, “Overview of planar monopole antenas for UWB applications,” European 
Conference on Antenna and Propagation (EUCAP), Nov. 2006. 

 
 
 
 
 
 



 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

207

National Conferences 
 
[1] M. Cabedo-Fabrés, M. Ferrando-Bataller y A. Valero-Nogueira, “Nuevo monopolo 
plano de banda ancha para comunicaciones móviles multiservicio,” XVII Simposium 
Nacional de la Unión Científica Internacional de Radio URSI 2002, Alcalá de Henares. 

[2] M. Cabedo-Fabrés, A. Valero-Nogueira y M. Ferrando-Bataller, “Estudio sistemático 
de antenas de hilo empleando modos característicos,” XVII Simposium Nacional de la 
Unión Científica Internacional de Radio URSI 2002, Alcalá de Henares. 

[3] M. Cabedo-Fabrés, A. Valero-Nogueira, M. Ferrando-Bataller, y J. I. Herranz-
Herruzo, “Aplicación de la teoría de modos característicos al modelado efectivo de 
antenas y arrays,”   XVIII Simposium Nacional de la Unión Científica Internacional de 
Radio URSI 2003, La Coruña. 

[4] M. Cabedo-Fabrés, E. Antonino-Daviu, M. Ferrando-Bataller, y A. Valero-Nogueira, 
“Modos característicos de estructuras planas de forma arbitraria,” XVIII Simposium 
Nacional de la Unión Científica Internacional de Radio URSI 2003, La Coruña. 

[5] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, y A. Valero-Nogueira        
“Diseño de monopolos planos con alimentación múltiple a partir de la teoría de los 
modos característicos,” XVIII Simposium Nacional de la Unión Científica Internacional 
de Radio URSI 2003, La Coruña. 

[6] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, y A. Valero-Nogueira        
“Nueva antena de banda ancha y polarización dual,” XVIII Simposium Nacional de la 
Unión Científica Internacional de Radio URSI 2003, La Coruña. 

[7] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, y M. Ferrando-Bataller,   
“Diseño de antenas de hendidura en plano de masa finito,” XIX Simposium Nacional de 
la Unión Científica Internacional de Radio URSI 2004, Barcelona. 

[8] M. Cabedo-Fabrés, E. Antonino-Daviu, A. Valero-Nogueira, y M. Ferrando-Bataller,  
“Estudio modal de resonadores abiertos acoplados,” XIX Simposium Nacional de la 
Unión Científica Internacional de Radio URSI 2004, Barcelona. 

[9] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, y A. Valero-Nogueira        
“Efecto de las discontinuidades en la radiación de estructuras planas,” XIX Simposium 
Nacional de la Unión Científica Internacional de Radio URSI 2004, Barcelona. 

[10] E. Antonino-Daviu, M. Cabedo-Fabrés, M. Ferrando-Bataller, y A. Valero-Nogueira        
“Acoplamiento de modos resonantes en terminales móviles,” XIX Simposium Nacional 
de la Unión Científica Internacional de Radio URSI 2004, Barcelona. 

[11] M. Cabedo-Fabrés, E. Antonino-Daviu,  D. Sánchez-Escuderos, M. Ferrando-
Bataller, “On the Influence of the Shape of Planar Monopole Antennas in the 
Impedance Bandwidth Performance,” Sesión especial de ACE durante el XX 
Simposium Nacional de la Unión Científica Internacional de Radio URSI 2005, Gandía. 

[12]  E. Antonino-Daviu, M. Cabedo Fabres, F. Vico Bondia, C. Suarez Fajardo, “Nueva 
antena multibanda para terminales móviles basada en la generación de resonancias en 
el plano de masa del Terminal,” XX Simposium Nacional de la Unión Científica 
Internacional de Radio URSI 2005, Gandía. 

[13] A. Valero-Nogueira, M. Cabedo-Fabrés, E. Antonino-Daviu, “Diseño de una antena 
compacta para sistemas MIMO,” XX Simposium Nacional de la Unión Científica 
Internacional de Radio URSI 2005, Gandía. 

[14] M. Cabedo-Fabrés, E. Antonino-Daviu, y V. M. Rodrigo Peñarrocha, “Análisis 
modal de un plano de masa radiante doblado y con una ranura para terminales 
móviles,” XXI Simp. Nacional de la Unión Científica Int. de Radio URSI 2006, Oviedo. 



 

 
Marta Cabedo Fabrés                                                                                               Ph. D. Dissertation 

208 

 

 

 




