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Fréchet and (LB) sequence spaces induced by

dual Banach spaces of discrete Cesàro spaces

José Bonet Werner J. Ricker

Abstract

The Fréchet (resp., (LB)-) sequence spaces ces(p+) :=
⋂

r>p ces(r),
1 ≤ p < ∞ (resp. ces(p-) :=

⋃

1<r<p ces(r), 1 < p ≤ ∞), are known to be
very different to the classical sequence spaces ℓp+ (resp., ℓp-). Both of these
classes of non-normable spaces ces(p+), ces(p-) are defined via the family
of reflexive Banach sequence spaces ces(p), 1 < p < ∞. The dual Banach
spaces d(q), 1 < q < ∞, of the discrete Cesàro spaces ces(p), 1 < p < ∞,
were studied by G. Bennett, A. Jagers and others. Our aim is to investigate in
detail the corresponding sequence spaces d(p+) and d(p-), which have not
been considered before. Some of their properties have similarities with those
of ces(p+), ces(p-) but, they also exhibit differences. For instance, ces(p+)
is isomorphic to a power series Fréchet space of order 1 whereas d(p+) is
isomorphic to such a space of infinite order. Every space ces(p+), ces(p-)
admits an absolute basis but, none of the spaces d(p+), d(p-) have any abso-
lute basis.

1 Introduction

Perhaps the most important class of Banach sequence spaces is ℓp, 1 ≤ p ≤ ∞,
where ℓp is equipped with its usual norm ‖ · ‖p. A classical inequality of Hardy,

Received by the editors in February 2020.
Communicated by F. Bastin.
DOI : 10.36045/j.bbms.200203.
2010 Mathematics Subject Classification : Primary: 46A45, Secondary: 46A04, 46A11, 46A13,

47B37.
Key words and phrases : Sequence space, Fréchet space, (LB)-space, Cesàro operator, strong

dual.

Bull. Belg. Math. Soc. Simon Stevin 28 (2021), 1–19



2 J. Bonet – W.J. Ricker

[20, Theorem 326], states for 1 < p < ∞ and with 1
p +

1
p′ = 1 that

∑
∞
n=1

(

1
n ∑

n
k=1 |xk|

)p
≤ (p′)p ∑

∞
n=1 |xn|p, x = (xn)n ∈ ℓp,

In terms of the Cesàro operator C : C
N −→ C

N, defined by

C(x) := (x1, x1+x2
2 , . . . , x1+x2+...+xn

n , . . .), x = (xn)n ∈ CN. (1.1)

Hardy’s inequality can be formulated, for 1 < p < ∞, as

‖C(|x|)‖p ≤ p′‖x‖p, x ∈ ℓp, (1.2)

where |x| := (|xn|)n for x ∈ CN. Since C : CN −→ CN is a positive operator
(i.e., C(x) ≥ 0, meant in the coordinatewise sense, whenever x ≥ 0 in CN) and
|C(x)| ≤ C(|x|), it follows from (1.2) that C : ℓp −→ ℓp is a continuous linear
operator for all 1 < p < ∞. G. Bennett investigated, in great detail, the closely
related spaces

ces(p) := {x ∈ C
N : C(|x|) ∈ ℓp}, 1 < p < ∞, (1.3)

which are reflexive Banach spaces relative to the norm

‖x‖ces(p) := ‖C(|x|)‖p , x ∈ ces(p), (1.4)

and satisfy ℓp ⊆ ces(p); see [9], as well as [7], [8], [13], [15], [19], [25], [27], and the
references therein. The Banach spaces ces(p) have the desirable property (as do
the spaces ℓp) that they are solid in CN, that is, if x ∈ ces(p) and y ∈ CN satisfy
|y| ≤ |x|, then y ∈ ces(p).

The dual Banach spaces (ces(p))′ of ces(p), 1 < p < ∞, are rather complicated,
[22]. A more transparent isomorphic identification of (ces(p))′ occurs in [9, Corol-
lary 12.17]. Indeed, it is shown there that

d(p) := {x ∈ ℓ∞ : x̂ := (supk≥n |xk|)n ∈ ℓp}, 1 < p < ∞, (1.5)

is a Banach space for the norm

‖x‖d(p) := ‖x̂ ‖p, x ∈ d(p), (1.6)

which is isomorphic to (ces(p′))′, denoted by d(p) ≃ (ces(p′))′, with the duality
given by

〈u, x〉 := ∑
∞
n=1 unxn, u ∈ ces(p′), x ∈ d(p).

It is clear from (1.5) and (1.6) that d(p) is also solid in CN, for 1 < p < ∞. The
Banach spaces d(p), 1 < p < ∞, although less prominent than the discrete Cesàro
spaces ces(p), 1 < p < ∞, have received some attention; see, e.g., [9], [12], [13],
[19], [22], [25] .

Non-normable sequence spaces X ⊆ C
N are also an important part of func-

tional analysis; see, for example, [10], [11], [18], [23], [24], [28], [33] and the
references therein. The classical Fréchet spaces ℓp+ :=

⋂

p<q ℓq, for 1 ≤ p < ∞, are
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well understood, [16], [29]. Their analogues ces(p+) :=
⋂

p<q ces(q) were intro-

duced and investigated in [2]. The (inductive limit) (LB)-space ℓp- := ind1<q<pℓq,
for 1 < p ≤ ∞, which is the strong dual space of ℓp′+, is also well known, [29];
for a recent study of certain aspects of this class of spaces, see [5]. The analogous
class of (LB)-spaces ces(p-) := ind1<q<pces(q), again an inductive limit, is also
analyzed in [5]. The purpose of this note is to introduce and identify properties
of the Fréchet spaces d(p+), 1 ≤ p < ∞, and of the (LB)-spaces d(p-), 1 < p ≤ ∞.
These spaces have not been considered before.

In the following Section 2 we collect various relevant aspects of the Banach
spaces ℓp, ces(p) and d(p), for 1 < p < ∞, which are needed in the sequel. Various
inclusions between these spaces are recorded as well as some of the properties of
the Cesàro operator when it acts between pairs of such Banach spaces.

Section 3 summarizes some known properties of the non-normable sequence
spaces ℓp+, ces(p+) and ℓp- , ces(p-). Several new facts (cf. parts (b) of Proposition
3.3(i), (ii), parts (ii), (iv), (v) of Proposition 3.4 and Proposition 3.6) concerning
these spaces are also established.

Section 4 is the main one of this note; it exposes properties of the (solid)
Fréchet spaces d(p+), 1 ≤ p < ∞, and of the (solid) (LB)-spaces d(p-), 1 < p ≤ ∞,
and compares them with those of the corresponding spaces ℓp+, ces(p+) and
ℓp- , ces(p-).

2 Preliminaries

The non-normable sequence spaces ℓp+, ces(p+), d(p+) and ℓp- , ces(p-), d(p-)
are assembled from the Banach spaces ℓp, ces(q), d(s) for 1 < p, q, s < ∞. So, we
begin by collecting some facts about various inclusions amongst these Banach
spaces. For each n ∈ N, let en := (δkn)k.

