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Abstract—Localization is a fundamental function in cooper-
ative control of micro unmanned aerial vehicles (UAVs), but
is easily affected by flip ambiguities because of measurement
errors and flying motions. This study proposes a localization
method that can avoid the occurrence of flip ambiguities in
bounded distance measurement errors and constrained flying
motions; to demonstrate its efficacy, the method is implemented
on bilateration and trilateration. For bilateration, an improved
bi-boundary model based on the unit disk graph model is created
to compensate for the shortage of distance constraints, and two
boundaries are estimated as the communication range constraint.
The characteristic of the intersections of the communication
range and distance constraints is studied to present a unique
localization criterion which can avoid the occurrence of flip am-
biguities. Similarly, for trilateration, another unique localization
criterion for avoiding flip ambiguities is proposed according to the
characteristic of the intersections of three distance constraints.
The theoretical proof shows that these proposed criteria are
correct. A localization algorithm is constructed based on these
two criteria. The algorithm is validated using simulations for
different scenarios and parameters, and the proposed method
is shown to provide excellent localization performance in terms
of average estimated error. Our code can be found at: https:
//github.com/QingbeiGuo/AFALA.git.

Index Terms—bi-boundary model, flip ambiguity, bilateration

I. INTRODUCTION

The use of multiple unmanned aerial vehicles (UAVs) has
become very popular in civil and military applications.

As a key technical problem, localization of multiple mirco-
UAVs finds its application in location tracking [1], formation
flight [2], [3] and cooperative mission [4], [5], etc. As the most
frequently used localization method, GPS suffers from large
location errors of 10-30m on average. Therefore, different
techniques have been proposed to address the localization
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problem [6]–[9]. Localization techniques, which are based
on distance measurement (e.g., trilateration and bilateration),
have always attracted significant research interest [10]–[14].
However, flip ambiguity (FA) is one of the major problems
of these localization techniques, especially in the presence
of measurement errors [15]–[19]. The measurement error be-
tween the measurement distance and the true distance always
occur because of external environment noise [10]–[14], that
easily causes FA and results in an incorrect estimate [20] [21]
[22]. Moreover, once a FA has occurred, it not only affects
the current localization but also causes erroneous results for
subsequent localizations.

Global rigidity is widely used for localization to ensure that
the result is unique [23]–[25]. A network can be uniquely
located if and only if its corresponding graph is globally rigid
[26]. However, even if the network is globally rigid in the
presence of errors, FA may still occur. In trilateration, the three
measured distances may locate their connected node to a false
side, which causes FA due to errors in the measurements [27],
[28].

Bilateration only requires network rigidity conditions to
be met, not global rigidity [29]–[31], and reduces the re-
liance on high node density. However, FA in bilateration
deserves more attention. Given that only two distances exist,
the localization conditions are so insufficient that additional
localization constraints are required. The communication range
constraint of the nodes is widely adopted as an additional
localization constraint and therefore has an important role in
determining the final location from the candidate locations.
More importantly, an incorrect choice inevitably results in the
occurrence of FA so that the estimation of the communication
range of a node becomes very important.

The unit disk graph [32]–[34] is commonly used to model
the communication range of a wireless node. Each node has
a single circle with a radius equal to a fixed value, and two



MANUSCRIPT 2

nodes are connected if the distance between them is below the
specified threshold. However, in reality, the boundary between
reachable and unreachable areas cannot be clearly defined
most of the time. Communication range between nodes is
impeded by external conditions, for instance, buildings in a
city [35], and internal factors, such as its energy availability
especially after operating for long duration. Therefore, the
fixed communication range assumption has its limitation in
localization.

Our proposed localization method is intended to address
the aforementioned problems. In our method, we assume the
distance measurement errors to be bounded [36] and the flying
motions to be constrained [37]. An improved bi-boundary
model of the communication range is proposed as localization
constraints based on the model of unit disk graph. The new
model depends on only distances and connectivity, and calcu-
lates the double boundaries of communication ranges through
the bounded measurement error. Given that both bilateration
and trilateration are analyzed, every constraint is regarded as
a possible location region. The intersections of two distance
constraints form two possible localization regions first, then
the third constraint (bi-boundary and distance constraint for
bilateration and trilateration, respectively) is used to eliminate
one region, which causes FA, by analyzing the characteristic
of their intersections. Therefore, the remaining region must
contain the true location and the estimated location without
the possibility of FA.

Accordingly, the main contributions of this paper are as
follows:
• An improved bi-boundary model based on the unit disk

graph model is presented by analyzing the connectivity
characteristics of a wireless node.

• Based on the double constraints of distance and bi-
boundary, a localization criterion that avoids FA in bi-
lateration is proposed.

• Another localization criterion that avoids FA in trilatera-
tion is also developed.

• A localization algorithm based on the above two local-
ization criteria, which dramatically improves the location
accuracy, is constructed and evaluated through extensive
simulations.