Proposition 2.1. (i) Each of the Banach spaces ℓp, ces(p) and d(p), for 1 < p < ∞,
is separable, reflexive and the canonical vectors {en : n ∈ N} form an uncondi-
tional basis. Moreover, (ℓp)′ ≃ ℓp′ (isometrically) and (ces(p))′ ≃ d(p′).

(ii) Let 1 < p, q < ∞.

(a) The inclusion ℓp ⊆ ℓq is satisfied and continuous if and only if p ≤ q.
Moreover, the inclusion is never compact. If p < q, then ℓp $ ℓq.

(b) The inclusion ces(p) ⊆ ces(q) is satisfied and continuous if and only if
p ≤ q. Moreover, the inclusion is compact if and only if p < q, in which case
ces(p) $ ces(q).

(c) The inclusion d(p) ⊆ d(q) is satisfied and continuous if and only if
p ≤ q. Moreover, the inclusion is compact if and only if p < q, in which case
d(p) $ d(q).

(d) The inclusion ℓp ⊆ ces(q) is satisfied and continuous if and only if p ≤ q,
in which case ℓp $ ces(q). Moreover, the inclusion is compact if and only if
p < q.
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(e) The inclusion d(p) ⊆ ℓq is satisfied and continuous if and only if p ≤ q,
in which case d(p) $ ℓq. Moreover, the inclusion is compact if and only if
p < q.

(f) The inclusion d(p) ⊆ ces(q) is satisfied and continuous if and only if p ≤ q,
in which case d(p) $ ces(q). Moreover, the inclusion is compact if and only
if p < q.

Let us indicate where the various parts of Proposition 2.1 occur in the litera-
ture.

(i) For the ℓp-spaces the claims are well known. According to [9, p.61],
[22, Proposition 2], the spaces ces(p), 1 < p < ∞, are reflexive. It was noted in
Section 1 that d(p) is isomorphic to (ces(p′))′ and hence, also the spaces d(p), 1 <

p < ∞, are reflexive. For the unconditionality of {en : n ∈ N} as a basis for
ces(p) we refer to [15, Proposition 2.1] and for d(p) to [12, Proposition 2.1]. It is
then clear that the spaces ces(p), d(p), for 1 < p < ∞, are separable.

(ii) (a) The claims in this setting are all well known.
(b) For the first statement, see [3, Proposition 3.2(iii)], and for the statement

about compactness we refer to [3, Proposition 3.4(ii)]. The discussion prior to
Proposition 3.3 in [3] shows that ces(p) $ ces(q) whenever p < q.

(c) The first statement occurs in [12, Proposition 5.1(iii)] and the statement
concerning compactness can be found in [12, Proposition 5.2(iii)].
Proposition 2.7(ii) of [12] reveals that d(p) $ d(q) whenever p < q.

(d) For the first statement we refer to [3, Proposition 3.2(ii)] and [15, Remark
2.2(ii)]. Concerning the compactness statement, see [3, Proposition 3.4(iii)].

(e) For the first statement, see Propositions 2.7(v) and 5.1(ii) in [12], and for
the statement concerning compactness we refer to [12, Proposition 5.2(ii)].

(f) Proposition 5.1(i) of [12] shows that d(p) ⊆ ces(q), with continuity of
the inclusion, if and only if p ≤ q. Moreover, if p ≤ q, then part (e) yields that
d(p) $ ℓq. Since ℓp ⊆ ces(q) by part (d), it follows that also d(p) $ ces(q). For the
statement about compactness we refer to [12, Proposition 5.2(i)].

It is also relevant to clarify the non-isomorphic nature between the various
Banach spaces ℓp, ces(q) and d(s), for 1 < p, q, s < ∞.

Proposition 2.2. Let 1 < p, q < ∞.

(i) The Banach spaces ℓp and ℓq are not isomorphic whenever p 6= q.

(ii) The Banach spaces ces(p) and ces(q) are not isomorphic whenever p 6= q.

(iii) The Banach spaces d(p) and d(q) are not isomorphic whenever p 6= q.

(iv) The Banach spaces d(p) and ces(q) are not isomorphic whenever p 6= q.

(v) The Banach spaces ces(p) and ℓq are not isomorphic.

(vi) The Banach spaces d(p) and ℓq are not isomorphic.

For the statements (i) - (vi) in Proposition 2.2 we refer successively to [26, p.54
of Vol.I], to [3, Proposition 3.3], to [12, Proposition 2.7(ii)], to [12, Proposition
2.9(ii)], to [9, Proposition 15.13], and to [12, Proposition 2.7(iv)].
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The Cesàro operator C : C
N −→ C

N is a topological isomorphism of the
Fréchet space CN onto itself, where CN is equipped with the coordinatewise con-
vergence topology. It was noted in Section 1 that C : ℓp −→ ℓp is continuous
for 1 < p < ∞. The same is true for C : d(p) −→ d(p), [12, Proposition 3.2(i)],
and for C : ces(p) −→ ces(p); see the proof of Theorem 5.1 in [15]. In relation to
the Cesàro operator C, the Banach spaces ces(p), 1 < p < ∞, have a remarkable
property, [9, Theorem 20.31]. Namely, for x ∈ CN,

C(|x|) ∈ ces(p) if and only if x ∈ ces(p), (2.1)

which immediately implies that

C2(|x|) ∈ ces(p) if and only if C(|x|) ∈ ces(p). (2.2)

In view of (1.4), the criterion (2.1) can be equivalently formulated, for 1 < p < ∞,
as

C2(|x|) ∈ ℓp if and only if C(|x|) ∈ ℓp. (2.3)

For each 1 < p < ∞, it is also known, for x ∈ CN, that

C2(|x|) ∈ d(p) if and only if C(|x|) ∈ d(p), (2.4)

[12, Proposition 3.7]. The criteria (2.2), (2.3) and (2.4) reveal a surprising feature
of the Cesàro operator C when it acts on one of the Banach spaces ℓp, ces(p) or
d(p), for 1 < p < ∞. For ces(p) this is perhaps understandable, in view of (1.3)
and (1.4). However, the Banach spaces ℓp and also d(p), as defined by (1.5) and
(1.6), have apriori no connection to C. Actually more is true.