The rest of this paper is organized as follows: Section
II introduces the related work. Section III formulates the
localization problem. Section IV presents an improved bi-
boundary model based on the unit disk graph model, describes
the localization criteria that avoid FA in bilateration and trilat-
eration, and provides their proofs. Based on these localization
criteria, the localization algorithm is developed. In section V,
the localization algorithm is validated through comprehensive
simulation. Finally, section VI presents the conclusion.

II. RELATED WORK

Various works have investigated the localization and the
phenomenon of FA that may hamper the unique localization
of distributed nodes, and have proposed different localization
methods for reducing or avoiding FA. These methods can
be classified into two categories: methods based on global

and non-global rigidity properties which take trilateration and
bilateration as representatives, respectively. Further details of
these methods are provided below.

A unique and anchor-free localization algorithm, which also
resolves the FA problem in its second step, has been proposed
by Zhang et al. [19]. A novel combination of distance and
direction estimation technique is introduced to detect and
estimate ranges between neighbors. Using both distance and
angle information, we construct unidirectional local coordinate
systems to avoid the reflection ambiguity. However, angle
measurement is too expensive to be imbedded in most nodes,
leading to few practical applications and inspiring our devel-
opment of a new localization algorithm to solve the FA issue.

Trilateration is the most widely used localization method
based on distance measurement [23], [26]. The estimated
location of a node is determined using measured distances
to three other nodes that have known locations and are not
collinear. Trilateration without measurement errors is uniquely
localizable; however, trilateration with measurement errors
tends to suffer from the effect of FA [28], [38].

To prevent incorrect localization caused by FA, a robust
quadrilateral was used to perform trilateration in [21], [39]–
[41]. Moore et al. [21] introduced the notion of robust
quadrilateral, which is a fully connected quadrilateral with
global rigid properties, and used it to reduce the probability
of FA. They found all possible robust quadrilaterals and then
realized global localization by overlapping any two robust
quadrilaterals that have three common nodes. The simulation
results showed that the aforementioned method is suitable for
the localization of high node density, because it depends on
these robust quadrilaterals that require a high node density to
meet the feature of global rigidity.

Kannan et al. [22] pointed out that a node may be estimated
at a flipped location caused by measurement errors in a
globally rigid graph when its three neighboring nodes with
known location are nearly collinear. They proposed a robust
criterion based on the robust quadrilateral to calculate the
probability of FA, to eliminate all the locations that might
have caused it, and to improve localization performance. The
simulations show that, compared with the robust quadrilateral,
this method decreases not only the average estimation error
but also the average number of localized nodes resulting from
the robust criterion, which requires more constraints than
the robust quadrilateral. Although more constraints can avoid
problems of FA, they also limit the location of more nodes.

Akcan et al. [27] proposed a heuristic solution based on the
notion of a “safe-triangle” to mitigate the problem of FA in
a trilateration network with range noise. First proposed here,
a safe-triangle is formed by three nodes with known location,
where the distance of any node to the line passing through two
other nodes is larger than a set threshold. If a triangle is not
a safe-triangle, its nodes are unable to provide trilateration
for other nodes. The main aim is to minimize the number
of FA. The simulation results show that the algorithm can
achieve better performance than trilateration. However, similar
to trilateration, the safe-triangle algorithm also requires a high
node density.

To reduce localization dependence on global rigidity, many
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algorithms [29], [30], [32] are proposed for network local-
ization using bilateration which requires rigid conditions but
not necessarily globally rigid. Based on [29], Goldenberg et al.
[30] proposed the “Sweeps” algorithm for network localization
using bilateration. The Sweeps algorithm achieves one of the
best performance in terms of number of localized nodes using
bilateration. However, the algorithm requires a bilateration
ordering to exist in the network, a condition which does not
always exist in a sparse network; thus, it may fail in many
localizable networks [30], [31].

Oliva et al. [32] introduced a model of shadow edges to
extend trilateration to bilateration, which can produce effective
solutions despite the lack of localization condition. The algo-
rithm shows better performance than trilateration, and is able
to localize the network even when trilateration fails. However,
this method is based on unit disk graphs and only limited to
noiseless environments.

The objective of our research is to avoid the occurrence
of FA and achieve the accurate localization network using
trilateration and bilateration with the errors including bounded
measurement errors and constrained motions. A localization
algorithm is proposed based on two classes of localization
criteria that avoid the FA problem. In our algorithm, the two
classes of localization criteria are derived by gradually analyz-
ing the intersection characteristic of all the constrains. Then,
trilateration and bilateration are combined to take advantage
of the best of them, thus making them applicable in various
kinds of networks that are sparse or not.

III. PROBLEM FORMULATION

Without loss of generality, the localization problem of a
micro-UAV network modelled as a mobile sensor network
can be formulated in 2D space [42], [43]. Multiple micro-
UAVs, which consists of a set of n nodes, denoted as s1 to
sn, are flying in a physical region. Each node has a limited
communication range and establishes a wireless link with
a neighboring node, which is called its neighboring node
only if they are within the communication range of each
other. A node is assumed to be capable of estimating the
distance to the neighboring node using distance measurement
technology. Given the constraints on energy consumption and
implementation environment, most nodes do not know their
locations except anchors which can obtain their own locations
by using GPS. In this study, the micro-UAV network is
analyzed without anchor nodes. The communication range of
node si is denoted by ri, and its estimated communication
range by r̂i, its true location by pi, and its estimated location
by p̂i. The true distance between any two neighboring nodes
si and sj is denoted by dij , and the measured distance by d̂ij ,
where i, j = 1,2,. . . , n.

For a connected network, we assume that the distances
between neighboring nodes can be acquired in a time unit [44].
The speed of a node si is the distance travelled by the node
per time unit [37], denoted as di, and dmax is the maximum
distances travelled by these nodes in a time unit. Therefore, in
each time unit, the micro-UAV network can be described by a
model of undirected graph G = (V , E) with a nonempty vertex

set V = {1,2,. . . , n} and edge set E, where each vertex i ∈ V
uniquely represents a node si, and each edge e(i, j) ∈ E is
uniquely associated with a node pair (si, sj), for which si and
sj are neighbors, and d̂ij is known. The measurement error of
e(i, j) is denoted by eij such that eij = dij− d̂ij , and emax is
the maximum measurement errors. The network topology can
and will change in the different time units because of the mea-
surement errors and the flying trajectories. However, during
the localization process, si has a possible localization region
set Ri = {ri1, ri2} and corresponding candidate location set
Pi = {pi1, pi2} because of the FA phenomenon. While the
true location pi is difficult to be determined due to the errors
consisting of the measurement errors and the flying distances,
Ri and Pi can be determined by the measured distances and
the errors. FA occurs when the estimated location and the true
location are not in the same localization region. Therefore, to
determine the true localization region becomes a key problem
in deciding whether FA occurs. By gradually analyzing the
characteristic of the intersections corresponding to all the
constraints, our method eliminates the localization region in
which each location causes FA instead of choosing which one
contains the true location. Therefore, the remaining region is
identified as the true localization region, and the corresponding
candidate location is regarded as the estimated location with
no possibility of FA.

IV. LOCALIZATION CRITERIA AND LOCALIZATION
ALGORITHM

A. Bi-boundary Model of Communication Range Constraint

In this section, an improved bi-boundary model based on the
unit disk graph is presented to model the topology of wireless
sensor networks with the errors which consist of the bounded
measurement errors and the constrained motions. Now, we
first focus on the effect of only the measurement errors,
and the flying motions will be introduced in Section IV.D.
In this bi-boundary model, each node has double concentric
circles with two different radii, and the space between two
circles represents an uncertainty in the communication range.
The inner and outer boundaries represent the lower limit of
the reachable range and the upper limit of the unreachable
range, respectively; thus, this bi-boundary design is more
suitable for the actual environment. The calculation of the
two boundaries is independent of the measuring technique
and instead completely depends on the knowledge of the
distances, the measurement errors and connectivity between
nodes, without maintaining the individual parameter of the
communication range. The process of estimating the upper and
lower boundaries of a wireless node is given in detail below.

Let ε > 0 be a threshold of the distance variation, such that
|eij | = |dij − d̂ij | ≤ ε = emax. Thus,

dij ∈ [d̂ij − ε, d̂ij + ε]. (1)

Following the aforementioned analysis on the neighboring n-
ode and communication noise, for every node si, the estimated
communication range r̂i can be bounded as

r̂i ≥ max(D1
i )− ε, (2)
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Fig. 1. Example of estimating the communication range. For node si, the
minimum of the estimated communication range is d̂io−ε, and the maximum
is d̂pi + d̂pq + 2ε.

where Dk
i represents the measured distance set between the

nodes that are at least k-hop away from node si, where k
= 1,2,. . . ,n. In particular, D1

i = {d̂ij | e(i, j) ∈ E}, D2
i =

{d̂il+d̂lj | e(i, j) /∈ E, e(i, j) ∈ E, e(i, j) ∈ E, and l 6= i,
l 6= j}.

To further analyze ri, the scenario is illustrated in Fig. 1.
Given the unknown location of si which is connected with
both so and sp but is not connected with sq , d̂iq cannot be
directly calculated using pi and pq; thus, it cannot contribute
to the estimation of ri. The sum of any two sides of a triangle
is greater than the third side, so that ri is less than the sum
of any 2-hop distance from si to sq . Therefore, considering
the factor of the measurement errors, the following condition
must be satisfied:

r̂i < min(D2
i ) + 2ε. (3)

Finally, the estimated communication range r̂i, which satisfies
equations (2) and (3), is bounded as follows:

max(D1
i )− ε ≤ r̂i < min(D2

i ) + 2ε. (4)

The connection property of a node therefore affects its estimat-
ed result. Moreover, higher node density, which increases the
degree of node connectivity, makes the estimate more precise.