For each 1 < p < ∞, let respectively [C, ℓp]s, [C, d(p)]s and [C, ces(p)]s denote

the largest solid vector space X ⊆ CN such that respectively C(X) ⊆ ℓp, C(X) ⊆
d(p) and C(X) ⊆ ces(p). Relevant here is that C : ces(p) −→ ℓp continuously,
which is clear from (1.4) and the inequality |C(x)| ≤ C(|x|), that C : ℓp −→ d(p)
continuously, [12, Proposition 3.4], and that C : ces(p) −→ d(p) continuously, [12,
Corollary 3.8], which shows, in turn, that ces(p) ⊆ [C, ℓp]s, that ℓp ⊆ [C, d(p)]s ,
and that even ces(p) ⊆ [C, d(p)]s . Of course, also ces(p) ⊆ [C, ces(p)]s as C maps
ces(p) into itself. Actually the following equalities are valid:

[C, ℓp]s = [C, d(p)]s = [C, ces(p)]s = ces(p), 1 < p < ∞. (2.5)

Indeed, for the fact that [C, ℓp]s = [C, ces(p)]s = ces(p), see p.62 and Theorem 2.5
of [15], and for the equality [C, d(p)]s = ces(p) we refer to [12, Corollary 3.9].

We end this section with some inequalities needed later.

Lemma 2.3. Let 1 < p < ∞ and n ∈ N be arbitrary.

(i) |xn| ≤ n ‖x‖ces(p), x ∈ ces(p).

(ii) |xn| ≤ ‖x‖d(p), x ∈ d(p).

Proof. (i) Given x ∈ ces(p) note that

|xn| ≤ ∑
n
k=1 |xk| = n( 1

n ∑
n
k=1 |xk|) = n(C(|x|))n ≤ n ‖C(|x|)‖p = n ‖x‖ces(p).

(ii) Fix x ∈ d(p). It is clear from the definition of x̂ (cf. (1.4)) that 0 ≤ |xnen| ≤
|x| ≤ |x̂|, from which it follows that |xn| = ‖xnen‖p ≤ ‖x̂‖p = ‖x‖d(p).
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3 The non-normable spaces ℓp+, ces(p+) and ℓp- , ces(p−)

In this section we collect some facts on certain non-normable sequence spaces in
CN. Given 1 ≤ p < ∞, consider any strictly decreasing sequence

{pk}
∞
k=1 ⊆ (p, ∞) with pk ↓ p. (3.1)

Then ℓp+ :=
⋂

q>p ℓq =
⋂∞

k=1 ℓpk
is a Fréchet space relative to the increasing se-

quence of norms on ℓp+ given by ‖ · ‖pk
: x 7−→ ‖x‖pk

, for k ∈ N, [18, Ch.1, §2],
[24, §30.8]. Since each Banach space ℓq, 1 < q < ∞, is solid, it is clear that ℓp+

is also solid in CN. Similarly, ces(p+) :=
⋂

q>p ces(q) =
⋂∞

k=1 ces(pk) is a (solid)

Fréchet space relative to the increasing sequence of norms on ces(p+) given by
‖ · ‖ces(pk)

: x 7−→ ‖x‖ces(pk)
, for k ∈ N. Clearly

ℓp ⊆ ℓp+ ⊆ C
N, 1 ≤ p < ∞,

with continuous inclusions; here Proposition 2.1(ii)(a) is relevant. Also

ces(p) ⊆ ces(p+) ⊆ C
N, 1 ≤ p < ∞,

with continuous inclusions (cf. Proposition 2.1(ii)(b)).

Proposition 3.1. Let 1 ≤ p < ∞. The canonical vectors {en : n ∈ N} form an
unconditional basis for ℓp+. Moreover, ℓp+ is reflexive but not Montel. With continuous
inclusions we have

ℓp+ ⊆ ℓq+, 1 ≤ p ≤ q < ∞. (3.2)

For every distinct pair p, q ∈ [1, ∞) the Fréchet spaces ℓp+ and ℓq+ are not isomorphic.
In particular, the containment (3.2) is proper whenever p < q.

Some comments on Proposition 3.1 are in order. That {en : n ∈ N} is an un-
conditional basis is well known and is a consequence of the fact that this is the
case for each Banach space ℓq, 1 < q < ∞; see Proposition 2.1(i). The same is true
for the reflexivity of ℓp+ as each space ℓq is reflexive for 1 < q < ∞, [28, Proposi-
tion 25.15]. According to [17] the space ℓp+ is not Montel. For the continuity of the
inclusions in (3.2), see [4, Proposition 26(i)]. According to Proposition 3.3 of [2]
the spaces ℓp+ and ℓq+ are not isomorphic whenever p 6= q. Finally, if there exist
p < q such that ℓp+ = ℓq+, then the continuity of the inclusion (3.2) and the open
mapping theorem for Fréchet spaces, [28, Theorem 24.30], would imply that ℓp+

and ℓq+ are isomorphic, which is not the case.
The properties of the Fréchet spaces ces(p+), which we now record, are very

different to those of ℓp+. For the remainder of this note we define α ∈ CN by
α := (log(n))n. The definition of a power series sequence space of order 2 can be
found in [28, IV Section 29], for example. The power series spaces of order p for
any p ∈ [1, ∞] are defined similarly; see e.g., [32].

Proposition 3.2. (i) Let 1 ≤ p < ∞. The canonical vectors {en : n ∈ N} form an
unconditional basis for ces(p+). With continuous inclusions we have

ℓp+ ⊆ ces(q+), 1 ≤ p ≤ q < ∞, (3.3)
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and these containments are proper. Also, with continuous inclusions we have

ces(p+) ⊆ ces(q+), 1 ≤ p ≤ q < ∞, (3.4)

and these containments are proper whenever p < q.

The space ℓp+ is not isomorphic to ces(q+) for any 1 ≤ q < ∞.

(ii) Each space ces(p+), for 1 ≤ p < ∞, is a Fréchet-Schwartz space which is isomor-
phic to the Köthe echelon space of order one

Λ−1/p′(α) := {x ∈ CN : ∑
∞
n=1 |xn|nt < ∞, ∀ t < (− 1

p′ )}, (3.5)

which is a power series space of finite type −1/p′ and order 1. In particular, every
space ces(p+) is isomorphic to the fixed power series space

Λ1
0(α) := {x ∈ CN : ∑

∞
n=1 |xn|n−1/k < ∞, ∀k ∈ N} (3.6)

and hence, ces(p+) is not nuclear.

Concerning Proposition 3.2 consider first part (i). That {en : n ∈ N} is an
unconditional basis is established in [2, Proposition 3.5(i)]. For the fact that ℓp+ is
not isomorphic to any space ces(q+), for 1 ≤ q < ∞, see [2, Proposition 3.5(iii)].
The continuity of the inclusion ℓp+ ⊂ ces(q+) in (3.3) is established in [4, Propo-
sition 26(ii)]. If ℓp+ = ces(q+) for some 1 ≤ p ≤ q < ∞, then the continuity of the
inclusion (3.3) and the open mapping theorem would imply that ℓp+ and ces(q+)
are isomorphic, which is not so. For the continuity of the inclusion in (3.4), see
[4, Proposition 26(iii)]. According to [2, Remark 3.4] the inclusion in (3.4) is nec-
essarily proper if p < q. Now consider part (ii). That ces(p+) is isomorphic to
the space Λ−1/p′(α), as given in (3.5), is the statement of Theorem 3.1 in [2] and

that each one of these spaces is isomorphic to Λ1
0(α) is precisely Corollary 3.2 of

[2]. Consequently, ces(p+) is necessarily a Fréchet-Schwartz space but, it is not
nuclear; see [2, Proposition 3.5(ii)].