B. FA Avoidance Criteria for Localization using Bilateration

In this section, we introduce the scenario of using bilatera-
tion and present a localization criteria for avoiding FA using
the bi-boundary and distance constraints. Fig. 2 represents the
corresponding graph of localization without flip ambiguities
using bilateration. Fig. 2 (a) shows a normal case without
near-collinear and overlapping occurrences. Fig. 2 (b) and
(c) depict a near-collinear case and an overlapping case,
respectively. Moreover, a compositive case with near-collinear
and overlapping occurrences is shown in Fig. 2 (d). For each
case above, we will follow the same process because our
proposed localization method adapts to all the cases. The
location of node so is assumed to be the origin, and another
node sp is selected to form the positive x-axis, and the third
node sq is located in the upper half-plane. The intersections of

the black annulus and the red annuli form the upper region rq1,
which is the possible localization region of sq . The possible
localization regions of si are the two regions ri1 and ri2
consisting of the intersections of the gray annulus and the blue
annuli. The three regions of rr1, rr2 and rq1 are highlighted
with horizontal stripes, vertical stripes and mesh, respectively.
u and v are any points of rq1 and ri1, respectively, and their
communication ranges are denoted by the green annulus and
the yellow annulus, respectively. Obviously, both u and v are
within the communication range of each other, and hence they
must be adjacent. Furthermore, each point of ri1 clearly is
within the communication range of u; thus, for u, the whole
region ri1 is not a possible localization region of si. Note
that due to the uncertainty of the true location pp, there exist
countless red annuli and blue annuli whose centers are at every
point in between (d̂op−ε, 0) and (d̂op+ε, 0), but only two red
annuli and two blue annuli at both ends are shown to simplify
the figure.

The true distances dop, doq and dpq among the three nodes
can be bounded as follows:

dop ∈ [d̂op − ε, d̂op + ε], (5)

doq ∈ [d̂oq − ε, d̂oq + ε], (6)

dpq ∈ [d̂pq − ε, d̂pq + ε]. (7)

It is obvious that the true location pp of sp is between
(d̂op − ε, 0) and (d̂op + ε, 0). The true location pq of node sq
is calculated based on po, pp, doq and dpq . Based on equations
(6) and (7), the two close intervals form two annulus regions,
which can be defined using d̂oq and d̂pq as

roq = {(x, y)|
(d̂oq − ε)2 ≤ (x− xo)2 + (y − yo)2 ≤ (d̂oq + ε)2},

(8)

rpq = {(x, y)|
(d̂pq − ε)2 ≤ (x− xp)2 + (y − yp)2 ≤ (d̂pq + ε)2},

(9)

where (xo, yo) and (xp, yp) are the location coordinates of so
and sp, respectively. Since so is assumed to be the origin,
equation (8) can be also written as follows:

roq = {(x, y)|(d̂oq − ε)2 ≤ x2 + y2 ≤ (d̂oq + ε)2}. (10)

However, as equation (5) shows, the true location pp is
uncertain. Thus, equation (9) can be also written as follows:

rpq = {(x, y) |
((d̂pq − ε)2 ≤ (x− d̂op + ε)2 + y2 ≤ (d̂pq + ε)2)∨
((d̂pq − ε)2 ≤ (x− d̂op − ε)2 + y2 ≤ (d̂pq + ε)2)}.

(11)

The intersections of roq and rpq form the two regions rq1 and
rq2. The two regions are certainly symmetrical with respect to
the edge e(o, p), but they can be adjacent or nonadjacent in
various situations [22]. To ensure that they are separated, the
edge e(o, p) is added as the boundary between them. The half-
plane that contains sq is denoted by H , and the complementary
half-plane is denoted by H ′. Hence, H and H ′ can be written
as follows:

H = {(x, y)|y > 0}, (12)
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(a) Normal case
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(b) Near-collinear case 
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(c) Overlapping case
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(d) Both near-collinear case and overlapping case

Fig. 2. Localization without flip ambiguities using bilateration.

H ′ = {(x, y)|y ≤ 0}. (13)

Thus, the possible localization region of node sq can be
defined as follows:

rq1 = {(x, y)|(x, y) ∈ roq ∩ rpq ∩H}. (14)

Similarly, this method can also be extended to the analysis
of the possible localization regions of si. The two annulus
regions related with si can be defined as follows:

roi = {(x, y)|(d̂oi − ε)2 ≤ x2 + y2 ≤ (d̂oi + ε)2}, (15)

rpi = {(x, y)|
((d̂pi − ε)2 ≤ (x− d̂op + ε)2 + y2 ≤ (d̂pi + ε)2)∨
((d̂pi − ε)2 ≤ (x− d̂op − ε)2 + y2 ≤ (d̂pi + ε)2)}.

(16)

Thus, the two possible localization regions of si can be defined
as follows:

ri1 = {(x, y)|(x, y) ∈ roi ∩ rpi ∩H}, (17)

ri2 = {(x, y)|(x, y) ∈ roi ∩ rpi ∩H ′}. (18)

The true location of node si is in one of the two regions ri1 or
ri2. To obtain an unambiguous estimated location, additional
knowledge is required to determine which region contains
the true location. In this paper, the communication ranges
of the nodes sq and si are used to address the ambiguity
problem. According to the aforementioned bi-boundary model,
the communication ranges of sq and si can be bounded as
follows:

rq ∈ [max(D1
q)− ε,min(D2

q) + 2ε], (19)

ri ∈ [max(D1
i )− ε,min(D2

i ) + 2ε]. (20)

Hence, the maximum communication distance, within which
sq and si can certainly communicate with each other, is
defined by:

Dqi = min(max(D1
q)− ε,max(D1

i )− ε). (21)

Lastly, Theorem 1 proves whether node si can be uniquely
localizable in 4opq.

Theorem 1. Given a localized triangle 4opq, where its three
localized nodes so, sp and sq are adjacent to each other, and
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an unknown node si, such that the edges e(o, i) and e(p, i)
exist, but e(q, i) does not exist. Let ε = emax > 0 be a
threshold of the distance measurement errors. si can be a
unique localization, and its sufficient conditions are as follows:

(1) ∀x ∈ rq1, ∀y ∈ ri1, dxy < Dqi,
(2) ∃u ∈ rq1, ∃v ∈ ri2, duv > Dqi.

Proof. ri1 and ri2 are two possible localization regions of si
based on constraints of the two distance d̂oi and d̂pi. If every
pair of points between rq1 and ri1 are adjacent while at least
one pair of points between rq1 and ri2 are beyond Dqi, then
the whole region ri1 is excluded as a possible localization
region of si. Therefore, the region ri2 is the only possible
region which contains the true location pi, and no possibility
exists for the occurrence of FA. In this case, both nodes si
and sq are clearly on the opposite of the edge e(o, p).

C. FA Avoidance Criteria for Localization using Trilateration

We now address the scenario where trilateration is used
without flip ambiguities, and Fig. 3 shows the corresponding
graph of this scenario. Just like Fig. 2, a normal case is
depicted without near-collinear and overlapping occurrences
in Fig. 3 (a). Fig. 3 (b) and (c) show a near-collinear case and
an overlapping case, respectively. And then, Fig. 3 (d) shows
a compositive case with near-collinear and overlapping occur-
rences. Due to the feasibility of our method to all the cases,
we will also follow the same process. The detection of the FA
occurrences is now analyzed. The possible localization region
of sq is the upper region rq1 consisting of the intersections
of the black annulus and the red annuli. The intersections of
the gray annulus and the blue annuli form two regions ri1 and
ri2, which are the possible localization regions of si. The three
regions highlighted with horizontal stripes, vertical stripes and
mesh indicate rr1, rr2 and rq1, respectively. u and v are any
points of rq1 and ri1, respectively. Since duv /∈ [d̂qi−ε, d̂qi+ε],
v is without the constraints of the distance d̂qi, and each point
of ri1 is clearly without the constraint of d̂qi. Therefore, for
u, the whole region ri1 is not a possible localization region
of si.

Similar to the analysis for the scenario using bilateration,
the two annuli roq and rpq are also respectively defined as
follows:

roq = {(x, y)|(d̂oq − ε)2 ≤ x2 + y2 ≤ (d̂oq + ε)2}, (22)

rpq = {(x, y)|
((d̂pq − ε)2 ≤ (x− d̂op + ε)2 + y2 ≤ (d̂pq + ε)2)∨
((d̂pq − ε)2 ≤ (x− d̂op − ε)2 + y2 ≤ (d̂pq + ε)2)}.

(23)

Thus, the possible localization region of node sq is also defined
as follows:

rq1 = {(x, y)|(x, y) ∈ roq ∩ rpq ∩H}. (24)

Similarly, using the two measured distances d̂oi and d̂pi
that are affected by noises, the two annuli roi and rpi are also
respectively defined as follows:

roi = {(x, y)|(d̂oi − ε)2 ≤ x2 + y2 ≤ (d̂oi + ε)2}, (25)

rpi = {(x, y)|
((d̂pi − ε)2 ≤ (x− d̂op + ε)2 + y2 ≤ (d̂pi + ε)2)∨
((d̂pi − ε)2 ≤ (x− d̂op − ε)2 + y2 ≤ (d̂pi + ε)2)}.

(26)

Following which, the two possible localization regions of si
are also defined as follows:

ri1 = {(x, y)|(x, y) ∈ roi ∩ rpi ∩H}, (27)

ri2 = {(x, y)|(x, y) ∈ roi ∩ rpi ∩H ′}. (28)

The true location pi must be located in one of the two
separated regions ri1 and ri2, but incorrect calculation can
cause FA; thus, to address the problem of FA and derive the
estimated location, we use a third annulus rqi, which is defined
by the following equation:

rqi = {(x, y)|(d̂qi−ε)2 ≤ (x−xq)2+(y−yq)2 ≤ (d̂qi+ε)
2}.