The following result summarizes certain properties of the Cesàro operator that
will be needed in the sequel.

Proposition 3.3. (i) (a) For 1 ≤ p ≤ q < ∞, the Cesàro operator C : ℓp+ −→ ℓq+

is continuous.

(b) Let 1 ≤ p < ∞ and x ∈ CN. Then

C2(|x|) ∈ ℓp+ if and only if C(|x|) ∈ ℓp+.

(c) For each 1 ≤ p < ∞ we have that [C, ℓp+]s = ces(p+).

(ii) (a) For 1 ≤ p ≤ q < ∞ the Cesàro operator C : ces(p+) −→ ces(q+) is
continuous.

(b) Let 1 ≤ p < ∞ and x ∈ CN. Then

C2(|x|) ∈ ces(p+) if and only if C(|x|) ∈ ces(p+).
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(c) For each 1 ≤ p < ∞ we have that [C, ces(p+)]s = ces(p+).

Proof. (i) (a) This is Proposition 28(i) of [4].
(b) Fix 1 ≤ p < ∞ and let x ∈ CN. If C(|x|) ∈ ℓp+, then part (a) ensures that

also C2(|x|) ∈ ℓp+.

Conversely, suppose that C2(|x|) ∈ ℓp+. Fix any q > p. Since C2(|x|) ∈ ℓp+ ⊆
ℓq, it follows from (2.3) that C(|x|) ∈ ℓq. But, q > p is arbitrary, and so C(|x|) ∈
ℓp+.

(c) See [2, Proposition 2.5].
(ii) (a) See Proposition 28(iii) of [4].
(b) The proof of (b) in part (i) can easily be adapted to apply to this case (by

using part (a) of (ii) and (2.2) in place of (2.3)).
(c) See [2, Proposition 2.6].

We now turn our attention to the (LB)-spaces ℓp- and ces(p-). Given 1 < p ≤
∞, consider any strictly increasing sequence

{pk}
∞
k=1 ⊆ (1, p) with pk ↑ p. (3.7)

Define the linear spaces

ℓp- :=
⋃

1<q<p ℓq and ces(p-) :=
⋃

1<q<p ces(q), (3.8)

and equip them with the inductive limit topology. In both cases the union is
strictly increasing; see parts (a), (b) of Proposition 2.1(ii). Accordingly, ℓp- =
indkℓpk

and ces(p-) = indk ces(pk) are (LB)-spaces, that is, a countable induc-
tive limit of Banach spaces, [10], [11],[28, pp.290–291] . Since the Banach spaces
ℓq, ces(q), for 1 < q < ∞, are solid, it is clear from (3.8) that both ℓp- and ces(p-)

are solid in CN.
For the definition of the strong dual space X′

β of a locally convex Hausdorff

space X we refer to [28, p.269], for example. In the event that X is a Fréchet space,
the space X′

β is a complete (DF)-space, [28, Proposition 25.7]. Moreover, a Fréchet

space X is reflexive if and only if X′
β is reflexive, [28, Corollary 25.11]. A reflexive

Fréchet space X is Montel if and only if X′
β is Montel, [28, Proposition 24.25].

Recall that a locally convex inductive limit is said to be regular if each bounded
set is contained and bounded in some step.

Proposition 3.4. (i) For each 1 < p ≤ ∞, the space ℓp- is a regular (LB)-space which
is reflexive but not Montel. It is a (DF)-space which satisfies ℓp- ≃ (ℓp′+)

′
β and

(ℓp-)
′
β ≃ ℓp′+.

(ii) For 1 < p ≤ q ≤ ∞ the natural inclusions

ℓp− ⊆ ℓq− (3.9)

are continuous. If p < q, then ℓp- $ ℓq- . Also, the inclusions

ℓp- ⊆ ces(q-), 1 < p ≤ q ≤ ∞, (3.10)

are continuous and proper.
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(iii) For 1 < p ≤ q ≤ ∞, both of the Cesàro operators C : ℓp- −→ ℓq- and C :
ces(p-) −→ ℓq- are continuous.

(iv) For 1 < p ≤ ∞ and x ∈ CN it is the case that

C2(|x|) ∈ ℓp- if and only if C(|x|) ∈ ℓp- . (3.11)

(v) The identity [C, ℓp- ]s = ces(p-) is valid for every 1 < p ≤ ∞.

Proof. (i) These facts are essentially known and follow from the general facts
stated prior to the proposition; see also [10], [16], [29], for example.

(ii) The continuity of the inclusion (3.9) occurs in [5, Proposition 25(i)]. To
see that the containment is proper when p < q, choose r ∈ (p, q) and note that
ℓp- ⊆ ℓr. According to part (a) of Proposition 2.1(ii) there exists x ∈ ℓq\ℓr. Then
x ∈ ℓq-\ℓp- because ℓr ⊆ ℓq- .

For the continuity of the inclusion (3.10) see [5, Proposition 25(ii)]. Suppose
their exist p, q with 1 < p ≤ q ≤ ∞ such that ℓp- = ces(q-). Since both ℓp- , ces(q-)
have a web and are ultra-bornological, [28, Remark 24.36], and ℓp- is continuously
included in ces(q-), it follows from the open mapping theorem, [28, Theorem
24.30], that ℓp- and ces(q-) are isomorphic. But, this is impossible as ℓp- is not
Montel whereas ces(p-) is Montel, [5, p.48]. Hence, the inclusion (3.10) is always
proper.

(iii) See parts (i) and (iv) of Proposition 27 in [5].
(iv) Fix p ∈ (1, ∞] and let x ∈ C

N. If C(|x|) ∈ ℓp- , then also C2(|x|) ∈ ℓp- by

part (iii). Conversely, suppose that C2(|x|) ∈ ℓp- . According to (3.8) there exists

q ∈ (1, p) such that C2(|x|) ∈ ℓq and hence, by (2.3), C(|x|) ∈ ℓq ⊆ ℓp- .
(v) By part (iii) the operator C maps ces(p-) into ℓp- , which implies that

ces(p-) ⊆ [C, ℓp- ]s. Conversely, let X ⊆ CN be a solid subspace such that C(X) ⊆
ℓp- . Given x ∈ X, also |x| ∈ X and so C(|x|) ∈ ℓp- . Choose q ∈ (1, p) such that
C(|x|) ∈ ℓq ⊆ ces(q); see (3.8). Then (2.1) implies that x ∈ ces(q) ⊆ ces(p-).
Accordingly, X ⊆ ces(p-) which implies that [C, ℓp- ]s ⊆ ces(p-).

The (LB)-spaces ces(p-) are rather different to the (LB)-spaces ℓp- . This is due
to the fact, for 1 < p < q < ∞, that the natural inclusion map ces(p) ⊆ ces(q)
is compact whereas the inclusion map ℓp ⊆ ℓq is not compact; see parts (a), (b)
of Proposition 2.1(ii). For the definition of a (DFS)-space we refer to [28, p.304 &
Proposition 25.20]; it is the strong dual of a Fréchet-Schwartz space. In particular,
a (DFS)-space is complete and Montel, [10, pp.61-62].

Proposition 3.5. (i) With continuous inclusions we have

ces(p-) ⊆ ces(q-) ⊆ C
N, 1 < p ≤ q ≤ ∞ (3.12)

and these containments are proper whenever p < q .

The space ℓp- is not isomorphic to ces(q-) for every pair 1 < p, q ≤ ∞.

(ii) Each space ces(p-), for 1 < p ≤ ∞, coincides algebraically and topologically with a
countable inductive limit k1(νp) of weighted ℓ1-spaces.This co-echelon space is iso-
morphic to the strong dual of the (power series) Fréchet-Schwartz space Λ∞

1/p′(α)
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of finite type 1/p′ and infinite order. In particular, ces(p-) = (Λ∞
1/p′(α))

′
β is a

(DFS)-space but, it is not nuclear. Moreover, (ces(p-))′β ≃ Λ∞
1/p′(α). In addition,

each space ces(p-), for 1 < p ≤ ∞, is isomorphic to the fixed (DFS)-space

(Λ∞
1 (α))′β = ces(∞-). (3.13)

(iii) Whenever 1 < p ≤ q ≤ ∞, the Cesàro operator C : ces(p-) −→ ces(q-) is
continuous.

(iv) For 1 < p ≤ ∞ and x ∈ CN it is the case that

C2(|x|) ∈ ces(p-) if and only if C(|x|) ∈ ces(p-).

(v) The identity [C, ces(p-)]s = ces(p-) is valid for every 1 < p ≤ ∞.

Some comments relevant to Proposition 3.5 are as follows. For part (i), the
continuity of the first inclusion in (3.12) occurs in [5, Proposition 25(iii)]. For the
second inclusion in (3.12), recall that the lcH-topology of the Fréchet space C

N is
given by the increasing sequence of seminorms {qm : m ∈ N}, where

qm(x) := max1≤k≤m |xk|, x = (xn)n ∈ C
N.

Given a fixed m ∈ N it follows from Lemma 2.3(i), for each 1 < r < ∞, that

qm(x) ≤ m ‖x‖ces(r), x ∈ ces(r).

Accordingly, the inclusion ces(r) ⊆ CN is continuous for each r ∈ (1, ∞), which
implies that also the inclusion ces(q-) ⊆ C

N is continuous for each 1 < q ≤ ∞,
[28, Proposition 24.7]. That the containment (3.12) is proper whenever p < q can
be argued as in the proof of part (ii) in Proposition 3.4 by replacing the use of
Proposition 2.1(ii)(a) there with Proposition 2.1(ii)(b). Corollary 4 of [5] shows
that ℓp- is not isomorphic to ces(q-) for every 1 < p, q ≤ ∞. All of the assertions
in part (ii) are proved on pp. 49-51 of [5]. For part (iii) we refer to [5, Proposition
27(iii)]. The statement in part (iv) follows directly from Proposition 1(i) of [5].
Finally the identity in (v) is Proposition 1(iv) of [5].

The canonical vectors {en : n ∈ N} form an unconditional basis in the Fréchet
spaces ces(p+), 1 ≤ p < ∞ (cf. Proposition 3.2(i)), and a Schauder basis in each
(DFS)-space ces(p-), 1 < p ≤ ∞, [5, Proposition 1]. Actually more is true. We
recall the notion of an absolute basis, [23, p.314], [28, p.341]. Given a Schauder
basis {un : n ∈ N} of a locally convex Hausdorff space X, for each x ∈ X there
exists a unique element (xn)n ∈ C

N such that x = ∑
∞
n=1 xnun, with the series

converging in X. If, for each continuous seminorm p on X there exist a continuous
seminorm q on X and A > 0 such that

∑
∞
n=1 |xn|p(un) ≤ Aq(x), x ≃ (xn)n ∈ X,

then {un : n ∈ N} is called an absolute basis of X.

Proposition 3.6. The canonical vectors {en : n ∈ N} form an absolute basis in each
space ces(p+), 1 ≤ p < ∞, and in each space ces(p-), 1 < p ≤ ∞.
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Proof. Fix 1 ≤ p < ∞ and recall (by Proposition 3.2(ii)) that ces(p+) is
isomorphic to the Köthe echelon space Λ−1/p′(α). The conclusion then follows
from [23, Theorem 14.7.8] or [28, Proposition 27.26].

Now fix 1 < p ≤ ∞. As mentioned in part (ii) of Proposition 3.5, ces(p-) equals
a co-echelon space of order 1 given by k1(vp) = indnℓ1(vn) for the decreasing

sequence of weights νp = {vn : n ∈ N}, where vn(k) := k−1/qn for k ∈ N,
with qn ↓ p′; see [5, p.49]. According to [11] the space k1(νp) is a Köthe sequence

space K1(V) for some (uncountable) family of weights V associated with νp. Then
Theorem 14.7.8 (and its proof) in [23] show that {en : n ∈ N} is an absolute basis
of ces(p-).

Remark 3.7. Every absolute basis is an unconditional basis, [23, p.314]. Hence,
the Schauder basis {en : n ∈ N} of ces(p-), 1 < p ≤ ∞, is actually an uncondi-
tional basis.

4 The non-normable spaces d(p+) and d(p−)

Fix p ∈ [1, ∞). For any decreasing sequence {pk}
∞
k=1 satisfying (3.1) the Fréchet

space d(p+) :=
⋂

q>p d(q) =
⋂∞

k=1 d(pk) is defined relative to the increasing

sequence of norms on d(p+) given by ‖ · ‖d(pk)
: x 7−→ ‖x‖d(pk)

, for k ∈ N;

see (1.6). Similarly, let p ∈ (1, ∞]. For any increasing sequence {pk}
∞
k=1 satisfying

(3.7) we define the (LB)-space d(p-) :=
⋃

1<q<p d(q) =
⋃∞

k=1 d(pk), equipped with

the inductive limit topology. Since the Banach spaces d(q), for 1 < q < ∞, are
solid, both d(p+) and d(p-) are solid in CN. The aim of this section is to iden-
tify properties of this new class of spaces and to compare them with those of
ℓp+, ces(p+) and ℓp- , ces(p-) presented in Section 3. It turns out that the spaces
d(p+), resp. d(p-), have certain similarities with ces(p+), resp. ces(p-), but there
are also major differences.