(29)
To summarize, we have the following theorem:

Theorem 2. Given a localized triangle 4opq, where its three
localized nodes so, sp and sq are adjacent to each other, and
an unknown node si, such that the edges e(o, i), e(p, i) and
e(q, i) exist. Let ε = emax > 0 be a threshold of the distance
measurement errors. si can be a unique localization, and its
sufficient conditions are as follows:

(1) ∀x ∈ rq1, ∀y ∈ ri1, dxy /∈ [d̂qi − ε, d̂qi + ε],
(2) ∃u ∈ rq1, ∃v ∈ ri2, duv ∈ [d̂qi − ε, d̂qi + ε].

Or,
(1) ∀x ∈ rq1, ∀y ∈ ri2, dxy /∈ [d̂qi − ε, d̂qi + ε],
(2) ∃u ∈ rq1, ∃v ∈ ri1, duv ∈ [d̂qi − ε, d̂qi + ε].

Proof. Following the same analysis in Theorem 1, ri1 and ri2
are two possible localization regions of si based on constraints
of the two distances d̂oi and d̂pi. There are at least one pair of
points, whose distances are under the constraints of the third
distance d̂qi, between rq1 and ri2 (or ri1), whereas there is no
any pair of points, whose distance is without the constraints
of the third distance d̂qi, between rq1 and ri1 (or ri2). Thus,
the whole region ri1 (or ri2) is eliminated from the possible
localization regions of si, and the other region ri2 (or ri1) is
a unique estimated region that causes no FA.

D. Localization Considering Velocities and Directions

Considering the motion velocities and directions of micro-
UAVs, we further introduce our localization criteria avoiding
FA in trilateration and bilateration. For a connected network,
we first assume that the location update can be completed in
one time unit. Since the velocities and directions vary, they
are represented as the motion distances per time unit [37].
The size and sign of the motion distances are used to denote
the magnitude and direction of motions. Here, positive value
indicates that a node moves in the opposite direction, leading
to an increase of distances between nodes, while negative value
indicates the motion towards each other. When the distances
between neighboring nodes are acquired together in a time
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Fig. 3. Localization without flip ambiguities using trilateration.

unit, the possible locations of each node fall into a larger
region due to their motions.

Combining the factor of measurement errors mentioned
above, the distance dij between any two neighboring nodes
si and sj can be re-constrained as follows:

dij ∈ [d̂ij − (emax + dmax), d̂ij + (emax + dmax)]. (30)

These two parameters, measurement error and motion, are
regarded as the influential factors on distance-based local-
izations. Therefore, the dynamic localization problem can be
formulated with ε = emax+dmax. According to theorem 1 and
2, two lemmas in trilateration and bilateration can be induced.

Lemma 1. Given a localized triangle 4opq, where its three
localized nodes so, sp and sq are adjacent to each other, and
an unknown node si, such that the edges e(o, i) and e(p, i)
exist, but e(q, i) does not exist. Let ε = emax + dmax > 0
be a threshold of the distance variations. si can be a unique
localization, and its sufficient conditions are as follows:

(1) ∀x ∈ rq1, ∀y ∈ ri1, dxy < Dqi,

(2) ∃u ∈ rq1, ∃v ∈ ri2, duv > Dqi.

Lemma 2. Given a localized triangle 4opq, where its three
localized nodes so, sp and sq are adjacent to each other, and
an unknown node si, such that the edges e(o, i), e(p, i) and
e(q, i) exist. Let ε = emax + dmax > 0 be a threshold of the
distance variations. si can be a unique localization, and its
sufficient conditions are as follows:

(1) ∀x ∈ rq1, ∀y ∈ ri1, dxy /∈ [d̂qi − ε, d̂qi + ε],
(2) ∃u ∈ rq1, ∃v ∈ ri2, duv ∈ [d̂qi − ε, d̂qi + ε].

Or,
(1) ∀x ∈ rq1, ∀y ∈ ri2, dxy /∈ [d̂qi − ε, d̂qi + ε],
(2) ∃u ∈ rq1, ∃v ∈ ri1, duv ∈ [d̂qi − ε, d̂qi + ε].

E. Localization Algorithm

Based on the aforementioned criteria, we now present our
Avoiding Flip Ambiguities Localization Algorithm (AFALA).
The algorithm first selects a random triangle or a special
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Fig. 4. Comparison of TLA, SELA and AFALA on a random graph with r=20, δ=0.02 and ε=δ, where green and red tic marks denote the true and estimated
locations, respectively.

triangle, which is an acute triangle with every edge greater
than four fifths of the communication ranges, as the initial
triangle and adds its three nodes to a set of localized nodes.
For any unlocalized node, if it is connected to these three
localized nodes and the condition of Theorem 1 or Lemma 1
is satisfied, or it is connected to two localized nodes and the
condition of Theorem 2 or Lemma 2 is satisfied, it is localized
and is moved from the unlocalized nodes set to the localized
nodes set. The process is iterated until no new node can join
the set of localized nodes. Details are shown in Algorithm 1.

V. PERFORMANCE VALIDATION

In this section, the localization performance of the proposed
algorithm is compared with TLA [26] and SELA [32] in
terms of the percentage of localizable nodes and the average
estimation error, using simulations implemented in MATLAB

7.14.0.739 (R2012a). Simulations are conducted in a square
unit area of 100 units by 100 units, where micro-UAVs are
uniformly distributed. 100 random instances of micro-UAV
network are administered in each group trial, and the average
result is taken to ensure more accurate result. The experimental
parameter settings are as follows:

• The number n of micro-UAVs deployed in networks
ranges from 50 to 200;

• A random or special triangle is randomly chosen as the
initial triangle;

• The communication radius r is set to be 20, 30 and 40
units;

• The measurement errors eij∼N(0, δ2), such that d̂ij =
|dij + eij |, where δ is set to be 0, 0.02, 0.2, 0.5, 1, 1.5,
2, 2.5 and 3 units;

• The motion speed of each micro-UAV is randomly chosen
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Fig. 6. Impact of measurement error. n = 100, s4, dmax = 0.

from [−dmax, dmax] units per time unit, where the
maximum motion speed dmax is set to be 0:0.2:2 units
per time unit;

• The motion factor is considered or not by the threshold
value ε which is set to be δ or δ + dmax. In order to
keep the errors within the maximum allowable bounds,
if |dij − d̂ij | > ε, then |dij − d̂ij | = ε.

Fig. 4 presents a representative localization scenario with
r = 20 and δ = 0.2. Fig. 4 (a) shows the original graph of
the network. Fig. 4 (b), (c) and (d) present the localization
results of the TLA, SELA and AFALA algorithms in the same
scenario. The three blue nodes are randomly chosen as the
nodes of the initial triangle. The green and red nodes are the
true and estimated locations, respectively, which are connected
with black lines, while the remaining black parts are the
unlocated nodes. Obviously, the SELA and AFALA algorithms

locate more nodes than TLA because of the utilization of
bilateration. However, many FAs occur in the TLA and SELA
algorithms, while no FAs occur in AFALA. That is because our
algorithm, AFALA, fully consider the effect of measurement
error on FA. Therefore, our algorithm locates more accurately
than TLA and SELA.

We further demonstrate the localization performance in
terms of percentage of localized nodes and average estimation
error by comparing AFALA with TLA and SELA from aspects
such as initial triangle, measurement error, network density
and node motion.

A. Initial Triangle: Random & Special Triangle

As the starting point of algorithms, the choice of initial
triangles determines whether algorithms can localize their first
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Fig. 7. Impact of network density. s4, r = 30, dmax = 0.
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Fig. 8. Impact of node motion. n = 150, s4, r = 20.

new node. If the node fails to be localized, that means the
localization process was over before initiating. Fig. 5 shows
the effect of random and special triangle on the localization
performance. As is shown in Fig. 5 (a), for every network
density, these three algorithms (especially AFALA) with spe-
cial triangle distinctly localizes more nodes than with random
triangle under the same measurement errors. Furthermore, with
the increase of measurement errors, the number of nodes
localized by AFALA algorithm with random triangle rapidly
drops. In contrast, the special triangle slowly decreases the
number of localized nodes. Especially, when network density
is equal to 100, the number of localized nodes with special
triangle almost remains stable, even reaching to about 100%.
Theoretically, the special triangle more easily satisfies the
localization criteria of AFALA, thus improving the number
of localized nodes.

Fig. 5 (b) shows the effect of random and special triangle

on the average estimation error. Obviously, the initial triangle
tends to have less impact on AFALA than both TLA and
SELA. Therefore, the choice of the initial triangle significantly
affects the localization result of these methods, and special
triangle achieves better localization performance than random
triangle in terms of the localization ratio.
B. Measurement Error

We demonstrate the impact of measurement errors on the
localization performance in terms of percentage of localized
nodes and average estimation error in Fig. 6. Fig. 6 (a) shows
the percentage of localized nodes against the measurement er-
ror. For r = 20, the AFALA and SELA algorithms locate more
nodes than TLA when the measurement error is small, espe-
cially SELA. However, as the measurement error increases, the
percentage of localized nodes decreases markedly in AFALA.
That is mainly because the strict localization conditions of
AFALA are difficult to satisfy with small communication
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Algorithm 1 the AFALA algorithm based on both localization
criteria.
Require:

A set of unlocalized nodes, Su;
A set of localized triangles, St;
The threshold value of distance variations, ε;

Ensure:
A set of localized nodes, Sl;

1: choose an initial triangle 4opq into St;
2: add the three nodes of 4opq to Sl;
3: repeat
4: for each node si ∈ Su do
5: for each localized triangle 4opq ∈ St do
6: if si connects to two nodes so and sp then
7: rq1 = roq ∩ rpq ∩H;
8: ri1 = roi ∩ rpi ∩H;
9: ri2 = roi ∩ rpi ∩H ′;