We begin with two lemmas which record a few basic features of the spaces
d(p+) and d(p-). Since d(p) ⊆ CN, with a continuous inclusion, for each
1 < p < ∞, [12, Proposition 2.7(vi)], it follows that

d(p) ⊆ d(p+) ⊆ C
N, 1 < p < ∞, (4.1)

and d(1+) ⊆ CN, all with continuous inclusions, as well as

d(p+) ⊆ d(q+), 1 ≤ p ≤ q < ∞, (4.2)

where one needs to invoke part (c) of Proposition 2.1(ii) to establish the continuity
of the inclusion in (4.2).

Lemma 4.1. Let 1 ≤ p < ∞.

(i) The canonical vectors {en : n ∈ N} form an unconditional basis in d(p+).

(ii) The Fréchet space d(p+) is reflexive and separable.

(iii) The inclusion in (4.2) is proper whenever 1 ≤ p < q < ∞.
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Proof. (i) Fix p ∈ [1, ∞) and recall that d(p+) =
⋂∞

k=1 d(pk) with {en : n ∈ N}
forming an unconditional basis in each Banach space d(pk), for k ∈ N; see Propo-
sition 2.1(i). So, given x ∈ d(p+) and any permutation π : N −→ N it is

the case that limN→∞ ‖x − ∑
N
n=1 xπ(n)eπ(n)‖d(pk)

= 0 for each k ∈ N, that is,

limN→∞ ∑
N
n=1 xπ(n)eπ(n) = x in d(p+). Hence, the series ∑

∞
n=1 xnen is uncondi-

tionally convergent to x in d(p+).
(ii) The reflexivity of the Banach spaces d(q), 1 < q < ∞, implies the

reflexivity of d(p+). The separability of d(p+) is clear from part (i).
(iii) Suppose that 1 ≤ p < q < ∞ satisfy d(p+) = d(q+). For any fixed

r ∈ (p, q) it would follow from the containments d(p+) ⊆ d(r) ⊆ d(q) ⊆ d(q+)
that d(r) = d(q). This contradicts part (c) of Proposition 2.1(ii).

According to parts (d), (e) of Proposition 2.1(ii) it is the case that

d(p) ⊆ ℓq ⊆ ces(r), 1 < p ≤ q ≤ r < ∞, (4.3)

with continuous inclusions, which implies that

d(p+) ⊆ ℓq+ ⊆ ces(r+), 1 ≤ p ≤ q ≤ r < ∞, (4.4)

also with continuous inclusions. A similar argument to the proof of part (iii) of
Lemma 4.1 shows that the containments in (4.4) are always proper.

Lemma 4.2. (i) Each (LB)-space d(p-), for 1 < p ≤ ∞, is a (DFS)-space. In partic-
ular, it is a Montel space.

(ii) With continuous inclusions it is the case that

d(p-) ⊆ d(q-) ⊆ C
N, 1 < p ≤ q ≤ ∞. (4.5)

In addition, if p < q, then d(p-) $ d(q-).

Proof. (i) Since the natural inclusion d(q) ⊆ d(r) is compact whenever 1 < q <

r < ∞ (cf. Proposition 2.1(ii)(c)), the (LB)-space d(p-) is a (DFS)-space, [28, Propo-
sition 25.20].

(ii) An argument similar to that used to establish the continuity of the
second inclusion in (3.12) also applies here (by using part (ii) of Lemma 2.3 in
place of part (i)) to show that the second inclusion in (4.5) is continuous. Simi-
larly, the continuity of the inclusion d(s) ⊆ d(t) for 1 < s ≤ t < ∞ (cf. Proposition
2.1(ii)(c)), implies that the inclusion d(p-) ⊆ d(q-) in (4.5) is continuous; see, for
example, [5, Lemma 17(i)].

If 1 < p < q ≤ ∞, then d(p-) $ d(q-). Indeed, fix r ∈ (p, q). By Proposition
2.1(ii)(c) there exists x ∈ d(r)\d(p). Then x ∈ d(q-) but, x 6∈ d(p-) as d(s) ⊆ d(p)
for all 1 < s < p.

The continuity of the inclusions (4.3) imply that

d(p-) ⊆ ℓq- ⊆ ces(r-), 1 < p ≤ q ≤ r ≤ ∞, (4.6)

with continuous inclusions; see Lemma 17(i) of [5]. A similar argument to that
used in the proof of Lemma 4.2(ii) shows that the containments in (4.6) are always
proper.
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Similarly, the continuity of the inclusion d(r) ⊆ d(p) whenever 1 < r ≤ p < ∞

(cf. Proposition 2.1(ii)(c)), together with [5, Lemma 17(i)] applied when T is the
inclusion map from d(r) into d(p-), shows that

d(r) ⊆ d(p-), 1 < r < p ≤ ∞, (4.7)

with continuous inclusions. An analogous argument to that used in the proof of
part (ii) in Lemma 4.2 shows that d(r) $ d(p-).

The following descriptions of d(p+) and d(p-) exhibit important features of
these spaces.

Proposition 4.3. (i) For 1 < p ≤ ∞ the map Φp : (ces(p′+))′ −→ d(p-) given by

Φp( f ) := (〈en, f 〉)n, f ∈ (ces(p′+))′,

is a linear bijection and a topological isomorphism of the (DFS)-space (ces(p′+))′β
onto the (DFS)-space d(p-) = indkd(pk), where {pk}

∞
k=1 satisfies (3.7).

(ii) For each 1 ≤ p < ∞ the map Ψp : (ces(p′-))′ −→ d(p+) given by

Ψp(g) := (〈en, g〉)n, g ∈ (ces(p′-))′,

is a linear bijection and is a topological isomorphism of the Fréchet-Schwartz space
(ces(p′-))′β onto the Fréchet-Schwartz space d(p+).

Proof. (i) By Proposition 3.2(ii) the space ces(p′+) is Fréchet-Schwartz and by
Lemma 4.2(i) the space d(p-) is a (DFS)-space. That Φp is a bijection and topolog-
ical isomorphism follows from [2, Proposition 4.6].

(ii) Proposition 3.5(ii) shows that ces(p′-) is a (DFS)-space with compact
linking maps (cf. Proposition 2.1(ii)(b)). Using [24, §22.7, Theorem (9)], and
[28, Proposition 25.20] it is routine to adapt the proof of Proposition 4.6 in [2]
to prove that Ψp is a bijection and topological isomorphism.

Remark 4.4. Since each space d(p+), 1 ≤ p < ∞, and d(p-), 1 < p ≤ ∞, is
reflexive, it is isomorphic to its bidual. So, Proposition 4.3 implies that

(d(p+))′β ≃ ((ces(p′-)′β)
′
β ≃ ces(p′-), 1 ≤ p < ∞,

and that
(d(p-))′β ≃ ((ces(p′+)′β)

′
β ≃ ces(p′+), 1 < p ≤ ∞.

Corollary 4.5. (i) Each space d(p-), for 1 < p ≤ ∞, is a non-nuclear, (DFS)-space
which is isomorphic to the strong dual (Λ1

0(α))
′
β of the power series Fréchet space

Λ1
0(α) of finite type 0 and order 1.