10: [Gq1, Gi1, Gi2] = the set of grid point coordinate
of rq1, ri1 and ri2, respectively;

11: if si connects to the node sq then
12: if ((∀x ∈ Gq1, ∀y ∈ Gi1, dxy < d̂qi − ε ∧

dxy > d̂qi + ε) AND (∃u ∈ Gq1, ∃v ∈ Gi2,
d̂qi − ε < duv < d̂qi + ε))
OR ((∃x ∈ Gq1, ∃y ∈ Gi1, d̂qi − ε < dxy <
d̂qi + ε) AND (∀u ∈ Gq1, ∀v ∈ Gi2, duv <
d̂qi − ε ∧ duv > d̂qi + ε)) then

13: calculate the estimated location p̂i;
14: move si from Su to Sl;
15: update the distances of the localized sub-

graph
16: add 4opi to St;
17: end if
18: else
19: Dqi = min(max(D1

q)− ε,max(D1
i )− ε);

20: if (∀x ∈ Gq1, ∀y ∈ Gi1, dxy < Dqi) AND
(∃u ∈ Gq1, ∃v ∈ Gi2, duv > Dqi) then

21: calculate the estimated location p̂i;
22: move si from Su to Sl;
23: update the distances of the localized sub-

graph
24: add 4opi to St;
25: end if
26: end if
27: end if
28: end for
29: end for
30: until the element number of Sl no longer changes
31: return Sl;

radius and large measurement errors. For the large communi-
cation radius r = 30 and 40, the performance gap among the
three algorithms decreases gradually. Especially for r = 40,
they are able to localize almost all the nodes. That is because
the large communication radius increases the possibility of
using trilateration and reduces the key differences among these
algorithms. For the case of AFALA, the localization conditions
are also easily satisfied, leading to good outcomes.

Fig. 6 (b) shows the average estimation error against the
measurement error where AFALA performs significantly better
than TLA and SELA. For every value of r, it is apparent
that the average estimation error is much less in AFALA than
in TLA and SELA. Thus, the proposed algorithm exhibits
excellent localization performance in terms of the average
estimation error. This confirms the efficacy of AFALA as it
addresses the critical issue of measurement errors, a key source
of FA, to fulfil the criteria for accurate localization.

C. Network Density

Fig. 7 illustrates the impact of network density on the
localization performance in different localization algorithms.
Fig. 7 (a) shows the impact of network density on the
localization ratio. For TLA, SELA and AFALA, the number
of localized nodes significantly increases with the increase
of network density. SELA achieves the fastest growth due
to its most flexible localization conditions. On the contrary,
AFALA obtains the lowest growth because of its most rigorous
conditions. However, the gap among them is gradually reduced
with the increase of network density. When network density
is larger than 120, AFALA localizes almost all the nodes,
reaching nearly the same localization ratio of TLA and SELA.

Fig. 7 (b) shows the impact of network density on the
average estimation error. Although these three algorithms are
comparable in the percentage of localized nodes, there is an
obvious difference among them in the average estimation error.
As is shown in Fig. 7 (b), the performance curves fluctuate
with a fixed estimation error. For any one of these network
densities, AFALA outperforms both TLA and SELA by large
margins when the measurement error occurs.

D. Node Motion

We demonstrate the effect of node motion on the local-
ization performance of TLA, SELA and AFALA in Fig. 8.
As is shown in Fig. 8 (a), compared with TLA, our AFALA
locates similar number of nodes, and the motion speed tends
to slightly decrease the number of located nodes. That is
because our localization criteria depend on the measurement
distances, the measurement error and the motion speed to
estimate the size of intersection regions for the avoidance of
flip ambiguities, which makes it sensitive to these factors.

Fig. 8 (b) shows the impact of motion speed on the average
estimation error. The average measurement error increases
as the maximum motion speed increases. Our localization
criteria avoiding flip ambiguities improve the localization
accuracy, thus making AFALA to achieve much less average
measurement error than TLA and SELA. Therefore, AFALA
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outperforms TLA and SELA in terms of localization accuracy
without obvious loss of localization ratio.

VI. CONCLUSION

In this paper, we have proposed a localization algorithm
for swarms micro-UAVs that aims to reduce the occurrence
of flip ambiguities (FA). This is critical for collaborative
flight of micro-UAVs to prevent collisions that can arise
from localization errors caused by FA. For both bilateration
and trilateration, under conditions of bounded errors, we
analyzed the FA phenomenons using the characteristics of
intersecting regions and derived the localization criteria for
avoiding FA theoretically. Using these criteria, we developed
a corresponding localization algorithm, which we call the
Avoiding Flip Ambiguities Localization Algorithm (AFALA).
Using simulations implemented in MATLAB, we compared
the performance of AFALA against other well-known local-
ization methods, viz. TLA and SELA, to demonstrate its
efficiency from four aspects of initial triangle, measurement
error, network density and node motion.
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