(ii) Each space d(p+), for 1 ≤ p < ∞, is a non-nuclear, Fréchet-Schwartz space which
is isomorphic to the power series space Λ∞

0 (α) of finite type 0 and order infinity.

Proof. In view of Propositions 3.2(ii), 3.5(ii), and 4.3, only the non-nuclearity
of the spaces in parts (i) and (ii) needs to be addressed. According to Proposi-
tion 3.2(ii) and Proposition 3.5(ii) the spaces ces(q+), 1 ≤ q < ∞, and ces(q-),
1 < q ≤ ∞, are all non-nuclear. Then [30, p.78, Theorem′] implies that the strong
dual spaces d(p-) ≃ (ces(p′+))′β, for 1 < p ≤ ∞, and d(p+) ∼= (ces(p′-))′β, for

1 ≤ p < ∞, are also non-nuclear.
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Proposition 3.6 implies that the unconditional basis {en : n ∈ N} in ces(p+),
1 ≤ p < ∞, and in ces(p-), 1 < p ≤ ∞ (cf. Proposition 3.2(i) and Remark 3.7) is
actually an absolute basis. This turns out not to be the case for the spaces d(p+)
and d(p-). For the definition of the operator ideals Lp, 1 ≤ p ≤ ∞, of all p-
factorable operators we refer to [31]; see also [21], where the terminology of an
Lp-locally convex space is used.

Theorem 4.6. The canonical vectors {en : n ∈ N} form an unconditional basis for each
Fréchet-Schwartz space d(p+), 1 ≤ p < ∞, and for each (DFS)-space d(p-), 1 < p ≤
∞. However, none of these spaces have any absolute basis.

Proof. According to Lemma 4.1(i), {en : n ∈ N} is an unconditional basis in
d(p+), for 1 ≤ p < ∞.

Fix 1 < p ≤ ∞ and let x ∈ d(p-). Then x ∈ d(r) for some 1 < r < p. Given any
permutation π : N −→ N, it follows from Proposition 2.1(i) applied to d(r), that

limN→∞ ‖x − ∑
N
n=1 xπ(n)eπ(n)‖d(r) = 0. Since d(r) ⊆ d(p-) continuously (cf. (4.7)),

it follows that limN→∞ ∑
N
n=1 xπ(n)eπ(n) = x in d(p-), that is, x = ∑

∞
n=1 xπ(n)eπ(n)

with the series converging in d(p-). But, π is arbitrary and so the series ∑
∞
n=1 xnen

converges unconditionally to x in d(p-). Hence, {en : n ∈ N} is an unconditional
basis for d(p-).

Let 1 ≤ p < ∞ and suppose that d(p+) has some absolute basis. By Proposi-
tion 27.26 of [28], d(p+) would be isomorphic to a Köthe echelon space of order
1, that is, d(p+) is an L1-space. On the other hand, Corollary 4.5(ii) implies that
d(p+) is also an L∞-space. According to [31, Theorem 29.7.6] the space d(p+) is
then nuclear, which contradicts Corollary 4.5(ii). Hence, d(p+) has no absolute
basis.

Suppose, for fixed 1 < p ≤ ∞, that d(p-) has an absolute basis. By The-
orem 14.7.8 of [23] the complete (DFS)-space d(p-) is isomorphic to a Köthe se-
quence space of order 1 and hence, is an L1-space. According to Proposition 4.3(i)
and Corollary 4.5(i) the space d(p-) is also an L∞-space. Hence, d(p-) is nuclear,
[31, Theorem 29.7.6], which contradicts Corollary 4.5(i). So, d(p-) has no absolute
basis.

Theorem 4.7. (i) For each pair 1 ≤ p, q < ∞, the Fréchet space ces(p+) is not
isomorphic to the Fréchet space d(q+).

(ii) For each pair 1 < p, q ≤ ∞, the (DFS)-space ces(p-) is not isomorphic to the
(DFS)-space d(q-).

Proof. (i) Fix 1 ≤ p, q < ∞. Since isomorphisms between locally convex Haus-
dorff spaces map absolute bases to absolute bases, it follows from Proposition 3.6
and Theorem 4.6 that ces(p+) cannot be isomorphic to d(q+).

(ii) Fix 1 < p, q ≤ ∞. If ces(p-) and d(q-) are isomorphic, then also their strong
dual spaces d(p′+) and ces(q′+) are isomorphic. This contradicts part (i).

Remark 4.8. (i) An alternate proof of the fact that no space d(p+), 1 ≤ p < ∞,
has an absolute basis is possible. Since (d(p+))′β = ces(p′-) has an absolute basis

(cf. Proposition 3.6), if also d(p+) had an absolute basis, then Theorem 21.10.6 of
[23] would imply that d(p+) is nuclear; contradiction to Corollary 4.5(ii).
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(ii) A further difference between the unconditional basis E := {en : n ∈ N}
when it is considered to belong to one of the spaces ces(p+), ces(p-), in contrast
to when it is considered in one of the spaces d(p+), d(p-), should be pointed out.
For each q ∈ (1, ∞) it is known that there exist positive constants Aq, Bq such that

Aq n−1/q′ ≤ ‖en‖ces(q) ≤ Bq n−1/q′ , n ∈ N, (4.8)

[9, Lemma 4.7]. Fix p ∈ [1, ∞) and consider E ⊆ ces(p+). Given q > p it follows
from (4.8) that limn→∞ en = 0 in ces(q). Since ces(p+) =

⋂

k∈N ces(pk) for any
pk ↓ p, it follows that limn→∞ en = 0 in ces(p+). Similarly, consider E ⊆ ces(p-)
for any fixed 1 < p ≤ ∞. Since ces(p-) = indkces(pk) for any 1 < pk ↑ p
is equipped with its inductive limit topology, [28, p.280], each inclusion map
ces(pk) ⊆ ces(p-) for k ∈ N is continuous. Fix any k0 ∈ N. It is clear from
(4.8) that limn→∞ en = 0 in the Banach space ces(pk0

). By the previous comment
this implies that limn→∞ en = 0 in ces(p-).

On the other hand, for each 1 < p < ∞, it is straight-forward to check that

‖en‖d(p) = n1/p, n ∈ N, (4.9)

[4, Lemma 11(ii)]. Since d(p+) =
⋂

k∈N d(pk) for p ∈ [1, ∞) with pk ↓ p and
d(p-) = indkd(pk) for 1 < p ≤ ∞ with 1 < pk ↑ p, it is routine to check using
(4.9) and the nature of the bounded subsets in the spaces d(p+), d(p-) that E is an
unbounded subset in every such space d(p+) and d(p-). In particular, {en : n ∈ N}
cannot be a convergent sequence in any of these spaces.

Proposition 4.9. (i) (a) For each 1 ≤ p ≤ q < ∞ both of the Cesàro operators
C : d(p+) −→ d(q+) and C : ces(p+) −→ d(q+) are continuous.

(b) Let 1 ≤ p < ∞ and x ∈ CN. Then it is the case that

C2(|x|) ∈ d(p+) if and only if C(|x|) ∈ d(p+).

(c) For each 1 ≤ p < ∞ the identity [C, d(p+)]s = ces(p+) is valid.

(ii) (a) For each 1 < p ≤ q ≤ ∞ both of the Cesàro operators C : d(p-) −→ d(q-)
and C : ces(p-) −→ d(p-) are continuous.

(b) Let 1 < p ≤ ∞ and x ∈ CN. Then it is the case that

C2(|x|) ∈ d(p-) if and only if C(|x|) ∈ d(p-).

(c) For each 1 < p ≤ ∞ the identity [C, d(p-)]s = ces(p-) is valid.

Proof. (i) (a) The continuity of C : d(p+) −→ d(q+) follows from Lemma 2.5(i)
of [4], the definition of d(p+) and d(q+), and the fact that C : d(r) −→ d(s) is
continuous whenever 1 < r ≤ s < ∞; see [12, Proposition 5.3(iii)]).

A similar argument applies to establish the continuity of C : ces(p+) −→
d(q+), where now it is needed that C : ces(r) −→ d(s) is continuous whenever
1 < r ≤ s < ∞ (cf. [12, Proposition 5.3(v)]).

(b) The proof of part (b) in Proposition 3.3(i) can easily be adapted to apply
to this case (by using part (a) above and (2.4) there in place of (2.3)).
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(c) Clearly ces(p+) ⊆ [C, d(p+)]s as C maps ces(p+) into d(p+) by part (a).
On the other hand, let X ⊆ CN be a solid space such that C(X) ⊆ d(p+). Given
x ∈ X also |x| ∈ X and hence, C(|x|) ∈ d(p+) ⊆ ces(p+). By Proposition 2.2
of [2] we have that x ∈ ces(p+). Accordingly, X ⊆ ces(p+). This implies that
[C, d(p+)]s ⊆ ces(p+).

(ii) (a) The proof of part (a) in (i) above can be adapted to apply here by
replacing Lemma 2.5(i) of [4] used there with Lemma 17(i) of [5].

(b) The proof of part (iv) of Proposition 3.4 can be modified by using part (a)
above, the definition d(p-) =

⋃

1<q<p d(q) and applying (2.4) in place of (2.3).
(c) Using part (a) above, the proof of part (v) of Proposition 3.4 can be adapted

to fit the present setting.

Remark 4.10. (i) Since C : ℓr −→ d(s) is continuous whenever 1 < r ≤ s < ∞,
[12, Proposition 5.3(iv)], it follows from Lemma 2.5(i) of [4], resp. Lemma 17(i)
of [5], that C : ℓp+ −→ d(q+) is continuous whenever 1 ≤ p ≤ q < ∞, resp.
C : ℓp- −→ d(q-) is continuous whenever 1 < p ≤ q ≤ ∞.

(ii) The analogue of the stronger version of the “Bennett property” for C
acting in ces(p), 1 < p < ∞, as it is stated in (2.1), is known to also hold for
C acting in ces(p+), [2, Proposition 2.2], and for C acting in ces(p-), 1 < p ≤ ∞,
[5, Proposition 1(i)]. However, it fails to hold for C acting in ℓp+, d(p+) and in
ℓp- , d(p-).

Indeed, for ℓp+ with 1 ≤ p < ∞, see [2, Proposition 2.4]. For ℓp- with 1 < p ≤
∞, choose 0 ≤ x ∈ ces(p-)\ℓp- (possible as the containment (3.10) is proper when
q = p) and note that C(|x|) = C(x) ∈ ℓp- by Proposition 3.4(ii). So, it does not
follow from C(|u|) ∈ ℓp- that necessarily u ∈ ℓp- .

Concerning d(p+) with 1 ≤ p < ∞, it follows from (4.4) and the ensuing
discussion that there exists 0 ≤ x ∈ ℓp+\d(p+). Then Proposition 4.9(i)(a) implies
that C(|x|) = C(x) ∈ d(p+). So, C(|u|) ∈ d(p+) need not imply that u ∈ d(p+).
Finally, for d(p-), 1 < p ≤ ∞, choose 0 ≤ x ∈ ℓp-\d(p-), which is possible via
(4.6) and the ensuing discussion, and note that C(|x|) = C(x) ∈ d(p-) by part
(i) of this remark. That is, it does not follow from C(|u|) ∈ d(p-) that necessarily
u ∈ d(p-).

For a more general version of the Bennett property for Banach spaces see [14].
�

We conclude with some comments about the spaces occuring in this paper
when they are considered as locally solid, lc-Riesz spaces. The standard reference
on this topic (for real spaces) is [6]; for complex spaces see [34].

Let 1 ≤ p < ∞. Then ces(p+), resp. ℓp+, is the complexification of the cor-

responding real Riesz space cesR(p+) := {x ∈ ces(p+) : x = (xn)n ∈ RN},
resp. (ℓp+)R := {x ∈ ℓp+ : x = (xn)n ∈ RN}, where the order in the real spaces
is defined coordinatewise. The Fréchet lattices ces(p+), ℓp+ are Dedekind com-
plete, that is, every subset of cesR(p+), (ℓp+)R which is bounded from above in
the order sense has a least upper bound. Moreover, being reflexive, each of the
(separable) Fréchet lattices ces(p+), ℓp+ , for p ∈ [1, ∞), has a Lebesgue topol-

ogy, that is, if x(α) ↓ 0 is a decreasing net in the order of ces(p+), ℓp+ , then

limα x(α) = 0 in the topology of ces(p+), ℓp+ . In addition, the order intervals in
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ces(p+), ℓp+ are topologically complete. Each Fréchet lattice ces(p+), for
p ∈ [1, ∞), is Montel, which is not the case for ℓp+, for p ∈ [1, ∞). For these
notions and facts (and additional properties) we refer to [2, Section 4]. All of
the properties needed for establishing the above facts for ces(p+) in [2] are also
available for d(p+). So, each space d(p+), for p ∈ [1, ∞), is a (Montel) locally
convex Fréchet lattice which is Dedekind complete, has a Lebesgue topology and
its order intervals are topologically complete.

Various properties of the associated (LB)-spaces ℓp- , ces(p-), for 1 < p ≤ ∞,
considered as locally solid, lc-Riesz spaces, occur in [5, Section 6]. The (LB)-spaces
ℓp- are reflexive (but, not Montel), Dedekind complete, have a Lebesgue topology
and their order intervals are topologically complete. Each space ces(p-), 1 < p ≤
∞, has the same properties just listed for ℓp- and, in addition, is Montel. All of
the properties needed for establishing the above facts in [5] for ces(p-) are also
available for d(p-). Hence, each space d(p-), 1 < p ≤ ∞, is a Montel, locally solid,
lc-Riesz space which is Dedekind complete, has a Lebesgue topology and its or-
der intervals are topologically complete.
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